X86InstrInfo.cpp revision 969ba287cd2be9b2d6843db6fa5337585f84283b
1//===- X86InstrInfo.cpp - X86 Instruction Information -----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the X86 implementation of the TargetInstrInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "X86InstrInfo.h"
15#include "X86.h"
16#include "X86InstrBuilder.h"
17#include "X86MachineFunctionInfo.h"
18#include "X86Subtarget.h"
19#include "X86TargetMachine.h"
20#include "llvm/DerivedTypes.h"
21#include "llvm/LLVMContext.h"
22#include "llvm/ADT/STLExtras.h"
23#include "llvm/CodeGen/MachineConstantPool.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineInstrBuilder.h"
26#include "llvm/CodeGen/MachineRegisterInfo.h"
27#include "llvm/CodeGen/LiveVariables.h"
28#include "llvm/MC/MCInst.h"
29#include "llvm/Support/CommandLine.h"
30#include "llvm/Support/Debug.h"
31#include "llvm/Support/ErrorHandling.h"
32#include "llvm/Support/raw_ostream.h"
33#include "llvm/Target/TargetOptions.h"
34#include "llvm/MC/MCAsmInfo.h"
35#include <limits>
36
37#define GET_INSTRINFO_CTOR
38#include "X86GenInstrInfo.inc"
39
40using namespace llvm;
41
42static cl::opt<bool>
43NoFusing("disable-spill-fusing",
44         cl::desc("Disable fusing of spill code into instructions"));
45static cl::opt<bool>
46PrintFailedFusing("print-failed-fuse-candidates",
47                  cl::desc("Print instructions that the allocator wants to"
48                           " fuse, but the X86 backend currently can't"),
49                  cl::Hidden);
50static cl::opt<bool>
51ReMatPICStubLoad("remat-pic-stub-load",
52                 cl::desc("Re-materialize load from stub in PIC mode"),
53                 cl::init(false), cl::Hidden);
54
55enum {
56  // Select which memory operand is being unfolded.
57  // (stored in bits 0 - 7)
58  TB_INDEX_0    = 0,
59  TB_INDEX_1    = 1,
60  TB_INDEX_2    = 2,
61  TB_INDEX_MASK = 0xff,
62
63  // Minimum alignment required for load/store.
64  // Used for RegOp->MemOp conversion.
65  // (stored in bits 8 - 15)
66  TB_ALIGN_SHIFT = 8,
67  TB_ALIGN_NONE  =    0 << TB_ALIGN_SHIFT,
68  TB_ALIGN_16    =   16 << TB_ALIGN_SHIFT,
69  TB_ALIGN_32    =   32 << TB_ALIGN_SHIFT,
70  TB_ALIGN_MASK  = 0xff << TB_ALIGN_SHIFT,
71
72  // Do not insert the reverse map (MemOp -> RegOp) into the table.
73  // This may be needed because there is a many -> one mapping.
74  TB_NO_REVERSE   = 1 << 16,
75
76  // Do not insert the forward map (RegOp -> MemOp) into the table.
77  // This is needed for Native Client, which prohibits branch
78  // instructions from using a memory operand.
79  TB_NO_FORWARD   = 1 << 17,
80
81  TB_FOLDED_LOAD  = 1 << 18,
82  TB_FOLDED_STORE = 1 << 19
83};
84
85X86InstrInfo::X86InstrInfo(X86TargetMachine &tm)
86  : X86GenInstrInfo((tm.getSubtarget<X86Subtarget>().is64Bit()
87                     ? X86::ADJCALLSTACKDOWN64
88                     : X86::ADJCALLSTACKDOWN32),
89                    (tm.getSubtarget<X86Subtarget>().is64Bit()
90                     ? X86::ADJCALLSTACKUP64
91                     : X86::ADJCALLSTACKUP32)),
92    TM(tm), RI(tm, *this) {
93
94  static const unsigned OpTbl2Addr[][3] = {
95    { X86::ADC32ri,     X86::ADC32mi,    0 },
96    { X86::ADC32ri8,    X86::ADC32mi8,   0 },
97    { X86::ADC32rr,     X86::ADC32mr,    0 },
98    { X86::ADC64ri32,   X86::ADC64mi32,  0 },
99    { X86::ADC64ri8,    X86::ADC64mi8,   0 },
100    { X86::ADC64rr,     X86::ADC64mr,    0 },
101    { X86::ADD16ri,     X86::ADD16mi,    0 },
102    { X86::ADD16ri8,    X86::ADD16mi8,   0 },
103    { X86::ADD16ri_DB,  X86::ADD16mi,    TB_NO_REVERSE },
104    { X86::ADD16ri8_DB, X86::ADD16mi8,   TB_NO_REVERSE },
105    { X86::ADD16rr,     X86::ADD16mr,    0 },
106    { X86::ADD16rr_DB,  X86::ADD16mr,    TB_NO_REVERSE },
107    { X86::ADD32ri,     X86::ADD32mi,    0 },
108    { X86::ADD32ri8,    X86::ADD32mi8,   0 },
109    { X86::ADD32ri_DB,  X86::ADD32mi,    TB_NO_REVERSE },
110    { X86::ADD32ri8_DB, X86::ADD32mi8,   TB_NO_REVERSE },
111    { X86::ADD32rr,     X86::ADD32mr,    0 },
112    { X86::ADD32rr_DB,  X86::ADD32mr,    TB_NO_REVERSE },
113    { X86::ADD64ri32,   X86::ADD64mi32,  0 },
114    { X86::ADD64ri8,    X86::ADD64mi8,   0 },
115    { X86::ADD64ri32_DB,X86::ADD64mi32,  TB_NO_REVERSE },
116    { X86::ADD64ri8_DB, X86::ADD64mi8,   TB_NO_REVERSE },
117    { X86::ADD64rr,     X86::ADD64mr,    0 },
118    { X86::ADD64rr_DB,  X86::ADD64mr,    TB_NO_REVERSE },
119    { X86::ADD8ri,      X86::ADD8mi,     0 },
120    { X86::ADD8rr,      X86::ADD8mr,     0 },
121    { X86::AND16ri,     X86::AND16mi,    0 },
122    { X86::AND16ri8,    X86::AND16mi8,   0 },
123    { X86::AND16rr,     X86::AND16mr,    0 },
124    { X86::AND32ri,     X86::AND32mi,    0 },
125    { X86::AND32ri8,    X86::AND32mi8,   0 },
126    { X86::AND32rr,     X86::AND32mr,    0 },
127    { X86::AND64ri32,   X86::AND64mi32,  0 },
128    { X86::AND64ri8,    X86::AND64mi8,   0 },
129    { X86::AND64rr,     X86::AND64mr,    0 },
130    { X86::AND8ri,      X86::AND8mi,     0 },
131    { X86::AND8rr,      X86::AND8mr,     0 },
132    { X86::DEC16r,      X86::DEC16m,     0 },
133    { X86::DEC32r,      X86::DEC32m,     0 },
134    { X86::DEC64_16r,   X86::DEC64_16m,  0 },
135    { X86::DEC64_32r,   X86::DEC64_32m,  0 },
136    { X86::DEC64r,      X86::DEC64m,     0 },
137    { X86::DEC8r,       X86::DEC8m,      0 },
138    { X86::INC16r,      X86::INC16m,     0 },
139    { X86::INC32r,      X86::INC32m,     0 },
140    { X86::INC64_16r,   X86::INC64_16m,  0 },
141    { X86::INC64_32r,   X86::INC64_32m,  0 },
142    { X86::INC64r,      X86::INC64m,     0 },
143    { X86::INC8r,       X86::INC8m,      0 },
144    { X86::NEG16r,      X86::NEG16m,     0 },
145    { X86::NEG32r,      X86::NEG32m,     0 },
146    { X86::NEG64r,      X86::NEG64m,     0 },
147    { X86::NEG8r,       X86::NEG8m,      0 },
148    { X86::NOT16r,      X86::NOT16m,     0 },
149    { X86::NOT32r,      X86::NOT32m,     0 },
150    { X86::NOT64r,      X86::NOT64m,     0 },
151    { X86::NOT8r,       X86::NOT8m,      0 },
152    { X86::OR16ri,      X86::OR16mi,     0 },
153    { X86::OR16ri8,     X86::OR16mi8,    0 },
154    { X86::OR16rr,      X86::OR16mr,     0 },
155    { X86::OR32ri,      X86::OR32mi,     0 },
156    { X86::OR32ri8,     X86::OR32mi8,    0 },
157    { X86::OR32rr,      X86::OR32mr,     0 },
158    { X86::OR64ri32,    X86::OR64mi32,   0 },
159    { X86::OR64ri8,     X86::OR64mi8,    0 },
160    { X86::OR64rr,      X86::OR64mr,     0 },
161    { X86::OR8ri,       X86::OR8mi,      0 },
162    { X86::OR8rr,       X86::OR8mr,      0 },
163    { X86::ROL16r1,     X86::ROL16m1,    0 },
164    { X86::ROL16rCL,    X86::ROL16mCL,   0 },
165    { X86::ROL16ri,     X86::ROL16mi,    0 },
166    { X86::ROL32r1,     X86::ROL32m1,    0 },
167    { X86::ROL32rCL,    X86::ROL32mCL,   0 },
168    { X86::ROL32ri,     X86::ROL32mi,    0 },
169    { X86::ROL64r1,     X86::ROL64m1,    0 },
170    { X86::ROL64rCL,    X86::ROL64mCL,   0 },
171    { X86::ROL64ri,     X86::ROL64mi,    0 },
172    { X86::ROL8r1,      X86::ROL8m1,     0 },
173    { X86::ROL8rCL,     X86::ROL8mCL,    0 },
174    { X86::ROL8ri,      X86::ROL8mi,     0 },
175    { X86::ROR16r1,     X86::ROR16m1,    0 },
176    { X86::ROR16rCL,    X86::ROR16mCL,   0 },
177    { X86::ROR16ri,     X86::ROR16mi,    0 },
178    { X86::ROR32r1,     X86::ROR32m1,    0 },
179    { X86::ROR32rCL,    X86::ROR32mCL,   0 },
180    { X86::ROR32ri,     X86::ROR32mi,    0 },
181    { X86::ROR64r1,     X86::ROR64m1,    0 },
182    { X86::ROR64rCL,    X86::ROR64mCL,   0 },
183    { X86::ROR64ri,     X86::ROR64mi,    0 },
184    { X86::ROR8r1,      X86::ROR8m1,     0 },
185    { X86::ROR8rCL,     X86::ROR8mCL,    0 },
186    { X86::ROR8ri,      X86::ROR8mi,     0 },
187    { X86::SAR16r1,     X86::SAR16m1,    0 },
188    { X86::SAR16rCL,    X86::SAR16mCL,   0 },
189    { X86::SAR16ri,     X86::SAR16mi,    0 },
190    { X86::SAR32r1,     X86::SAR32m1,    0 },
191    { X86::SAR32rCL,    X86::SAR32mCL,   0 },
192    { X86::SAR32ri,     X86::SAR32mi,    0 },
193    { X86::SAR64r1,     X86::SAR64m1,    0 },
194    { X86::SAR64rCL,    X86::SAR64mCL,   0 },
195    { X86::SAR64ri,     X86::SAR64mi,    0 },
196    { X86::SAR8r1,      X86::SAR8m1,     0 },
197    { X86::SAR8rCL,     X86::SAR8mCL,    0 },
198    { X86::SAR8ri,      X86::SAR8mi,     0 },
199    { X86::SBB32ri,     X86::SBB32mi,    0 },
200    { X86::SBB32ri8,    X86::SBB32mi8,   0 },
201    { X86::SBB32rr,     X86::SBB32mr,    0 },
202    { X86::SBB64ri32,   X86::SBB64mi32,  0 },
203    { X86::SBB64ri8,    X86::SBB64mi8,   0 },
204    { X86::SBB64rr,     X86::SBB64mr,    0 },
205    { X86::SHL16rCL,    X86::SHL16mCL,   0 },
206    { X86::SHL16ri,     X86::SHL16mi,    0 },
207    { X86::SHL32rCL,    X86::SHL32mCL,   0 },
208    { X86::SHL32ri,     X86::SHL32mi,    0 },
209    { X86::SHL64rCL,    X86::SHL64mCL,   0 },
210    { X86::SHL64ri,     X86::SHL64mi,    0 },
211    { X86::SHL8rCL,     X86::SHL8mCL,    0 },
212    { X86::SHL8ri,      X86::SHL8mi,     0 },
213    { X86::SHLD16rrCL,  X86::SHLD16mrCL, 0 },
214    { X86::SHLD16rri8,  X86::SHLD16mri8, 0 },
215    { X86::SHLD32rrCL,  X86::SHLD32mrCL, 0 },
216    { X86::SHLD32rri8,  X86::SHLD32mri8, 0 },
217    { X86::SHLD64rrCL,  X86::SHLD64mrCL, 0 },
218    { X86::SHLD64rri8,  X86::SHLD64mri8, 0 },
219    { X86::SHR16r1,     X86::SHR16m1,    0 },
220    { X86::SHR16rCL,    X86::SHR16mCL,   0 },
221    { X86::SHR16ri,     X86::SHR16mi,    0 },
222    { X86::SHR32r1,     X86::SHR32m1,    0 },
223    { X86::SHR32rCL,    X86::SHR32mCL,   0 },
224    { X86::SHR32ri,     X86::SHR32mi,    0 },
225    { X86::SHR64r1,     X86::SHR64m1,    0 },
226    { X86::SHR64rCL,    X86::SHR64mCL,   0 },
227    { X86::SHR64ri,     X86::SHR64mi,    0 },
228    { X86::SHR8r1,      X86::SHR8m1,     0 },
229    { X86::SHR8rCL,     X86::SHR8mCL,    0 },
230    { X86::SHR8ri,      X86::SHR8mi,     0 },
231    { X86::SHRD16rrCL,  X86::SHRD16mrCL, 0 },
232    { X86::SHRD16rri8,  X86::SHRD16mri8, 0 },
233    { X86::SHRD32rrCL,  X86::SHRD32mrCL, 0 },
234    { X86::SHRD32rri8,  X86::SHRD32mri8, 0 },
235    { X86::SHRD64rrCL,  X86::SHRD64mrCL, 0 },
236    { X86::SHRD64rri8,  X86::SHRD64mri8, 0 },
237    { X86::SUB16ri,     X86::SUB16mi,    0 },
238    { X86::SUB16ri8,    X86::SUB16mi8,   0 },
239    { X86::SUB16rr,     X86::SUB16mr,    0 },
240    { X86::SUB32ri,     X86::SUB32mi,    0 },
241    { X86::SUB32ri8,    X86::SUB32mi8,   0 },
242    { X86::SUB32rr,     X86::SUB32mr,    0 },
243    { X86::SUB64ri32,   X86::SUB64mi32,  0 },
244    { X86::SUB64ri8,    X86::SUB64mi8,   0 },
245    { X86::SUB64rr,     X86::SUB64mr,    0 },
246    { X86::SUB8ri,      X86::SUB8mi,     0 },
247    { X86::SUB8rr,      X86::SUB8mr,     0 },
248    { X86::XOR16ri,     X86::XOR16mi,    0 },
249    { X86::XOR16ri8,    X86::XOR16mi8,   0 },
250    { X86::XOR16rr,     X86::XOR16mr,    0 },
251    { X86::XOR32ri,     X86::XOR32mi,    0 },
252    { X86::XOR32ri8,    X86::XOR32mi8,   0 },
253    { X86::XOR32rr,     X86::XOR32mr,    0 },
254    { X86::XOR64ri32,   X86::XOR64mi32,  0 },
255    { X86::XOR64ri8,    X86::XOR64mi8,   0 },
256    { X86::XOR64rr,     X86::XOR64mr,    0 },
257    { X86::XOR8ri,      X86::XOR8mi,     0 },
258    { X86::XOR8rr,      X86::XOR8mr,     0 }
259  };
260
261  for (unsigned i = 0, e = array_lengthof(OpTbl2Addr); i != e; ++i) {
262    unsigned RegOp = OpTbl2Addr[i][0];
263    unsigned MemOp = OpTbl2Addr[i][1];
264    unsigned Flags = OpTbl2Addr[i][2];
265    AddTableEntry(RegOp2MemOpTable2Addr, MemOp2RegOpTable,
266                  RegOp, MemOp,
267                  // Index 0, folded load and store, no alignment requirement.
268                  Flags | TB_INDEX_0 | TB_FOLDED_LOAD | TB_FOLDED_STORE);
269  }
270
271  static const unsigned OpTbl0[][3] = {
272    { X86::BT16ri8,     X86::BT16mi8,       TB_FOLDED_LOAD },
273    { X86::BT32ri8,     X86::BT32mi8,       TB_FOLDED_LOAD },
274    { X86::BT64ri8,     X86::BT64mi8,       TB_FOLDED_LOAD },
275    { X86::CALL32r,     X86::CALL32m,       TB_FOLDED_LOAD },
276    { X86::CALL64r,     X86::CALL64m,       TB_FOLDED_LOAD },
277    { X86::WINCALL64r,  X86::WINCALL64m,    TB_FOLDED_LOAD },
278    { X86::CMP16ri,     X86::CMP16mi,       TB_FOLDED_LOAD },
279    { X86::CMP16ri8,    X86::CMP16mi8,      TB_FOLDED_LOAD },
280    { X86::CMP16rr,     X86::CMP16mr,       TB_FOLDED_LOAD },
281    { X86::CMP32ri,     X86::CMP32mi,       TB_FOLDED_LOAD },
282    { X86::CMP32ri8,    X86::CMP32mi8,      TB_FOLDED_LOAD },
283    { X86::CMP32rr,     X86::CMP32mr,       TB_FOLDED_LOAD },
284    { X86::CMP64ri32,   X86::CMP64mi32,     TB_FOLDED_LOAD },
285    { X86::CMP64ri8,    X86::CMP64mi8,      TB_FOLDED_LOAD },
286    { X86::CMP64rr,     X86::CMP64mr,       TB_FOLDED_LOAD },
287    { X86::CMP8ri,      X86::CMP8mi,        TB_FOLDED_LOAD },
288    { X86::CMP8rr,      X86::CMP8mr,        TB_FOLDED_LOAD },
289    { X86::DIV16r,      X86::DIV16m,        TB_FOLDED_LOAD },
290    { X86::DIV32r,      X86::DIV32m,        TB_FOLDED_LOAD },
291    { X86::DIV64r,      X86::DIV64m,        TB_FOLDED_LOAD },
292    { X86::DIV8r,       X86::DIV8m,         TB_FOLDED_LOAD },
293    { X86::EXTRACTPSrr, X86::EXTRACTPSmr,   TB_FOLDED_STORE | TB_ALIGN_16 },
294    { X86::FsMOVAPDrr,  X86::MOVSDmr,       TB_FOLDED_STORE | TB_NO_REVERSE },
295    { X86::FsMOVAPSrr,  X86::MOVSSmr,       TB_FOLDED_STORE | TB_NO_REVERSE },
296    { X86::IDIV16r,     X86::IDIV16m,       TB_FOLDED_LOAD },
297    { X86::IDIV32r,     X86::IDIV32m,       TB_FOLDED_LOAD },
298    { X86::IDIV64r,     X86::IDIV64m,       TB_FOLDED_LOAD },
299    { X86::IDIV8r,      X86::IDIV8m,        TB_FOLDED_LOAD },
300    { X86::IMUL16r,     X86::IMUL16m,       TB_FOLDED_LOAD },
301    { X86::IMUL32r,     X86::IMUL32m,       TB_FOLDED_LOAD },
302    { X86::IMUL64r,     X86::IMUL64m,       TB_FOLDED_LOAD },
303    { X86::IMUL8r,      X86::IMUL8m,        TB_FOLDED_LOAD },
304    { X86::JMP32r,      X86::JMP32m,        TB_FOLDED_LOAD },
305    { X86::JMP64r,      X86::JMP64m,        TB_FOLDED_LOAD },
306    { X86::MOV16ri,     X86::MOV16mi,       TB_FOLDED_STORE },
307    { X86::MOV16rr,     X86::MOV16mr,       TB_FOLDED_STORE },
308    { X86::MOV32ri,     X86::MOV32mi,       TB_FOLDED_STORE },
309    { X86::MOV32rr,     X86::MOV32mr,       TB_FOLDED_STORE },
310    { X86::MOV64ri32,   X86::MOV64mi32,     TB_FOLDED_STORE },
311    { X86::MOV64rr,     X86::MOV64mr,       TB_FOLDED_STORE },
312    { X86::MOV8ri,      X86::MOV8mi,        TB_FOLDED_STORE },
313    { X86::MOV8rr,      X86::MOV8mr,        TB_FOLDED_STORE },
314    { X86::MOV8rr_NOREX, X86::MOV8mr_NOREX, TB_FOLDED_STORE },
315    { X86::MOVAPDrr,    X86::MOVAPDmr,      TB_FOLDED_STORE | TB_ALIGN_16 },
316    { X86::MOVAPSrr,    X86::MOVAPSmr,      TB_FOLDED_STORE | TB_ALIGN_16 },
317    { X86::MOVDQArr,    X86::MOVDQAmr,      TB_FOLDED_STORE | TB_ALIGN_16 },
318    { X86::MOVPDI2DIrr, X86::MOVPDI2DImr,   TB_FOLDED_STORE },
319    { X86::MOVPQIto64rr,X86::MOVPQI2QImr,   TB_FOLDED_STORE },
320    { X86::MOVSDto64rr, X86::MOVSDto64mr,   TB_FOLDED_STORE },
321    { X86::MOVSS2DIrr,  X86::MOVSS2DImr,    TB_FOLDED_STORE },
322    { X86::MOVUPDrr,    X86::MOVUPDmr,      TB_FOLDED_STORE },
323    { X86::MOVUPSrr,    X86::MOVUPSmr,      TB_FOLDED_STORE },
324    { X86::MUL16r,      X86::MUL16m,        TB_FOLDED_LOAD },
325    { X86::MUL32r,      X86::MUL32m,        TB_FOLDED_LOAD },
326    { X86::MUL64r,      X86::MUL64m,        TB_FOLDED_LOAD },
327    { X86::MUL8r,       X86::MUL8m,         TB_FOLDED_LOAD },
328    { X86::SETAEr,      X86::SETAEm,        TB_FOLDED_STORE },
329    { X86::SETAr,       X86::SETAm,         TB_FOLDED_STORE },
330    { X86::SETBEr,      X86::SETBEm,        TB_FOLDED_STORE },
331    { X86::SETBr,       X86::SETBm,         TB_FOLDED_STORE },
332    { X86::SETEr,       X86::SETEm,         TB_FOLDED_STORE },
333    { X86::SETGEr,      X86::SETGEm,        TB_FOLDED_STORE },
334    { X86::SETGr,       X86::SETGm,         TB_FOLDED_STORE },
335    { X86::SETLEr,      X86::SETLEm,        TB_FOLDED_STORE },
336    { X86::SETLr,       X86::SETLm,         TB_FOLDED_STORE },
337    { X86::SETNEr,      X86::SETNEm,        TB_FOLDED_STORE },
338    { X86::SETNOr,      X86::SETNOm,        TB_FOLDED_STORE },
339    { X86::SETNPr,      X86::SETNPm,        TB_FOLDED_STORE },
340    { X86::SETNSr,      X86::SETNSm,        TB_FOLDED_STORE },
341    { X86::SETOr,       X86::SETOm,         TB_FOLDED_STORE },
342    { X86::SETPr,       X86::SETPm,         TB_FOLDED_STORE },
343    { X86::SETSr,       X86::SETSm,         TB_FOLDED_STORE },
344    { X86::TAILJMPr,    X86::TAILJMPm,      TB_FOLDED_LOAD },
345    { X86::TAILJMPr64,  X86::TAILJMPm64,    TB_FOLDED_LOAD },
346    { X86::TEST16ri,    X86::TEST16mi,      TB_FOLDED_LOAD },
347    { X86::TEST32ri,    X86::TEST32mi,      TB_FOLDED_LOAD },
348    { X86::TEST64ri32,  X86::TEST64mi32,    TB_FOLDED_LOAD },
349    { X86::TEST8ri,     X86::TEST8mi,       TB_FOLDED_LOAD },
350    // AVX 128-bit versions of foldable instructions
351    { X86::VEXTRACTPSrr,X86::VEXTRACTPSmr,  TB_FOLDED_STORE | TB_ALIGN_16 },
352    { X86::FsVMOVAPDrr, X86::VMOVSDmr,      TB_FOLDED_STORE | TB_NO_REVERSE },
353    { X86::FsVMOVAPSrr, X86::VMOVSSmr,      TB_FOLDED_STORE | TB_NO_REVERSE },
354    { X86::VEXTRACTF128rr, X86::VEXTRACTF128mr, TB_FOLDED_STORE | TB_ALIGN_16 },
355    { X86::VMOVAPDrr,   X86::VMOVAPDmr,     TB_FOLDED_STORE | TB_ALIGN_16 },
356    { X86::VMOVAPSrr,   X86::VMOVAPSmr,     TB_FOLDED_STORE | TB_ALIGN_16 },
357    { X86::VMOVDQArr,   X86::VMOVDQAmr,     TB_FOLDED_STORE | TB_ALIGN_16 },
358    { X86::VMOVPDI2DIrr,X86::VMOVPDI2DImr,  TB_FOLDED_STORE },
359    { X86::VMOVPQIto64rr, X86::VMOVPQI2QImr,TB_FOLDED_STORE },
360    { X86::VMOVSDto64rr,X86::VMOVSDto64mr,  TB_FOLDED_STORE },
361    { X86::VMOVSS2DIrr, X86::VMOVSS2DImr,   TB_FOLDED_STORE },
362    { X86::VMOVUPDrr,   X86::VMOVUPDmr,     TB_FOLDED_STORE },
363    { X86::VMOVUPSrr,   X86::VMOVUPSmr,     TB_FOLDED_STORE },
364    // AVX 256-bit foldable instructions
365    { X86::VEXTRACTI128rr, X86::VEXTRACTI128mr, TB_FOLDED_STORE | TB_ALIGN_16 },
366    { X86::VMOVAPDYrr,  X86::VMOVAPDYmr,    TB_FOLDED_STORE | TB_ALIGN_32 },
367    { X86::VMOVAPSYrr,  X86::VMOVAPSYmr,    TB_FOLDED_STORE | TB_ALIGN_32 },
368    { X86::VMOVDQAYrr,  X86::VMOVDQAYmr,    TB_FOLDED_STORE | TB_ALIGN_32 },
369    { X86::VMOVUPDYrr,  X86::VMOVUPDYmr,    TB_FOLDED_STORE },
370    { X86::VMOVUPSYrr,  X86::VMOVUPSYmr,    TB_FOLDED_STORE }
371  };
372
373  for (unsigned i = 0, e = array_lengthof(OpTbl0); i != e; ++i) {
374    unsigned RegOp      = OpTbl0[i][0];
375    unsigned MemOp      = OpTbl0[i][1];
376    unsigned Flags      = OpTbl0[i][2];
377    AddTableEntry(RegOp2MemOpTable0, MemOp2RegOpTable,
378                  RegOp, MemOp, TB_INDEX_0 | Flags);
379  }
380
381  static const unsigned OpTbl1[][3] = {
382    { X86::CMP16rr,         X86::CMP16rm,             0 },
383    { X86::CMP32rr,         X86::CMP32rm,             0 },
384    { X86::CMP64rr,         X86::CMP64rm,             0 },
385    { X86::CMP8rr,          X86::CMP8rm,              0 },
386    { X86::CVTSD2SSrr,      X86::CVTSD2SSrm,          0 },
387    { X86::CVTSI2SD64rr,    X86::CVTSI2SD64rm,        0 },
388    { X86::CVTSI2SDrr,      X86::CVTSI2SDrm,          0 },
389    { X86::CVTSI2SS64rr,    X86::CVTSI2SS64rm,        0 },
390    { X86::CVTSI2SSrr,      X86::CVTSI2SSrm,          0 },
391    { X86::CVTSS2SDrr,      X86::CVTSS2SDrm,          0 },
392    { X86::CVTTSD2SI64rr,   X86::CVTTSD2SI64rm,       0 },
393    { X86::CVTTSD2SIrr,     X86::CVTTSD2SIrm,         0 },
394    { X86::CVTTSS2SI64rr,   X86::CVTTSS2SI64rm,       0 },
395    { X86::CVTTSS2SIrr,     X86::CVTTSS2SIrm,         0 },
396    { X86::FsMOVAPDrr,      X86::MOVSDrm,             TB_NO_REVERSE },
397    { X86::FsMOVAPSrr,      X86::MOVSSrm,             TB_NO_REVERSE },
398    { X86::IMUL16rri,       X86::IMUL16rmi,           0 },
399    { X86::IMUL16rri8,      X86::IMUL16rmi8,          0 },
400    { X86::IMUL32rri,       X86::IMUL32rmi,           0 },
401    { X86::IMUL32rri8,      X86::IMUL32rmi8,          0 },
402    { X86::IMUL64rri32,     X86::IMUL64rmi32,         0 },
403    { X86::IMUL64rri8,      X86::IMUL64rmi8,          0 },
404    { X86::Int_COMISDrr,    X86::Int_COMISDrm,        0 },
405    { X86::Int_COMISSrr,    X86::Int_COMISSrm,        0 },
406    { X86::Int_CVTDQ2PDrr,  X86::Int_CVTDQ2PDrm,      TB_ALIGN_16 },
407    { X86::Int_CVTDQ2PSrr,  X86::Int_CVTDQ2PSrm,      TB_ALIGN_16 },
408    { X86::Int_CVTPD2DQrr,  X86::Int_CVTPD2DQrm,      TB_ALIGN_16 },
409    { X86::Int_CVTPD2PSrr,  X86::Int_CVTPD2PSrm,      TB_ALIGN_16 },
410    { X86::Int_CVTPS2DQrr,  X86::Int_CVTPS2DQrm,      TB_ALIGN_16 },
411    { X86::Int_CVTPS2PDrr,  X86::Int_CVTPS2PDrm,      0 },
412    { X86::CVTSD2SI64rr,    X86::CVTSD2SI64rm,        0 },
413    { X86::CVTSD2SIrr,      X86::CVTSD2SIrm,          0 },
414    { X86::Int_CVTSD2SSrr,  X86::Int_CVTSD2SSrm,      0 },
415    { X86::Int_CVTSI2SD64rr,X86::Int_CVTSI2SD64rm,    0 },
416    { X86::Int_CVTSI2SDrr,  X86::Int_CVTSI2SDrm,      0 },
417    { X86::Int_CVTSI2SS64rr,X86::Int_CVTSI2SS64rm,    0 },
418    { X86::Int_CVTSI2SSrr,  X86::Int_CVTSI2SSrm,      0 },
419    { X86::Int_CVTSS2SDrr,  X86::Int_CVTSS2SDrm,      0 },
420    { X86::CVTTPD2DQrr,     X86::CVTTPD2DQrm,         TB_ALIGN_16 },
421    { X86::CVTTPS2DQrr,     X86::CVTTPS2DQrm,         TB_ALIGN_16 },
422    { X86::Int_CVTTSD2SI64rr,X86::Int_CVTTSD2SI64rm,  0 },
423    { X86::Int_CVTTSD2SIrr, X86::Int_CVTTSD2SIrm,     0 },
424    { X86::Int_CVTTSS2SI64rr,X86::Int_CVTTSS2SI64rm,  0 },
425    { X86::Int_CVTTSS2SIrr, X86::Int_CVTTSS2SIrm,     0 },
426    { X86::Int_UCOMISDrr,   X86::Int_UCOMISDrm,       0 },
427    { X86::Int_UCOMISSrr,   X86::Int_UCOMISSrm,       0 },
428    { X86::MOV16rr,         X86::MOV16rm,             0 },
429    { X86::MOV32rr,         X86::MOV32rm,             0 },
430    { X86::MOV64rr,         X86::MOV64rm,             0 },
431    { X86::MOV64toPQIrr,    X86::MOVQI2PQIrm,         0 },
432    { X86::MOV64toSDrr,     X86::MOV64toSDrm,         0 },
433    { X86::MOV8rr,          X86::MOV8rm,              0 },
434    { X86::MOVAPDrr,        X86::MOVAPDrm,            TB_ALIGN_16 },
435    { X86::MOVAPSrr,        X86::MOVAPSrm,            TB_ALIGN_16 },
436    { X86::MOVDDUPrr,       X86::MOVDDUPrm,           0 },
437    { X86::MOVDI2PDIrr,     X86::MOVDI2PDIrm,         0 },
438    { X86::MOVDI2SSrr,      X86::MOVDI2SSrm,          0 },
439    { X86::MOVDQArr,        X86::MOVDQArm,            TB_ALIGN_16 },
440    { X86::MOVSHDUPrr,      X86::MOVSHDUPrm,          TB_ALIGN_16 },
441    { X86::MOVSLDUPrr,      X86::MOVSLDUPrm,          TB_ALIGN_16 },
442    { X86::MOVSX16rr8,      X86::MOVSX16rm8,          0 },
443    { X86::MOVSX32rr16,     X86::MOVSX32rm16,         0 },
444    { X86::MOVSX32rr8,      X86::MOVSX32rm8,          0 },
445    { X86::MOVSX64rr16,     X86::MOVSX64rm16,         0 },
446    { X86::MOVSX64rr32,     X86::MOVSX64rm32,         0 },
447    { X86::MOVSX64rr8,      X86::MOVSX64rm8,          0 },
448    { X86::MOVUPDrr,        X86::MOVUPDrm,            TB_ALIGN_16 },
449    { X86::MOVUPSrr,        X86::MOVUPSrm,            0 },
450    { X86::MOVZDI2PDIrr,    X86::MOVZDI2PDIrm,        0 },
451    { X86::MOVZQI2PQIrr,    X86::MOVZQI2PQIrm,        0 },
452    { X86::MOVZPQILo2PQIrr, X86::MOVZPQILo2PQIrm,     TB_ALIGN_16 },
453    { X86::MOVZX16rr8,      X86::MOVZX16rm8,          0 },
454    { X86::MOVZX32rr16,     X86::MOVZX32rm16,         0 },
455    { X86::MOVZX32_NOREXrr8, X86::MOVZX32_NOREXrm8,   0 },
456    { X86::MOVZX32rr8,      X86::MOVZX32rm8,          0 },
457    { X86::MOVZX64rr16,     X86::MOVZX64rm16,         0 },
458    { X86::MOVZX64rr32,     X86::MOVZX64rm32,         0 },
459    { X86::MOVZX64rr8,      X86::MOVZX64rm8,          0 },
460    { X86::PABSBrr128,      X86::PABSBrm128,          TB_ALIGN_16 },
461    { X86::PABSDrr128,      X86::PABSDrm128,          TB_ALIGN_16 },
462    { X86::PABSWrr128,      X86::PABSWrm128,          TB_ALIGN_16 },
463    { X86::PSHUFDri,        X86::PSHUFDmi,            TB_ALIGN_16 },
464    { X86::PSHUFHWri,       X86::PSHUFHWmi,           TB_ALIGN_16 },
465    { X86::PSHUFLWri,       X86::PSHUFLWmi,           TB_ALIGN_16 },
466    { X86::RCPPSr,          X86::RCPPSm,              TB_ALIGN_16 },
467    { X86::RCPPSr_Int,      X86::RCPPSm_Int,          TB_ALIGN_16 },
468    { X86::RSQRTPSr,        X86::RSQRTPSm,            TB_ALIGN_16 },
469    { X86::RSQRTPSr_Int,    X86::RSQRTPSm_Int,        TB_ALIGN_16 },
470    { X86::RSQRTSSr,        X86::RSQRTSSm,            0 },
471    { X86::RSQRTSSr_Int,    X86::RSQRTSSm_Int,        0 },
472    { X86::SQRTPDr,         X86::SQRTPDm,             TB_ALIGN_16 },
473    { X86::SQRTPDr_Int,     X86::SQRTPDm_Int,         TB_ALIGN_16 },
474    { X86::SQRTPSr,         X86::SQRTPSm,             TB_ALIGN_16 },
475    { X86::SQRTPSr_Int,     X86::SQRTPSm_Int,         TB_ALIGN_16 },
476    { X86::SQRTSDr,         X86::SQRTSDm,             0 },
477    { X86::SQRTSDr_Int,     X86::SQRTSDm_Int,         0 },
478    { X86::SQRTSSr,         X86::SQRTSSm,             0 },
479    { X86::SQRTSSr_Int,     X86::SQRTSSm_Int,         0 },
480    { X86::TEST16rr,        X86::TEST16rm,            0 },
481    { X86::TEST32rr,        X86::TEST32rm,            0 },
482    { X86::TEST64rr,        X86::TEST64rm,            0 },
483    { X86::TEST8rr,         X86::TEST8rm,             0 },
484    // FIXME: TEST*rr EAX,EAX ---> CMP [mem], 0
485    { X86::UCOMISDrr,       X86::UCOMISDrm,           0 },
486    { X86::UCOMISSrr,       X86::UCOMISSrm,           0 },
487    // AVX 128-bit versions of foldable instructions
488    { X86::Int_VCOMISDrr,   X86::Int_VCOMISDrm,       0 },
489    { X86::Int_VCOMISSrr,   X86::Int_VCOMISSrm,       0 },
490    { X86::Int_VCVTDQ2PDrr, X86::Int_VCVTDQ2PDrm,     TB_ALIGN_16 },
491    { X86::Int_VCVTDQ2PSrr, X86::Int_VCVTDQ2PSrm,     TB_ALIGN_16 },
492    { X86::Int_VCVTPD2DQrr, X86::Int_VCVTPD2DQrm,     TB_ALIGN_16 },
493    { X86::Int_VCVTPD2PSrr, X86::Int_VCVTPD2PSrm,     TB_ALIGN_16 },
494    { X86::Int_VCVTPS2DQrr, X86::Int_VCVTPS2DQrm,     TB_ALIGN_16 },
495    { X86::Int_VCVTPS2PDrr, X86::Int_VCVTPS2PDrm,     0 },
496    { X86::Int_VUCOMISDrr,  X86::Int_VUCOMISDrm,      0 },
497    { X86::Int_VUCOMISSrr,  X86::Int_VUCOMISSrm,      0 },
498    { X86::FsVMOVAPDrr,     X86::VMOVSDrm,            TB_NO_REVERSE },
499    { X86::FsVMOVAPSrr,     X86::VMOVSSrm,            TB_NO_REVERSE },
500    { X86::VMOV64toPQIrr,   X86::VMOVQI2PQIrm,        0 },
501    { X86::VMOV64toSDrr,    X86::VMOV64toSDrm,        0 },
502    { X86::VMOVAPDrr,       X86::VMOVAPDrm,           TB_ALIGN_16 },
503    { X86::VMOVAPSrr,       X86::VMOVAPSrm,           TB_ALIGN_16 },
504    { X86::VMOVDDUPrr,      X86::VMOVDDUPrm,          0 },
505    { X86::VMOVDI2PDIrr,    X86::VMOVDI2PDIrm,        0 },
506    { X86::VMOVDI2SSrr,     X86::VMOVDI2SSrm,         0 },
507    { X86::VMOVDQArr,       X86::VMOVDQArm,           TB_ALIGN_16 },
508    { X86::VMOVSLDUPrr,     X86::VMOVSLDUPrm,         TB_ALIGN_16 },
509    { X86::VMOVSHDUPrr,     X86::VMOVSHDUPrm,         TB_ALIGN_16 },
510    { X86::VMOVUPDrr,       X86::VMOVUPDrm,           TB_ALIGN_16 },
511    { X86::VMOVUPSrr,       X86::VMOVUPSrm,           0 },
512    { X86::VMOVZDI2PDIrr,   X86::VMOVZDI2PDIrm,       0 },
513    { X86::VMOVZQI2PQIrr,   X86::VMOVZQI2PQIrm,       0 },
514    { X86::VMOVZPQILo2PQIrr,X86::VMOVZPQILo2PQIrm,    TB_ALIGN_16 },
515    { X86::VPABSBrr128,     X86::VPABSBrm128,         TB_ALIGN_16 },
516    { X86::VPABSDrr128,     X86::VPABSDrm128,         TB_ALIGN_16 },
517    { X86::VPABSWrr128,     X86::VPABSWrm128,         TB_ALIGN_16 },
518    { X86::VPERMILPDri,     X86::VPERMILPDmi,         TB_ALIGN_16 },
519    { X86::VPERMILPSri,     X86::VPERMILPSmi,         TB_ALIGN_16 },
520    { X86::VPSHUFDri,       X86::VPSHUFDmi,           TB_ALIGN_16 },
521    { X86::VPSHUFHWri,      X86::VPSHUFHWmi,          TB_ALIGN_16 },
522    { X86::VPSHUFLWri,      X86::VPSHUFLWmi,          TB_ALIGN_16 },
523    { X86::VRCPPSr,         X86::VRCPPSm,             TB_ALIGN_16 },
524    { X86::VRCPPSr_Int,     X86::VRCPPSm_Int,         TB_ALIGN_16 },
525    { X86::VRSQRTPSr,       X86::VRSQRTPSm,           TB_ALIGN_16 },
526    { X86::VRSQRTPSr_Int,   X86::VRSQRTPSm_Int,       TB_ALIGN_16 },
527    { X86::VSQRTPDr,        X86::VSQRTPDm,            TB_ALIGN_16 },
528    { X86::VSQRTPDr_Int,    X86::VSQRTPDm_Int,        TB_ALIGN_16 },
529    { X86::VSQRTPSr,        X86::VSQRTPSm,            TB_ALIGN_16 },
530    { X86::VSQRTPSr_Int,    X86::VSQRTPSm_Int,        TB_ALIGN_16 },
531    { X86::VUCOMISDrr,      X86::VUCOMISDrm,          0 },
532    { X86::VUCOMISSrr,      X86::VUCOMISSrm,          0 },
533    // AVX 256-bit foldable instructions
534    { X86::VMOVAPDYrr,      X86::VMOVAPDYrm,          TB_ALIGN_32 },
535    { X86::VMOVAPSYrr,      X86::VMOVAPSYrm,          TB_ALIGN_32 },
536    { X86::VMOVDQAYrr,      X86::VMOVDQAYrm,          TB_ALIGN_32 },
537    { X86::VMOVUPDYrr,      X86::VMOVUPDYrm,          0 },
538    { X86::VMOVUPSYrr,      X86::VMOVUPSYrm,          0 },
539    { X86::VPERMILPDYri,    X86::VPERMILPDYmi,        TB_ALIGN_32 },
540    { X86::VPERMILPSYri,    X86::VPERMILPSYmi,        TB_ALIGN_32 },
541    // AVX2 foldable instructions
542    { X86::VPABSBrr256,     X86::VPABSBrm256,         TB_ALIGN_32 },
543    { X86::VPABSDrr256,     X86::VPABSDrm256,         TB_ALIGN_32 },
544    { X86::VPABSWrr256,     X86::VPABSWrm256,         TB_ALIGN_32 },
545    { X86::VPSHUFDYri,      X86::VPSHUFDYmi,          TB_ALIGN_32 },
546    { X86::VPSHUFHWYri,     X86::VPSHUFHWYmi,         TB_ALIGN_32 },
547    { X86::VPSHUFLWYri,     X86::VPSHUFLWYmi,         TB_ALIGN_32 },
548    { X86::VRCPPSYr,        X86::VRCPPSYm,            TB_ALIGN_32 },
549    { X86::VRCPPSYr_Int,    X86::VRCPPSYm_Int,        TB_ALIGN_32 },
550    { X86::VRSQRTPSYr,      X86::VRSQRTPSYm,          TB_ALIGN_32 },
551    { X86::VRSQRTPSYr_Int,  X86::VRSQRTPSYm_Int,      TB_ALIGN_32 },
552    { X86::VSQRTPDYr,       X86::VSQRTPDYm,           TB_ALIGN_32 },
553    { X86::VSQRTPDYr_Int,   X86::VSQRTPDYm_Int,       TB_ALIGN_32 },
554    { X86::VSQRTPSYr,       X86::VSQRTPSYm,           TB_ALIGN_32 },
555    { X86::VSQRTPSYr_Int,   X86::VSQRTPSYm_Int,       TB_ALIGN_32 },
556  };
557
558  for (unsigned i = 0, e = array_lengthof(OpTbl1); i != e; ++i) {
559    unsigned RegOp = OpTbl1[i][0];
560    unsigned MemOp = OpTbl1[i][1];
561    unsigned Flags = OpTbl1[i][2];
562    AddTableEntry(RegOp2MemOpTable1, MemOp2RegOpTable,
563                  RegOp, MemOp,
564                  // Index 1, folded load
565                  Flags | TB_INDEX_1 | TB_FOLDED_LOAD);
566  }
567
568  static const unsigned OpTbl2[][3] = {
569    { X86::ADC32rr,         X86::ADC32rm,       0 },
570    { X86::ADC64rr,         X86::ADC64rm,       0 },
571    { X86::ADD16rr,         X86::ADD16rm,       0 },
572    { X86::ADD16rr_DB,      X86::ADD16rm,       TB_NO_REVERSE },
573    { X86::ADD32rr,         X86::ADD32rm,       0 },
574    { X86::ADD32rr_DB,      X86::ADD32rm,       TB_NO_REVERSE },
575    { X86::ADD64rr,         X86::ADD64rm,       0 },
576    { X86::ADD64rr_DB,      X86::ADD64rm,       TB_NO_REVERSE },
577    { X86::ADD8rr,          X86::ADD8rm,        0 },
578    { X86::ADDPDrr,         X86::ADDPDrm,       TB_ALIGN_16 },
579    { X86::ADDPSrr,         X86::ADDPSrm,       TB_ALIGN_16 },
580    { X86::ADDSDrr,         X86::ADDSDrm,       0 },
581    { X86::ADDSSrr,         X86::ADDSSrm,       0 },
582    { X86::ADDSUBPDrr,      X86::ADDSUBPDrm,    TB_ALIGN_16 },
583    { X86::ADDSUBPSrr,      X86::ADDSUBPSrm,    TB_ALIGN_16 },
584    { X86::AND16rr,         X86::AND16rm,       0 },
585    { X86::AND32rr,         X86::AND32rm,       0 },
586    { X86::AND64rr,         X86::AND64rm,       0 },
587    { X86::AND8rr,          X86::AND8rm,        0 },
588    { X86::ANDNPDrr,        X86::ANDNPDrm,      TB_ALIGN_16 },
589    { X86::ANDNPSrr,        X86::ANDNPSrm,      TB_ALIGN_16 },
590    { X86::ANDPDrr,         X86::ANDPDrm,       TB_ALIGN_16 },
591    { X86::ANDPSrr,         X86::ANDPSrm,       TB_ALIGN_16 },
592    { X86::BLENDPDrri,      X86::BLENDPDrmi,    TB_ALIGN_16 },
593    { X86::BLENDPSrri,      X86::BLENDPSrmi,    TB_ALIGN_16 },
594    { X86::BLENDVPDrr0,     X86::BLENDVPDrm0,   TB_ALIGN_16 },
595    { X86::BLENDVPSrr0,     X86::BLENDVPSrm0,   TB_ALIGN_16 },
596    { X86::CMOVA16rr,       X86::CMOVA16rm,     0 },
597    { X86::CMOVA32rr,       X86::CMOVA32rm,     0 },
598    { X86::CMOVA64rr,       X86::CMOVA64rm,     0 },
599    { X86::CMOVAE16rr,      X86::CMOVAE16rm,    0 },
600    { X86::CMOVAE32rr,      X86::CMOVAE32rm,    0 },
601    { X86::CMOVAE64rr,      X86::CMOVAE64rm,    0 },
602    { X86::CMOVB16rr,       X86::CMOVB16rm,     0 },
603    { X86::CMOVB32rr,       X86::CMOVB32rm,     0 },
604    { X86::CMOVB64rr,       X86::CMOVB64rm,     0 },
605    { X86::CMOVBE16rr,      X86::CMOVBE16rm,    0 },
606    { X86::CMOVBE32rr,      X86::CMOVBE32rm,    0 },
607    { X86::CMOVBE64rr,      X86::CMOVBE64rm,    0 },
608    { X86::CMOVE16rr,       X86::CMOVE16rm,     0 },
609    { X86::CMOVE32rr,       X86::CMOVE32rm,     0 },
610    { X86::CMOVE64rr,       X86::CMOVE64rm,     0 },
611    { X86::CMOVG16rr,       X86::CMOVG16rm,     0 },
612    { X86::CMOVG32rr,       X86::CMOVG32rm,     0 },
613    { X86::CMOVG64rr,       X86::CMOVG64rm,     0 },
614    { X86::CMOVGE16rr,      X86::CMOVGE16rm,    0 },
615    { X86::CMOVGE32rr,      X86::CMOVGE32rm,    0 },
616    { X86::CMOVGE64rr,      X86::CMOVGE64rm,    0 },
617    { X86::CMOVL16rr,       X86::CMOVL16rm,     0 },
618    { X86::CMOVL32rr,       X86::CMOVL32rm,     0 },
619    { X86::CMOVL64rr,       X86::CMOVL64rm,     0 },
620    { X86::CMOVLE16rr,      X86::CMOVLE16rm,    0 },
621    { X86::CMOVLE32rr,      X86::CMOVLE32rm,    0 },
622    { X86::CMOVLE64rr,      X86::CMOVLE64rm,    0 },
623    { X86::CMOVNE16rr,      X86::CMOVNE16rm,    0 },
624    { X86::CMOVNE32rr,      X86::CMOVNE32rm,    0 },
625    { X86::CMOVNE64rr,      X86::CMOVNE64rm,    0 },
626    { X86::CMOVNO16rr,      X86::CMOVNO16rm,    0 },
627    { X86::CMOVNO32rr,      X86::CMOVNO32rm,    0 },
628    { X86::CMOVNO64rr,      X86::CMOVNO64rm,    0 },
629    { X86::CMOVNP16rr,      X86::CMOVNP16rm,    0 },
630    { X86::CMOVNP32rr,      X86::CMOVNP32rm,    0 },
631    { X86::CMOVNP64rr,      X86::CMOVNP64rm,    0 },
632    { X86::CMOVNS16rr,      X86::CMOVNS16rm,    0 },
633    { X86::CMOVNS32rr,      X86::CMOVNS32rm,    0 },
634    { X86::CMOVNS64rr,      X86::CMOVNS64rm,    0 },
635    { X86::CMOVO16rr,       X86::CMOVO16rm,     0 },
636    { X86::CMOVO32rr,       X86::CMOVO32rm,     0 },
637    { X86::CMOVO64rr,       X86::CMOVO64rm,     0 },
638    { X86::CMOVP16rr,       X86::CMOVP16rm,     0 },
639    { X86::CMOVP32rr,       X86::CMOVP32rm,     0 },
640    { X86::CMOVP64rr,       X86::CMOVP64rm,     0 },
641    { X86::CMOVS16rr,       X86::CMOVS16rm,     0 },
642    { X86::CMOVS32rr,       X86::CMOVS32rm,     0 },
643    { X86::CMOVS64rr,       X86::CMOVS64rm,     0 },
644    { X86::CMPPDrri,        X86::CMPPDrmi,      TB_ALIGN_16 },
645    { X86::CMPPSrri,        X86::CMPPSrmi,      TB_ALIGN_16 },
646    { X86::CMPSDrr,         X86::CMPSDrm,       0 },
647    { X86::CMPSSrr,         X86::CMPSSrm,       0 },
648    { X86::DIVPDrr,         X86::DIVPDrm,       TB_ALIGN_16 },
649    { X86::DIVPSrr,         X86::DIVPSrm,       TB_ALIGN_16 },
650    { X86::DIVSDrr,         X86::DIVSDrm,       0 },
651    { X86::DIVSSrr,         X86::DIVSSrm,       0 },
652    { X86::FsANDNPDrr,      X86::FsANDNPDrm,    TB_ALIGN_16 },
653    { X86::FsANDNPSrr,      X86::FsANDNPSrm,    TB_ALIGN_16 },
654    { X86::FsANDPDrr,       X86::FsANDPDrm,     TB_ALIGN_16 },
655    { X86::FsANDPSrr,       X86::FsANDPSrm,     TB_ALIGN_16 },
656    { X86::FsORPDrr,        X86::FsORPDrm,      TB_ALIGN_16 },
657    { X86::FsORPSrr,        X86::FsORPSrm,      TB_ALIGN_16 },
658    { X86::FsXORPDrr,       X86::FsXORPDrm,     TB_ALIGN_16 },
659    { X86::FsXORPSrr,       X86::FsXORPSrm,     TB_ALIGN_16 },
660    { X86::HADDPDrr,        X86::HADDPDrm,      TB_ALIGN_16 },
661    { X86::HADDPSrr,        X86::HADDPSrm,      TB_ALIGN_16 },
662    { X86::HSUBPDrr,        X86::HSUBPDrm,      TB_ALIGN_16 },
663    { X86::HSUBPSrr,        X86::HSUBPSrm,      TB_ALIGN_16 },
664    { X86::IMUL16rr,        X86::IMUL16rm,      0 },
665    { X86::IMUL32rr,        X86::IMUL32rm,      0 },
666    { X86::IMUL64rr,        X86::IMUL64rm,      0 },
667    { X86::Int_CMPSDrr,     X86::Int_CMPSDrm,   0 },
668    { X86::Int_CMPSSrr,     X86::Int_CMPSSrm,   0 },
669    { X86::MAXPDrr,         X86::MAXPDrm,       TB_ALIGN_16 },
670    { X86::MAXPDrr_Int,     X86::MAXPDrm_Int,   TB_ALIGN_16 },
671    { X86::MAXPSrr,         X86::MAXPSrm,       TB_ALIGN_16 },
672    { X86::MAXPSrr_Int,     X86::MAXPSrm_Int,   TB_ALIGN_16 },
673    { X86::MAXSDrr,         X86::MAXSDrm,       0 },
674    { X86::MAXSDrr_Int,     X86::MAXSDrm_Int,   0 },
675    { X86::MAXSSrr,         X86::MAXSSrm,       0 },
676    { X86::MAXSSrr_Int,     X86::MAXSSrm_Int,   0 },
677    { X86::MINPDrr,         X86::MINPDrm,       TB_ALIGN_16 },
678    { X86::MINPDrr_Int,     X86::MINPDrm_Int,   TB_ALIGN_16 },
679    { X86::MINPSrr,         X86::MINPSrm,       TB_ALIGN_16 },
680    { X86::MINPSrr_Int,     X86::MINPSrm_Int,   TB_ALIGN_16 },
681    { X86::MINSDrr,         X86::MINSDrm,       0 },
682    { X86::MINSDrr_Int,     X86::MINSDrm_Int,   0 },
683    { X86::MINSSrr,         X86::MINSSrm,       0 },
684    { X86::MINSSrr_Int,     X86::MINSSrm_Int,   0 },
685    { X86::MPSADBWrri,      X86::MPSADBWrmi,    TB_ALIGN_16 },
686    { X86::MULPDrr,         X86::MULPDrm,       TB_ALIGN_16 },
687    { X86::MULPSrr,         X86::MULPSrm,       TB_ALIGN_16 },
688    { X86::MULSDrr,         X86::MULSDrm,       0 },
689    { X86::MULSSrr,         X86::MULSSrm,       0 },
690    { X86::OR16rr,          X86::OR16rm,        0 },
691    { X86::OR32rr,          X86::OR32rm,        0 },
692    { X86::OR64rr,          X86::OR64rm,        0 },
693    { X86::OR8rr,           X86::OR8rm,         0 },
694    { X86::ORPDrr,          X86::ORPDrm,        TB_ALIGN_16 },
695    { X86::ORPSrr,          X86::ORPSrm,        TB_ALIGN_16 },
696    { X86::PACKSSDWrr,      X86::PACKSSDWrm,    TB_ALIGN_16 },
697    { X86::PACKSSWBrr,      X86::PACKSSWBrm,    TB_ALIGN_16 },
698    { X86::PACKUSDWrr,      X86::PACKUSDWrm,    TB_ALIGN_16 },
699    { X86::PACKUSWBrr,      X86::PACKUSWBrm,    TB_ALIGN_16 },
700    { X86::PADDBrr,         X86::PADDBrm,       TB_ALIGN_16 },
701    { X86::PADDDrr,         X86::PADDDrm,       TB_ALIGN_16 },
702    { X86::PADDQrr,         X86::PADDQrm,       TB_ALIGN_16 },
703    { X86::PADDSBrr,        X86::PADDSBrm,      TB_ALIGN_16 },
704    { X86::PADDSWrr,        X86::PADDSWrm,      TB_ALIGN_16 },
705    { X86::PADDUSBrr,       X86::PADDUSBrm,     TB_ALIGN_16 },
706    { X86::PADDUSWrr,       X86::PADDUSWrm,     TB_ALIGN_16 },
707    { X86::PADDWrr,         X86::PADDWrm,       TB_ALIGN_16 },
708    { X86::PALIGNR128rr,    X86::PALIGNR128rm,  TB_ALIGN_16 },
709    { X86::PANDNrr,         X86::PANDNrm,       TB_ALIGN_16 },
710    { X86::PANDrr,          X86::PANDrm,        TB_ALIGN_16 },
711    { X86::PAVGBrr,         X86::PAVGBrm,       TB_ALIGN_16 },
712    { X86::PAVGWrr,         X86::PAVGWrm,       TB_ALIGN_16 },
713    { X86::PBLENDWrri,      X86::PBLENDWrmi,    TB_ALIGN_16 },
714    { X86::PCMPEQBrr,       X86::PCMPEQBrm,     TB_ALIGN_16 },
715    { X86::PCMPEQDrr,       X86::PCMPEQDrm,     TB_ALIGN_16 },
716    { X86::PCMPEQQrr,       X86::PCMPEQQrm,     TB_ALIGN_16 },
717    { X86::PCMPEQWrr,       X86::PCMPEQWrm,     TB_ALIGN_16 },
718    { X86::PCMPGTBrr,       X86::PCMPGTBrm,     TB_ALIGN_16 },
719    { X86::PCMPGTDrr,       X86::PCMPGTDrm,     TB_ALIGN_16 },
720    { X86::PCMPGTQrr,       X86::PCMPGTQrm,     TB_ALIGN_16 },
721    { X86::PCMPGTWrr,       X86::PCMPGTWrm,     TB_ALIGN_16 },
722    { X86::PHADDDrr,        X86::PHADDDrm,      TB_ALIGN_16 },
723    { X86::PHADDWrr,        X86::PHADDWrm,      TB_ALIGN_16 },
724    { X86::PHADDSWrr128,    X86::PHADDSWrm128,  TB_ALIGN_16 },
725    { X86::PHSUBDrr,        X86::PHSUBDrm,      TB_ALIGN_16 },
726    { X86::PHSUBSWrr128,    X86::PHSUBSWrm128,  TB_ALIGN_16 },
727    { X86::PHSUBWrr,        X86::PHSUBWrm,      TB_ALIGN_16 },
728    { X86::PINSRWrri,       X86::PINSRWrmi,     TB_ALIGN_16 },
729    { X86::PMADDUBSWrr128,  X86::PMADDUBSWrm128, TB_ALIGN_16 },
730    { X86::PMADDWDrr,       X86::PMADDWDrm,     TB_ALIGN_16 },
731    { X86::PMAXSWrr,        X86::PMAXSWrm,      TB_ALIGN_16 },
732    { X86::PMAXUBrr,        X86::PMAXUBrm,      TB_ALIGN_16 },
733    { X86::PMINSWrr,        X86::PMINSWrm,      TB_ALIGN_16 },
734    { X86::PMINUBrr,        X86::PMINUBrm,      TB_ALIGN_16 },
735    { X86::PMULDQrr,        X86::PMULDQrm,      TB_ALIGN_16 },
736    { X86::PMULHRSWrr128,   X86::PMULHRSWrm128, TB_ALIGN_16 },
737    { X86::PMULHUWrr,       X86::PMULHUWrm,     TB_ALIGN_16 },
738    { X86::PMULHWrr,        X86::PMULHWrm,      TB_ALIGN_16 },
739    { X86::PMULLDrr,        X86::PMULLDrm,      TB_ALIGN_16 },
740    { X86::PMULLWrr,        X86::PMULLWrm,      TB_ALIGN_16 },
741    { X86::PMULUDQrr,       X86::PMULUDQrm,     TB_ALIGN_16 },
742    { X86::PORrr,           X86::PORrm,         TB_ALIGN_16 },
743    { X86::PSADBWrr,        X86::PSADBWrm,      TB_ALIGN_16 },
744    { X86::PSHUFBrr,        X86::PSHUFBrm,      TB_ALIGN_16 },
745    { X86::PSIGNBrr,        X86::PSIGNBrm,      TB_ALIGN_16 },
746    { X86::PSIGNWrr,        X86::PSIGNWrm,      TB_ALIGN_16 },
747    { X86::PSIGNDrr,        X86::PSIGNDrm,      TB_ALIGN_16 },
748    { X86::PSLLDrr,         X86::PSLLDrm,       TB_ALIGN_16 },
749    { X86::PSLLQrr,         X86::PSLLQrm,       TB_ALIGN_16 },
750    { X86::PSLLWrr,         X86::PSLLWrm,       TB_ALIGN_16 },
751    { X86::PSRADrr,         X86::PSRADrm,       TB_ALIGN_16 },
752    { X86::PSRAWrr,         X86::PSRAWrm,       TB_ALIGN_16 },
753    { X86::PSRLDrr,         X86::PSRLDrm,       TB_ALIGN_16 },
754    { X86::PSRLQrr,         X86::PSRLQrm,       TB_ALIGN_16 },
755    { X86::PSRLWrr,         X86::PSRLWrm,       TB_ALIGN_16 },
756    { X86::PSUBBrr,         X86::PSUBBrm,       TB_ALIGN_16 },
757    { X86::PSUBDrr,         X86::PSUBDrm,       TB_ALIGN_16 },
758    { X86::PSUBSBrr,        X86::PSUBSBrm,      TB_ALIGN_16 },
759    { X86::PSUBSWrr,        X86::PSUBSWrm,      TB_ALIGN_16 },
760    { X86::PSUBWrr,         X86::PSUBWrm,       TB_ALIGN_16 },
761    { X86::PUNPCKHBWrr,     X86::PUNPCKHBWrm,   TB_ALIGN_16 },
762    { X86::PUNPCKHDQrr,     X86::PUNPCKHDQrm,   TB_ALIGN_16 },
763    { X86::PUNPCKHQDQrr,    X86::PUNPCKHQDQrm,  TB_ALIGN_16 },
764    { X86::PUNPCKHWDrr,     X86::PUNPCKHWDrm,   TB_ALIGN_16 },
765    { X86::PUNPCKLBWrr,     X86::PUNPCKLBWrm,   TB_ALIGN_16 },
766    { X86::PUNPCKLDQrr,     X86::PUNPCKLDQrm,   TB_ALIGN_16 },
767    { X86::PUNPCKLQDQrr,    X86::PUNPCKLQDQrm,  TB_ALIGN_16 },
768    { X86::PUNPCKLWDrr,     X86::PUNPCKLWDrm,   TB_ALIGN_16 },
769    { X86::PXORrr,          X86::PXORrm,        TB_ALIGN_16 },
770    { X86::SBB32rr,         X86::SBB32rm,       0 },
771    { X86::SBB64rr,         X86::SBB64rm,       0 },
772    { X86::SHUFPDrri,       X86::SHUFPDrmi,     TB_ALIGN_16 },
773    { X86::SHUFPSrri,       X86::SHUFPSrmi,     TB_ALIGN_16 },
774    { X86::SUB16rr,         X86::SUB16rm,       0 },
775    { X86::SUB32rr,         X86::SUB32rm,       0 },
776    { X86::SUB64rr,         X86::SUB64rm,       0 },
777    { X86::SUB8rr,          X86::SUB8rm,        0 },
778    { X86::SUBPDrr,         X86::SUBPDrm,       TB_ALIGN_16 },
779    { X86::SUBPSrr,         X86::SUBPSrm,       TB_ALIGN_16 },
780    { X86::SUBSDrr,         X86::SUBSDrm,       0 },
781    { X86::SUBSSrr,         X86::SUBSSrm,       0 },
782    // FIXME: TEST*rr -> swapped operand of TEST*mr.
783    { X86::UNPCKHPDrr,      X86::UNPCKHPDrm,    TB_ALIGN_16 },
784    { X86::UNPCKHPSrr,      X86::UNPCKHPSrm,    TB_ALIGN_16 },
785    { X86::UNPCKLPDrr,      X86::UNPCKLPDrm,    TB_ALIGN_16 },
786    { X86::UNPCKLPSrr,      X86::UNPCKLPSrm,    TB_ALIGN_16 },
787    { X86::XOR16rr,         X86::XOR16rm,       0 },
788    { X86::XOR32rr,         X86::XOR32rm,       0 },
789    { X86::XOR64rr,         X86::XOR64rm,       0 },
790    { X86::XOR8rr,          X86::XOR8rm,        0 },
791    { X86::XORPDrr,         X86::XORPDrm,       TB_ALIGN_16 },
792    { X86::XORPSrr,         X86::XORPSrm,       TB_ALIGN_16 },
793    // AVX 128-bit versions of foldable instructions
794    { X86::VCVTSD2SSrr,       X86::VCVTSD2SSrm,        0 },
795    { X86::Int_VCVTSD2SSrr,   X86::Int_VCVTSD2SSrm,    0 },
796    { X86::VCVTSI2SD64rr,     X86::VCVTSI2SD64rm,      0 },
797    { X86::Int_VCVTSI2SD64rr, X86::Int_VCVTSI2SD64rm,  0 },
798    { X86::VCVTSI2SDrr,       X86::VCVTSI2SDrm,        0 },
799    { X86::Int_VCVTSI2SDrr,   X86::Int_VCVTSI2SDrm,    0 },
800    { X86::VCVTSI2SS64rr,     X86::VCVTSI2SS64rm,      0 },
801    { X86::Int_VCVTSI2SS64rr, X86::Int_VCVTSI2SS64rm,  0 },
802    { X86::VCVTSI2SSrr,       X86::VCVTSI2SSrm,        0 },
803    { X86::Int_VCVTSI2SSrr,   X86::Int_VCVTSI2SSrm,    0 },
804    { X86::VCVTSS2SDrr,       X86::VCVTSS2SDrm,        0 },
805    { X86::Int_VCVTSS2SDrr,   X86::Int_VCVTSS2SDrm,    0 },
806    { X86::VCVTTSD2SI64rr,    X86::VCVTTSD2SI64rm,     0 },
807    { X86::Int_VCVTTSD2SI64rr,X86::Int_VCVTTSD2SI64rm, 0 },
808    { X86::VCVTTSD2SIrr,      X86::VCVTTSD2SIrm,       0 },
809    { X86::Int_VCVTTSD2SIrr,  X86::Int_VCVTTSD2SIrm,   0 },
810    { X86::VCVTTSS2SI64rr,    X86::VCVTTSS2SI64rm,     0 },
811    { X86::Int_VCVTTSS2SI64rr,X86::Int_VCVTTSS2SI64rm, 0 },
812    { X86::VCVTTSS2SIrr,      X86::VCVTTSS2SIrm,       0 },
813    { X86::Int_VCVTTSS2SIrr,  X86::Int_VCVTTSS2SIrm,   0 },
814    { X86::VCVTSD2SI64rr,     X86::VCVTSD2SI64rm,      0 },
815    { X86::VCVTSD2SIrr,       X86::VCVTSD2SIrm,        0 },
816    { X86::VCVTTPD2DQrr,      X86::VCVTTPD2DQrm,       TB_ALIGN_16 },
817    { X86::VCVTTPS2DQrr,      X86::VCVTTPS2DQrm,       TB_ALIGN_16 },
818    { X86::VRSQRTSSr,         X86::VRSQRTSSm,          0 },
819    { X86::VSQRTSDr,          X86::VSQRTSDm,           0 },
820    { X86::VSQRTSSr,          X86::VSQRTSSm,           0 },
821    { X86::VADDPDrr,          X86::VADDPDrm,           TB_ALIGN_16 },
822    { X86::VADDPSrr,          X86::VADDPSrm,           TB_ALIGN_16 },
823    { X86::VADDSDrr,          X86::VADDSDrm,           0 },
824    { X86::VADDSSrr,          X86::VADDSSrm,           0 },
825    { X86::VADDSUBPDrr,       X86::VADDSUBPDrm,        TB_ALIGN_16 },
826    { X86::VADDSUBPSrr,       X86::VADDSUBPSrm,        TB_ALIGN_16 },
827    { X86::VANDNPDrr,         X86::VANDNPDrm,          TB_ALIGN_16 },
828    { X86::VANDNPSrr,         X86::VANDNPSrm,          TB_ALIGN_16 },
829    { X86::VANDPDrr,          X86::VANDPDrm,           TB_ALIGN_16 },
830    { X86::VANDPSrr,          X86::VANDPSrm,           TB_ALIGN_16 },
831    { X86::VBLENDPDrri,       X86::VBLENDPDrmi,        TB_ALIGN_16 },
832    { X86::VBLENDPSrri,       X86::VBLENDPSrmi,        TB_ALIGN_16 },
833    { X86::VBLENDVPDrr,       X86::VBLENDVPDrm,        TB_ALIGN_16 },
834    { X86::VBLENDVPSrr,       X86::VBLENDVPSrm,        TB_ALIGN_16 },
835    { X86::VCMPPDrri,         X86::VCMPPDrmi,          TB_ALIGN_16 },
836    { X86::VCMPPSrri,         X86::VCMPPSrmi,          TB_ALIGN_16 },
837    { X86::VCMPSDrr,          X86::VCMPSDrm,           0 },
838    { X86::VCMPSSrr,          X86::VCMPSSrm,           0 },
839    { X86::VDIVPDrr,          X86::VDIVPDrm,           TB_ALIGN_16 },
840    { X86::VDIVPSrr,          X86::VDIVPSrm,           TB_ALIGN_16 },
841    { X86::VDIVSDrr,          X86::VDIVSDrm,           0 },
842    { X86::VDIVSSrr,          X86::VDIVSSrm,           0 },
843    { X86::VFsANDNPDrr,       X86::VFsANDNPDrm,        TB_ALIGN_16 },
844    { X86::VFsANDNPSrr,       X86::VFsANDNPSrm,        TB_ALIGN_16 },
845    { X86::VFsANDPDrr,        X86::VFsANDPDrm,         TB_ALIGN_16 },
846    { X86::VFsANDPSrr,        X86::VFsANDPSrm,         TB_ALIGN_16 },
847    { X86::VFsORPDrr,         X86::VFsORPDrm,          TB_ALIGN_16 },
848    { X86::VFsORPSrr,         X86::VFsORPSrm,          TB_ALIGN_16 },
849    { X86::VFsXORPDrr,        X86::VFsXORPDrm,         TB_ALIGN_16 },
850    { X86::VFsXORPSrr,        X86::VFsXORPSrm,         TB_ALIGN_16 },
851    { X86::VHADDPDrr,         X86::VHADDPDrm,          TB_ALIGN_16 },
852    { X86::VHADDPSrr,         X86::VHADDPSrm,          TB_ALIGN_16 },
853    { X86::VHSUBPDrr,         X86::VHSUBPDrm,          TB_ALIGN_16 },
854    { X86::VHSUBPSrr,         X86::VHSUBPSrm,          TB_ALIGN_16 },
855    { X86::Int_VCMPSDrr,      X86::Int_VCMPSDrm,       0 },
856    { X86::Int_VCMPSSrr,      X86::Int_VCMPSSrm,       0 },
857    { X86::VMAXPDrr,          X86::VMAXPDrm,           TB_ALIGN_16 },
858    { X86::VMAXPDrr_Int,      X86::VMAXPDrm_Int,       TB_ALIGN_16 },
859    { X86::VMAXPSrr,          X86::VMAXPSrm,           TB_ALIGN_16 },
860    { X86::VMAXPSrr_Int,      X86::VMAXPSrm_Int,       TB_ALIGN_16 },
861    { X86::VMAXSDrr,          X86::VMAXSDrm,           0 },
862    { X86::VMAXSDrr_Int,      X86::VMAXSDrm_Int,       0 },
863    { X86::VMAXSSrr,          X86::VMAXSSrm,           0 },
864    { X86::VMAXSSrr_Int,      X86::VMAXSSrm_Int,       0 },
865    { X86::VMINPDrr,          X86::VMINPDrm,           TB_ALIGN_16 },
866    { X86::VMINPDrr_Int,      X86::VMINPDrm_Int,       TB_ALIGN_16 },
867    { X86::VMINPSrr,          X86::VMINPSrm,           TB_ALIGN_16 },
868    { X86::VMINPSrr_Int,      X86::VMINPSrm_Int,       TB_ALIGN_16 },
869    { X86::VMINSDrr,          X86::VMINSDrm,           0 },
870    { X86::VMINSDrr_Int,      X86::VMINSDrm_Int,       0 },
871    { X86::VMINSSrr,          X86::VMINSSrm,           0 },
872    { X86::VMINSSrr_Int,      X86::VMINSSrm_Int,       0 },
873    { X86::VMPSADBWrri,       X86::VMPSADBWrmi,        TB_ALIGN_16 },
874    { X86::VMULPDrr,          X86::VMULPDrm,           TB_ALIGN_16 },
875    { X86::VMULPSrr,          X86::VMULPSrm,           TB_ALIGN_16 },
876    { X86::VMULSDrr,          X86::VMULSDrm,           0 },
877    { X86::VMULSSrr,          X86::VMULSSrm,           0 },
878    { X86::VORPDrr,           X86::VORPDrm,            TB_ALIGN_16 },
879    { X86::VORPSrr,           X86::VORPSrm,            TB_ALIGN_16 },
880    { X86::VPACKSSDWrr,       X86::VPACKSSDWrm,        TB_ALIGN_16 },
881    { X86::VPACKSSWBrr,       X86::VPACKSSWBrm,        TB_ALIGN_16 },
882    { X86::VPACKUSDWrr,       X86::VPACKUSDWrm,        TB_ALIGN_16 },
883    { X86::VPACKUSWBrr,       X86::VPACKUSWBrm,        TB_ALIGN_16 },
884    { X86::VPADDBrr,          X86::VPADDBrm,           TB_ALIGN_16 },
885    { X86::VPADDDrr,          X86::VPADDDrm,           TB_ALIGN_16 },
886    { X86::VPADDQrr,          X86::VPADDQrm,           TB_ALIGN_16 },
887    { X86::VPADDSBrr,         X86::VPADDSBrm,          TB_ALIGN_16 },
888    { X86::VPADDSWrr,         X86::VPADDSWrm,          TB_ALIGN_16 },
889    { X86::VPADDUSBrr,        X86::VPADDUSBrm,         TB_ALIGN_16 },
890    { X86::VPADDUSWrr,        X86::VPADDUSWrm,         TB_ALIGN_16 },
891    { X86::VPADDWrr,          X86::VPADDWrm,           TB_ALIGN_16 },
892    { X86::VPALIGNR128rr,     X86::VPALIGNR128rm,      TB_ALIGN_16 },
893    { X86::VPANDNrr,          X86::VPANDNrm,           TB_ALIGN_16 },
894    { X86::VPANDrr,           X86::VPANDrm,            TB_ALIGN_16 },
895    { X86::VPAVGBrr,          X86::VPAVGBrm,           TB_ALIGN_16 },
896    { X86::VPAVGWrr,          X86::VPAVGWrm,           TB_ALIGN_16 },
897    { X86::VPBLENDWrri,       X86::VPBLENDWrmi,        TB_ALIGN_16 },
898    { X86::VPCMPEQBrr,        X86::VPCMPEQBrm,         TB_ALIGN_16 },
899    { X86::VPCMPEQDrr,        X86::VPCMPEQDrm,         TB_ALIGN_16 },
900    { X86::VPCMPEQQrr,        X86::VPCMPEQQrm,         TB_ALIGN_16 },
901    { X86::VPCMPEQWrr,        X86::VPCMPEQWrm,         TB_ALIGN_16 },
902    { X86::VPCMPGTBrr,        X86::VPCMPGTBrm,         TB_ALIGN_16 },
903    { X86::VPCMPGTDrr,        X86::VPCMPGTDrm,         TB_ALIGN_16 },
904    { X86::VPCMPGTQrr,        X86::VPCMPGTQrm,         TB_ALIGN_16 },
905    { X86::VPCMPGTWrr,        X86::VPCMPGTWrm,         TB_ALIGN_16 },
906    { X86::VPHADDDrr,         X86::VPHADDDrm,          TB_ALIGN_16 },
907    { X86::VPHADDSWrr128,     X86::VPHADDSWrm128,      TB_ALIGN_16 },
908    { X86::VPHADDWrr,         X86::VPHADDWrm,          TB_ALIGN_16 },
909    { X86::VPHSUBDrr,         X86::VPHSUBDrm,          TB_ALIGN_16 },
910    { X86::VPHSUBSWrr128,     X86::VPHSUBSWrm128,      TB_ALIGN_16 },
911    { X86::VPHSUBWrr,         X86::VPHSUBWrm,          TB_ALIGN_16 },
912    { X86::VPERMILPDrr,       X86::VPERMILPDrm,        TB_ALIGN_16 },
913    { X86::VPERMILPSrr,       X86::VPERMILPSrm,        TB_ALIGN_16 },
914    { X86::VPINSRWrri,        X86::VPINSRWrmi,         TB_ALIGN_16 },
915    { X86::VPMADDUBSWrr128,   X86::VPMADDUBSWrm128,    TB_ALIGN_16 },
916    { X86::VPMADDWDrr,        X86::VPMADDWDrm,         TB_ALIGN_16 },
917    { X86::VPMAXSWrr,         X86::VPMAXSWrm,          TB_ALIGN_16 },
918    { X86::VPMAXUBrr,         X86::VPMAXUBrm,          TB_ALIGN_16 },
919    { X86::VPMINSWrr,         X86::VPMINSWrm,          TB_ALIGN_16 },
920    { X86::VPMINUBrr,         X86::VPMINUBrm,          TB_ALIGN_16 },
921    { X86::VPMULDQrr,         X86::VPMULDQrm,          TB_ALIGN_16 },
922    { X86::VPMULHRSWrr128,    X86::VPMULHRSWrm128,     TB_ALIGN_16 },
923    { X86::VPMULHUWrr,        X86::VPMULHUWrm,         TB_ALIGN_16 },
924    { X86::VPMULHWrr,         X86::VPMULHWrm,          TB_ALIGN_16 },
925    { X86::VPMULLDrr,         X86::VPMULLDrm,          TB_ALIGN_16 },
926    { X86::VPMULLWrr,         X86::VPMULLWrm,          TB_ALIGN_16 },
927    { X86::VPMULUDQrr,        X86::VPMULUDQrm,         TB_ALIGN_16 },
928    { X86::VPORrr,            X86::VPORrm,             TB_ALIGN_16 },
929    { X86::VPSADBWrr,         X86::VPSADBWrm,          TB_ALIGN_16 },
930    { X86::VPSHUFBrr,         X86::VPSHUFBrm,          TB_ALIGN_16 },
931    { X86::VPSIGNBrr,         X86::VPSIGNBrm,          TB_ALIGN_16 },
932    { X86::VPSIGNWrr,         X86::VPSIGNWrm,          TB_ALIGN_16 },
933    { X86::VPSIGNDrr,         X86::VPSIGNDrm,          TB_ALIGN_16 },
934    { X86::VPSLLDrr,          X86::VPSLLDrm,           TB_ALIGN_16 },
935    { X86::VPSLLQrr,          X86::VPSLLQrm,           TB_ALIGN_16 },
936    { X86::VPSLLWrr,          X86::VPSLLWrm,           TB_ALIGN_16 },
937    { X86::VPSRADrr,          X86::VPSRADrm,           TB_ALIGN_16 },
938    { X86::VPSRAWrr,          X86::VPSRAWrm,           TB_ALIGN_16 },
939    { X86::VPSRLDrr,          X86::VPSRLDrm,           TB_ALIGN_16 },
940    { X86::VPSRLQrr,          X86::VPSRLQrm,           TB_ALIGN_16 },
941    { X86::VPSRLWrr,          X86::VPSRLWrm,           TB_ALIGN_16 },
942    { X86::VPSUBBrr,          X86::VPSUBBrm,           TB_ALIGN_16 },
943    { X86::VPSUBDrr,          X86::VPSUBDrm,           TB_ALIGN_16 },
944    { X86::VPSUBSBrr,         X86::VPSUBSBrm,          TB_ALIGN_16 },
945    { X86::VPSUBSWrr,         X86::VPSUBSWrm,          TB_ALIGN_16 },
946    { X86::VPSUBWrr,          X86::VPSUBWrm,           TB_ALIGN_16 },
947    { X86::VPUNPCKHBWrr,      X86::VPUNPCKHBWrm,       TB_ALIGN_16 },
948    { X86::VPUNPCKHDQrr,      X86::VPUNPCKHDQrm,       TB_ALIGN_16 },
949    { X86::VPUNPCKHQDQrr,     X86::VPUNPCKHQDQrm,      TB_ALIGN_16 },
950    { X86::VPUNPCKHWDrr,      X86::VPUNPCKHWDrm,       TB_ALIGN_16 },
951    { X86::VPUNPCKLBWrr,      X86::VPUNPCKLBWrm,       TB_ALIGN_16 },
952    { X86::VPUNPCKLDQrr,      X86::VPUNPCKLDQrm,       TB_ALIGN_16 },
953    { X86::VPUNPCKLQDQrr,     X86::VPUNPCKLQDQrm,      TB_ALIGN_16 },
954    { X86::VPUNPCKLWDrr,      X86::VPUNPCKLWDrm,       TB_ALIGN_16 },
955    { X86::VPXORrr,           X86::VPXORrm,            TB_ALIGN_16 },
956    { X86::VSHUFPDrri,        X86::VSHUFPDrmi,         TB_ALIGN_16 },
957    { X86::VSHUFPSrri,        X86::VSHUFPSrmi,         TB_ALIGN_16 },
958    { X86::VSUBPDrr,          X86::VSUBPDrm,           TB_ALIGN_16 },
959    { X86::VSUBPSrr,          X86::VSUBPSrm,           TB_ALIGN_16 },
960    { X86::VSUBSDrr,          X86::VSUBSDrm,           0 },
961    { X86::VSUBSSrr,          X86::VSUBSSrm,           0 },
962    { X86::VUNPCKHPDrr,       X86::VUNPCKHPDrm,        TB_ALIGN_16 },
963    { X86::VUNPCKHPSrr,       X86::VUNPCKHPSrm,        TB_ALIGN_16 },
964    { X86::VUNPCKLPDrr,       X86::VUNPCKLPDrm,        TB_ALIGN_16 },
965    { X86::VUNPCKLPSrr,       X86::VUNPCKLPSrm,        TB_ALIGN_16 },
966    { X86::VXORPDrr,          X86::VXORPDrm,           TB_ALIGN_16 },
967    { X86::VXORPSrr,          X86::VXORPSrm,           TB_ALIGN_16 },
968    // AVX 256-bit foldable instructions
969    { X86::VADDPDYrr,         X86::VADDPDYrm,          TB_ALIGN_32 },
970    { X86::VADDPSYrr,         X86::VADDPSYrm,          TB_ALIGN_32 },
971    { X86::VADDSUBPDYrr,      X86::VADDSUBPDYrm,       TB_ALIGN_32 },
972    { X86::VADDSUBPSYrr,      X86::VADDSUBPSYrm,       TB_ALIGN_32 },
973    { X86::VANDNPDYrr,        X86::VANDNPDYrm,         TB_ALIGN_32 },
974    { X86::VANDNPSYrr,        X86::VANDNPSYrm,         TB_ALIGN_32 },
975    { X86::VANDPDYrr,         X86::VANDPDYrm,          TB_ALIGN_32 },
976    { X86::VANDPSYrr,         X86::VANDPSYrm,          TB_ALIGN_32 },
977    { X86::VBLENDPDYrri,      X86::VBLENDPDYrmi,       TB_ALIGN_32 },
978    { X86::VBLENDPSYrri,      X86::VBLENDPSYrmi,       TB_ALIGN_32 },
979    { X86::VBLENDVPDYrr,      X86::VBLENDVPDYrm,       TB_ALIGN_32 },
980    { X86::VBLENDVPSYrr,      X86::VBLENDVPSYrm,       TB_ALIGN_32 },
981    { X86::VCMPPDYrri,        X86::VCMPPDYrmi,         TB_ALIGN_32 },
982    { X86::VCMPPSYrri,        X86::VCMPPSYrmi,         TB_ALIGN_32 },
983    { X86::VDIVPDYrr,         X86::VDIVPDYrm,          TB_ALIGN_32 },
984    { X86::VDIVPSYrr,         X86::VDIVPSYrm,          TB_ALIGN_32 },
985    { X86::VHADDPDYrr,        X86::VHADDPDYrm,         TB_ALIGN_32 },
986    { X86::VHADDPSYrr,        X86::VHADDPSYrm,         TB_ALIGN_32 },
987    { X86::VHSUBPDYrr,        X86::VHSUBPDYrm,         TB_ALIGN_32 },
988    { X86::VHSUBPSYrr,        X86::VHSUBPSYrm,         TB_ALIGN_32 },
989    { X86::VINSERTF128rr,     X86::VINSERTF128rm,      TB_ALIGN_32 },
990    { X86::VMAXPDYrr,         X86::VMAXPDYrm,          TB_ALIGN_32 },
991    { X86::VMAXPDYrr_Int,     X86::VMAXPDYrm_Int,      TB_ALIGN_32 },
992    { X86::VMAXPSYrr,         X86::VMAXPSYrm,          TB_ALIGN_32 },
993    { X86::VMAXPSYrr_Int,     X86::VMAXPSYrm_Int,      TB_ALIGN_32 },
994    { X86::VMINPDYrr,         X86::VMINPDYrm,          TB_ALIGN_32 },
995    { X86::VMINPDYrr_Int,     X86::VMINPDYrm_Int,      TB_ALIGN_32 },
996    { X86::VMINPSYrr,         X86::VMINPSYrm,          TB_ALIGN_32 },
997    { X86::VMINPSYrr_Int,     X86::VMINPSYrm_Int,      TB_ALIGN_32 },
998    { X86::VMULPDYrr,         X86::VMULPDYrm,          TB_ALIGN_32 },
999    { X86::VMULPSYrr,         X86::VMULPSYrm,          TB_ALIGN_32 },
1000    { X86::VORPDYrr,          X86::VORPDYrm,           TB_ALIGN_32 },
1001    { X86::VORPSYrr,          X86::VORPSYrm,           TB_ALIGN_32 },
1002    { X86::VPERM2F128rr,      X86::VPERM2F128rm,       TB_ALIGN_32 },
1003    { X86::VPERMILPDYrr,      X86::VPERMILPDYrm,       TB_ALIGN_32 },
1004    { X86::VPERMILPSYrr,      X86::VPERMILPSYrm,       TB_ALIGN_32 },
1005    { X86::VSHUFPDYrri,       X86::VSHUFPDYrmi,        TB_ALIGN_32 },
1006    { X86::VSHUFPSYrri,       X86::VSHUFPSYrmi,        TB_ALIGN_32 },
1007    { X86::VSUBPDYrr,         X86::VSUBPDYrm,          TB_ALIGN_32 },
1008    { X86::VSUBPSYrr,         X86::VSUBPSYrm,          TB_ALIGN_32 },
1009    { X86::VUNPCKHPDYrr,      X86::VUNPCKHPDYrm,       TB_ALIGN_32 },
1010    { X86::VUNPCKHPSYrr,      X86::VUNPCKHPSYrm,       TB_ALIGN_32 },
1011    { X86::VUNPCKLPDYrr,      X86::VUNPCKLPDYrm,       TB_ALIGN_32 },
1012    { X86::VUNPCKLPSYrr,      X86::VUNPCKLPSYrm,       TB_ALIGN_32 },
1013    { X86::VXORPDYrr,         X86::VXORPDYrm,          TB_ALIGN_32 },
1014    { X86::VXORPSYrr,         X86::VXORPSYrm,          TB_ALIGN_32 },
1015    // AVX2 foldable instructions
1016    { X86::VINSERTI128rr,     X86::VINSERTI128rm,      TB_ALIGN_16 },
1017    { X86::VPACKSSDWYrr,      X86::VPACKSSDWYrm,       TB_ALIGN_32 },
1018    { X86::VPACKSSWBYrr,      X86::VPACKSSWBYrm,       TB_ALIGN_32 },
1019    { X86::VPACKUSDWYrr,      X86::VPACKUSDWYrm,       TB_ALIGN_32 },
1020    { X86::VPACKUSWBYrr,      X86::VPACKUSWBYrm,       TB_ALIGN_32 },
1021    { X86::VPADDBYrr,         X86::VPADDBYrm,          TB_ALIGN_32 },
1022    { X86::VPADDDYrr,         X86::VPADDDYrm,          TB_ALIGN_32 },
1023    { X86::VPADDQYrr,         X86::VPADDQYrm,          TB_ALIGN_32 },
1024    { X86::VPADDSBYrr,        X86::VPADDSBYrm,         TB_ALIGN_32 },
1025    { X86::VPADDSWYrr,        X86::VPADDSWYrm,         TB_ALIGN_32 },
1026    { X86::VPADDUSBYrr,       X86::VPADDUSBYrm,        TB_ALIGN_32 },
1027    { X86::VPADDUSWYrr,       X86::VPADDUSWYrm,        TB_ALIGN_32 },
1028    { X86::VPADDWYrr,         X86::VPADDWYrm,          TB_ALIGN_32 },
1029    { X86::VPALIGNR256rr,     X86::VPALIGNR256rm,      TB_ALIGN_32 },
1030    { X86::VPANDNYrr,         X86::VPANDNYrm,          TB_ALIGN_32 },
1031    { X86::VPANDYrr,          X86::VPANDYrm,           TB_ALIGN_32 },
1032    { X86::VPAVGBYrr,         X86::VPAVGBYrm,          TB_ALIGN_32 },
1033    { X86::VPAVGWYrr,         X86::VPAVGWYrm,          TB_ALIGN_32 },
1034    { X86::VPBLENDDrri,       X86::VPBLENDDrmi,        TB_ALIGN_32 },
1035    { X86::VPBLENDDYrri,      X86::VPBLENDDYrmi,       TB_ALIGN_32 },
1036    { X86::VPBLENDWYrri,      X86::VPBLENDWYrmi,       TB_ALIGN_32 },
1037    { X86::VPCMPEQBYrr,       X86::VPCMPEQBYrm,        TB_ALIGN_32 },
1038    { X86::VPCMPEQDYrr,       X86::VPCMPEQDYrm,        TB_ALIGN_32 },
1039    { X86::VPCMPEQQYrr,       X86::VPCMPEQQYrm,        TB_ALIGN_32 },
1040    { X86::VPCMPEQWYrr,       X86::VPCMPEQWYrm,        TB_ALIGN_32 },
1041    { X86::VPCMPGTBYrr,       X86::VPCMPGTBYrm,        TB_ALIGN_32 },
1042    { X86::VPCMPGTDYrr,       X86::VPCMPGTDYrm,        TB_ALIGN_32 },
1043    { X86::VPCMPGTQYrr,       X86::VPCMPGTQYrm,        TB_ALIGN_32 },
1044    { X86::VPCMPGTWYrr,       X86::VPCMPGTWYrm,        TB_ALIGN_32 },
1045    { X86::VPERM2I128rr,      X86::VPERM2I128rm,       TB_ALIGN_32 },
1046    { X86::VPERMDYrr,         X86::VPERMDYrm,          TB_ALIGN_32 },
1047    { X86::VPERMPDYrr,        X86::VPERMPDYrm,         TB_ALIGN_32 },
1048    { X86::VPERMPSYrr,        X86::VPERMPSYrm,         TB_ALIGN_32 },
1049    { X86::VPERMQYrr,         X86::VPERMQYrm,          TB_ALIGN_32 },
1050    { X86::VPHADDDYrr,        X86::VPHADDDYrm,         TB_ALIGN_32 },
1051    { X86::VPHADDSWrr256,     X86::VPHADDSWrm256,      TB_ALIGN_32 },
1052    { X86::VPHADDWYrr,        X86::VPHADDWYrm,         TB_ALIGN_32 },
1053    { X86::VPHSUBDYrr,        X86::VPHSUBDYrm,         TB_ALIGN_32 },
1054    { X86::VPHSUBSWrr256,     X86::VPHSUBSWrm256,      TB_ALIGN_32 },
1055    { X86::VPHSUBWYrr,        X86::VPHSUBWYrm,         TB_ALIGN_32 },
1056    { X86::VPMADDUBSWrr256,   X86::VPMADDUBSWrm256,    TB_ALIGN_32 },
1057    { X86::VPMADDWDYrr,       X86::VPMADDWDYrm,        TB_ALIGN_32 },
1058    { X86::VPMAXSWYrr,        X86::VPMAXSWYrm,         TB_ALIGN_32 },
1059    { X86::VPMAXUBYrr,        X86::VPMAXUBYrm,         TB_ALIGN_32 },
1060    { X86::VPMINSWYrr,        X86::VPMINSWYrm,         TB_ALIGN_32 },
1061    { X86::VPMINUBYrr,        X86::VPMINUBYrm,         TB_ALIGN_32 },
1062    { X86::VMPSADBWYrri,      X86::VMPSADBWYrmi,       TB_ALIGN_32 },
1063    { X86::VPMULDQYrr,        X86::VPMULDQYrm,         TB_ALIGN_32 },
1064    { X86::VPMULHRSWrr256,    X86::VPMULHRSWrm256,     TB_ALIGN_32 },
1065    { X86::VPMULHUWYrr,       X86::VPMULHUWYrm,        TB_ALIGN_32 },
1066    { X86::VPMULHWYrr,        X86::VPMULHWYrm,         TB_ALIGN_32 },
1067    { X86::VPMULLDYrr,        X86::VPMULLDYrm,         TB_ALIGN_32 },
1068    { X86::VPMULLWYrr,        X86::VPMULLWYrm,         TB_ALIGN_32 },
1069    { X86::VPMULUDQYrr,       X86::VPMULUDQYrm,        TB_ALIGN_32 },
1070    { X86::VPORYrr,           X86::VPORYrm,            TB_ALIGN_32 },
1071    { X86::VPSADBWYrr,        X86::VPSADBWYrm,         TB_ALIGN_32 },
1072    { X86::VPSHUFBYrr,        X86::VPSHUFBYrm,         TB_ALIGN_32 },
1073    { X86::VPSIGNBYrr,        X86::VPSIGNBYrm,         TB_ALIGN_32 },
1074    { X86::VPSIGNWYrr,        X86::VPSIGNWYrm,         TB_ALIGN_32 },
1075    { X86::VPSIGNDYrr,        X86::VPSIGNDYrm,         TB_ALIGN_32 },
1076    { X86::VPSLLDYrr,         X86::VPSLLDYrm,          TB_ALIGN_16 },
1077    { X86::VPSLLQYrr,         X86::VPSLLQYrm,          TB_ALIGN_16 },
1078    { X86::VPSLLWYrr,         X86::VPSLLWYrm,          TB_ALIGN_16 },
1079    { X86::VPSLLVDrr,         X86::VPSLLVDrm,          TB_ALIGN_16 },
1080    { X86::VPSLLVDYrr,        X86::VPSLLVDYrm,         TB_ALIGN_32 },
1081    { X86::VPSLLVQrr,         X86::VPSLLVQrm,          TB_ALIGN_16 },
1082    { X86::VPSLLVQYrr,        X86::VPSLLVQYrm,         TB_ALIGN_32 },
1083    { X86::VPSRADYrr,         X86::VPSRADYrm,          TB_ALIGN_16 },
1084    { X86::VPSRAWYrr,         X86::VPSRAWYrm,          TB_ALIGN_16 },
1085    { X86::VPSRAVDrr,         X86::VPSRAVDrm,          TB_ALIGN_16 },
1086    { X86::VPSRAVDYrr,        X86::VPSRAVDYrm,         TB_ALIGN_32 },
1087    { X86::VPSRLDYrr,         X86::VPSRLDYrm,          TB_ALIGN_16 },
1088    { X86::VPSRLQYrr,         X86::VPSRLQYrm,          TB_ALIGN_16 },
1089    { X86::VPSRLWYrr,         X86::VPSRLWYrm,          TB_ALIGN_16 },
1090    { X86::VPSRLVDrr,         X86::VPSRLVDrm,          TB_ALIGN_16 },
1091    { X86::VPSRLVDYrr,        X86::VPSRLVDYrm,         TB_ALIGN_32 },
1092    { X86::VPSRLVQrr,         X86::VPSRLVQrm,          TB_ALIGN_16 },
1093    { X86::VPSRLVQYrr,        X86::VPSRLVQYrm,         TB_ALIGN_32 },
1094    { X86::VPSUBBYrr,         X86::VPSUBBYrm,          TB_ALIGN_32 },
1095    { X86::VPSUBDYrr,         X86::VPSUBDYrm,          TB_ALIGN_32 },
1096    { X86::VPSUBSBYrr,        X86::VPSUBSBYrm,         TB_ALIGN_32 },
1097    { X86::VPSUBSWYrr,        X86::VPSUBSWYrm,         TB_ALIGN_32 },
1098    { X86::VPSUBWYrr,         X86::VPSUBWYrm,          TB_ALIGN_32 },
1099    { X86::VPUNPCKHBWYrr,     X86::VPUNPCKHBWYrm,      TB_ALIGN_32 },
1100    { X86::VPUNPCKHDQYrr,     X86::VPUNPCKHDQYrm,      TB_ALIGN_32 },
1101    { X86::VPUNPCKHQDQYrr,    X86::VPUNPCKHQDQYrm,     TB_ALIGN_16 },
1102    { X86::VPUNPCKHWDYrr,     X86::VPUNPCKHWDYrm,      TB_ALIGN_32 },
1103    { X86::VPUNPCKLBWYrr,     X86::VPUNPCKLBWYrm,      TB_ALIGN_32 },
1104    { X86::VPUNPCKLDQYrr,     X86::VPUNPCKLDQYrm,      TB_ALIGN_32 },
1105    { X86::VPUNPCKLQDQYrr,    X86::VPUNPCKLQDQYrm,     TB_ALIGN_32 },
1106    { X86::VPUNPCKLWDYrr,     X86::VPUNPCKLWDYrm,      TB_ALIGN_32 },
1107    { X86::VPXORYrr,          X86::VPXORYrm,           TB_ALIGN_32 },
1108    // FIXME: add AVX 256-bit foldable instructions
1109  };
1110
1111  for (unsigned i = 0, e = array_lengthof(OpTbl2); i != e; ++i) {
1112    unsigned RegOp = OpTbl2[i][0];
1113    unsigned MemOp = OpTbl2[i][1];
1114    unsigned Flags = OpTbl2[i][2];
1115    AddTableEntry(RegOp2MemOpTable2, MemOp2RegOpTable,
1116                  RegOp, MemOp,
1117                  // Index 2, folded load
1118                  Flags | TB_INDEX_2 | TB_FOLDED_LOAD);
1119  }
1120}
1121
1122void
1123X86InstrInfo::AddTableEntry(RegOp2MemOpTableType &R2MTable,
1124                            MemOp2RegOpTableType &M2RTable,
1125                            unsigned RegOp, unsigned MemOp, unsigned Flags) {
1126    if ((Flags & TB_NO_FORWARD) == 0) {
1127      assert(!R2MTable.count(RegOp) && "Duplicate entry!");
1128      R2MTable[RegOp] = std::make_pair(MemOp, Flags);
1129    }
1130    if ((Flags & TB_NO_REVERSE) == 0) {
1131      assert(!M2RTable.count(MemOp) &&
1132           "Duplicated entries in unfolding maps?");
1133      M2RTable[MemOp] = std::make_pair(RegOp, Flags);
1134    }
1135}
1136
1137bool
1138X86InstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
1139                                    unsigned &SrcReg, unsigned &DstReg,
1140                                    unsigned &SubIdx) const {
1141  switch (MI.getOpcode()) {
1142  default: break;
1143  case X86::MOVSX16rr8:
1144  case X86::MOVZX16rr8:
1145  case X86::MOVSX32rr8:
1146  case X86::MOVZX32rr8:
1147  case X86::MOVSX64rr8:
1148  case X86::MOVZX64rr8:
1149    if (!TM.getSubtarget<X86Subtarget>().is64Bit())
1150      // It's not always legal to reference the low 8-bit of the larger
1151      // register in 32-bit mode.
1152      return false;
1153  case X86::MOVSX32rr16:
1154  case X86::MOVZX32rr16:
1155  case X86::MOVSX64rr16:
1156  case X86::MOVZX64rr16:
1157  case X86::MOVSX64rr32:
1158  case X86::MOVZX64rr32: {
1159    if (MI.getOperand(0).getSubReg() || MI.getOperand(1).getSubReg())
1160      // Be conservative.
1161      return false;
1162    SrcReg = MI.getOperand(1).getReg();
1163    DstReg = MI.getOperand(0).getReg();
1164    switch (MI.getOpcode()) {
1165    default:
1166      llvm_unreachable(0);
1167    case X86::MOVSX16rr8:
1168    case X86::MOVZX16rr8:
1169    case X86::MOVSX32rr8:
1170    case X86::MOVZX32rr8:
1171    case X86::MOVSX64rr8:
1172    case X86::MOVZX64rr8:
1173      SubIdx = X86::sub_8bit;
1174      break;
1175    case X86::MOVSX32rr16:
1176    case X86::MOVZX32rr16:
1177    case X86::MOVSX64rr16:
1178    case X86::MOVZX64rr16:
1179      SubIdx = X86::sub_16bit;
1180      break;
1181    case X86::MOVSX64rr32:
1182    case X86::MOVZX64rr32:
1183      SubIdx = X86::sub_32bit;
1184      break;
1185    }
1186    return true;
1187  }
1188  }
1189  return false;
1190}
1191
1192/// isFrameOperand - Return true and the FrameIndex if the specified
1193/// operand and follow operands form a reference to the stack frame.
1194bool X86InstrInfo::isFrameOperand(const MachineInstr *MI, unsigned int Op,
1195                                  int &FrameIndex) const {
1196  if (MI->getOperand(Op).isFI() && MI->getOperand(Op+1).isImm() &&
1197      MI->getOperand(Op+2).isReg() && MI->getOperand(Op+3).isImm() &&
1198      MI->getOperand(Op+1).getImm() == 1 &&
1199      MI->getOperand(Op+2).getReg() == 0 &&
1200      MI->getOperand(Op+3).getImm() == 0) {
1201    FrameIndex = MI->getOperand(Op).getIndex();
1202    return true;
1203  }
1204  return false;
1205}
1206
1207static bool isFrameLoadOpcode(int Opcode) {
1208  switch (Opcode) {
1209  default:
1210    return false;
1211  case X86::MOV8rm:
1212  case X86::MOV16rm:
1213  case X86::MOV32rm:
1214  case X86::MOV64rm:
1215  case X86::LD_Fp64m:
1216  case X86::MOVSSrm:
1217  case X86::MOVSDrm:
1218  case X86::MOVAPSrm:
1219  case X86::MOVAPDrm:
1220  case X86::MOVDQArm:
1221  case X86::VMOVSSrm:
1222  case X86::VMOVSDrm:
1223  case X86::VMOVAPSrm:
1224  case X86::VMOVAPDrm:
1225  case X86::VMOVDQArm:
1226  case X86::VMOVAPSYrm:
1227  case X86::VMOVAPDYrm:
1228  case X86::VMOVDQAYrm:
1229  case X86::MMX_MOVD64rm:
1230  case X86::MMX_MOVQ64rm:
1231    return true;
1232  }
1233}
1234
1235static bool isFrameStoreOpcode(int Opcode) {
1236  switch (Opcode) {
1237  default: break;
1238  case X86::MOV8mr:
1239  case X86::MOV16mr:
1240  case X86::MOV32mr:
1241  case X86::MOV64mr:
1242  case X86::ST_FpP64m:
1243  case X86::MOVSSmr:
1244  case X86::MOVSDmr:
1245  case X86::MOVAPSmr:
1246  case X86::MOVAPDmr:
1247  case X86::MOVDQAmr:
1248  case X86::VMOVSSmr:
1249  case X86::VMOVSDmr:
1250  case X86::VMOVAPSmr:
1251  case X86::VMOVAPDmr:
1252  case X86::VMOVDQAmr:
1253  case X86::VMOVAPSYmr:
1254  case X86::VMOVAPDYmr:
1255  case X86::VMOVDQAYmr:
1256  case X86::MMX_MOVD64mr:
1257  case X86::MMX_MOVQ64mr:
1258  case X86::MMX_MOVNTQmr:
1259    return true;
1260  }
1261  return false;
1262}
1263
1264unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
1265                                           int &FrameIndex) const {
1266  if (isFrameLoadOpcode(MI->getOpcode()))
1267    if (MI->getOperand(0).getSubReg() == 0 && isFrameOperand(MI, 1, FrameIndex))
1268      return MI->getOperand(0).getReg();
1269  return 0;
1270}
1271
1272unsigned X86InstrInfo::isLoadFromStackSlotPostFE(const MachineInstr *MI,
1273                                                 int &FrameIndex) const {
1274  if (isFrameLoadOpcode(MI->getOpcode())) {
1275    unsigned Reg;
1276    if ((Reg = isLoadFromStackSlot(MI, FrameIndex)))
1277      return Reg;
1278    // Check for post-frame index elimination operations
1279    const MachineMemOperand *Dummy;
1280    return hasLoadFromStackSlot(MI, Dummy, FrameIndex);
1281  }
1282  return 0;
1283}
1284
1285unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr *MI,
1286                                          int &FrameIndex) const {
1287  if (isFrameStoreOpcode(MI->getOpcode()))
1288    if (MI->getOperand(X86::AddrNumOperands).getSubReg() == 0 &&
1289        isFrameOperand(MI, 0, FrameIndex))
1290      return MI->getOperand(X86::AddrNumOperands).getReg();
1291  return 0;
1292}
1293
1294unsigned X86InstrInfo::isStoreToStackSlotPostFE(const MachineInstr *MI,
1295                                                int &FrameIndex) const {
1296  if (isFrameStoreOpcode(MI->getOpcode())) {
1297    unsigned Reg;
1298    if ((Reg = isStoreToStackSlot(MI, FrameIndex)))
1299      return Reg;
1300    // Check for post-frame index elimination operations
1301    const MachineMemOperand *Dummy;
1302    return hasStoreToStackSlot(MI, Dummy, FrameIndex);
1303  }
1304  return 0;
1305}
1306
1307/// regIsPICBase - Return true if register is PIC base (i.e.g defined by
1308/// X86::MOVPC32r.
1309static bool regIsPICBase(unsigned BaseReg, const MachineRegisterInfo &MRI) {
1310  bool isPICBase = false;
1311  for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg),
1312         E = MRI.def_end(); I != E; ++I) {
1313    MachineInstr *DefMI = I.getOperand().getParent();
1314    if (DefMI->getOpcode() != X86::MOVPC32r)
1315      return false;
1316    assert(!isPICBase && "More than one PIC base?");
1317    isPICBase = true;
1318  }
1319  return isPICBase;
1320}
1321
1322bool
1323X86InstrInfo::isReallyTriviallyReMaterializable(const MachineInstr *MI,
1324                                                AliasAnalysis *AA) const {
1325  switch (MI->getOpcode()) {
1326  default: break;
1327    case X86::MOV8rm:
1328    case X86::MOV16rm:
1329    case X86::MOV32rm:
1330    case X86::MOV64rm:
1331    case X86::LD_Fp64m:
1332    case X86::MOVSSrm:
1333    case X86::MOVSDrm:
1334    case X86::MOVAPSrm:
1335    case X86::MOVUPSrm:
1336    case X86::MOVAPDrm:
1337    case X86::MOVDQArm:
1338    case X86::VMOVSSrm:
1339    case X86::VMOVSDrm:
1340    case X86::VMOVAPSrm:
1341    case X86::VMOVUPSrm:
1342    case X86::VMOVAPDrm:
1343    case X86::VMOVDQArm:
1344    case X86::VMOVAPSYrm:
1345    case X86::VMOVUPSYrm:
1346    case X86::VMOVAPDYrm:
1347    case X86::VMOVDQAYrm:
1348    case X86::MMX_MOVD64rm:
1349    case X86::MMX_MOVQ64rm:
1350    case X86::FsVMOVAPSrm:
1351    case X86::FsVMOVAPDrm:
1352    case X86::FsMOVAPSrm:
1353    case X86::FsMOVAPDrm: {
1354      // Loads from constant pools are trivially rematerializable.
1355      if (MI->getOperand(1).isReg() &&
1356          MI->getOperand(2).isImm() &&
1357          MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 &&
1358          MI->isInvariantLoad(AA)) {
1359        unsigned BaseReg = MI->getOperand(1).getReg();
1360        if (BaseReg == 0 || BaseReg == X86::RIP)
1361          return true;
1362        // Allow re-materialization of PIC load.
1363        if (!ReMatPICStubLoad && MI->getOperand(4).isGlobal())
1364          return false;
1365        const MachineFunction &MF = *MI->getParent()->getParent();
1366        const MachineRegisterInfo &MRI = MF.getRegInfo();
1367        bool isPICBase = false;
1368        for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg),
1369               E = MRI.def_end(); I != E; ++I) {
1370          MachineInstr *DefMI = I.getOperand().getParent();
1371          if (DefMI->getOpcode() != X86::MOVPC32r)
1372            return false;
1373          assert(!isPICBase && "More than one PIC base?");
1374          isPICBase = true;
1375        }
1376        return isPICBase;
1377      }
1378      return false;
1379    }
1380
1381     case X86::LEA32r:
1382     case X86::LEA64r: {
1383       if (MI->getOperand(2).isImm() &&
1384           MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 &&
1385           !MI->getOperand(4).isReg()) {
1386         // lea fi#, lea GV, etc. are all rematerializable.
1387         if (!MI->getOperand(1).isReg())
1388           return true;
1389         unsigned BaseReg = MI->getOperand(1).getReg();
1390         if (BaseReg == 0)
1391           return true;
1392         // Allow re-materialization of lea PICBase + x.
1393         const MachineFunction &MF = *MI->getParent()->getParent();
1394         const MachineRegisterInfo &MRI = MF.getRegInfo();
1395         return regIsPICBase(BaseReg, MRI);
1396       }
1397       return false;
1398     }
1399  }
1400
1401  // All other instructions marked M_REMATERIALIZABLE are always trivially
1402  // rematerializable.
1403  return true;
1404}
1405
1406/// isSafeToClobberEFLAGS - Return true if it's safe insert an instruction that
1407/// would clobber the EFLAGS condition register. Note the result may be
1408/// conservative. If it cannot definitely determine the safety after visiting
1409/// a few instructions in each direction it assumes it's not safe.
1410static bool isSafeToClobberEFLAGS(MachineBasicBlock &MBB,
1411                                  MachineBasicBlock::iterator I) {
1412  MachineBasicBlock::iterator E = MBB.end();
1413
1414  // For compile time consideration, if we are not able to determine the
1415  // safety after visiting 4 instructions in each direction, we will assume
1416  // it's not safe.
1417  MachineBasicBlock::iterator Iter = I;
1418  for (unsigned i = 0; Iter != E && i < 4; ++i) {
1419    bool SeenDef = false;
1420    for (unsigned j = 0, e = Iter->getNumOperands(); j != e; ++j) {
1421      MachineOperand &MO = Iter->getOperand(j);
1422      if (!MO.isReg())
1423        continue;
1424      if (MO.getReg() == X86::EFLAGS) {
1425        if (MO.isUse())
1426          return false;
1427        SeenDef = true;
1428      }
1429    }
1430
1431    if (SeenDef)
1432      // This instruction defines EFLAGS, no need to look any further.
1433      return true;
1434    ++Iter;
1435    // Skip over DBG_VALUE.
1436    while (Iter != E && Iter->isDebugValue())
1437      ++Iter;
1438  }
1439
1440  // It is safe to clobber EFLAGS at the end of a block of no successor has it
1441  // live in.
1442  if (Iter == E) {
1443    for (MachineBasicBlock::succ_iterator SI = MBB.succ_begin(),
1444           SE = MBB.succ_end(); SI != SE; ++SI)
1445      if ((*SI)->isLiveIn(X86::EFLAGS))
1446        return false;
1447    return true;
1448  }
1449
1450  MachineBasicBlock::iterator B = MBB.begin();
1451  Iter = I;
1452  for (unsigned i = 0; i < 4; ++i) {
1453    // If we make it to the beginning of the block, it's safe to clobber
1454    // EFLAGS iff EFLAGS is not live-in.
1455    if (Iter == B)
1456      return !MBB.isLiveIn(X86::EFLAGS);
1457
1458    --Iter;
1459    // Skip over DBG_VALUE.
1460    while (Iter != B && Iter->isDebugValue())
1461      --Iter;
1462
1463    bool SawKill = false;
1464    for (unsigned j = 0, e = Iter->getNumOperands(); j != e; ++j) {
1465      MachineOperand &MO = Iter->getOperand(j);
1466      if (MO.isReg() && MO.getReg() == X86::EFLAGS) {
1467        if (MO.isDef()) return MO.isDead();
1468        if (MO.isKill()) SawKill = true;
1469      }
1470    }
1471
1472    if (SawKill)
1473      // This instruction kills EFLAGS and doesn't redefine it, so
1474      // there's no need to look further.
1475      return true;
1476  }
1477
1478  // Conservative answer.
1479  return false;
1480}
1481
1482void X86InstrInfo::reMaterialize(MachineBasicBlock &MBB,
1483                                 MachineBasicBlock::iterator I,
1484                                 unsigned DestReg, unsigned SubIdx,
1485                                 const MachineInstr *Orig,
1486                                 const TargetRegisterInfo &TRI) const {
1487  DebugLoc DL = Orig->getDebugLoc();
1488
1489  // MOV32r0 etc. are implemented with xor which clobbers condition code.
1490  // Re-materialize them as movri instructions to avoid side effects.
1491  bool Clone = true;
1492  unsigned Opc = Orig->getOpcode();
1493  switch (Opc) {
1494  default: break;
1495  case X86::MOV8r0:
1496  case X86::MOV16r0:
1497  case X86::MOV32r0:
1498  case X86::MOV64r0: {
1499    if (!isSafeToClobberEFLAGS(MBB, I)) {
1500      switch (Opc) {
1501      default: break;
1502      case X86::MOV8r0:  Opc = X86::MOV8ri;  break;
1503      case X86::MOV16r0: Opc = X86::MOV16ri; break;
1504      case X86::MOV32r0: Opc = X86::MOV32ri; break;
1505      case X86::MOV64r0: Opc = X86::MOV64ri64i32; break;
1506      }
1507      Clone = false;
1508    }
1509    break;
1510  }
1511  }
1512
1513  if (Clone) {
1514    MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig);
1515    MBB.insert(I, MI);
1516  } else {
1517    BuildMI(MBB, I, DL, get(Opc)).addOperand(Orig->getOperand(0)).addImm(0);
1518  }
1519
1520  MachineInstr *NewMI = prior(I);
1521  NewMI->substituteRegister(Orig->getOperand(0).getReg(), DestReg, SubIdx, TRI);
1522}
1523
1524/// hasLiveCondCodeDef - True if MI has a condition code def, e.g. EFLAGS, that
1525/// is not marked dead.
1526static bool hasLiveCondCodeDef(MachineInstr *MI) {
1527  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1528    MachineOperand &MO = MI->getOperand(i);
1529    if (MO.isReg() && MO.isDef() &&
1530        MO.getReg() == X86::EFLAGS && !MO.isDead()) {
1531      return true;
1532    }
1533  }
1534  return false;
1535}
1536
1537/// convertToThreeAddressWithLEA - Helper for convertToThreeAddress when
1538/// 16-bit LEA is disabled, use 32-bit LEA to form 3-address code by promoting
1539/// to a 32-bit superregister and then truncating back down to a 16-bit
1540/// subregister.
1541MachineInstr *
1542X86InstrInfo::convertToThreeAddressWithLEA(unsigned MIOpc,
1543                                           MachineFunction::iterator &MFI,
1544                                           MachineBasicBlock::iterator &MBBI,
1545                                           LiveVariables *LV) const {
1546  MachineInstr *MI = MBBI;
1547  unsigned Dest = MI->getOperand(0).getReg();
1548  unsigned Src = MI->getOperand(1).getReg();
1549  bool isDead = MI->getOperand(0).isDead();
1550  bool isKill = MI->getOperand(1).isKill();
1551
1552  unsigned Opc = TM.getSubtarget<X86Subtarget>().is64Bit()
1553    ? X86::LEA64_32r : X86::LEA32r;
1554  MachineRegisterInfo &RegInfo = MFI->getParent()->getRegInfo();
1555  unsigned leaInReg = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
1556  unsigned leaOutReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
1557
1558  // Build and insert into an implicit UNDEF value. This is OK because
1559  // well be shifting and then extracting the lower 16-bits.
1560  // This has the potential to cause partial register stall. e.g.
1561  //   movw    (%rbp,%rcx,2), %dx
1562  //   leal    -65(%rdx), %esi
1563  // But testing has shown this *does* help performance in 64-bit mode (at
1564  // least on modern x86 machines).
1565  BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(X86::IMPLICIT_DEF), leaInReg);
1566  MachineInstr *InsMI =
1567    BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(TargetOpcode::COPY))
1568    .addReg(leaInReg, RegState::Define, X86::sub_16bit)
1569    .addReg(Src, getKillRegState(isKill));
1570
1571  MachineInstrBuilder MIB = BuildMI(*MFI, MBBI, MI->getDebugLoc(),
1572                                    get(Opc), leaOutReg);
1573  switch (MIOpc) {
1574  default:
1575    llvm_unreachable(0);
1576  case X86::SHL16ri: {
1577    unsigned ShAmt = MI->getOperand(2).getImm();
1578    MIB.addReg(0).addImm(1 << ShAmt)
1579       .addReg(leaInReg, RegState::Kill).addImm(0).addReg(0);
1580    break;
1581  }
1582  case X86::INC16r:
1583  case X86::INC64_16r:
1584    addRegOffset(MIB, leaInReg, true, 1);
1585    break;
1586  case X86::DEC16r:
1587  case X86::DEC64_16r:
1588    addRegOffset(MIB, leaInReg, true, -1);
1589    break;
1590  case X86::ADD16ri:
1591  case X86::ADD16ri8:
1592  case X86::ADD16ri_DB:
1593  case X86::ADD16ri8_DB:
1594    addRegOffset(MIB, leaInReg, true, MI->getOperand(2).getImm());
1595    break;
1596  case X86::ADD16rr:
1597  case X86::ADD16rr_DB: {
1598    unsigned Src2 = MI->getOperand(2).getReg();
1599    bool isKill2 = MI->getOperand(2).isKill();
1600    unsigned leaInReg2 = 0;
1601    MachineInstr *InsMI2 = 0;
1602    if (Src == Src2) {
1603      // ADD16rr %reg1028<kill>, %reg1028
1604      // just a single insert_subreg.
1605      addRegReg(MIB, leaInReg, true, leaInReg, false);
1606    } else {
1607      leaInReg2 = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
1608      // Build and insert into an implicit UNDEF value. This is OK because
1609      // well be shifting and then extracting the lower 16-bits.
1610      BuildMI(*MFI, &*MIB, MI->getDebugLoc(), get(X86::IMPLICIT_DEF),leaInReg2);
1611      InsMI2 =
1612        BuildMI(*MFI, &*MIB, MI->getDebugLoc(), get(TargetOpcode::COPY))
1613        .addReg(leaInReg2, RegState::Define, X86::sub_16bit)
1614        .addReg(Src2, getKillRegState(isKill2));
1615      addRegReg(MIB, leaInReg, true, leaInReg2, true);
1616    }
1617    if (LV && isKill2 && InsMI2)
1618      LV->replaceKillInstruction(Src2, MI, InsMI2);
1619    break;
1620  }
1621  }
1622
1623  MachineInstr *NewMI = MIB;
1624  MachineInstr *ExtMI =
1625    BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(TargetOpcode::COPY))
1626    .addReg(Dest, RegState::Define | getDeadRegState(isDead))
1627    .addReg(leaOutReg, RegState::Kill, X86::sub_16bit);
1628
1629  if (LV) {
1630    // Update live variables
1631    LV->getVarInfo(leaInReg).Kills.push_back(NewMI);
1632    LV->getVarInfo(leaOutReg).Kills.push_back(ExtMI);
1633    if (isKill)
1634      LV->replaceKillInstruction(Src, MI, InsMI);
1635    if (isDead)
1636      LV->replaceKillInstruction(Dest, MI, ExtMI);
1637  }
1638
1639  return ExtMI;
1640}
1641
1642/// convertToThreeAddress - This method must be implemented by targets that
1643/// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
1644/// may be able to convert a two-address instruction into a true
1645/// three-address instruction on demand.  This allows the X86 target (for
1646/// example) to convert ADD and SHL instructions into LEA instructions if they
1647/// would require register copies due to two-addressness.
1648///
1649/// This method returns a null pointer if the transformation cannot be
1650/// performed, otherwise it returns the new instruction.
1651///
1652MachineInstr *
1653X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
1654                                    MachineBasicBlock::iterator &MBBI,
1655                                    LiveVariables *LV) const {
1656  MachineInstr *MI = MBBI;
1657  MachineFunction &MF = *MI->getParent()->getParent();
1658  // All instructions input are two-addr instructions.  Get the known operands.
1659  unsigned Dest = MI->getOperand(0).getReg();
1660  unsigned Src = MI->getOperand(1).getReg();
1661  bool isDead = MI->getOperand(0).isDead();
1662  bool isKill = MI->getOperand(1).isKill();
1663
1664  MachineInstr *NewMI = NULL;
1665  // FIXME: 16-bit LEA's are really slow on Athlons, but not bad on P4's.  When
1666  // we have better subtarget support, enable the 16-bit LEA generation here.
1667  // 16-bit LEA is also slow on Core2.
1668  bool DisableLEA16 = true;
1669  bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
1670
1671  unsigned MIOpc = MI->getOpcode();
1672  switch (MIOpc) {
1673  case X86::SHUFPSrri: {
1674    assert(MI->getNumOperands() == 4 && "Unknown shufps instruction!");
1675    if (!TM.getSubtarget<X86Subtarget>().hasSSE2()) return 0;
1676
1677    unsigned B = MI->getOperand(1).getReg();
1678    unsigned C = MI->getOperand(2).getReg();
1679    if (B != C) return 0;
1680    unsigned A = MI->getOperand(0).getReg();
1681    unsigned M = MI->getOperand(3).getImm();
1682    NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::PSHUFDri))
1683      .addReg(A, RegState::Define | getDeadRegState(isDead))
1684      .addReg(B, getKillRegState(isKill)).addImm(M);
1685    break;
1686  }
1687  case X86::SHUFPDrri: {
1688    assert(MI->getNumOperands() == 4 && "Unknown shufpd instruction!");
1689    if (!TM.getSubtarget<X86Subtarget>().hasSSE2()) return 0;
1690
1691    unsigned B = MI->getOperand(1).getReg();
1692    unsigned C = MI->getOperand(2).getReg();
1693    if (B != C) return 0;
1694    unsigned A = MI->getOperand(0).getReg();
1695    unsigned M = MI->getOperand(3).getImm();
1696
1697    // Convert to PSHUFD mask.
1698    M = ((M & 1) << 1) | ((M & 1) << 3) | ((M & 2) << 4) | ((M & 2) << 6)| 0x44;
1699
1700    NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::PSHUFDri))
1701      .addReg(A, RegState::Define | getDeadRegState(isDead))
1702      .addReg(B, getKillRegState(isKill)).addImm(M);
1703    break;
1704  }
1705  case X86::SHL64ri: {
1706    assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
1707    // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1708    // the flags produced by a shift yet, so this is safe.
1709    unsigned ShAmt = MI->getOperand(2).getImm();
1710    if (ShAmt == 0 || ShAmt >= 4) return 0;
1711
1712    // LEA can't handle RSP.
1713    if (TargetRegisterInfo::isVirtualRegister(Src) &&
1714        !MF.getRegInfo().constrainRegClass(Src, &X86::GR64_NOSPRegClass))
1715      return 0;
1716
1717    NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::LEA64r))
1718      .addReg(Dest, RegState::Define | getDeadRegState(isDead))
1719      .addReg(0).addImm(1 << ShAmt)
1720      .addReg(Src, getKillRegState(isKill))
1721      .addImm(0).addReg(0);
1722    break;
1723  }
1724  case X86::SHL32ri: {
1725    assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
1726    // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1727    // the flags produced by a shift yet, so this is safe.
1728    unsigned ShAmt = MI->getOperand(2).getImm();
1729    if (ShAmt == 0 || ShAmt >= 4) return 0;
1730
1731    // LEA can't handle ESP.
1732    if (TargetRegisterInfo::isVirtualRegister(Src) &&
1733        !MF.getRegInfo().constrainRegClass(Src, &X86::GR32_NOSPRegClass))
1734      return 0;
1735
1736    unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
1737    NewMI = BuildMI(MF, MI->getDebugLoc(), get(Opc))
1738      .addReg(Dest, RegState::Define | getDeadRegState(isDead))
1739      .addReg(0).addImm(1 << ShAmt)
1740      .addReg(Src, getKillRegState(isKill)).addImm(0).addReg(0);
1741    break;
1742  }
1743  case X86::SHL16ri: {
1744    assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
1745    // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1746    // the flags produced by a shift yet, so this is safe.
1747    unsigned ShAmt = MI->getOperand(2).getImm();
1748    if (ShAmt == 0 || ShAmt >= 4) return 0;
1749
1750    if (DisableLEA16)
1751      return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
1752    NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
1753      .addReg(Dest, RegState::Define | getDeadRegState(isDead))
1754      .addReg(0).addImm(1 << ShAmt)
1755      .addReg(Src, getKillRegState(isKill))
1756      .addImm(0).addReg(0);
1757    break;
1758  }
1759  default: {
1760    // The following opcodes also sets the condition code register(s). Only
1761    // convert them to equivalent lea if the condition code register def's
1762    // are dead!
1763    if (hasLiveCondCodeDef(MI))
1764      return 0;
1765
1766    switch (MIOpc) {
1767    default: return 0;
1768    case X86::INC64r:
1769    case X86::INC32r:
1770    case X86::INC64_32r: {
1771      assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
1772      unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r
1773        : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
1774
1775      // LEA can't handle RSP.
1776      if (TargetRegisterInfo::isVirtualRegister(Src) &&
1777          !MF.getRegInfo().constrainRegClass(Src,
1778                            MIOpc == X86::INC64r ? X86::GR64_NOSPRegisterClass :
1779                                                   X86::GR32_NOSPRegisterClass))
1780        return 0;
1781
1782      NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc))
1783                              .addReg(Dest, RegState::Define |
1784                                      getDeadRegState(isDead)),
1785                              Src, isKill, 1);
1786      break;
1787    }
1788    case X86::INC16r:
1789    case X86::INC64_16r:
1790      if (DisableLEA16)
1791        return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
1792      assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
1793      NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
1794                           .addReg(Dest, RegState::Define |
1795                                   getDeadRegState(isDead)),
1796                           Src, isKill, 1);
1797      break;
1798    case X86::DEC64r:
1799    case X86::DEC32r:
1800    case X86::DEC64_32r: {
1801      assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
1802      unsigned Opc = MIOpc == X86::DEC64r ? X86::LEA64r
1803        : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
1804      // LEA can't handle RSP.
1805      if (TargetRegisterInfo::isVirtualRegister(Src) &&
1806          !MF.getRegInfo().constrainRegClass(Src,
1807                            MIOpc == X86::DEC64r ? X86::GR64_NOSPRegisterClass :
1808                                                   X86::GR32_NOSPRegisterClass))
1809        return 0;
1810
1811      NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc))
1812                              .addReg(Dest, RegState::Define |
1813                                      getDeadRegState(isDead)),
1814                              Src, isKill, -1);
1815      break;
1816    }
1817    case X86::DEC16r:
1818    case X86::DEC64_16r:
1819      if (DisableLEA16)
1820        return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
1821      assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
1822      NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
1823                           .addReg(Dest, RegState::Define |
1824                                   getDeadRegState(isDead)),
1825                           Src, isKill, -1);
1826      break;
1827    case X86::ADD64rr:
1828    case X86::ADD64rr_DB:
1829    case X86::ADD32rr:
1830    case X86::ADD32rr_DB: {
1831      assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1832      unsigned Opc;
1833      TargetRegisterClass *RC;
1834      if (MIOpc == X86::ADD64rr || MIOpc == X86::ADD64rr_DB) {
1835        Opc = X86::LEA64r;
1836        RC = X86::GR64_NOSPRegisterClass;
1837      } else {
1838        Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
1839        RC = X86::GR32_NOSPRegisterClass;
1840      }
1841
1842
1843      unsigned Src2 = MI->getOperand(2).getReg();
1844      bool isKill2 = MI->getOperand(2).isKill();
1845
1846      // LEA can't handle RSP.
1847      if (TargetRegisterInfo::isVirtualRegister(Src2) &&
1848          !MF.getRegInfo().constrainRegClass(Src2, RC))
1849        return 0;
1850
1851      NewMI = addRegReg(BuildMI(MF, MI->getDebugLoc(), get(Opc))
1852                        .addReg(Dest, RegState::Define |
1853                                getDeadRegState(isDead)),
1854                        Src, isKill, Src2, isKill2);
1855      if (LV && isKill2)
1856        LV->replaceKillInstruction(Src2, MI, NewMI);
1857      break;
1858    }
1859    case X86::ADD16rr:
1860    case X86::ADD16rr_DB: {
1861      if (DisableLEA16)
1862        return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
1863      assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1864      unsigned Src2 = MI->getOperand(2).getReg();
1865      bool isKill2 = MI->getOperand(2).isKill();
1866      NewMI = addRegReg(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
1867                        .addReg(Dest, RegState::Define |
1868                                getDeadRegState(isDead)),
1869                        Src, isKill, Src2, isKill2);
1870      if (LV && isKill2)
1871        LV->replaceKillInstruction(Src2, MI, NewMI);
1872      break;
1873    }
1874    case X86::ADD64ri32:
1875    case X86::ADD64ri8:
1876    case X86::ADD64ri32_DB:
1877    case X86::ADD64ri8_DB:
1878      assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1879      NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA64r))
1880                              .addReg(Dest, RegState::Define |
1881                                      getDeadRegState(isDead)),
1882                              Src, isKill, MI->getOperand(2).getImm());
1883      break;
1884    case X86::ADD32ri:
1885    case X86::ADD32ri8:
1886    case X86::ADD32ri_DB:
1887    case X86::ADD32ri8_DB: {
1888      assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1889      unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
1890      NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc))
1891                              .addReg(Dest, RegState::Define |
1892                                      getDeadRegState(isDead)),
1893                                Src, isKill, MI->getOperand(2).getImm());
1894      break;
1895    }
1896    case X86::ADD16ri:
1897    case X86::ADD16ri8:
1898    case X86::ADD16ri_DB:
1899    case X86::ADD16ri8_DB:
1900      if (DisableLEA16)
1901        return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
1902      assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1903      NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
1904                              .addReg(Dest, RegState::Define |
1905                                      getDeadRegState(isDead)),
1906                              Src, isKill, MI->getOperand(2).getImm());
1907      break;
1908    }
1909  }
1910  }
1911
1912  if (!NewMI) return 0;
1913
1914  if (LV) {  // Update live variables
1915    if (isKill)
1916      LV->replaceKillInstruction(Src, MI, NewMI);
1917    if (isDead)
1918      LV->replaceKillInstruction(Dest, MI, NewMI);
1919  }
1920
1921  MFI->insert(MBBI, NewMI);          // Insert the new inst
1922  return NewMI;
1923}
1924
1925/// commuteInstruction - We have a few instructions that must be hacked on to
1926/// commute them.
1927///
1928MachineInstr *
1929X86InstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const {
1930  switch (MI->getOpcode()) {
1931  case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I)
1932  case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I)
1933  case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I)
1934  case X86::SHLD32rri8: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I)
1935  case X86::SHRD64rri8: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I)
1936  case X86::SHLD64rri8:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I)
1937    unsigned Opc;
1938    unsigned Size;
1939    switch (MI->getOpcode()) {
1940    default: llvm_unreachable("Unreachable!");
1941    case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break;
1942    case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break;
1943    case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break;
1944    case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break;
1945    case X86::SHRD64rri8: Size = 64; Opc = X86::SHLD64rri8; break;
1946    case X86::SHLD64rri8: Size = 64; Opc = X86::SHRD64rri8; break;
1947    }
1948    unsigned Amt = MI->getOperand(3).getImm();
1949    if (NewMI) {
1950      MachineFunction &MF = *MI->getParent()->getParent();
1951      MI = MF.CloneMachineInstr(MI);
1952      NewMI = false;
1953    }
1954    MI->setDesc(get(Opc));
1955    MI->getOperand(3).setImm(Size-Amt);
1956    return TargetInstrInfoImpl::commuteInstruction(MI, NewMI);
1957  }
1958  case X86::CMOVB16rr:
1959  case X86::CMOVB32rr:
1960  case X86::CMOVB64rr:
1961  case X86::CMOVAE16rr:
1962  case X86::CMOVAE32rr:
1963  case X86::CMOVAE64rr:
1964  case X86::CMOVE16rr:
1965  case X86::CMOVE32rr:
1966  case X86::CMOVE64rr:
1967  case X86::CMOVNE16rr:
1968  case X86::CMOVNE32rr:
1969  case X86::CMOVNE64rr:
1970  case X86::CMOVBE16rr:
1971  case X86::CMOVBE32rr:
1972  case X86::CMOVBE64rr:
1973  case X86::CMOVA16rr:
1974  case X86::CMOVA32rr:
1975  case X86::CMOVA64rr:
1976  case X86::CMOVL16rr:
1977  case X86::CMOVL32rr:
1978  case X86::CMOVL64rr:
1979  case X86::CMOVGE16rr:
1980  case X86::CMOVGE32rr:
1981  case X86::CMOVGE64rr:
1982  case X86::CMOVLE16rr:
1983  case X86::CMOVLE32rr:
1984  case X86::CMOVLE64rr:
1985  case X86::CMOVG16rr:
1986  case X86::CMOVG32rr:
1987  case X86::CMOVG64rr:
1988  case X86::CMOVS16rr:
1989  case X86::CMOVS32rr:
1990  case X86::CMOVS64rr:
1991  case X86::CMOVNS16rr:
1992  case X86::CMOVNS32rr:
1993  case X86::CMOVNS64rr:
1994  case X86::CMOVP16rr:
1995  case X86::CMOVP32rr:
1996  case X86::CMOVP64rr:
1997  case X86::CMOVNP16rr:
1998  case X86::CMOVNP32rr:
1999  case X86::CMOVNP64rr:
2000  case X86::CMOVO16rr:
2001  case X86::CMOVO32rr:
2002  case X86::CMOVO64rr:
2003  case X86::CMOVNO16rr:
2004  case X86::CMOVNO32rr:
2005  case X86::CMOVNO64rr: {
2006    unsigned Opc = 0;
2007    switch (MI->getOpcode()) {
2008    default: break;
2009    case X86::CMOVB16rr:  Opc = X86::CMOVAE16rr; break;
2010    case X86::CMOVB32rr:  Opc = X86::CMOVAE32rr; break;
2011    case X86::CMOVB64rr:  Opc = X86::CMOVAE64rr; break;
2012    case X86::CMOVAE16rr: Opc = X86::CMOVB16rr; break;
2013    case X86::CMOVAE32rr: Opc = X86::CMOVB32rr; break;
2014    case X86::CMOVAE64rr: Opc = X86::CMOVB64rr; break;
2015    case X86::CMOVE16rr:  Opc = X86::CMOVNE16rr; break;
2016    case X86::CMOVE32rr:  Opc = X86::CMOVNE32rr; break;
2017    case X86::CMOVE64rr:  Opc = X86::CMOVNE64rr; break;
2018    case X86::CMOVNE16rr: Opc = X86::CMOVE16rr; break;
2019    case X86::CMOVNE32rr: Opc = X86::CMOVE32rr; break;
2020    case X86::CMOVNE64rr: Opc = X86::CMOVE64rr; break;
2021    case X86::CMOVBE16rr: Opc = X86::CMOVA16rr; break;
2022    case X86::CMOVBE32rr: Opc = X86::CMOVA32rr; break;
2023    case X86::CMOVBE64rr: Opc = X86::CMOVA64rr; break;
2024    case X86::CMOVA16rr:  Opc = X86::CMOVBE16rr; break;
2025    case X86::CMOVA32rr:  Opc = X86::CMOVBE32rr; break;
2026    case X86::CMOVA64rr:  Opc = X86::CMOVBE64rr; break;
2027    case X86::CMOVL16rr:  Opc = X86::CMOVGE16rr; break;
2028    case X86::CMOVL32rr:  Opc = X86::CMOVGE32rr; break;
2029    case X86::CMOVL64rr:  Opc = X86::CMOVGE64rr; break;
2030    case X86::CMOVGE16rr: Opc = X86::CMOVL16rr; break;
2031    case X86::CMOVGE32rr: Opc = X86::CMOVL32rr; break;
2032    case X86::CMOVGE64rr: Opc = X86::CMOVL64rr; break;
2033    case X86::CMOVLE16rr: Opc = X86::CMOVG16rr; break;
2034    case X86::CMOVLE32rr: Opc = X86::CMOVG32rr; break;
2035    case X86::CMOVLE64rr: Opc = X86::CMOVG64rr; break;
2036    case X86::CMOVG16rr:  Opc = X86::CMOVLE16rr; break;
2037    case X86::CMOVG32rr:  Opc = X86::CMOVLE32rr; break;
2038    case X86::CMOVG64rr:  Opc = X86::CMOVLE64rr; break;
2039    case X86::CMOVS16rr:  Opc = X86::CMOVNS16rr; break;
2040    case X86::CMOVS32rr:  Opc = X86::CMOVNS32rr; break;
2041    case X86::CMOVS64rr:  Opc = X86::CMOVNS64rr; break;
2042    case X86::CMOVNS16rr: Opc = X86::CMOVS16rr; break;
2043    case X86::CMOVNS32rr: Opc = X86::CMOVS32rr; break;
2044    case X86::CMOVNS64rr: Opc = X86::CMOVS64rr; break;
2045    case X86::CMOVP16rr:  Opc = X86::CMOVNP16rr; break;
2046    case X86::CMOVP32rr:  Opc = X86::CMOVNP32rr; break;
2047    case X86::CMOVP64rr:  Opc = X86::CMOVNP64rr; break;
2048    case X86::CMOVNP16rr: Opc = X86::CMOVP16rr; break;
2049    case X86::CMOVNP32rr: Opc = X86::CMOVP32rr; break;
2050    case X86::CMOVNP64rr: Opc = X86::CMOVP64rr; break;
2051    case X86::CMOVO16rr:  Opc = X86::CMOVNO16rr; break;
2052    case X86::CMOVO32rr:  Opc = X86::CMOVNO32rr; break;
2053    case X86::CMOVO64rr:  Opc = X86::CMOVNO64rr; break;
2054    case X86::CMOVNO16rr: Opc = X86::CMOVO16rr; break;
2055    case X86::CMOVNO32rr: Opc = X86::CMOVO32rr; break;
2056    case X86::CMOVNO64rr: Opc = X86::CMOVO64rr; break;
2057    }
2058    if (NewMI) {
2059      MachineFunction &MF = *MI->getParent()->getParent();
2060      MI = MF.CloneMachineInstr(MI);
2061      NewMI = false;
2062    }
2063    MI->setDesc(get(Opc));
2064    // Fallthrough intended.
2065  }
2066  default:
2067    return TargetInstrInfoImpl::commuteInstruction(MI, NewMI);
2068  }
2069}
2070
2071static X86::CondCode GetCondFromBranchOpc(unsigned BrOpc) {
2072  switch (BrOpc) {
2073  default: return X86::COND_INVALID;
2074  case X86::JE_4:  return X86::COND_E;
2075  case X86::JNE_4: return X86::COND_NE;
2076  case X86::JL_4:  return X86::COND_L;
2077  case X86::JLE_4: return X86::COND_LE;
2078  case X86::JG_4:  return X86::COND_G;
2079  case X86::JGE_4: return X86::COND_GE;
2080  case X86::JB_4:  return X86::COND_B;
2081  case X86::JBE_4: return X86::COND_BE;
2082  case X86::JA_4:  return X86::COND_A;
2083  case X86::JAE_4: return X86::COND_AE;
2084  case X86::JS_4:  return X86::COND_S;
2085  case X86::JNS_4: return X86::COND_NS;
2086  case X86::JP_4:  return X86::COND_P;
2087  case X86::JNP_4: return X86::COND_NP;
2088  case X86::JO_4:  return X86::COND_O;
2089  case X86::JNO_4: return X86::COND_NO;
2090  }
2091}
2092
2093unsigned X86::GetCondBranchFromCond(X86::CondCode CC) {
2094  switch (CC) {
2095  default: llvm_unreachable("Illegal condition code!");
2096  case X86::COND_E:  return X86::JE_4;
2097  case X86::COND_NE: return X86::JNE_4;
2098  case X86::COND_L:  return X86::JL_4;
2099  case X86::COND_LE: return X86::JLE_4;
2100  case X86::COND_G:  return X86::JG_4;
2101  case X86::COND_GE: return X86::JGE_4;
2102  case X86::COND_B:  return X86::JB_4;
2103  case X86::COND_BE: return X86::JBE_4;
2104  case X86::COND_A:  return X86::JA_4;
2105  case X86::COND_AE: return X86::JAE_4;
2106  case X86::COND_S:  return X86::JS_4;
2107  case X86::COND_NS: return X86::JNS_4;
2108  case X86::COND_P:  return X86::JP_4;
2109  case X86::COND_NP: return X86::JNP_4;
2110  case X86::COND_O:  return X86::JO_4;
2111  case X86::COND_NO: return X86::JNO_4;
2112  }
2113}
2114
2115/// GetOppositeBranchCondition - Return the inverse of the specified condition,
2116/// e.g. turning COND_E to COND_NE.
2117X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) {
2118  switch (CC) {
2119  default: llvm_unreachable("Illegal condition code!");
2120  case X86::COND_E:  return X86::COND_NE;
2121  case X86::COND_NE: return X86::COND_E;
2122  case X86::COND_L:  return X86::COND_GE;
2123  case X86::COND_LE: return X86::COND_G;
2124  case X86::COND_G:  return X86::COND_LE;
2125  case X86::COND_GE: return X86::COND_L;
2126  case X86::COND_B:  return X86::COND_AE;
2127  case X86::COND_BE: return X86::COND_A;
2128  case X86::COND_A:  return X86::COND_BE;
2129  case X86::COND_AE: return X86::COND_B;
2130  case X86::COND_S:  return X86::COND_NS;
2131  case X86::COND_NS: return X86::COND_S;
2132  case X86::COND_P:  return X86::COND_NP;
2133  case X86::COND_NP: return X86::COND_P;
2134  case X86::COND_O:  return X86::COND_NO;
2135  case X86::COND_NO: return X86::COND_O;
2136  }
2137}
2138
2139bool X86InstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const {
2140  if (!MI->isTerminator()) return false;
2141
2142  // Conditional branch is a special case.
2143  if (MI->isBranch() && !MI->isBarrier())
2144    return true;
2145  if (!MI->isPredicable())
2146    return true;
2147  return !isPredicated(MI);
2148}
2149
2150bool X86InstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
2151                                 MachineBasicBlock *&TBB,
2152                                 MachineBasicBlock *&FBB,
2153                                 SmallVectorImpl<MachineOperand> &Cond,
2154                                 bool AllowModify) const {
2155  // Start from the bottom of the block and work up, examining the
2156  // terminator instructions.
2157  MachineBasicBlock::iterator I = MBB.end();
2158  MachineBasicBlock::iterator UnCondBrIter = MBB.end();
2159  while (I != MBB.begin()) {
2160    --I;
2161    if (I->isDebugValue())
2162      continue;
2163
2164    // Working from the bottom, when we see a non-terminator instruction, we're
2165    // done.
2166    if (!isUnpredicatedTerminator(I))
2167      break;
2168
2169    // A terminator that isn't a branch can't easily be handled by this
2170    // analysis.
2171    if (!I->isBranch())
2172      return true;
2173
2174    // Handle unconditional branches.
2175    if (I->getOpcode() == X86::JMP_4) {
2176      UnCondBrIter = I;
2177
2178      if (!AllowModify) {
2179        TBB = I->getOperand(0).getMBB();
2180        continue;
2181      }
2182
2183      // If the block has any instructions after a JMP, delete them.
2184      while (llvm::next(I) != MBB.end())
2185        llvm::next(I)->eraseFromParent();
2186
2187      Cond.clear();
2188      FBB = 0;
2189
2190      // Delete the JMP if it's equivalent to a fall-through.
2191      if (MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
2192        TBB = 0;
2193        I->eraseFromParent();
2194        I = MBB.end();
2195        UnCondBrIter = MBB.end();
2196        continue;
2197      }
2198
2199      // TBB is used to indicate the unconditional destination.
2200      TBB = I->getOperand(0).getMBB();
2201      continue;
2202    }
2203
2204    // Handle conditional branches.
2205    X86::CondCode BranchCode = GetCondFromBranchOpc(I->getOpcode());
2206    if (BranchCode == X86::COND_INVALID)
2207      return true;  // Can't handle indirect branch.
2208
2209    // Working from the bottom, handle the first conditional branch.
2210    if (Cond.empty()) {
2211      MachineBasicBlock *TargetBB = I->getOperand(0).getMBB();
2212      if (AllowModify && UnCondBrIter != MBB.end() &&
2213          MBB.isLayoutSuccessor(TargetBB)) {
2214        // If we can modify the code and it ends in something like:
2215        //
2216        //     jCC L1
2217        //     jmp L2
2218        //   L1:
2219        //     ...
2220        //   L2:
2221        //
2222        // Then we can change this to:
2223        //
2224        //     jnCC L2
2225        //   L1:
2226        //     ...
2227        //   L2:
2228        //
2229        // Which is a bit more efficient.
2230        // We conditionally jump to the fall-through block.
2231        BranchCode = GetOppositeBranchCondition(BranchCode);
2232        unsigned JNCC = GetCondBranchFromCond(BranchCode);
2233        MachineBasicBlock::iterator OldInst = I;
2234
2235        BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(JNCC))
2236          .addMBB(UnCondBrIter->getOperand(0).getMBB());
2237        BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(X86::JMP_4))
2238          .addMBB(TargetBB);
2239
2240        OldInst->eraseFromParent();
2241        UnCondBrIter->eraseFromParent();
2242
2243        // Restart the analysis.
2244        UnCondBrIter = MBB.end();
2245        I = MBB.end();
2246        continue;
2247      }
2248
2249      FBB = TBB;
2250      TBB = I->getOperand(0).getMBB();
2251      Cond.push_back(MachineOperand::CreateImm(BranchCode));
2252      continue;
2253    }
2254
2255    // Handle subsequent conditional branches. Only handle the case where all
2256    // conditional branches branch to the same destination and their condition
2257    // opcodes fit one of the special multi-branch idioms.
2258    assert(Cond.size() == 1);
2259    assert(TBB);
2260
2261    // Only handle the case where all conditional branches branch to the same
2262    // destination.
2263    if (TBB != I->getOperand(0).getMBB())
2264      return true;
2265
2266    // If the conditions are the same, we can leave them alone.
2267    X86::CondCode OldBranchCode = (X86::CondCode)Cond[0].getImm();
2268    if (OldBranchCode == BranchCode)
2269      continue;
2270
2271    // If they differ, see if they fit one of the known patterns. Theoretically,
2272    // we could handle more patterns here, but we shouldn't expect to see them
2273    // if instruction selection has done a reasonable job.
2274    if ((OldBranchCode == X86::COND_NP &&
2275         BranchCode == X86::COND_E) ||
2276        (OldBranchCode == X86::COND_E &&
2277         BranchCode == X86::COND_NP))
2278      BranchCode = X86::COND_NP_OR_E;
2279    else if ((OldBranchCode == X86::COND_P &&
2280              BranchCode == X86::COND_NE) ||
2281             (OldBranchCode == X86::COND_NE &&
2282              BranchCode == X86::COND_P))
2283      BranchCode = X86::COND_NE_OR_P;
2284    else
2285      return true;
2286
2287    // Update the MachineOperand.
2288    Cond[0].setImm(BranchCode);
2289  }
2290
2291  return false;
2292}
2293
2294unsigned X86InstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
2295  MachineBasicBlock::iterator I = MBB.end();
2296  unsigned Count = 0;
2297
2298  while (I != MBB.begin()) {
2299    --I;
2300    if (I->isDebugValue())
2301      continue;
2302    if (I->getOpcode() != X86::JMP_4 &&
2303        GetCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID)
2304      break;
2305    // Remove the branch.
2306    I->eraseFromParent();
2307    I = MBB.end();
2308    ++Count;
2309  }
2310
2311  return Count;
2312}
2313
2314unsigned
2315X86InstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
2316                           MachineBasicBlock *FBB,
2317                           const SmallVectorImpl<MachineOperand> &Cond,
2318                           DebugLoc DL) const {
2319  // Shouldn't be a fall through.
2320  assert(TBB && "InsertBranch must not be told to insert a fallthrough");
2321  assert((Cond.size() == 1 || Cond.size() == 0) &&
2322         "X86 branch conditions have one component!");
2323
2324  if (Cond.empty()) {
2325    // Unconditional branch?
2326    assert(!FBB && "Unconditional branch with multiple successors!");
2327    BuildMI(&MBB, DL, get(X86::JMP_4)).addMBB(TBB);
2328    return 1;
2329  }
2330
2331  // Conditional branch.
2332  unsigned Count = 0;
2333  X86::CondCode CC = (X86::CondCode)Cond[0].getImm();
2334  switch (CC) {
2335  case X86::COND_NP_OR_E:
2336    // Synthesize NP_OR_E with two branches.
2337    BuildMI(&MBB, DL, get(X86::JNP_4)).addMBB(TBB);
2338    ++Count;
2339    BuildMI(&MBB, DL, get(X86::JE_4)).addMBB(TBB);
2340    ++Count;
2341    break;
2342  case X86::COND_NE_OR_P:
2343    // Synthesize NE_OR_P with two branches.
2344    BuildMI(&MBB, DL, get(X86::JNE_4)).addMBB(TBB);
2345    ++Count;
2346    BuildMI(&MBB, DL, get(X86::JP_4)).addMBB(TBB);
2347    ++Count;
2348    break;
2349  default: {
2350    unsigned Opc = GetCondBranchFromCond(CC);
2351    BuildMI(&MBB, DL, get(Opc)).addMBB(TBB);
2352    ++Count;
2353  }
2354  }
2355  if (FBB) {
2356    // Two-way Conditional branch. Insert the second branch.
2357    BuildMI(&MBB, DL, get(X86::JMP_4)).addMBB(FBB);
2358    ++Count;
2359  }
2360  return Count;
2361}
2362
2363/// isHReg - Test if the given register is a physical h register.
2364static bool isHReg(unsigned Reg) {
2365  return X86::GR8_ABCD_HRegClass.contains(Reg);
2366}
2367
2368// Try and copy between VR128/VR64 and GR64 registers.
2369static unsigned CopyToFromAsymmetricReg(unsigned DestReg, unsigned SrcReg,
2370                                        bool HasAVX) {
2371  // SrcReg(VR128) -> DestReg(GR64)
2372  // SrcReg(VR64)  -> DestReg(GR64)
2373  // SrcReg(GR64)  -> DestReg(VR128)
2374  // SrcReg(GR64)  -> DestReg(VR64)
2375
2376  if (X86::GR64RegClass.contains(DestReg)) {
2377    if (X86::VR128RegClass.contains(SrcReg)) {
2378      // Copy from a VR128 register to a GR64 register.
2379      return HasAVX ? X86::VMOVPQIto64rr : X86::MOVPQIto64rr;
2380    } else if (X86::VR64RegClass.contains(SrcReg)) {
2381      // Copy from a VR64 register to a GR64 register.
2382      return X86::MOVSDto64rr;
2383    }
2384  } else if (X86::GR64RegClass.contains(SrcReg)) {
2385    // Copy from a GR64 register to a VR128 register.
2386    if (X86::VR128RegClass.contains(DestReg))
2387      return HasAVX ? X86::VMOV64toPQIrr : X86::MOV64toPQIrr;
2388    // Copy from a GR64 register to a VR64 register.
2389    else if (X86::VR64RegClass.contains(DestReg))
2390      return X86::MOV64toSDrr;
2391  }
2392
2393  // SrcReg(FR32) -> DestReg(GR32)
2394  // SrcReg(GR32) -> DestReg(FR32)
2395
2396  if (X86::GR32RegClass.contains(DestReg) && X86::FR32RegClass.contains(SrcReg))
2397      // Copy from a FR32 register to a GR32 register.
2398      return HasAVX ? X86::VMOVSS2DIrr : X86::MOVSS2DIrr;
2399
2400  if (X86::FR32RegClass.contains(DestReg) && X86::GR32RegClass.contains(SrcReg))
2401      // Copy from a GR32 register to a FR32 register.
2402      return HasAVX ? X86::VMOVDI2SSrr : X86::MOVDI2SSrr;
2403
2404  return 0;
2405}
2406
2407void X86InstrInfo::copyPhysReg(MachineBasicBlock &MBB,
2408                               MachineBasicBlock::iterator MI, DebugLoc DL,
2409                               unsigned DestReg, unsigned SrcReg,
2410                               bool KillSrc) const {
2411  // First deal with the normal symmetric copies.
2412  bool HasAVX = TM.getSubtarget<X86Subtarget>().hasAVX();
2413  unsigned Opc = 0;
2414  if (X86::GR64RegClass.contains(DestReg, SrcReg))
2415    Opc = X86::MOV64rr;
2416  else if (X86::GR32RegClass.contains(DestReg, SrcReg))
2417    Opc = X86::MOV32rr;
2418  else if (X86::GR16RegClass.contains(DestReg, SrcReg))
2419    Opc = X86::MOV16rr;
2420  else if (X86::GR8RegClass.contains(DestReg, SrcReg)) {
2421    // Copying to or from a physical H register on x86-64 requires a NOREX
2422    // move.  Otherwise use a normal move.
2423    if ((isHReg(DestReg) || isHReg(SrcReg)) &&
2424        TM.getSubtarget<X86Subtarget>().is64Bit()) {
2425      Opc = X86::MOV8rr_NOREX;
2426      // Both operands must be encodable without an REX prefix.
2427      assert(X86::GR8_NOREXRegClass.contains(SrcReg, DestReg) &&
2428             "8-bit H register can not be copied outside GR8_NOREX");
2429    } else
2430      Opc = X86::MOV8rr;
2431  } else if (X86::VR128RegClass.contains(DestReg, SrcReg))
2432    Opc = HasAVX ? X86::VMOVAPSrr : X86::MOVAPSrr;
2433  else if (X86::VR256RegClass.contains(DestReg, SrcReg))
2434    Opc = X86::VMOVAPSYrr;
2435  else if (X86::VR64RegClass.contains(DestReg, SrcReg))
2436    Opc = X86::MMX_MOVQ64rr;
2437  else
2438    Opc = CopyToFromAsymmetricReg(DestReg, SrcReg, HasAVX);
2439
2440  if (Opc) {
2441    BuildMI(MBB, MI, DL, get(Opc), DestReg)
2442      .addReg(SrcReg, getKillRegState(KillSrc));
2443    return;
2444  }
2445
2446  // Moving EFLAGS to / from another register requires a push and a pop.
2447  if (SrcReg == X86::EFLAGS) {
2448    if (X86::GR64RegClass.contains(DestReg)) {
2449      BuildMI(MBB, MI, DL, get(X86::PUSHF64));
2450      BuildMI(MBB, MI, DL, get(X86::POP64r), DestReg);
2451      return;
2452    } else if (X86::GR32RegClass.contains(DestReg)) {
2453      BuildMI(MBB, MI, DL, get(X86::PUSHF32));
2454      BuildMI(MBB, MI, DL, get(X86::POP32r), DestReg);
2455      return;
2456    }
2457  }
2458  if (DestReg == X86::EFLAGS) {
2459    if (X86::GR64RegClass.contains(SrcReg)) {
2460      BuildMI(MBB, MI, DL, get(X86::PUSH64r))
2461        .addReg(SrcReg, getKillRegState(KillSrc));
2462      BuildMI(MBB, MI, DL, get(X86::POPF64));
2463      return;
2464    } else if (X86::GR32RegClass.contains(SrcReg)) {
2465      BuildMI(MBB, MI, DL, get(X86::PUSH32r))
2466        .addReg(SrcReg, getKillRegState(KillSrc));
2467      BuildMI(MBB, MI, DL, get(X86::POPF32));
2468      return;
2469    }
2470  }
2471
2472  DEBUG(dbgs() << "Cannot copy " << RI.getName(SrcReg)
2473               << " to " << RI.getName(DestReg) << '\n');
2474  llvm_unreachable("Cannot emit physreg copy instruction");
2475}
2476
2477static unsigned getLoadStoreRegOpcode(unsigned Reg,
2478                                      const TargetRegisterClass *RC,
2479                                      bool isStackAligned,
2480                                      const TargetMachine &TM,
2481                                      bool load) {
2482  bool HasAVX = TM.getSubtarget<X86Subtarget>().hasAVX();
2483  switch (RC->getSize()) {
2484  default:
2485    llvm_unreachable("Unknown spill size");
2486  case 1:
2487    assert(X86::GR8RegClass.hasSubClassEq(RC) && "Unknown 1-byte regclass");
2488    if (TM.getSubtarget<X86Subtarget>().is64Bit())
2489      // Copying to or from a physical H register on x86-64 requires a NOREX
2490      // move.  Otherwise use a normal move.
2491      if (isHReg(Reg) || X86::GR8_ABCD_HRegClass.hasSubClassEq(RC))
2492        return load ? X86::MOV8rm_NOREX : X86::MOV8mr_NOREX;
2493    return load ? X86::MOV8rm : X86::MOV8mr;
2494  case 2:
2495    assert(X86::GR16RegClass.hasSubClassEq(RC) && "Unknown 2-byte regclass");
2496    return load ? X86::MOV16rm : X86::MOV16mr;
2497  case 4:
2498    if (X86::GR32RegClass.hasSubClassEq(RC))
2499      return load ? X86::MOV32rm : X86::MOV32mr;
2500    if (X86::FR32RegClass.hasSubClassEq(RC))
2501      return load ?
2502        (HasAVX ? X86::VMOVSSrm : X86::MOVSSrm) :
2503        (HasAVX ? X86::VMOVSSmr : X86::MOVSSmr);
2504    if (X86::RFP32RegClass.hasSubClassEq(RC))
2505      return load ? X86::LD_Fp32m : X86::ST_Fp32m;
2506    llvm_unreachable("Unknown 4-byte regclass");
2507  case 8:
2508    if (X86::GR64RegClass.hasSubClassEq(RC))
2509      return load ? X86::MOV64rm : X86::MOV64mr;
2510    if (X86::FR64RegClass.hasSubClassEq(RC))
2511      return load ?
2512        (HasAVX ? X86::VMOVSDrm : X86::MOVSDrm) :
2513        (HasAVX ? X86::VMOVSDmr : X86::MOVSDmr);
2514    if (X86::VR64RegClass.hasSubClassEq(RC))
2515      return load ? X86::MMX_MOVQ64rm : X86::MMX_MOVQ64mr;
2516    if (X86::RFP64RegClass.hasSubClassEq(RC))
2517      return load ? X86::LD_Fp64m : X86::ST_Fp64m;
2518    llvm_unreachable("Unknown 8-byte regclass");
2519  case 10:
2520    assert(X86::RFP80RegClass.hasSubClassEq(RC) && "Unknown 10-byte regclass");
2521    return load ? X86::LD_Fp80m : X86::ST_FpP80m;
2522  case 16: {
2523    assert(X86::VR128RegClass.hasSubClassEq(RC) && "Unknown 16-byte regclass");
2524    // If stack is realigned we can use aligned stores.
2525    if (isStackAligned)
2526      return load ?
2527        (HasAVX ? X86::VMOVAPSrm : X86::MOVAPSrm) :
2528        (HasAVX ? X86::VMOVAPSmr : X86::MOVAPSmr);
2529    else
2530      return load ?
2531        (HasAVX ? X86::VMOVUPSrm : X86::MOVUPSrm) :
2532        (HasAVX ? X86::VMOVUPSmr : X86::MOVUPSmr);
2533  }
2534  case 32:
2535    assert(X86::VR256RegClass.hasSubClassEq(RC) && "Unknown 32-byte regclass");
2536    // If stack is realigned we can use aligned stores.
2537    if (isStackAligned)
2538      return load ? X86::VMOVAPSYrm : X86::VMOVAPSYmr;
2539    else
2540      return load ? X86::VMOVUPSYrm : X86::VMOVUPSYmr;
2541  }
2542}
2543
2544static unsigned getStoreRegOpcode(unsigned SrcReg,
2545                                  const TargetRegisterClass *RC,
2546                                  bool isStackAligned,
2547                                  TargetMachine &TM) {
2548  return getLoadStoreRegOpcode(SrcReg, RC, isStackAligned, TM, false);
2549}
2550
2551
2552static unsigned getLoadRegOpcode(unsigned DestReg,
2553                                 const TargetRegisterClass *RC,
2554                                 bool isStackAligned,
2555                                 const TargetMachine &TM) {
2556  return getLoadStoreRegOpcode(DestReg, RC, isStackAligned, TM, true);
2557}
2558
2559void X86InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
2560                                       MachineBasicBlock::iterator MI,
2561                                       unsigned SrcReg, bool isKill, int FrameIdx,
2562                                       const TargetRegisterClass *RC,
2563                                       const TargetRegisterInfo *TRI) const {
2564  const MachineFunction &MF = *MBB.getParent();
2565  assert(MF.getFrameInfo()->getObjectSize(FrameIdx) >= RC->getSize() &&
2566         "Stack slot too small for store");
2567  unsigned Alignment = RC->getSize() == 32 ? 32 : 16;
2568  bool isAligned = (TM.getFrameLowering()->getStackAlignment() >= Alignment) ||
2569    RI.canRealignStack(MF);
2570  unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, TM);
2571  DebugLoc DL = MBB.findDebugLoc(MI);
2572  addFrameReference(BuildMI(MBB, MI, DL, get(Opc)), FrameIdx)
2573    .addReg(SrcReg, getKillRegState(isKill));
2574}
2575
2576void X86InstrInfo::storeRegToAddr(MachineFunction &MF, unsigned SrcReg,
2577                                  bool isKill,
2578                                  SmallVectorImpl<MachineOperand> &Addr,
2579                                  const TargetRegisterClass *RC,
2580                                  MachineInstr::mmo_iterator MMOBegin,
2581                                  MachineInstr::mmo_iterator MMOEnd,
2582                                  SmallVectorImpl<MachineInstr*> &NewMIs) const {
2583  unsigned Alignment = RC->getSize() == 32 ? 32 : 16;
2584  bool isAligned = MMOBegin != MMOEnd &&
2585                   (*MMOBegin)->getAlignment() >= Alignment;
2586  unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, TM);
2587  DebugLoc DL;
2588  MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc));
2589  for (unsigned i = 0, e = Addr.size(); i != e; ++i)
2590    MIB.addOperand(Addr[i]);
2591  MIB.addReg(SrcReg, getKillRegState(isKill));
2592  (*MIB).setMemRefs(MMOBegin, MMOEnd);
2593  NewMIs.push_back(MIB);
2594}
2595
2596
2597void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
2598                                        MachineBasicBlock::iterator MI,
2599                                        unsigned DestReg, int FrameIdx,
2600                                        const TargetRegisterClass *RC,
2601                                        const TargetRegisterInfo *TRI) const {
2602  const MachineFunction &MF = *MBB.getParent();
2603  unsigned Alignment = RC->getSize() == 32 ? 32 : 16;
2604  bool isAligned = (TM.getFrameLowering()->getStackAlignment() >= Alignment) ||
2605    RI.canRealignStack(MF);
2606  unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, TM);
2607  DebugLoc DL = MBB.findDebugLoc(MI);
2608  addFrameReference(BuildMI(MBB, MI, DL, get(Opc), DestReg), FrameIdx);
2609}
2610
2611void X86InstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
2612                                 SmallVectorImpl<MachineOperand> &Addr,
2613                                 const TargetRegisterClass *RC,
2614                                 MachineInstr::mmo_iterator MMOBegin,
2615                                 MachineInstr::mmo_iterator MMOEnd,
2616                                 SmallVectorImpl<MachineInstr*> &NewMIs) const {
2617  unsigned Alignment = RC->getSize() == 32 ? 32 : 16;
2618  bool isAligned = MMOBegin != MMOEnd &&
2619                   (*MMOBegin)->getAlignment() >= Alignment;
2620  unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, TM);
2621  DebugLoc DL;
2622  MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc), DestReg);
2623  for (unsigned i = 0, e = Addr.size(); i != e; ++i)
2624    MIB.addOperand(Addr[i]);
2625  (*MIB).setMemRefs(MMOBegin, MMOEnd);
2626  NewMIs.push_back(MIB);
2627}
2628
2629/// Expand2AddrUndef - Expand a single-def pseudo instruction to a two-addr
2630/// instruction with two undef reads of the register being defined.  This is
2631/// used for mapping:
2632///   %xmm4 = V_SET0
2633/// to:
2634///   %xmm4 = PXORrr %xmm4<undef>, %xmm4<undef>
2635///
2636static bool Expand2AddrUndef(MachineInstr *MI, const MCInstrDesc &Desc) {
2637  assert(Desc.getNumOperands() == 3 && "Expected two-addr instruction.");
2638  unsigned Reg = MI->getOperand(0).getReg();
2639  MI->setDesc(Desc);
2640
2641  // MachineInstr::addOperand() will insert explicit operands before any
2642  // implicit operands.
2643  MachineInstrBuilder(MI).addReg(Reg, RegState::Undef)
2644                         .addReg(Reg, RegState::Undef);
2645  // But we don't trust that.
2646  assert(MI->getOperand(1).getReg() == Reg &&
2647         MI->getOperand(2).getReg() == Reg && "Misplaced operand");
2648  return true;
2649}
2650
2651bool X86InstrInfo::expandPostRAPseudo(MachineBasicBlock::iterator MI) const {
2652  bool HasAVX = TM.getSubtarget<X86Subtarget>().hasAVX();
2653  switch (MI->getOpcode()) {
2654  case X86::V_SET0:
2655  case X86::FsFLD0SS:
2656  case X86::FsFLD0SD:
2657    return Expand2AddrUndef(MI, get(HasAVX ? X86::VXORPSrr : X86::XORPSrr));
2658  case X86::TEST8ri_NOREX:
2659    MI->setDesc(get(X86::TEST8ri));
2660    return true;
2661  }
2662  return false;
2663}
2664
2665MachineInstr*
2666X86InstrInfo::emitFrameIndexDebugValue(MachineFunction &MF,
2667                                       int FrameIx, uint64_t Offset,
2668                                       const MDNode *MDPtr,
2669                                       DebugLoc DL) const {
2670  X86AddressMode AM;
2671  AM.BaseType = X86AddressMode::FrameIndexBase;
2672  AM.Base.FrameIndex = FrameIx;
2673  MachineInstrBuilder MIB = BuildMI(MF, DL, get(X86::DBG_VALUE));
2674  addFullAddress(MIB, AM).addImm(Offset).addMetadata(MDPtr);
2675  return &*MIB;
2676}
2677
2678static MachineInstr *FuseTwoAddrInst(MachineFunction &MF, unsigned Opcode,
2679                                     const SmallVectorImpl<MachineOperand> &MOs,
2680                                     MachineInstr *MI,
2681                                     const TargetInstrInfo &TII) {
2682  // Create the base instruction with the memory operand as the first part.
2683  MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode),
2684                                              MI->getDebugLoc(), true);
2685  MachineInstrBuilder MIB(NewMI);
2686  unsigned NumAddrOps = MOs.size();
2687  for (unsigned i = 0; i != NumAddrOps; ++i)
2688    MIB.addOperand(MOs[i]);
2689  if (NumAddrOps < 4)  // FrameIndex only
2690    addOffset(MIB, 0);
2691
2692  // Loop over the rest of the ri operands, converting them over.
2693  unsigned NumOps = MI->getDesc().getNumOperands()-2;
2694  for (unsigned i = 0; i != NumOps; ++i) {
2695    MachineOperand &MO = MI->getOperand(i+2);
2696    MIB.addOperand(MO);
2697  }
2698  for (unsigned i = NumOps+2, e = MI->getNumOperands(); i != e; ++i) {
2699    MachineOperand &MO = MI->getOperand(i);
2700    MIB.addOperand(MO);
2701  }
2702  return MIB;
2703}
2704
2705static MachineInstr *FuseInst(MachineFunction &MF,
2706                              unsigned Opcode, unsigned OpNo,
2707                              const SmallVectorImpl<MachineOperand> &MOs,
2708                              MachineInstr *MI, const TargetInstrInfo &TII) {
2709  MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode),
2710                                              MI->getDebugLoc(), true);
2711  MachineInstrBuilder MIB(NewMI);
2712
2713  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
2714    MachineOperand &MO = MI->getOperand(i);
2715    if (i == OpNo) {
2716      assert(MO.isReg() && "Expected to fold into reg operand!");
2717      unsigned NumAddrOps = MOs.size();
2718      for (unsigned i = 0; i != NumAddrOps; ++i)
2719        MIB.addOperand(MOs[i]);
2720      if (NumAddrOps < 4)  // FrameIndex only
2721        addOffset(MIB, 0);
2722    } else {
2723      MIB.addOperand(MO);
2724    }
2725  }
2726  return MIB;
2727}
2728
2729static MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode,
2730                                const SmallVectorImpl<MachineOperand> &MOs,
2731                                MachineInstr *MI) {
2732  MachineFunction &MF = *MI->getParent()->getParent();
2733  MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), TII.get(Opcode));
2734
2735  unsigned NumAddrOps = MOs.size();
2736  for (unsigned i = 0; i != NumAddrOps; ++i)
2737    MIB.addOperand(MOs[i]);
2738  if (NumAddrOps < 4)  // FrameIndex only
2739    addOffset(MIB, 0);
2740  return MIB.addImm(0);
2741}
2742
2743MachineInstr*
2744X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
2745                                    MachineInstr *MI, unsigned i,
2746                                    const SmallVectorImpl<MachineOperand> &MOs,
2747                                    unsigned Size, unsigned Align) const {
2748  const DenseMap<unsigned, std::pair<unsigned,unsigned> > *OpcodeTablePtr = 0;
2749  bool isTwoAddrFold = false;
2750  unsigned NumOps = MI->getDesc().getNumOperands();
2751  bool isTwoAddr = NumOps > 1 &&
2752    MI->getDesc().getOperandConstraint(1, MCOI::TIED_TO) != -1;
2753
2754  // FIXME: AsmPrinter doesn't know how to handle
2755  // X86II::MO_GOT_ABSOLUTE_ADDRESS after folding.
2756  if (MI->getOpcode() == X86::ADD32ri &&
2757      MI->getOperand(2).getTargetFlags() == X86II::MO_GOT_ABSOLUTE_ADDRESS)
2758    return NULL;
2759
2760  MachineInstr *NewMI = NULL;
2761  // Folding a memory location into the two-address part of a two-address
2762  // instruction is different than folding it other places.  It requires
2763  // replacing the *two* registers with the memory location.
2764  if (isTwoAddr && NumOps >= 2 && i < 2 &&
2765      MI->getOperand(0).isReg() &&
2766      MI->getOperand(1).isReg() &&
2767      MI->getOperand(0).getReg() == MI->getOperand(1).getReg()) {
2768    OpcodeTablePtr = &RegOp2MemOpTable2Addr;
2769    isTwoAddrFold = true;
2770  } else if (i == 0) { // If operand 0
2771    if (MI->getOpcode() == X86::MOV64r0)
2772      NewMI = MakeM0Inst(*this, X86::MOV64mi32, MOs, MI);
2773    else if (MI->getOpcode() == X86::MOV32r0)
2774      NewMI = MakeM0Inst(*this, X86::MOV32mi, MOs, MI);
2775    else if (MI->getOpcode() == X86::MOV16r0)
2776      NewMI = MakeM0Inst(*this, X86::MOV16mi, MOs, MI);
2777    else if (MI->getOpcode() == X86::MOV8r0)
2778      NewMI = MakeM0Inst(*this, X86::MOV8mi, MOs, MI);
2779    if (NewMI)
2780      return NewMI;
2781
2782    OpcodeTablePtr = &RegOp2MemOpTable0;
2783  } else if (i == 1) {
2784    OpcodeTablePtr = &RegOp2MemOpTable1;
2785  } else if (i == 2) {
2786    OpcodeTablePtr = &RegOp2MemOpTable2;
2787  }
2788
2789  // If table selected...
2790  if (OpcodeTablePtr) {
2791    // Find the Opcode to fuse
2792    DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I =
2793      OpcodeTablePtr->find(MI->getOpcode());
2794    if (I != OpcodeTablePtr->end()) {
2795      unsigned Opcode = I->second.first;
2796      unsigned MinAlign = (I->second.second & TB_ALIGN_MASK) >> TB_ALIGN_SHIFT;
2797      if (Align < MinAlign)
2798        return NULL;
2799      bool NarrowToMOV32rm = false;
2800      if (Size) {
2801        unsigned RCSize = getRegClass(MI->getDesc(), i, &RI)->getSize();
2802        if (Size < RCSize) {
2803          // Check if it's safe to fold the load. If the size of the object is
2804          // narrower than the load width, then it's not.
2805          if (Opcode != X86::MOV64rm || RCSize != 8 || Size != 4)
2806            return NULL;
2807          // If this is a 64-bit load, but the spill slot is 32, then we can do
2808          // a 32-bit load which is implicitly zero-extended. This likely is due
2809          // to liveintervalanalysis remat'ing a load from stack slot.
2810          if (MI->getOperand(0).getSubReg() || MI->getOperand(1).getSubReg())
2811            return NULL;
2812          Opcode = X86::MOV32rm;
2813          NarrowToMOV32rm = true;
2814        }
2815      }
2816
2817      if (isTwoAddrFold)
2818        NewMI = FuseTwoAddrInst(MF, Opcode, MOs, MI, *this);
2819      else
2820        NewMI = FuseInst(MF, Opcode, i, MOs, MI, *this);
2821
2822      if (NarrowToMOV32rm) {
2823        // If this is the special case where we use a MOV32rm to load a 32-bit
2824        // value and zero-extend the top bits. Change the destination register
2825        // to a 32-bit one.
2826        unsigned DstReg = NewMI->getOperand(0).getReg();
2827        if (TargetRegisterInfo::isPhysicalRegister(DstReg))
2828          NewMI->getOperand(0).setReg(RI.getSubReg(DstReg,
2829                                                   X86::sub_32bit));
2830        else
2831          NewMI->getOperand(0).setSubReg(X86::sub_32bit);
2832      }
2833      return NewMI;
2834    }
2835  }
2836
2837  // No fusion
2838  if (PrintFailedFusing && !MI->isCopy())
2839    dbgs() << "We failed to fuse operand " << i << " in " << *MI;
2840  return NULL;
2841}
2842
2843/// hasPartialRegUpdate - Return true for all instructions that only update
2844/// the first 32 or 64-bits of the destination register and leave the rest
2845/// unmodified. This can be used to avoid folding loads if the instructions
2846/// only update part of the destination register, and the non-updated part is
2847/// not needed. e.g. cvtss2sd, sqrtss. Unfolding the load from these
2848/// instructions breaks the partial register dependency and it can improve
2849/// performance. e.g.:
2850///
2851///   movss (%rdi), %xmm0
2852///   cvtss2sd %xmm0, %xmm0
2853///
2854/// Instead of
2855///   cvtss2sd (%rdi), %xmm0
2856///
2857/// FIXME: This should be turned into a TSFlags.
2858///
2859static bool hasPartialRegUpdate(unsigned Opcode) {
2860  switch (Opcode) {
2861  case X86::CVTSI2SSrr:
2862  case X86::CVTSI2SS64rr:
2863  case X86::CVTSI2SDrr:
2864  case X86::CVTSI2SD64rr:
2865  case X86::CVTSD2SSrr:
2866  case X86::Int_CVTSD2SSrr:
2867  case X86::CVTSS2SDrr:
2868  case X86::Int_CVTSS2SDrr:
2869  case X86::RCPSSr:
2870  case X86::RCPSSr_Int:
2871  case X86::ROUNDSDr:
2872  case X86::ROUNDSDr_Int:
2873  case X86::ROUNDSSr:
2874  case X86::ROUNDSSr_Int:
2875  case X86::RSQRTSSr:
2876  case X86::RSQRTSSr_Int:
2877  case X86::SQRTSSr:
2878  case X86::SQRTSSr_Int:
2879  // AVX encoded versions
2880  case X86::VCVTSD2SSrr:
2881  case X86::Int_VCVTSD2SSrr:
2882  case X86::VCVTSS2SDrr:
2883  case X86::Int_VCVTSS2SDrr:
2884  case X86::VRCPSSr:
2885  case X86::VROUNDSDr:
2886  case X86::VROUNDSDr_Int:
2887  case X86::VROUNDSSr:
2888  case X86::VROUNDSSr_Int:
2889  case X86::VRSQRTSSr:
2890  case X86::VSQRTSSr:
2891    return true;
2892  }
2893
2894  return false;
2895}
2896
2897/// getPartialRegUpdateClearance - Inform the ExeDepsFix pass how many idle
2898/// instructions we would like before a partial register update.
2899unsigned X86InstrInfo::
2900getPartialRegUpdateClearance(const MachineInstr *MI, unsigned OpNum,
2901                             const TargetRegisterInfo *TRI) const {
2902  if (OpNum != 0 || !hasPartialRegUpdate(MI->getOpcode()))
2903    return 0;
2904
2905  // If MI is marked as reading Reg, the partial register update is wanted.
2906  const MachineOperand &MO = MI->getOperand(0);
2907  unsigned Reg = MO.getReg();
2908  if (TargetRegisterInfo::isVirtualRegister(Reg)) {
2909    if (MO.readsReg() || MI->readsVirtualRegister(Reg))
2910      return 0;
2911  } else {
2912    if (MI->readsRegister(Reg, TRI))
2913      return 0;
2914  }
2915
2916  // If any of the preceding 16 instructions are reading Reg, insert a
2917  // dependency breaking instruction.  The magic number is based on a few
2918  // Nehalem experiments.
2919  return 16;
2920}
2921
2922void X86InstrInfo::
2923breakPartialRegDependency(MachineBasicBlock::iterator MI, unsigned OpNum,
2924                          const TargetRegisterInfo *TRI) const {
2925  unsigned Reg = MI->getOperand(OpNum).getReg();
2926  if (X86::VR128RegClass.contains(Reg)) {
2927    // These instructions are all floating point domain, so xorps is the best
2928    // choice.
2929    bool HasAVX = TM.getSubtarget<X86Subtarget>().hasAVX();
2930    unsigned Opc = HasAVX ? X86::VXORPSrr : X86::XORPSrr;
2931    BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), get(Opc), Reg)
2932      .addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef);
2933  } else if (X86::VR256RegClass.contains(Reg)) {
2934    // Use vxorps to clear the full ymm register.
2935    // It wants to read and write the xmm sub-register.
2936    unsigned XReg = TRI->getSubReg(Reg, X86::sub_xmm);
2937    BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), get(X86::VXORPSrr), XReg)
2938      .addReg(XReg, RegState::Undef).addReg(XReg, RegState::Undef)
2939      .addReg(Reg, RegState::ImplicitDefine);
2940  } else
2941    return;
2942  MI->addRegisterKilled(Reg, TRI, true);
2943}
2944
2945MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
2946                                                  MachineInstr *MI,
2947                                           const SmallVectorImpl<unsigned> &Ops,
2948                                                  int FrameIndex) const {
2949  // Check switch flag
2950  if (NoFusing) return NULL;
2951
2952  // Unless optimizing for size, don't fold to avoid partial
2953  // register update stalls
2954  if (!MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize) &&
2955      hasPartialRegUpdate(MI->getOpcode()))
2956    return 0;
2957
2958  const MachineFrameInfo *MFI = MF.getFrameInfo();
2959  unsigned Size = MFI->getObjectSize(FrameIndex);
2960  unsigned Alignment = MFI->getObjectAlignment(FrameIndex);
2961  if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
2962    unsigned NewOpc = 0;
2963    unsigned RCSize = 0;
2964    switch (MI->getOpcode()) {
2965    default: return NULL;
2966    case X86::TEST8rr:  NewOpc = X86::CMP8ri; RCSize = 1; break;
2967    case X86::TEST16rr: NewOpc = X86::CMP16ri8; RCSize = 2; break;
2968    case X86::TEST32rr: NewOpc = X86::CMP32ri8; RCSize = 4; break;
2969    case X86::TEST64rr: NewOpc = X86::CMP64ri8; RCSize = 8; break;
2970    }
2971    // Check if it's safe to fold the load. If the size of the object is
2972    // narrower than the load width, then it's not.
2973    if (Size < RCSize)
2974      return NULL;
2975    // Change to CMPXXri r, 0 first.
2976    MI->setDesc(get(NewOpc));
2977    MI->getOperand(1).ChangeToImmediate(0);
2978  } else if (Ops.size() != 1)
2979    return NULL;
2980
2981  SmallVector<MachineOperand,4> MOs;
2982  MOs.push_back(MachineOperand::CreateFI(FrameIndex));
2983  return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, Size, Alignment);
2984}
2985
2986MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
2987                                                  MachineInstr *MI,
2988                                           const SmallVectorImpl<unsigned> &Ops,
2989                                                  MachineInstr *LoadMI) const {
2990  // Check switch flag
2991  if (NoFusing) return NULL;
2992
2993  // Unless optimizing for size, don't fold to avoid partial
2994  // register update stalls
2995  if (!MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize) &&
2996      hasPartialRegUpdate(MI->getOpcode()))
2997    return 0;
2998
2999  // Determine the alignment of the load.
3000  unsigned Alignment = 0;
3001  if (LoadMI->hasOneMemOperand())
3002    Alignment = (*LoadMI->memoperands_begin())->getAlignment();
3003  else
3004    switch (LoadMI->getOpcode()) {
3005    case X86::AVX_SET0PSY:
3006    case X86::AVX_SET0PDY:
3007    case X86::AVX2_SETALLONES:
3008    case X86::AVX2_SET0:
3009      Alignment = 32;
3010      break;
3011    case X86::V_SET0:
3012    case X86::V_SETALLONES:
3013    case X86::AVX_SETALLONES:
3014      Alignment = 16;
3015      break;
3016    case X86::FsFLD0SD:
3017      Alignment = 8;
3018      break;
3019    case X86::FsFLD0SS:
3020      Alignment = 4;
3021      break;
3022    default:
3023      return 0;
3024    }
3025  if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
3026    unsigned NewOpc = 0;
3027    switch (MI->getOpcode()) {
3028    default: return NULL;
3029    case X86::TEST8rr:  NewOpc = X86::CMP8ri; break;
3030    case X86::TEST16rr: NewOpc = X86::CMP16ri8; break;
3031    case X86::TEST32rr: NewOpc = X86::CMP32ri8; break;
3032    case X86::TEST64rr: NewOpc = X86::CMP64ri8; break;
3033    }
3034    // Change to CMPXXri r, 0 first.
3035    MI->setDesc(get(NewOpc));
3036    MI->getOperand(1).ChangeToImmediate(0);
3037  } else if (Ops.size() != 1)
3038    return NULL;
3039
3040  // Make sure the subregisters match.
3041  // Otherwise we risk changing the size of the load.
3042  if (LoadMI->getOperand(0).getSubReg() != MI->getOperand(Ops[0]).getSubReg())
3043    return NULL;
3044
3045  SmallVector<MachineOperand,X86::AddrNumOperands> MOs;
3046  switch (LoadMI->getOpcode()) {
3047  case X86::V_SET0:
3048  case X86::V_SETALLONES:
3049  case X86::AVX_SET0PSY:
3050  case X86::AVX_SET0PDY:
3051  case X86::AVX_SETALLONES:
3052  case X86::AVX2_SETALLONES:
3053  case X86::AVX2_SET0:
3054  case X86::FsFLD0SD:
3055  case X86::FsFLD0SS: {
3056    // Folding a V_SET0 or V_SETALLONES as a load, to ease register pressure.
3057    // Create a constant-pool entry and operands to load from it.
3058
3059    // Medium and large mode can't fold loads this way.
3060    if (TM.getCodeModel() != CodeModel::Small &&
3061        TM.getCodeModel() != CodeModel::Kernel)
3062      return NULL;
3063
3064    // x86-32 PIC requires a PIC base register for constant pools.
3065    unsigned PICBase = 0;
3066    if (TM.getRelocationModel() == Reloc::PIC_) {
3067      if (TM.getSubtarget<X86Subtarget>().is64Bit())
3068        PICBase = X86::RIP;
3069      else
3070        // FIXME: PICBase = getGlobalBaseReg(&MF);
3071        // This doesn't work for several reasons.
3072        // 1. GlobalBaseReg may have been spilled.
3073        // 2. It may not be live at MI.
3074        return NULL;
3075    }
3076
3077    // Create a constant-pool entry.
3078    MachineConstantPool &MCP = *MF.getConstantPool();
3079    Type *Ty;
3080    unsigned Opc = LoadMI->getOpcode();
3081    if (Opc == X86::FsFLD0SS)
3082      Ty = Type::getFloatTy(MF.getFunction()->getContext());
3083    else if (Opc == X86::FsFLD0SD)
3084      Ty = Type::getDoubleTy(MF.getFunction()->getContext());
3085    else if (Opc == X86::AVX_SET0PSY || Opc == X86::AVX_SET0PDY)
3086      Ty = VectorType::get(Type::getFloatTy(MF.getFunction()->getContext()), 8);
3087    else if (Opc == X86::AVX2_SETALLONES || Opc == X86::AVX2_SET0)
3088      Ty = VectorType::get(Type::getInt32Ty(MF.getFunction()->getContext()), 8);
3089    else
3090      Ty = VectorType::get(Type::getInt32Ty(MF.getFunction()->getContext()), 4);
3091
3092    bool IsAllOnes = (Opc == X86::V_SETALLONES || Opc == X86::AVX_SETALLONES ||
3093                      Opc == X86::AVX2_SETALLONES);
3094    const Constant *C = IsAllOnes ? Constant::getAllOnesValue(Ty) :
3095                                    Constant::getNullValue(Ty);
3096    unsigned CPI = MCP.getConstantPoolIndex(C, Alignment);
3097
3098    // Create operands to load from the constant pool entry.
3099    MOs.push_back(MachineOperand::CreateReg(PICBase, false));
3100    MOs.push_back(MachineOperand::CreateImm(1));
3101    MOs.push_back(MachineOperand::CreateReg(0, false));
3102    MOs.push_back(MachineOperand::CreateCPI(CPI, 0));
3103    MOs.push_back(MachineOperand::CreateReg(0, false));
3104    break;
3105  }
3106  default: {
3107    // Folding a normal load. Just copy the load's address operands.
3108    unsigned NumOps = LoadMI->getDesc().getNumOperands();
3109    for (unsigned i = NumOps - X86::AddrNumOperands; i != NumOps; ++i)
3110      MOs.push_back(LoadMI->getOperand(i));
3111    break;
3112  }
3113  }
3114  return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, 0, Alignment);
3115}
3116
3117
3118bool X86InstrInfo::canFoldMemoryOperand(const MachineInstr *MI,
3119                                  const SmallVectorImpl<unsigned> &Ops) const {
3120  // Check switch flag
3121  if (NoFusing) return 0;
3122
3123  if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
3124    switch (MI->getOpcode()) {
3125    default: return false;
3126    case X86::TEST8rr:
3127    case X86::TEST16rr:
3128    case X86::TEST32rr:
3129    case X86::TEST64rr:
3130      return true;
3131    case X86::ADD32ri:
3132      // FIXME: AsmPrinter doesn't know how to handle
3133      // X86II::MO_GOT_ABSOLUTE_ADDRESS after folding.
3134      if (MI->getOperand(2).getTargetFlags() == X86II::MO_GOT_ABSOLUTE_ADDRESS)
3135        return false;
3136      break;
3137    }
3138  }
3139
3140  if (Ops.size() != 1)
3141    return false;
3142
3143  unsigned OpNum = Ops[0];
3144  unsigned Opc = MI->getOpcode();
3145  unsigned NumOps = MI->getDesc().getNumOperands();
3146  bool isTwoAddr = NumOps > 1 &&
3147    MI->getDesc().getOperandConstraint(1, MCOI::TIED_TO) != -1;
3148
3149  // Folding a memory location into the two-address part of a two-address
3150  // instruction is different than folding it other places.  It requires
3151  // replacing the *two* registers with the memory location.
3152  const DenseMap<unsigned, std::pair<unsigned,unsigned> > *OpcodeTablePtr = 0;
3153  if (isTwoAddr && NumOps >= 2 && OpNum < 2) {
3154    OpcodeTablePtr = &RegOp2MemOpTable2Addr;
3155  } else if (OpNum == 0) { // If operand 0
3156    switch (Opc) {
3157    case X86::MOV8r0:
3158    case X86::MOV16r0:
3159    case X86::MOV32r0:
3160    case X86::MOV64r0: return true;
3161    default: break;
3162    }
3163    OpcodeTablePtr = &RegOp2MemOpTable0;
3164  } else if (OpNum == 1) {
3165    OpcodeTablePtr = &RegOp2MemOpTable1;
3166  } else if (OpNum == 2) {
3167    OpcodeTablePtr = &RegOp2MemOpTable2;
3168  }
3169
3170  if (OpcodeTablePtr && OpcodeTablePtr->count(Opc))
3171    return true;
3172  return TargetInstrInfoImpl::canFoldMemoryOperand(MI, Ops);
3173}
3174
3175bool X86InstrInfo::unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
3176                                unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
3177                                SmallVectorImpl<MachineInstr*> &NewMIs) const {
3178  DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I =
3179    MemOp2RegOpTable.find(MI->getOpcode());
3180  if (I == MemOp2RegOpTable.end())
3181    return false;
3182  unsigned Opc = I->second.first;
3183  unsigned Index = I->second.second & TB_INDEX_MASK;
3184  bool FoldedLoad = I->second.second & TB_FOLDED_LOAD;
3185  bool FoldedStore = I->second.second & TB_FOLDED_STORE;
3186  if (UnfoldLoad && !FoldedLoad)
3187    return false;
3188  UnfoldLoad &= FoldedLoad;
3189  if (UnfoldStore && !FoldedStore)
3190    return false;
3191  UnfoldStore &= FoldedStore;
3192
3193  const MCInstrDesc &MCID = get(Opc);
3194  const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI);
3195  if (!MI->hasOneMemOperand() &&
3196      RC == &X86::VR128RegClass &&
3197      !TM.getSubtarget<X86Subtarget>().isUnalignedMemAccessFast())
3198    // Without memoperands, loadRegFromAddr and storeRegToStackSlot will
3199    // conservatively assume the address is unaligned. That's bad for
3200    // performance.
3201    return false;
3202  SmallVector<MachineOperand, X86::AddrNumOperands> AddrOps;
3203  SmallVector<MachineOperand,2> BeforeOps;
3204  SmallVector<MachineOperand,2> AfterOps;
3205  SmallVector<MachineOperand,4> ImpOps;
3206  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
3207    MachineOperand &Op = MI->getOperand(i);
3208    if (i >= Index && i < Index + X86::AddrNumOperands)
3209      AddrOps.push_back(Op);
3210    else if (Op.isReg() && Op.isImplicit())
3211      ImpOps.push_back(Op);
3212    else if (i < Index)
3213      BeforeOps.push_back(Op);
3214    else if (i > Index)
3215      AfterOps.push_back(Op);
3216  }
3217
3218  // Emit the load instruction.
3219  if (UnfoldLoad) {
3220    std::pair<MachineInstr::mmo_iterator,
3221              MachineInstr::mmo_iterator> MMOs =
3222      MF.extractLoadMemRefs(MI->memoperands_begin(),
3223                            MI->memoperands_end());
3224    loadRegFromAddr(MF, Reg, AddrOps, RC, MMOs.first, MMOs.second, NewMIs);
3225    if (UnfoldStore) {
3226      // Address operands cannot be marked isKill.
3227      for (unsigned i = 1; i != 1 + X86::AddrNumOperands; ++i) {
3228        MachineOperand &MO = NewMIs[0]->getOperand(i);
3229        if (MO.isReg())
3230          MO.setIsKill(false);
3231      }
3232    }
3233  }
3234
3235  // Emit the data processing instruction.
3236  MachineInstr *DataMI = MF.CreateMachineInstr(MCID, MI->getDebugLoc(), true);
3237  MachineInstrBuilder MIB(DataMI);
3238
3239  if (FoldedStore)
3240    MIB.addReg(Reg, RegState::Define);
3241  for (unsigned i = 0, e = BeforeOps.size(); i != e; ++i)
3242    MIB.addOperand(BeforeOps[i]);
3243  if (FoldedLoad)
3244    MIB.addReg(Reg);
3245  for (unsigned i = 0, e = AfterOps.size(); i != e; ++i)
3246    MIB.addOperand(AfterOps[i]);
3247  for (unsigned i = 0, e = ImpOps.size(); i != e; ++i) {
3248    MachineOperand &MO = ImpOps[i];
3249    MIB.addReg(MO.getReg(),
3250               getDefRegState(MO.isDef()) |
3251               RegState::Implicit |
3252               getKillRegState(MO.isKill()) |
3253               getDeadRegState(MO.isDead()) |
3254               getUndefRegState(MO.isUndef()));
3255  }
3256  // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
3257  unsigned NewOpc = 0;
3258  switch (DataMI->getOpcode()) {
3259  default: break;
3260  case X86::CMP64ri32:
3261  case X86::CMP64ri8:
3262  case X86::CMP32ri:
3263  case X86::CMP32ri8:
3264  case X86::CMP16ri:
3265  case X86::CMP16ri8:
3266  case X86::CMP8ri: {
3267    MachineOperand &MO0 = DataMI->getOperand(0);
3268    MachineOperand &MO1 = DataMI->getOperand(1);
3269    if (MO1.getImm() == 0) {
3270      switch (DataMI->getOpcode()) {
3271      default: break;
3272      case X86::CMP64ri8:
3273      case X86::CMP64ri32: NewOpc = X86::TEST64rr; break;
3274      case X86::CMP32ri8:
3275      case X86::CMP32ri:   NewOpc = X86::TEST32rr; break;
3276      case X86::CMP16ri8:
3277      case X86::CMP16ri:   NewOpc = X86::TEST16rr; break;
3278      case X86::CMP8ri:    NewOpc = X86::TEST8rr; break;
3279      }
3280      DataMI->setDesc(get(NewOpc));
3281      MO1.ChangeToRegister(MO0.getReg(), false);
3282    }
3283  }
3284  }
3285  NewMIs.push_back(DataMI);
3286
3287  // Emit the store instruction.
3288  if (UnfoldStore) {
3289    const TargetRegisterClass *DstRC = getRegClass(MCID, 0, &RI);
3290    std::pair<MachineInstr::mmo_iterator,
3291              MachineInstr::mmo_iterator> MMOs =
3292      MF.extractStoreMemRefs(MI->memoperands_begin(),
3293                             MI->memoperands_end());
3294    storeRegToAddr(MF, Reg, true, AddrOps, DstRC, MMOs.first, MMOs.second, NewMIs);
3295  }
3296
3297  return true;
3298}
3299
3300bool
3301X86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
3302                                  SmallVectorImpl<SDNode*> &NewNodes) const {
3303  if (!N->isMachineOpcode())
3304    return false;
3305
3306  DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I =
3307    MemOp2RegOpTable.find(N->getMachineOpcode());
3308  if (I == MemOp2RegOpTable.end())
3309    return false;
3310  unsigned Opc = I->second.first;
3311  unsigned Index = I->second.second & TB_INDEX_MASK;
3312  bool FoldedLoad = I->second.second & TB_FOLDED_LOAD;
3313  bool FoldedStore = I->second.second & TB_FOLDED_STORE;
3314  const MCInstrDesc &MCID = get(Opc);
3315  const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI);
3316  unsigned NumDefs = MCID.NumDefs;
3317  std::vector<SDValue> AddrOps;
3318  std::vector<SDValue> BeforeOps;
3319  std::vector<SDValue> AfterOps;
3320  DebugLoc dl = N->getDebugLoc();
3321  unsigned NumOps = N->getNumOperands();
3322  for (unsigned i = 0; i != NumOps-1; ++i) {
3323    SDValue Op = N->getOperand(i);
3324    if (i >= Index-NumDefs && i < Index-NumDefs + X86::AddrNumOperands)
3325      AddrOps.push_back(Op);
3326    else if (i < Index-NumDefs)
3327      BeforeOps.push_back(Op);
3328    else if (i > Index-NumDefs)
3329      AfterOps.push_back(Op);
3330  }
3331  SDValue Chain = N->getOperand(NumOps-1);
3332  AddrOps.push_back(Chain);
3333
3334  // Emit the load instruction.
3335  SDNode *Load = 0;
3336  MachineFunction &MF = DAG.getMachineFunction();
3337  if (FoldedLoad) {
3338    EVT VT = *RC->vt_begin();
3339    std::pair<MachineInstr::mmo_iterator,
3340              MachineInstr::mmo_iterator> MMOs =
3341      MF.extractLoadMemRefs(cast<MachineSDNode>(N)->memoperands_begin(),
3342                            cast<MachineSDNode>(N)->memoperands_end());
3343    if (!(*MMOs.first) &&
3344        RC == &X86::VR128RegClass &&
3345        !TM.getSubtarget<X86Subtarget>().isUnalignedMemAccessFast())
3346      // Do not introduce a slow unaligned load.
3347      return false;
3348    unsigned Alignment = RC->getSize() == 32 ? 32 : 16;
3349    bool isAligned = (*MMOs.first) &&
3350                     (*MMOs.first)->getAlignment() >= Alignment;
3351    Load = DAG.getMachineNode(getLoadRegOpcode(0, RC, isAligned, TM), dl,
3352                              VT, MVT::Other, &AddrOps[0], AddrOps.size());
3353    NewNodes.push_back(Load);
3354
3355    // Preserve memory reference information.
3356    cast<MachineSDNode>(Load)->setMemRefs(MMOs.first, MMOs.second);
3357  }
3358
3359  // Emit the data processing instruction.
3360  std::vector<EVT> VTs;
3361  const TargetRegisterClass *DstRC = 0;
3362  if (MCID.getNumDefs() > 0) {
3363    DstRC = getRegClass(MCID, 0, &RI);
3364    VTs.push_back(*DstRC->vt_begin());
3365  }
3366  for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
3367    EVT VT = N->getValueType(i);
3368    if (VT != MVT::Other && i >= (unsigned)MCID.getNumDefs())
3369      VTs.push_back(VT);
3370  }
3371  if (Load)
3372    BeforeOps.push_back(SDValue(Load, 0));
3373  std::copy(AfterOps.begin(), AfterOps.end(), std::back_inserter(BeforeOps));
3374  SDNode *NewNode= DAG.getMachineNode(Opc, dl, VTs, &BeforeOps[0],
3375                                      BeforeOps.size());
3376  NewNodes.push_back(NewNode);
3377
3378  // Emit the store instruction.
3379  if (FoldedStore) {
3380    AddrOps.pop_back();
3381    AddrOps.push_back(SDValue(NewNode, 0));
3382    AddrOps.push_back(Chain);
3383    std::pair<MachineInstr::mmo_iterator,
3384              MachineInstr::mmo_iterator> MMOs =
3385      MF.extractStoreMemRefs(cast<MachineSDNode>(N)->memoperands_begin(),
3386                             cast<MachineSDNode>(N)->memoperands_end());
3387    if (!(*MMOs.first) &&
3388        RC == &X86::VR128RegClass &&
3389        !TM.getSubtarget<X86Subtarget>().isUnalignedMemAccessFast())
3390      // Do not introduce a slow unaligned store.
3391      return false;
3392    unsigned Alignment = RC->getSize() == 32 ? 32 : 16;
3393    bool isAligned = (*MMOs.first) &&
3394                     (*MMOs.first)->getAlignment() >= Alignment;
3395    SDNode *Store = DAG.getMachineNode(getStoreRegOpcode(0, DstRC,
3396                                                         isAligned, TM),
3397                                       dl, MVT::Other,
3398                                       &AddrOps[0], AddrOps.size());
3399    NewNodes.push_back(Store);
3400
3401    // Preserve memory reference information.
3402    cast<MachineSDNode>(Load)->setMemRefs(MMOs.first, MMOs.second);
3403  }
3404
3405  return true;
3406}
3407
3408unsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc,
3409                                      bool UnfoldLoad, bool UnfoldStore,
3410                                      unsigned *LoadRegIndex) const {
3411  DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I =
3412    MemOp2RegOpTable.find(Opc);
3413  if (I == MemOp2RegOpTable.end())
3414    return 0;
3415  bool FoldedLoad = I->second.second & TB_FOLDED_LOAD;
3416  bool FoldedStore = I->second.second & TB_FOLDED_STORE;
3417  if (UnfoldLoad && !FoldedLoad)
3418    return 0;
3419  if (UnfoldStore && !FoldedStore)
3420    return 0;
3421  if (LoadRegIndex)
3422    *LoadRegIndex = I->second.second & TB_INDEX_MASK;
3423  return I->second.first;
3424}
3425
3426bool
3427X86InstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
3428                                     int64_t &Offset1, int64_t &Offset2) const {
3429  if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode())
3430    return false;
3431  unsigned Opc1 = Load1->getMachineOpcode();
3432  unsigned Opc2 = Load2->getMachineOpcode();
3433  switch (Opc1) {
3434  default: return false;
3435  case X86::MOV8rm:
3436  case X86::MOV16rm:
3437  case X86::MOV32rm:
3438  case X86::MOV64rm:
3439  case X86::LD_Fp32m:
3440  case X86::LD_Fp64m:
3441  case X86::LD_Fp80m:
3442  case X86::MOVSSrm:
3443  case X86::MOVSDrm:
3444  case X86::MMX_MOVD64rm:
3445  case X86::MMX_MOVQ64rm:
3446  case X86::FsMOVAPSrm:
3447  case X86::FsMOVAPDrm:
3448  case X86::MOVAPSrm:
3449  case X86::MOVUPSrm:
3450  case X86::MOVAPDrm:
3451  case X86::MOVDQArm:
3452  case X86::MOVDQUrm:
3453  // AVX load instructions
3454  case X86::VMOVSSrm:
3455  case X86::VMOVSDrm:
3456  case X86::FsVMOVAPSrm:
3457  case X86::FsVMOVAPDrm:
3458  case X86::VMOVAPSrm:
3459  case X86::VMOVUPSrm:
3460  case X86::VMOVAPDrm:
3461  case X86::VMOVDQArm:
3462  case X86::VMOVDQUrm:
3463  case X86::VMOVAPSYrm:
3464  case X86::VMOVUPSYrm:
3465  case X86::VMOVAPDYrm:
3466  case X86::VMOVDQAYrm:
3467  case X86::VMOVDQUYrm:
3468    break;
3469  }
3470  switch (Opc2) {
3471  default: return false;
3472  case X86::MOV8rm:
3473  case X86::MOV16rm:
3474  case X86::MOV32rm:
3475  case X86::MOV64rm:
3476  case X86::LD_Fp32m:
3477  case X86::LD_Fp64m:
3478  case X86::LD_Fp80m:
3479  case X86::MOVSSrm:
3480  case X86::MOVSDrm:
3481  case X86::MMX_MOVD64rm:
3482  case X86::MMX_MOVQ64rm:
3483  case X86::FsMOVAPSrm:
3484  case X86::FsMOVAPDrm:
3485  case X86::MOVAPSrm:
3486  case X86::MOVUPSrm:
3487  case X86::MOVAPDrm:
3488  case X86::MOVDQArm:
3489  case X86::MOVDQUrm:
3490  // AVX load instructions
3491  case X86::VMOVSSrm:
3492  case X86::VMOVSDrm:
3493  case X86::FsVMOVAPSrm:
3494  case X86::FsVMOVAPDrm:
3495  case X86::VMOVAPSrm:
3496  case X86::VMOVUPSrm:
3497  case X86::VMOVAPDrm:
3498  case X86::VMOVDQArm:
3499  case X86::VMOVDQUrm:
3500  case X86::VMOVAPSYrm:
3501  case X86::VMOVUPSYrm:
3502  case X86::VMOVAPDYrm:
3503  case X86::VMOVDQAYrm:
3504  case X86::VMOVDQUYrm:
3505    break;
3506  }
3507
3508  // Check if chain operands and base addresses match.
3509  if (Load1->getOperand(0) != Load2->getOperand(0) ||
3510      Load1->getOperand(5) != Load2->getOperand(5))
3511    return false;
3512  // Segment operands should match as well.
3513  if (Load1->getOperand(4) != Load2->getOperand(4))
3514    return false;
3515  // Scale should be 1, Index should be Reg0.
3516  if (Load1->getOperand(1) == Load2->getOperand(1) &&
3517      Load1->getOperand(2) == Load2->getOperand(2)) {
3518    if (cast<ConstantSDNode>(Load1->getOperand(1))->getZExtValue() != 1)
3519      return false;
3520
3521    // Now let's examine the displacements.
3522    if (isa<ConstantSDNode>(Load1->getOperand(3)) &&
3523        isa<ConstantSDNode>(Load2->getOperand(3))) {
3524      Offset1 = cast<ConstantSDNode>(Load1->getOperand(3))->getSExtValue();
3525      Offset2 = cast<ConstantSDNode>(Load2->getOperand(3))->getSExtValue();
3526      return true;
3527    }
3528  }
3529  return false;
3530}
3531
3532bool X86InstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
3533                                           int64_t Offset1, int64_t Offset2,
3534                                           unsigned NumLoads) const {
3535  assert(Offset2 > Offset1);
3536  if ((Offset2 - Offset1) / 8 > 64)
3537    return false;
3538
3539  unsigned Opc1 = Load1->getMachineOpcode();
3540  unsigned Opc2 = Load2->getMachineOpcode();
3541  if (Opc1 != Opc2)
3542    return false;  // FIXME: overly conservative?
3543
3544  switch (Opc1) {
3545  default: break;
3546  case X86::LD_Fp32m:
3547  case X86::LD_Fp64m:
3548  case X86::LD_Fp80m:
3549  case X86::MMX_MOVD64rm:
3550  case X86::MMX_MOVQ64rm:
3551    return false;
3552  }
3553
3554  EVT VT = Load1->getValueType(0);
3555  switch (VT.getSimpleVT().SimpleTy) {
3556  default:
3557    // XMM registers. In 64-bit mode we can be a bit more aggressive since we
3558    // have 16 of them to play with.
3559    if (TM.getSubtargetImpl()->is64Bit()) {
3560      if (NumLoads >= 3)
3561        return false;
3562    } else if (NumLoads) {
3563      return false;
3564    }
3565    break;
3566  case MVT::i8:
3567  case MVT::i16:
3568  case MVT::i32:
3569  case MVT::i64:
3570  case MVT::f32:
3571  case MVT::f64:
3572    if (NumLoads)
3573      return false;
3574    break;
3575  }
3576
3577  return true;
3578}
3579
3580
3581bool X86InstrInfo::
3582ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
3583  assert(Cond.size() == 1 && "Invalid X86 branch condition!");
3584  X86::CondCode CC = static_cast<X86::CondCode>(Cond[0].getImm());
3585  if (CC == X86::COND_NE_OR_P || CC == X86::COND_NP_OR_E)
3586    return true;
3587  Cond[0].setImm(GetOppositeBranchCondition(CC));
3588  return false;
3589}
3590
3591bool X86InstrInfo::
3592isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
3593  // FIXME: Return false for x87 stack register classes for now. We can't
3594  // allow any loads of these registers before FpGet_ST0_80.
3595  return !(RC == &X86::CCRRegClass || RC == &X86::RFP32RegClass ||
3596           RC == &X86::RFP64RegClass || RC == &X86::RFP80RegClass);
3597}
3598
3599/// getGlobalBaseReg - Return a virtual register initialized with the
3600/// the global base register value. Output instructions required to
3601/// initialize the register in the function entry block, if necessary.
3602///
3603/// TODO: Eliminate this and move the code to X86MachineFunctionInfo.
3604///
3605unsigned X86InstrInfo::getGlobalBaseReg(MachineFunction *MF) const {
3606  assert(!TM.getSubtarget<X86Subtarget>().is64Bit() &&
3607         "X86-64 PIC uses RIP relative addressing");
3608
3609  X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>();
3610  unsigned GlobalBaseReg = X86FI->getGlobalBaseReg();
3611  if (GlobalBaseReg != 0)
3612    return GlobalBaseReg;
3613
3614  // Create the register. The code to initialize it is inserted
3615  // later, by the CGBR pass (below).
3616  MachineRegisterInfo &RegInfo = MF->getRegInfo();
3617  GlobalBaseReg = RegInfo.createVirtualRegister(X86::GR32RegisterClass);
3618  X86FI->setGlobalBaseReg(GlobalBaseReg);
3619  return GlobalBaseReg;
3620}
3621
3622// These are the replaceable SSE instructions. Some of these have Int variants
3623// that we don't include here. We don't want to replace instructions selected
3624// by intrinsics.
3625static const unsigned ReplaceableInstrs[][3] = {
3626  //PackedSingle     PackedDouble    PackedInt
3627  { X86::MOVAPSmr,   X86::MOVAPDmr,  X86::MOVDQAmr  },
3628  { X86::MOVAPSrm,   X86::MOVAPDrm,  X86::MOVDQArm  },
3629  { X86::MOVAPSrr,   X86::MOVAPDrr,  X86::MOVDQArr  },
3630  { X86::MOVUPSmr,   X86::MOVUPDmr,  X86::MOVDQUmr  },
3631  { X86::MOVUPSrm,   X86::MOVUPDrm,  X86::MOVDQUrm  },
3632  { X86::MOVNTPSmr,  X86::MOVNTPDmr, X86::MOVNTDQmr },
3633  { X86::ANDNPSrm,   X86::ANDNPDrm,  X86::PANDNrm   },
3634  { X86::ANDNPSrr,   X86::ANDNPDrr,  X86::PANDNrr   },
3635  { X86::ANDPSrm,    X86::ANDPDrm,   X86::PANDrm    },
3636  { X86::ANDPSrr,    X86::ANDPDrr,   X86::PANDrr    },
3637  { X86::ORPSrm,     X86::ORPDrm,    X86::PORrm     },
3638  { X86::ORPSrr,     X86::ORPDrr,    X86::PORrr     },
3639  { X86::XORPSrm,    X86::XORPDrm,   X86::PXORrm    },
3640  { X86::XORPSrr,    X86::XORPDrr,   X86::PXORrr    },
3641  // AVX 128-bit support
3642  { X86::VMOVAPSmr,  X86::VMOVAPDmr,  X86::VMOVDQAmr  },
3643  { X86::VMOVAPSrm,  X86::VMOVAPDrm,  X86::VMOVDQArm  },
3644  { X86::VMOVAPSrr,  X86::VMOVAPDrr,  X86::VMOVDQArr  },
3645  { X86::VMOVUPSmr,  X86::VMOVUPDmr,  X86::VMOVDQUmr  },
3646  { X86::VMOVUPSrm,  X86::VMOVUPDrm,  X86::VMOVDQUrm  },
3647  { X86::VMOVNTPSmr, X86::VMOVNTPDmr, X86::VMOVNTDQmr },
3648  { X86::VANDNPSrm,  X86::VANDNPDrm,  X86::VPANDNrm   },
3649  { X86::VANDNPSrr,  X86::VANDNPDrr,  X86::VPANDNrr   },
3650  { X86::VANDPSrm,   X86::VANDPDrm,   X86::VPANDrm    },
3651  { X86::VANDPSrr,   X86::VANDPDrr,   X86::VPANDrr    },
3652  { X86::VORPSrm,    X86::VORPDrm,    X86::VPORrm     },
3653  { X86::VORPSrr,    X86::VORPDrr,    X86::VPORrr     },
3654  { X86::VXORPSrm,   X86::VXORPDrm,   X86::VPXORrm    },
3655  { X86::VXORPSrr,   X86::VXORPDrr,   X86::VPXORrr    },
3656  // AVX 256-bit support
3657  { X86::VMOVAPSYmr,   X86::VMOVAPDYmr,   X86::VMOVDQAYmr  },
3658  { X86::VMOVAPSYrm,   X86::VMOVAPDYrm,   X86::VMOVDQAYrm  },
3659  { X86::VMOVAPSYrr,   X86::VMOVAPDYrr,   X86::VMOVDQAYrr  },
3660  { X86::VMOVUPSYmr,   X86::VMOVUPDYmr,   X86::VMOVDQUYmr  },
3661  { X86::VMOVUPSYrm,   X86::VMOVUPDYrm,   X86::VMOVDQUYrm  },
3662  { X86::VMOVNTPSYmr,  X86::VMOVNTPDYmr,  X86::VMOVNTDQYmr }
3663};
3664
3665static const unsigned ReplaceableInstrsAVX2[][3] = {
3666  //PackedSingle       PackedDouble       PackedInt
3667  { X86::VANDNPSYrm,   X86::VANDNPDYrm,   X86::VPANDNYrm   },
3668  { X86::VANDNPSYrr,   X86::VANDNPDYrr,   X86::VPANDNYrr   },
3669  { X86::VANDPSYrm,    X86::VANDPDYrm,    X86::VPANDYrm    },
3670  { X86::VANDPSYrr,    X86::VANDPDYrr,    X86::VPANDYrr    },
3671  { X86::VORPSYrm,     X86::VORPDYrm,     X86::VPORYrm     },
3672  { X86::VORPSYrr,     X86::VORPDYrr,     X86::VPORYrr     },
3673  { X86::VXORPSYrm,    X86::VXORPDYrm,    X86::VPXORYrm    },
3674  { X86::VXORPSYrr,    X86::VXORPDYrr,    X86::VPXORYrr    },
3675  { X86::VEXTRACTF128mr, X86::VEXTRACTF128mr, X86::VEXTRACTI128mr },
3676  { X86::VEXTRACTF128rr, X86::VEXTRACTF128rr, X86::VEXTRACTI128rr },
3677  { X86::VINSERTF128rm,  X86::VINSERTF128rm,  X86::VINSERTI128rm },
3678  { X86::VINSERTF128rr,  X86::VINSERTF128rr,  X86::VINSERTI128rr },
3679  { X86::VPERM2F128rm,   X86::VPERM2F128rm,   X86::VPERM2I128rm },
3680  { X86::VPERM2F128rr,   X86::VPERM2F128rr,   X86::VPERM2I128rr }
3681};
3682
3683// FIXME: Some shuffle and unpack instructions have equivalents in different
3684// domains, but they require a bit more work than just switching opcodes.
3685
3686static const unsigned *lookup(unsigned opcode, unsigned domain) {
3687  for (unsigned i = 0, e = array_lengthof(ReplaceableInstrs); i != e; ++i)
3688    if (ReplaceableInstrs[i][domain-1] == opcode)
3689      return ReplaceableInstrs[i];
3690  return 0;
3691}
3692
3693static const unsigned *lookupAVX2(unsigned opcode, unsigned domain) {
3694  for (unsigned i = 0, e = array_lengthof(ReplaceableInstrsAVX2); i != e; ++i)
3695    if (ReplaceableInstrsAVX2[i][domain-1] == opcode)
3696      return ReplaceableInstrsAVX2[i];
3697  return 0;
3698}
3699
3700std::pair<uint16_t, uint16_t>
3701X86InstrInfo::getExecutionDomain(const MachineInstr *MI) const {
3702  uint16_t domain = (MI->getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
3703  bool hasAVX2 = TM.getSubtarget<X86Subtarget>().hasAVX2();
3704  uint16_t validDomains = 0;
3705  if (domain && lookup(MI->getOpcode(), domain))
3706    validDomains = 0xe;
3707  else if (domain && lookupAVX2(MI->getOpcode(), domain))
3708    validDomains = hasAVX2 ? 0xe : 0x6;
3709  return std::make_pair(domain, validDomains);
3710}
3711
3712void X86InstrInfo::setExecutionDomain(MachineInstr *MI, unsigned Domain) const {
3713  assert(Domain>0 && Domain<4 && "Invalid execution domain");
3714  uint16_t dom = (MI->getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
3715  assert(dom && "Not an SSE instruction");
3716  const unsigned *table = lookup(MI->getOpcode(), dom);
3717  if (!table) { // try the other table
3718    assert((TM.getSubtarget<X86Subtarget>().hasAVX2() || Domain < 3) &&
3719           "256-bit vector operations only available in AVX2");
3720    table = lookupAVX2(MI->getOpcode(), dom);
3721  }
3722  assert(table && "Cannot change domain");
3723  MI->setDesc(get(table[Domain-1]));
3724}
3725
3726/// getNoopForMachoTarget - Return the noop instruction to use for a noop.
3727void X86InstrInfo::getNoopForMachoTarget(MCInst &NopInst) const {
3728  NopInst.setOpcode(X86::NOOP);
3729}
3730
3731bool X86InstrInfo::isHighLatencyDef(int opc) const {
3732  switch (opc) {
3733  default: return false;
3734  case X86::DIVSDrm:
3735  case X86::DIVSDrm_Int:
3736  case X86::DIVSDrr:
3737  case X86::DIVSDrr_Int:
3738  case X86::DIVSSrm:
3739  case X86::DIVSSrm_Int:
3740  case X86::DIVSSrr:
3741  case X86::DIVSSrr_Int:
3742  case X86::SQRTPDm:
3743  case X86::SQRTPDm_Int:
3744  case X86::SQRTPDr:
3745  case X86::SQRTPDr_Int:
3746  case X86::SQRTPSm:
3747  case X86::SQRTPSm_Int:
3748  case X86::SQRTPSr:
3749  case X86::SQRTPSr_Int:
3750  case X86::SQRTSDm:
3751  case X86::SQRTSDm_Int:
3752  case X86::SQRTSDr:
3753  case X86::SQRTSDr_Int:
3754  case X86::SQRTSSm:
3755  case X86::SQRTSSm_Int:
3756  case X86::SQRTSSr:
3757  case X86::SQRTSSr_Int:
3758  // AVX instructions with high latency
3759  case X86::VDIVSDrm:
3760  case X86::VDIVSDrm_Int:
3761  case X86::VDIVSDrr:
3762  case X86::VDIVSDrr_Int:
3763  case X86::VDIVSSrm:
3764  case X86::VDIVSSrm_Int:
3765  case X86::VDIVSSrr:
3766  case X86::VDIVSSrr_Int:
3767  case X86::VSQRTPDm:
3768  case X86::VSQRTPDm_Int:
3769  case X86::VSQRTPDr:
3770  case X86::VSQRTPDr_Int:
3771  case X86::VSQRTPSm:
3772  case X86::VSQRTPSm_Int:
3773  case X86::VSQRTPSr:
3774  case X86::VSQRTPSr_Int:
3775  case X86::VSQRTSDm:
3776  case X86::VSQRTSDm_Int:
3777  case X86::VSQRTSDr:
3778  case X86::VSQRTSSm:
3779  case X86::VSQRTSSm_Int:
3780  case X86::VSQRTSSr:
3781    return true;
3782  }
3783}
3784
3785bool X86InstrInfo::
3786hasHighOperandLatency(const InstrItineraryData *ItinData,
3787                      const MachineRegisterInfo *MRI,
3788                      const MachineInstr *DefMI, unsigned DefIdx,
3789                      const MachineInstr *UseMI, unsigned UseIdx) const {
3790  return isHighLatencyDef(DefMI->getOpcode());
3791}
3792
3793namespace {
3794  /// CGBR - Create Global Base Reg pass. This initializes the PIC
3795  /// global base register for x86-32.
3796  struct CGBR : public MachineFunctionPass {
3797    static char ID;
3798    CGBR() : MachineFunctionPass(ID) {}
3799
3800    virtual bool runOnMachineFunction(MachineFunction &MF) {
3801      const X86TargetMachine *TM =
3802        static_cast<const X86TargetMachine *>(&MF.getTarget());
3803
3804      assert(!TM->getSubtarget<X86Subtarget>().is64Bit() &&
3805             "X86-64 PIC uses RIP relative addressing");
3806
3807      // Only emit a global base reg in PIC mode.
3808      if (TM->getRelocationModel() != Reloc::PIC_)
3809        return false;
3810
3811      X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
3812      unsigned GlobalBaseReg = X86FI->getGlobalBaseReg();
3813
3814      // If we didn't need a GlobalBaseReg, don't insert code.
3815      if (GlobalBaseReg == 0)
3816        return false;
3817
3818      // Insert the set of GlobalBaseReg into the first MBB of the function
3819      MachineBasicBlock &FirstMBB = MF.front();
3820      MachineBasicBlock::iterator MBBI = FirstMBB.begin();
3821      DebugLoc DL = FirstMBB.findDebugLoc(MBBI);
3822      MachineRegisterInfo &RegInfo = MF.getRegInfo();
3823      const X86InstrInfo *TII = TM->getInstrInfo();
3824
3825      unsigned PC;
3826      if (TM->getSubtarget<X86Subtarget>().isPICStyleGOT())
3827        PC = RegInfo.createVirtualRegister(X86::GR32RegisterClass);
3828      else
3829        PC = GlobalBaseReg;
3830
3831      // Operand of MovePCtoStack is completely ignored by asm printer. It's
3832      // only used in JIT code emission as displacement to pc.
3833      BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOVPC32r), PC).addImm(0);
3834
3835      // If we're using vanilla 'GOT' PIC style, we should use relative addressing
3836      // not to pc, but to _GLOBAL_OFFSET_TABLE_ external.
3837      if (TM->getSubtarget<X86Subtarget>().isPICStyleGOT()) {
3838        // Generate addl $__GLOBAL_OFFSET_TABLE_ + [.-piclabel], %some_register
3839        BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD32ri), GlobalBaseReg)
3840          .addReg(PC).addExternalSymbol("_GLOBAL_OFFSET_TABLE_",
3841                                        X86II::MO_GOT_ABSOLUTE_ADDRESS);
3842      }
3843
3844      return true;
3845    }
3846
3847    virtual const char *getPassName() const {
3848      return "X86 PIC Global Base Reg Initialization";
3849    }
3850
3851    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
3852      AU.setPreservesCFG();
3853      MachineFunctionPass::getAnalysisUsage(AU);
3854    }
3855  };
3856}
3857
3858char CGBR::ID = 0;
3859FunctionPass*
3860llvm::createGlobalBaseRegPass() { return new CGBR(); }
3861