X86InstrInfo.cpp revision c8ea673bc0e19f36738bec998fe27fad01bf9749
1//===- X86InstrInfo.cpp - X86 Instruction Information -----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the X86 implementation of the TargetInstrInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "X86InstrInfo.h"
15#include "X86.h"
16#include "X86GenInstrInfo.inc"
17#include "X86InstrBuilder.h"
18#include "X86MachineFunctionInfo.h"
19#include "X86Subtarget.h"
20#include "X86TargetMachine.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/LLVMContext.h"
23#include "llvm/ADT/STLExtras.h"
24#include "llvm/CodeGen/MachineConstantPool.h"
25#include "llvm/CodeGen/MachineFrameInfo.h"
26#include "llvm/CodeGen/MachineInstrBuilder.h"
27#include "llvm/CodeGen/MachineRegisterInfo.h"
28#include "llvm/CodeGen/LiveVariables.h"
29#include "llvm/CodeGen/PseudoSourceValue.h"
30#include "llvm/MC/MCInst.h"
31#include "llvm/Support/CommandLine.h"
32#include "llvm/Support/Debug.h"
33#include "llvm/Support/ErrorHandling.h"
34#include "llvm/Support/raw_ostream.h"
35#include "llvm/Target/TargetOptions.h"
36#include "llvm/MC/MCAsmInfo.h"
37
38#include <limits>
39
40using namespace llvm;
41
42static cl::opt<bool>
43NoFusing("disable-spill-fusing",
44         cl::desc("Disable fusing of spill code into instructions"));
45static cl::opt<bool>
46PrintFailedFusing("print-failed-fuse-candidates",
47                  cl::desc("Print instructions that the allocator wants to"
48                           " fuse, but the X86 backend currently can't"),
49                  cl::Hidden);
50static cl::opt<bool>
51ReMatPICStubLoad("remat-pic-stub-load",
52                 cl::desc("Re-materialize load from stub in PIC mode"),
53                 cl::init(false), cl::Hidden);
54
55X86InstrInfo::X86InstrInfo(X86TargetMachine &tm)
56  : TargetInstrInfoImpl(X86Insts, array_lengthof(X86Insts)),
57    TM(tm), RI(tm, *this) {
58  SmallVector<unsigned,16> AmbEntries;
59  static const unsigned OpTbl2Addr[][2] = {
60    { X86::ADC32ri,     X86::ADC32mi },
61    { X86::ADC32ri8,    X86::ADC32mi8 },
62    { X86::ADC32rr,     X86::ADC32mr },
63    { X86::ADC64ri32,   X86::ADC64mi32 },
64    { X86::ADC64ri8,    X86::ADC64mi8 },
65    { X86::ADC64rr,     X86::ADC64mr },
66    { X86::ADD16ri,     X86::ADD16mi },
67    { X86::ADD16ri8,    X86::ADD16mi8 },
68    { X86::ADD16rr,     X86::ADD16mr },
69    { X86::ADD32ri,     X86::ADD32mi },
70    { X86::ADD32ri8,    X86::ADD32mi8 },
71    { X86::ADD32rr,     X86::ADD32mr },
72    { X86::ADD64ri32,   X86::ADD64mi32 },
73    { X86::ADD64ri8,    X86::ADD64mi8 },
74    { X86::ADD64rr,     X86::ADD64mr },
75    { X86::ADD8ri,      X86::ADD8mi },
76    { X86::ADD8rr,      X86::ADD8mr },
77    { X86::AND16ri,     X86::AND16mi },
78    { X86::AND16ri8,    X86::AND16mi8 },
79    { X86::AND16rr,     X86::AND16mr },
80    { X86::AND32ri,     X86::AND32mi },
81    { X86::AND32ri8,    X86::AND32mi8 },
82    { X86::AND32rr,     X86::AND32mr },
83    { X86::AND64ri32,   X86::AND64mi32 },
84    { X86::AND64ri8,    X86::AND64mi8 },
85    { X86::AND64rr,     X86::AND64mr },
86    { X86::AND8ri,      X86::AND8mi },
87    { X86::AND8rr,      X86::AND8mr },
88    { X86::DEC16r,      X86::DEC16m },
89    { X86::DEC32r,      X86::DEC32m },
90    { X86::DEC64_16r,   X86::DEC64_16m },
91    { X86::DEC64_32r,   X86::DEC64_32m },
92    { X86::DEC64r,      X86::DEC64m },
93    { X86::DEC8r,       X86::DEC8m },
94    { X86::INC16r,      X86::INC16m },
95    { X86::INC32r,      X86::INC32m },
96    { X86::INC64_16r,   X86::INC64_16m },
97    { X86::INC64_32r,   X86::INC64_32m },
98    { X86::INC64r,      X86::INC64m },
99    { X86::INC8r,       X86::INC8m },
100    { X86::NEG16r,      X86::NEG16m },
101    { X86::NEG32r,      X86::NEG32m },
102    { X86::NEG64r,      X86::NEG64m },
103    { X86::NEG8r,       X86::NEG8m },
104    { X86::NOT16r,      X86::NOT16m },
105    { X86::NOT32r,      X86::NOT32m },
106    { X86::NOT64r,      X86::NOT64m },
107    { X86::NOT8r,       X86::NOT8m },
108    { X86::OR16ri,      X86::OR16mi },
109    { X86::OR16ri8,     X86::OR16mi8 },
110    { X86::OR16rr,      X86::OR16mr },
111    { X86::OR32ri,      X86::OR32mi },
112    { X86::OR32ri8,     X86::OR32mi8 },
113    { X86::OR32rr,      X86::OR32mr },
114    { X86::OR64ri32,    X86::OR64mi32 },
115    { X86::OR64ri8,     X86::OR64mi8 },
116    { X86::OR64rr,      X86::OR64mr },
117    { X86::OR8ri,       X86::OR8mi },
118    { X86::OR8rr,       X86::OR8mr },
119    { X86::ROL16r1,     X86::ROL16m1 },
120    { X86::ROL16rCL,    X86::ROL16mCL },
121    { X86::ROL16ri,     X86::ROL16mi },
122    { X86::ROL32r1,     X86::ROL32m1 },
123    { X86::ROL32rCL,    X86::ROL32mCL },
124    { X86::ROL32ri,     X86::ROL32mi },
125    { X86::ROL64r1,     X86::ROL64m1 },
126    { X86::ROL64rCL,    X86::ROL64mCL },
127    { X86::ROL64ri,     X86::ROL64mi },
128    { X86::ROL8r1,      X86::ROL8m1 },
129    { X86::ROL8rCL,     X86::ROL8mCL },
130    { X86::ROL8ri,      X86::ROL8mi },
131    { X86::ROR16r1,     X86::ROR16m1 },
132    { X86::ROR16rCL,    X86::ROR16mCL },
133    { X86::ROR16ri,     X86::ROR16mi },
134    { X86::ROR32r1,     X86::ROR32m1 },
135    { X86::ROR32rCL,    X86::ROR32mCL },
136    { X86::ROR32ri,     X86::ROR32mi },
137    { X86::ROR64r1,     X86::ROR64m1 },
138    { X86::ROR64rCL,    X86::ROR64mCL },
139    { X86::ROR64ri,     X86::ROR64mi },
140    { X86::ROR8r1,      X86::ROR8m1 },
141    { X86::ROR8rCL,     X86::ROR8mCL },
142    { X86::ROR8ri,      X86::ROR8mi },
143    { X86::SAR16r1,     X86::SAR16m1 },
144    { X86::SAR16rCL,    X86::SAR16mCL },
145    { X86::SAR16ri,     X86::SAR16mi },
146    { X86::SAR32r1,     X86::SAR32m1 },
147    { X86::SAR32rCL,    X86::SAR32mCL },
148    { X86::SAR32ri,     X86::SAR32mi },
149    { X86::SAR64r1,     X86::SAR64m1 },
150    { X86::SAR64rCL,    X86::SAR64mCL },
151    { X86::SAR64ri,     X86::SAR64mi },
152    { X86::SAR8r1,      X86::SAR8m1 },
153    { X86::SAR8rCL,     X86::SAR8mCL },
154    { X86::SAR8ri,      X86::SAR8mi },
155    { X86::SBB32ri,     X86::SBB32mi },
156    { X86::SBB32ri8,    X86::SBB32mi8 },
157    { X86::SBB32rr,     X86::SBB32mr },
158    { X86::SBB64ri32,   X86::SBB64mi32 },
159    { X86::SBB64ri8,    X86::SBB64mi8 },
160    { X86::SBB64rr,     X86::SBB64mr },
161    { X86::SHL16rCL,    X86::SHL16mCL },
162    { X86::SHL16ri,     X86::SHL16mi },
163    { X86::SHL32rCL,    X86::SHL32mCL },
164    { X86::SHL32ri,     X86::SHL32mi },
165    { X86::SHL64rCL,    X86::SHL64mCL },
166    { X86::SHL64ri,     X86::SHL64mi },
167    { X86::SHL8rCL,     X86::SHL8mCL },
168    { X86::SHL8ri,      X86::SHL8mi },
169    { X86::SHLD16rrCL,  X86::SHLD16mrCL },
170    { X86::SHLD16rri8,  X86::SHLD16mri8 },
171    { X86::SHLD32rrCL,  X86::SHLD32mrCL },
172    { X86::SHLD32rri8,  X86::SHLD32mri8 },
173    { X86::SHLD64rrCL,  X86::SHLD64mrCL },
174    { X86::SHLD64rri8,  X86::SHLD64mri8 },
175    { X86::SHR16r1,     X86::SHR16m1 },
176    { X86::SHR16rCL,    X86::SHR16mCL },
177    { X86::SHR16ri,     X86::SHR16mi },
178    { X86::SHR32r1,     X86::SHR32m1 },
179    { X86::SHR32rCL,    X86::SHR32mCL },
180    { X86::SHR32ri,     X86::SHR32mi },
181    { X86::SHR64r1,     X86::SHR64m1 },
182    { X86::SHR64rCL,    X86::SHR64mCL },
183    { X86::SHR64ri,     X86::SHR64mi },
184    { X86::SHR8r1,      X86::SHR8m1 },
185    { X86::SHR8rCL,     X86::SHR8mCL },
186    { X86::SHR8ri,      X86::SHR8mi },
187    { X86::SHRD16rrCL,  X86::SHRD16mrCL },
188    { X86::SHRD16rri8,  X86::SHRD16mri8 },
189    { X86::SHRD32rrCL,  X86::SHRD32mrCL },
190    { X86::SHRD32rri8,  X86::SHRD32mri8 },
191    { X86::SHRD64rrCL,  X86::SHRD64mrCL },
192    { X86::SHRD64rri8,  X86::SHRD64mri8 },
193    { X86::SUB16ri,     X86::SUB16mi },
194    { X86::SUB16ri8,    X86::SUB16mi8 },
195    { X86::SUB16rr,     X86::SUB16mr },
196    { X86::SUB32ri,     X86::SUB32mi },
197    { X86::SUB32ri8,    X86::SUB32mi8 },
198    { X86::SUB32rr,     X86::SUB32mr },
199    { X86::SUB64ri32,   X86::SUB64mi32 },
200    { X86::SUB64ri8,    X86::SUB64mi8 },
201    { X86::SUB64rr,     X86::SUB64mr },
202    { X86::SUB8ri,      X86::SUB8mi },
203    { X86::SUB8rr,      X86::SUB8mr },
204    { X86::XOR16ri,     X86::XOR16mi },
205    { X86::XOR16ri8,    X86::XOR16mi8 },
206    { X86::XOR16rr,     X86::XOR16mr },
207    { X86::XOR32ri,     X86::XOR32mi },
208    { X86::XOR32ri8,    X86::XOR32mi8 },
209    { X86::XOR32rr,     X86::XOR32mr },
210    { X86::XOR64ri32,   X86::XOR64mi32 },
211    { X86::XOR64ri8,    X86::XOR64mi8 },
212    { X86::XOR64rr,     X86::XOR64mr },
213    { X86::XOR8ri,      X86::XOR8mi },
214    { X86::XOR8rr,      X86::XOR8mr }
215  };
216
217  for (unsigned i = 0, e = array_lengthof(OpTbl2Addr); i != e; ++i) {
218    unsigned RegOp = OpTbl2Addr[i][0];
219    unsigned MemOp = OpTbl2Addr[i][1];
220    if (!RegOp2MemOpTable2Addr.insert(std::make_pair((unsigned*)RegOp,
221                                               std::make_pair(MemOp,0))).second)
222      assert(false && "Duplicated entries?");
223    // Index 0, folded load and store, no alignment requirement.
224    unsigned AuxInfo = 0 | (1 << 4) | (1 << 5);
225    if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
226                                                std::make_pair(RegOp,
227                                                              AuxInfo))).second)
228      AmbEntries.push_back(MemOp);
229  }
230
231  // If the third value is 1, then it's folding either a load or a store.
232  static const unsigned OpTbl0[][4] = {
233    { X86::BT16ri8,     X86::BT16mi8, 1, 0 },
234    { X86::BT32ri8,     X86::BT32mi8, 1, 0 },
235    { X86::BT64ri8,     X86::BT64mi8, 1, 0 },
236    { X86::CALL32r,     X86::CALL32m, 1, 0 },
237    { X86::CALL64r,     X86::CALL64m, 1, 0 },
238    { X86::CMP16ri,     X86::CMP16mi, 1, 0 },
239    { X86::CMP16ri8,    X86::CMP16mi8, 1, 0 },
240    { X86::CMP16rr,     X86::CMP16mr, 1, 0 },
241    { X86::CMP32ri,     X86::CMP32mi, 1, 0 },
242    { X86::CMP32ri8,    X86::CMP32mi8, 1, 0 },
243    { X86::CMP32rr,     X86::CMP32mr, 1, 0 },
244    { X86::CMP64ri32,   X86::CMP64mi32, 1, 0 },
245    { X86::CMP64ri8,    X86::CMP64mi8, 1, 0 },
246    { X86::CMP64rr,     X86::CMP64mr, 1, 0 },
247    { X86::CMP8ri,      X86::CMP8mi, 1, 0 },
248    { X86::CMP8rr,      X86::CMP8mr, 1, 0 },
249    { X86::DIV16r,      X86::DIV16m, 1, 0 },
250    { X86::DIV32r,      X86::DIV32m, 1, 0 },
251    { X86::DIV64r,      X86::DIV64m, 1, 0 },
252    { X86::DIV8r,       X86::DIV8m, 1, 0 },
253    { X86::EXTRACTPSrr, X86::EXTRACTPSmr, 0, 16 },
254    { X86::FsMOVAPDrr,  X86::MOVSDmr, 0, 0 },
255    { X86::FsMOVAPSrr,  X86::MOVSSmr, 0, 0 },
256    { X86::IDIV16r,     X86::IDIV16m, 1, 0 },
257    { X86::IDIV32r,     X86::IDIV32m, 1, 0 },
258    { X86::IDIV64r,     X86::IDIV64m, 1, 0 },
259    { X86::IDIV8r,      X86::IDIV8m, 1, 0 },
260    { X86::IMUL16r,     X86::IMUL16m, 1, 0 },
261    { X86::IMUL32r,     X86::IMUL32m, 1, 0 },
262    { X86::IMUL64r,     X86::IMUL64m, 1, 0 },
263    { X86::IMUL8r,      X86::IMUL8m, 1, 0 },
264    { X86::JMP32r,      X86::JMP32m, 1, 0 },
265    { X86::JMP64r,      X86::JMP64m, 1, 0 },
266    { X86::MOV16ri,     X86::MOV16mi, 0, 0 },
267    { X86::MOV16rr,     X86::MOV16mr, 0, 0 },
268    { X86::MOV32ri,     X86::MOV32mi, 0, 0 },
269    { X86::MOV32rr,     X86::MOV32mr, 0, 0 },
270    { X86::MOV32rr_TC,  X86::MOV32mr_TC, 0, 0 },
271    { X86::MOV64ri32,   X86::MOV64mi32, 0, 0 },
272    { X86::MOV64rr,     X86::MOV64mr, 0, 0 },
273    { X86::MOV8ri,      X86::MOV8mi, 0, 0 },
274    { X86::MOV8rr,      X86::MOV8mr, 0, 0 },
275    { X86::MOV8rr_NOREX, X86::MOV8mr_NOREX, 0, 0 },
276    { X86::MOVAPDrr,    X86::MOVAPDmr, 0, 16 },
277    { X86::MOVAPSrr,    X86::MOVAPSmr, 0, 16 },
278    { X86::MOVDQArr,    X86::MOVDQAmr, 0, 16 },
279    { X86::MOVPDI2DIrr, X86::MOVPDI2DImr, 0, 0 },
280    { X86::MOVPQIto64rr,X86::MOVPQI2QImr, 0, 0 },
281    { X86::MOVSDto64rr, X86::MOVSDto64mr, 0, 0 },
282    { X86::MOVSS2DIrr,  X86::MOVSS2DImr, 0, 0 },
283    { X86::MOVUPDrr,    X86::MOVUPDmr, 0, 0 },
284    { X86::MOVUPSrr,    X86::MOVUPSmr, 0, 0 },
285    { X86::MUL16r,      X86::MUL16m, 1, 0 },
286    { X86::MUL32r,      X86::MUL32m, 1, 0 },
287    { X86::MUL64r,      X86::MUL64m, 1, 0 },
288    { X86::MUL8r,       X86::MUL8m, 1, 0 },
289    { X86::SETAEr,      X86::SETAEm, 0, 0 },
290    { X86::SETAr,       X86::SETAm, 0, 0 },
291    { X86::SETBEr,      X86::SETBEm, 0, 0 },
292    { X86::SETBr,       X86::SETBm, 0, 0 },
293    { X86::SETEr,       X86::SETEm, 0, 0 },
294    { X86::SETGEr,      X86::SETGEm, 0, 0 },
295    { X86::SETGr,       X86::SETGm, 0, 0 },
296    { X86::SETLEr,      X86::SETLEm, 0, 0 },
297    { X86::SETLr,       X86::SETLm, 0, 0 },
298    { X86::SETNEr,      X86::SETNEm, 0, 0 },
299    { X86::SETNOr,      X86::SETNOm, 0, 0 },
300    { X86::SETNPr,      X86::SETNPm, 0, 0 },
301    { X86::SETNSr,      X86::SETNSm, 0, 0 },
302    { X86::SETOr,       X86::SETOm, 0, 0 },
303    { X86::SETPr,       X86::SETPm, 0, 0 },
304    { X86::SETSr,       X86::SETSm, 0, 0 },
305    { X86::TAILJMPr,    X86::TAILJMPm, 1, 0 },
306    { X86::TAILJMPr64,  X86::TAILJMPm64, 1, 0 },
307    { X86::TEST16ri,    X86::TEST16mi, 1, 0 },
308    { X86::TEST32ri,    X86::TEST32mi, 1, 0 },
309    { X86::TEST64ri32,  X86::TEST64mi32, 1, 0 },
310    { X86::TEST8ri,     X86::TEST8mi, 1, 0 }
311  };
312
313  for (unsigned i = 0, e = array_lengthof(OpTbl0); i != e; ++i) {
314    unsigned RegOp = OpTbl0[i][0];
315    unsigned MemOp = OpTbl0[i][1];
316    unsigned Align = OpTbl0[i][3];
317    if (!RegOp2MemOpTable0.insert(std::make_pair((unsigned*)RegOp,
318                                           std::make_pair(MemOp,Align))).second)
319      assert(false && "Duplicated entries?");
320    unsigned FoldedLoad = OpTbl0[i][2];
321    // Index 0, folded load or store.
322    unsigned AuxInfo = 0 | (FoldedLoad << 4) | ((FoldedLoad^1) << 5);
323    if (RegOp != X86::FsMOVAPDrr && RegOp != X86::FsMOVAPSrr)
324      if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
325                                     std::make_pair(RegOp, AuxInfo))).second)
326        AmbEntries.push_back(MemOp);
327  }
328
329  static const unsigned OpTbl1[][3] = {
330    { X86::CMP16rr,         X86::CMP16rm, 0 },
331    { X86::CMP32rr,         X86::CMP32rm, 0 },
332    { X86::CMP64rr,         X86::CMP64rm, 0 },
333    { X86::CMP8rr,          X86::CMP8rm, 0 },
334    { X86::CVTSD2SSrr,      X86::CVTSD2SSrm, 0 },
335    { X86::CVTSI2SD64rr,    X86::CVTSI2SD64rm, 0 },
336    { X86::CVTSI2SDrr,      X86::CVTSI2SDrm, 0 },
337    { X86::CVTSI2SS64rr,    X86::CVTSI2SS64rm, 0 },
338    { X86::CVTSI2SSrr,      X86::CVTSI2SSrm, 0 },
339    { X86::CVTSS2SDrr,      X86::CVTSS2SDrm, 0 },
340    { X86::CVTTSD2SI64rr,   X86::CVTTSD2SI64rm, 0 },
341    { X86::CVTTSD2SIrr,     X86::CVTTSD2SIrm, 0 },
342    { X86::CVTTSS2SI64rr,   X86::CVTTSS2SI64rm, 0 },
343    { X86::CVTTSS2SIrr,     X86::CVTTSS2SIrm, 0 },
344    { X86::FsMOVAPDrr,      X86::MOVSDrm, 0 },
345    { X86::FsMOVAPSrr,      X86::MOVSSrm, 0 },
346    { X86::IMUL16rri,       X86::IMUL16rmi, 0 },
347    { X86::IMUL16rri8,      X86::IMUL16rmi8, 0 },
348    { X86::IMUL32rri,       X86::IMUL32rmi, 0 },
349    { X86::IMUL32rri8,      X86::IMUL32rmi8, 0 },
350    { X86::IMUL64rri32,     X86::IMUL64rmi32, 0 },
351    { X86::IMUL64rri8,      X86::IMUL64rmi8, 0 },
352    { X86::Int_CMPSDrr,     X86::Int_CMPSDrm, 0 },
353    { X86::Int_CMPSSrr,     X86::Int_CMPSSrm, 0 },
354    { X86::Int_COMISDrr,    X86::Int_COMISDrm, 0 },
355    { X86::Int_COMISSrr,    X86::Int_COMISSrm, 0 },
356    { X86::Int_CVTDQ2PDrr,  X86::Int_CVTDQ2PDrm, 16 },
357    { X86::Int_CVTDQ2PSrr,  X86::Int_CVTDQ2PSrm, 16 },
358    { X86::Int_CVTPD2DQrr,  X86::Int_CVTPD2DQrm, 16 },
359    { X86::Int_CVTPD2PSrr,  X86::Int_CVTPD2PSrm, 16 },
360    { X86::Int_CVTPS2DQrr,  X86::Int_CVTPS2DQrm, 16 },
361    { X86::Int_CVTPS2PDrr,  X86::Int_CVTPS2PDrm, 0 },
362    { X86::Int_CVTSD2SI64rr,X86::Int_CVTSD2SI64rm, 0 },
363    { X86::Int_CVTSD2SIrr,  X86::Int_CVTSD2SIrm, 0 },
364    { X86::Int_CVTSD2SSrr,  X86::Int_CVTSD2SSrm, 0 },
365    { X86::Int_CVTSI2SD64rr,X86::Int_CVTSI2SD64rm, 0 },
366    { X86::Int_CVTSI2SDrr,  X86::Int_CVTSI2SDrm, 0 },
367    { X86::Int_CVTSI2SS64rr,X86::Int_CVTSI2SS64rm, 0 },
368    { X86::Int_CVTSI2SSrr,  X86::Int_CVTSI2SSrm, 0 },
369    { X86::Int_CVTSS2SDrr,  X86::Int_CVTSS2SDrm, 0 },
370    { X86::Int_CVTSS2SI64rr,X86::Int_CVTSS2SI64rm, 0 },
371    { X86::Int_CVTSS2SIrr,  X86::Int_CVTSS2SIrm, 0 },
372    { X86::Int_CVTTPD2DQrr, X86::Int_CVTTPD2DQrm, 16 },
373    { X86::Int_CVTTPS2DQrr, X86::Int_CVTTPS2DQrm, 16 },
374    { X86::Int_CVTTSD2SI64rr,X86::Int_CVTTSD2SI64rm, 0 },
375    { X86::Int_CVTTSD2SIrr, X86::Int_CVTTSD2SIrm, 0 },
376    { X86::Int_CVTTSS2SI64rr,X86::Int_CVTTSS2SI64rm, 0 },
377    { X86::Int_CVTTSS2SIrr, X86::Int_CVTTSS2SIrm, 0 },
378    { X86::Int_UCOMISDrr,   X86::Int_UCOMISDrm, 0 },
379    { X86::Int_UCOMISSrr,   X86::Int_UCOMISSrm, 0 },
380    { X86::MOV16rr,         X86::MOV16rm, 0 },
381    { X86::MOV32rr,         X86::MOV32rm, 0 },
382    { X86::MOV32rr_TC,      X86::MOV32rm_TC, 0 },
383    { X86::MOV64rr,         X86::MOV64rm, 0 },
384    { X86::MOV64toPQIrr,    X86::MOVQI2PQIrm, 0 },
385    { X86::MOV64toSDrr,     X86::MOV64toSDrm, 0 },
386    { X86::MOV8rr,          X86::MOV8rm, 0 },
387    { X86::MOVAPDrr,        X86::MOVAPDrm, 16 },
388    { X86::MOVAPSrr,        X86::MOVAPSrm, 16 },
389    { X86::MOVDDUPrr,       X86::MOVDDUPrm, 0 },
390    { X86::MOVDI2PDIrr,     X86::MOVDI2PDIrm, 0 },
391    { X86::MOVDI2SSrr,      X86::MOVDI2SSrm, 0 },
392    { X86::MOVDQArr,        X86::MOVDQArm, 16 },
393    { X86::MOVSHDUPrr,      X86::MOVSHDUPrm, 16 },
394    { X86::MOVSLDUPrr,      X86::MOVSLDUPrm, 16 },
395    { X86::MOVSX16rr8,      X86::MOVSX16rm8, 0 },
396    { X86::MOVSX32rr16,     X86::MOVSX32rm16, 0 },
397    { X86::MOVSX32rr8,      X86::MOVSX32rm8, 0 },
398    { X86::MOVSX64rr16,     X86::MOVSX64rm16, 0 },
399    { X86::MOVSX64rr32,     X86::MOVSX64rm32, 0 },
400    { X86::MOVSX64rr8,      X86::MOVSX64rm8, 0 },
401    { X86::MOVUPDrr,        X86::MOVUPDrm, 16 },
402    { X86::MOVUPSrr,        X86::MOVUPSrm, 0 },
403    { X86::MOVZDI2PDIrr,    X86::MOVZDI2PDIrm, 0 },
404    { X86::MOVZQI2PQIrr,    X86::MOVZQI2PQIrm, 0 },
405    { X86::MOVZPQILo2PQIrr, X86::MOVZPQILo2PQIrm, 16 },
406    { X86::MOVZX16rr8,      X86::MOVZX16rm8, 0 },
407    { X86::MOVZX32rr16,     X86::MOVZX32rm16, 0 },
408    { X86::MOVZX32_NOREXrr8, X86::MOVZX32_NOREXrm8, 0 },
409    { X86::MOVZX32rr8,      X86::MOVZX32rm8, 0 },
410    { X86::MOVZX64rr16,     X86::MOVZX64rm16, 0 },
411    { X86::MOVZX64rr32,     X86::MOVZX64rm32, 0 },
412    { X86::MOVZX64rr8,      X86::MOVZX64rm8, 0 },
413    { X86::PSHUFDri,        X86::PSHUFDmi, 16 },
414    { X86::PSHUFHWri,       X86::PSHUFHWmi, 16 },
415    { X86::PSHUFLWri,       X86::PSHUFLWmi, 16 },
416    { X86::RCPPSr,          X86::RCPPSm, 16 },
417    { X86::RCPPSr_Int,      X86::RCPPSm_Int, 16 },
418    { X86::RSQRTPSr,        X86::RSQRTPSm, 16 },
419    { X86::RSQRTPSr_Int,    X86::RSQRTPSm_Int, 16 },
420    { X86::RSQRTSSr,        X86::RSQRTSSm, 0 },
421    { X86::RSQRTSSr_Int,    X86::RSQRTSSm_Int, 0 },
422    { X86::SQRTPDr,         X86::SQRTPDm, 16 },
423    { X86::SQRTPDr_Int,     X86::SQRTPDm_Int, 16 },
424    { X86::SQRTPSr,         X86::SQRTPSm, 16 },
425    { X86::SQRTPSr_Int,     X86::SQRTPSm_Int, 16 },
426    { X86::SQRTSDr,         X86::SQRTSDm, 0 },
427    { X86::SQRTSDr_Int,     X86::SQRTSDm_Int, 0 },
428    { X86::SQRTSSr,         X86::SQRTSSm, 0 },
429    { X86::SQRTSSr_Int,     X86::SQRTSSm_Int, 0 },
430    { X86::TEST16rr,        X86::TEST16rm, 0 },
431    { X86::TEST32rr,        X86::TEST32rm, 0 },
432    { X86::TEST64rr,        X86::TEST64rm, 0 },
433    { X86::TEST8rr,         X86::TEST8rm, 0 },
434    // FIXME: TEST*rr EAX,EAX ---> CMP [mem], 0
435    { X86::UCOMISDrr,       X86::UCOMISDrm, 0 },
436    { X86::UCOMISSrr,       X86::UCOMISSrm, 0 }
437  };
438
439  for (unsigned i = 0, e = array_lengthof(OpTbl1); i != e; ++i) {
440    unsigned RegOp = OpTbl1[i][0];
441    unsigned MemOp = OpTbl1[i][1];
442    unsigned Align = OpTbl1[i][2];
443    if (!RegOp2MemOpTable1.insert(std::make_pair((unsigned*)RegOp,
444                                           std::make_pair(MemOp,Align))).second)
445      assert(false && "Duplicated entries?");
446    // Index 1, folded load
447    unsigned AuxInfo = 1 | (1 << 4);
448    if (RegOp != X86::FsMOVAPDrr && RegOp != X86::FsMOVAPSrr)
449      if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
450                                     std::make_pair(RegOp, AuxInfo))).second)
451        AmbEntries.push_back(MemOp);
452  }
453
454  static const unsigned OpTbl2[][3] = {
455    { X86::ADC32rr,         X86::ADC32rm, 0 },
456    { X86::ADC64rr,         X86::ADC64rm, 0 },
457    { X86::ADD16rr,         X86::ADD16rm, 0 },
458    { X86::ADD32rr,         X86::ADD32rm, 0 },
459    { X86::ADD64rr,         X86::ADD64rm, 0 },
460    { X86::ADD8rr,          X86::ADD8rm, 0 },
461    { X86::ADDPDrr,         X86::ADDPDrm, 16 },
462    { X86::ADDPSrr,         X86::ADDPSrm, 16 },
463    { X86::ADDSDrr,         X86::ADDSDrm, 0 },
464    { X86::ADDSSrr,         X86::ADDSSrm, 0 },
465    { X86::ADDSUBPDrr,      X86::ADDSUBPDrm, 16 },
466    { X86::ADDSUBPSrr,      X86::ADDSUBPSrm, 16 },
467    { X86::AND16rr,         X86::AND16rm, 0 },
468    { X86::AND32rr,         X86::AND32rm, 0 },
469    { X86::AND64rr,         X86::AND64rm, 0 },
470    { X86::AND8rr,          X86::AND8rm, 0 },
471    { X86::ANDNPDrr,        X86::ANDNPDrm, 16 },
472    { X86::ANDNPSrr,        X86::ANDNPSrm, 16 },
473    { X86::ANDPDrr,         X86::ANDPDrm, 16 },
474    { X86::ANDPSrr,         X86::ANDPSrm, 16 },
475    { X86::CMOVA16rr,       X86::CMOVA16rm, 0 },
476    { X86::CMOVA32rr,       X86::CMOVA32rm, 0 },
477    { X86::CMOVA64rr,       X86::CMOVA64rm, 0 },
478    { X86::CMOVAE16rr,      X86::CMOVAE16rm, 0 },
479    { X86::CMOVAE32rr,      X86::CMOVAE32rm, 0 },
480    { X86::CMOVAE64rr,      X86::CMOVAE64rm, 0 },
481    { X86::CMOVB16rr,       X86::CMOVB16rm, 0 },
482    { X86::CMOVB32rr,       X86::CMOVB32rm, 0 },
483    { X86::CMOVB64rr,       X86::CMOVB64rm, 0 },
484    { X86::CMOVBE16rr,      X86::CMOVBE16rm, 0 },
485    { X86::CMOVBE32rr,      X86::CMOVBE32rm, 0 },
486    { X86::CMOVBE64rr,      X86::CMOVBE64rm, 0 },
487    { X86::CMOVE16rr,       X86::CMOVE16rm, 0 },
488    { X86::CMOVE32rr,       X86::CMOVE32rm, 0 },
489    { X86::CMOVE64rr,       X86::CMOVE64rm, 0 },
490    { X86::CMOVG16rr,       X86::CMOVG16rm, 0 },
491    { X86::CMOVG32rr,       X86::CMOVG32rm, 0 },
492    { X86::CMOVG64rr,       X86::CMOVG64rm, 0 },
493    { X86::CMOVGE16rr,      X86::CMOVGE16rm, 0 },
494    { X86::CMOVGE32rr,      X86::CMOVGE32rm, 0 },
495    { X86::CMOVGE64rr,      X86::CMOVGE64rm, 0 },
496    { X86::CMOVL16rr,       X86::CMOVL16rm, 0 },
497    { X86::CMOVL32rr,       X86::CMOVL32rm, 0 },
498    { X86::CMOVL64rr,       X86::CMOVL64rm, 0 },
499    { X86::CMOVLE16rr,      X86::CMOVLE16rm, 0 },
500    { X86::CMOVLE32rr,      X86::CMOVLE32rm, 0 },
501    { X86::CMOVLE64rr,      X86::CMOVLE64rm, 0 },
502    { X86::CMOVNE16rr,      X86::CMOVNE16rm, 0 },
503    { X86::CMOVNE32rr,      X86::CMOVNE32rm, 0 },
504    { X86::CMOVNE64rr,      X86::CMOVNE64rm, 0 },
505    { X86::CMOVNO16rr,      X86::CMOVNO16rm, 0 },
506    { X86::CMOVNO32rr,      X86::CMOVNO32rm, 0 },
507    { X86::CMOVNO64rr,      X86::CMOVNO64rm, 0 },
508    { X86::CMOVNP16rr,      X86::CMOVNP16rm, 0 },
509    { X86::CMOVNP32rr,      X86::CMOVNP32rm, 0 },
510    { X86::CMOVNP64rr,      X86::CMOVNP64rm, 0 },
511    { X86::CMOVNS16rr,      X86::CMOVNS16rm, 0 },
512    { X86::CMOVNS32rr,      X86::CMOVNS32rm, 0 },
513    { X86::CMOVNS64rr,      X86::CMOVNS64rm, 0 },
514    { X86::CMOVO16rr,       X86::CMOVO16rm, 0 },
515    { X86::CMOVO32rr,       X86::CMOVO32rm, 0 },
516    { X86::CMOVO64rr,       X86::CMOVO64rm, 0 },
517    { X86::CMOVP16rr,       X86::CMOVP16rm, 0 },
518    { X86::CMOVP32rr,       X86::CMOVP32rm, 0 },
519    { X86::CMOVP64rr,       X86::CMOVP64rm, 0 },
520    { X86::CMOVS16rr,       X86::CMOVS16rm, 0 },
521    { X86::CMOVS32rr,       X86::CMOVS32rm, 0 },
522    { X86::CMOVS64rr,       X86::CMOVS64rm, 0 },
523    { X86::CMPPDrri,        X86::CMPPDrmi, 16 },
524    { X86::CMPPSrri,        X86::CMPPSrmi, 16 },
525    { X86::CMPSDrr,         X86::CMPSDrm, 0 },
526    { X86::CMPSSrr,         X86::CMPSSrm, 0 },
527    { X86::DIVPDrr,         X86::DIVPDrm, 16 },
528    { X86::DIVPSrr,         X86::DIVPSrm, 16 },
529    { X86::DIVSDrr,         X86::DIVSDrm, 0 },
530    { X86::DIVSSrr,         X86::DIVSSrm, 0 },
531    { X86::FsANDNPDrr,      X86::FsANDNPDrm, 16 },
532    { X86::FsANDNPSrr,      X86::FsANDNPSrm, 16 },
533    { X86::FsANDPDrr,       X86::FsANDPDrm, 16 },
534    { X86::FsANDPSrr,       X86::FsANDPSrm, 16 },
535    { X86::FsORPDrr,        X86::FsORPDrm, 16 },
536    { X86::FsORPSrr,        X86::FsORPSrm, 16 },
537    { X86::FsXORPDrr,       X86::FsXORPDrm, 16 },
538    { X86::FsXORPSrr,       X86::FsXORPSrm, 16 },
539    { X86::HADDPDrr,        X86::HADDPDrm, 16 },
540    { X86::HADDPSrr,        X86::HADDPSrm, 16 },
541    { X86::HSUBPDrr,        X86::HSUBPDrm, 16 },
542    { X86::HSUBPSrr,        X86::HSUBPSrm, 16 },
543    { X86::IMUL16rr,        X86::IMUL16rm, 0 },
544    { X86::IMUL32rr,        X86::IMUL32rm, 0 },
545    { X86::IMUL64rr,        X86::IMUL64rm, 0 },
546    { X86::MAXPDrr,         X86::MAXPDrm, 16 },
547    { X86::MAXPDrr_Int,     X86::MAXPDrm_Int, 16 },
548    { X86::MAXPSrr,         X86::MAXPSrm, 16 },
549    { X86::MAXPSrr_Int,     X86::MAXPSrm_Int, 16 },
550    { X86::MAXSDrr,         X86::MAXSDrm, 0 },
551    { X86::MAXSDrr_Int,     X86::MAXSDrm_Int, 0 },
552    { X86::MAXSSrr,         X86::MAXSSrm, 0 },
553    { X86::MAXSSrr_Int,     X86::MAXSSrm_Int, 0 },
554    { X86::MINPDrr,         X86::MINPDrm, 16 },
555    { X86::MINPDrr_Int,     X86::MINPDrm_Int, 16 },
556    { X86::MINPSrr,         X86::MINPSrm, 16 },
557    { X86::MINPSrr_Int,     X86::MINPSrm_Int, 16 },
558    { X86::MINSDrr,         X86::MINSDrm, 0 },
559    { X86::MINSDrr_Int,     X86::MINSDrm_Int, 0 },
560    { X86::MINSSrr,         X86::MINSSrm, 0 },
561    { X86::MINSSrr_Int,     X86::MINSSrm_Int, 0 },
562    { X86::MULPDrr,         X86::MULPDrm, 16 },
563    { X86::MULPSrr,         X86::MULPSrm, 16 },
564    { X86::MULSDrr,         X86::MULSDrm, 0 },
565    { X86::MULSSrr,         X86::MULSSrm, 0 },
566    { X86::OR16rr,          X86::OR16rm, 0 },
567    { X86::OR32rr,          X86::OR32rm, 0 },
568    { X86::OR64rr,          X86::OR64rm, 0 },
569    { X86::OR8rr,           X86::OR8rm, 0 },
570    { X86::ORPDrr,          X86::ORPDrm, 16 },
571    { X86::ORPSrr,          X86::ORPSrm, 16 },
572    { X86::PACKSSDWrr,      X86::PACKSSDWrm, 16 },
573    { X86::PACKSSWBrr,      X86::PACKSSWBrm, 16 },
574    { X86::PACKUSWBrr,      X86::PACKUSWBrm, 16 },
575    { X86::PADDBrr,         X86::PADDBrm, 16 },
576    { X86::PADDDrr,         X86::PADDDrm, 16 },
577    { X86::PADDQrr,         X86::PADDQrm, 16 },
578    { X86::PADDSBrr,        X86::PADDSBrm, 16 },
579    { X86::PADDSWrr,        X86::PADDSWrm, 16 },
580    { X86::PADDWrr,         X86::PADDWrm, 16 },
581    { X86::PANDNrr,         X86::PANDNrm, 16 },
582    { X86::PANDrr,          X86::PANDrm, 16 },
583    { X86::PAVGBrr,         X86::PAVGBrm, 16 },
584    { X86::PAVGWrr,         X86::PAVGWrm, 16 },
585    { X86::PCMPEQBrr,       X86::PCMPEQBrm, 16 },
586    { X86::PCMPEQDrr,       X86::PCMPEQDrm, 16 },
587    { X86::PCMPEQWrr,       X86::PCMPEQWrm, 16 },
588    { X86::PCMPGTBrr,       X86::PCMPGTBrm, 16 },
589    { X86::PCMPGTDrr,       X86::PCMPGTDrm, 16 },
590    { X86::PCMPGTWrr,       X86::PCMPGTWrm, 16 },
591    { X86::PINSRWrri,       X86::PINSRWrmi, 16 },
592    { X86::PMADDWDrr,       X86::PMADDWDrm, 16 },
593    { X86::PMAXSWrr,        X86::PMAXSWrm, 16 },
594    { X86::PMAXUBrr,        X86::PMAXUBrm, 16 },
595    { X86::PMINSWrr,        X86::PMINSWrm, 16 },
596    { X86::PMINUBrr,        X86::PMINUBrm, 16 },
597    { X86::PMULDQrr,        X86::PMULDQrm, 16 },
598    { X86::PMULHUWrr,       X86::PMULHUWrm, 16 },
599    { X86::PMULHWrr,        X86::PMULHWrm, 16 },
600    { X86::PMULLDrr,        X86::PMULLDrm, 16 },
601    { X86::PMULLWrr,        X86::PMULLWrm, 16 },
602    { X86::PMULUDQrr,       X86::PMULUDQrm, 16 },
603    { X86::PORrr,           X86::PORrm, 16 },
604    { X86::PSADBWrr,        X86::PSADBWrm, 16 },
605    { X86::PSLLDrr,         X86::PSLLDrm, 16 },
606    { X86::PSLLQrr,         X86::PSLLQrm, 16 },
607    { X86::PSLLWrr,         X86::PSLLWrm, 16 },
608    { X86::PSRADrr,         X86::PSRADrm, 16 },
609    { X86::PSRAWrr,         X86::PSRAWrm, 16 },
610    { X86::PSRLDrr,         X86::PSRLDrm, 16 },
611    { X86::PSRLQrr,         X86::PSRLQrm, 16 },
612    { X86::PSRLWrr,         X86::PSRLWrm, 16 },
613    { X86::PSUBBrr,         X86::PSUBBrm, 16 },
614    { X86::PSUBDrr,         X86::PSUBDrm, 16 },
615    { X86::PSUBSBrr,        X86::PSUBSBrm, 16 },
616    { X86::PSUBSWrr,        X86::PSUBSWrm, 16 },
617    { X86::PSUBWrr,         X86::PSUBWrm, 16 },
618    { X86::PUNPCKHBWrr,     X86::PUNPCKHBWrm, 16 },
619    { X86::PUNPCKHDQrr,     X86::PUNPCKHDQrm, 16 },
620    { X86::PUNPCKHQDQrr,    X86::PUNPCKHQDQrm, 16 },
621    { X86::PUNPCKHWDrr,     X86::PUNPCKHWDrm, 16 },
622    { X86::PUNPCKLBWrr,     X86::PUNPCKLBWrm, 16 },
623    { X86::PUNPCKLDQrr,     X86::PUNPCKLDQrm, 16 },
624    { X86::PUNPCKLQDQrr,    X86::PUNPCKLQDQrm, 16 },
625    { X86::PUNPCKLWDrr,     X86::PUNPCKLWDrm, 16 },
626    { X86::PXORrr,          X86::PXORrm, 16 },
627    { X86::SBB32rr,         X86::SBB32rm, 0 },
628    { X86::SBB64rr,         X86::SBB64rm, 0 },
629    { X86::SHUFPDrri,       X86::SHUFPDrmi, 16 },
630    { X86::SHUFPSrri,       X86::SHUFPSrmi, 16 },
631    { X86::SUB16rr,         X86::SUB16rm, 0 },
632    { X86::SUB32rr,         X86::SUB32rm, 0 },
633    { X86::SUB64rr,         X86::SUB64rm, 0 },
634    { X86::SUB8rr,          X86::SUB8rm, 0 },
635    { X86::SUBPDrr,         X86::SUBPDrm, 16 },
636    { X86::SUBPSrr,         X86::SUBPSrm, 16 },
637    { X86::SUBSDrr,         X86::SUBSDrm, 0 },
638    { X86::SUBSSrr,         X86::SUBSSrm, 0 },
639    // FIXME: TEST*rr -> swapped operand of TEST*mr.
640    { X86::UNPCKHPDrr,      X86::UNPCKHPDrm, 16 },
641    { X86::UNPCKHPSrr,      X86::UNPCKHPSrm, 16 },
642    { X86::UNPCKLPDrr,      X86::UNPCKLPDrm, 16 },
643    { X86::UNPCKLPSrr,      X86::UNPCKLPSrm, 16 },
644    { X86::XOR16rr,         X86::XOR16rm, 0 },
645    { X86::XOR32rr,         X86::XOR32rm, 0 },
646    { X86::XOR64rr,         X86::XOR64rm, 0 },
647    { X86::XOR8rr,          X86::XOR8rm, 0 },
648    { X86::XORPDrr,         X86::XORPDrm, 16 },
649    { X86::XORPSrr,         X86::XORPSrm, 16 }
650  };
651
652  for (unsigned i = 0, e = array_lengthof(OpTbl2); i != e; ++i) {
653    unsigned RegOp = OpTbl2[i][0];
654    unsigned MemOp = OpTbl2[i][1];
655    unsigned Align = OpTbl2[i][2];
656    if (!RegOp2MemOpTable2.insert(std::make_pair((unsigned*)RegOp,
657                                           std::make_pair(MemOp,Align))).second)
658      assert(false && "Duplicated entries?");
659    // Index 2, folded load
660    unsigned AuxInfo = 2 | (1 << 4);
661    if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
662                                   std::make_pair(RegOp, AuxInfo))).second)
663      AmbEntries.push_back(MemOp);
664  }
665
666  // Remove ambiguous entries.
667  assert(AmbEntries.empty() && "Duplicated entries in unfolding maps?");
668}
669
670bool
671X86InstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
672                                    unsigned &SrcReg, unsigned &DstReg,
673                                    unsigned &SubIdx) const {
674  switch (MI.getOpcode()) {
675  default: break;
676  case X86::MOVSX16rr8:
677  case X86::MOVZX16rr8:
678  case X86::MOVSX32rr8:
679  case X86::MOVZX32rr8:
680  case X86::MOVSX64rr8:
681  case X86::MOVZX64rr8:
682    if (!TM.getSubtarget<X86Subtarget>().is64Bit())
683      // It's not always legal to reference the low 8-bit of the larger
684      // register in 32-bit mode.
685      return false;
686  case X86::MOVSX32rr16:
687  case X86::MOVZX32rr16:
688  case X86::MOVSX64rr16:
689  case X86::MOVZX64rr16:
690  case X86::MOVSX64rr32:
691  case X86::MOVZX64rr32: {
692    if (MI.getOperand(0).getSubReg() || MI.getOperand(1).getSubReg())
693      // Be conservative.
694      return false;
695    SrcReg = MI.getOperand(1).getReg();
696    DstReg = MI.getOperand(0).getReg();
697    switch (MI.getOpcode()) {
698    default:
699      llvm_unreachable(0);
700      break;
701    case X86::MOVSX16rr8:
702    case X86::MOVZX16rr8:
703    case X86::MOVSX32rr8:
704    case X86::MOVZX32rr8:
705    case X86::MOVSX64rr8:
706    case X86::MOVZX64rr8:
707      SubIdx = X86::sub_8bit;
708      break;
709    case X86::MOVSX32rr16:
710    case X86::MOVZX32rr16:
711    case X86::MOVSX64rr16:
712    case X86::MOVZX64rr16:
713      SubIdx = X86::sub_16bit;
714      break;
715    case X86::MOVSX64rr32:
716    case X86::MOVZX64rr32:
717      SubIdx = X86::sub_32bit;
718      break;
719    }
720    return true;
721  }
722  }
723  return false;
724}
725
726/// isFrameOperand - Return true and the FrameIndex if the specified
727/// operand and follow operands form a reference to the stack frame.
728bool X86InstrInfo::isFrameOperand(const MachineInstr *MI, unsigned int Op,
729                                  int &FrameIndex) const {
730  if (MI->getOperand(Op).isFI() && MI->getOperand(Op+1).isImm() &&
731      MI->getOperand(Op+2).isReg() && MI->getOperand(Op+3).isImm() &&
732      MI->getOperand(Op+1).getImm() == 1 &&
733      MI->getOperand(Op+2).getReg() == 0 &&
734      MI->getOperand(Op+3).getImm() == 0) {
735    FrameIndex = MI->getOperand(Op).getIndex();
736    return true;
737  }
738  return false;
739}
740
741static bool isFrameLoadOpcode(int Opcode) {
742  switch (Opcode) {
743  default: break;
744  case X86::MOV8rm:
745  case X86::MOV16rm:
746  case X86::MOV32rm:
747  case X86::MOV32rm_TC:
748  case X86::MOV64rm:
749  case X86::MOV64rm_TC:
750  case X86::LD_Fp64m:
751  case X86::MOVSSrm:
752  case X86::MOVSDrm:
753  case X86::MOVAPSrm:
754  case X86::MOVAPDrm:
755  case X86::MOVDQArm:
756  case X86::MMX_MOVD64rm:
757  case X86::MMX_MOVQ64rm:
758    return true;
759    break;
760  }
761  return false;
762}
763
764static bool isFrameStoreOpcode(int Opcode) {
765  switch (Opcode) {
766  default: break;
767  case X86::MOV8mr:
768  case X86::MOV16mr:
769  case X86::MOV32mr:
770  case X86::MOV32mr_TC:
771  case X86::MOV64mr:
772  case X86::MOV64mr_TC:
773  case X86::ST_FpP64m:
774  case X86::MOVSSmr:
775  case X86::MOVSDmr:
776  case X86::MOVAPSmr:
777  case X86::MOVAPDmr:
778  case X86::MOVDQAmr:
779  case X86::MMX_MOVD64mr:
780  case X86::MMX_MOVQ64mr:
781  case X86::MMX_MOVNTQmr:
782    return true;
783  }
784  return false;
785}
786
787unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
788                                           int &FrameIndex) const {
789  if (isFrameLoadOpcode(MI->getOpcode()))
790    if (isFrameOperand(MI, 1, FrameIndex))
791      return MI->getOperand(0).getReg();
792  return 0;
793}
794
795unsigned X86InstrInfo::isLoadFromStackSlotPostFE(const MachineInstr *MI,
796                                                 int &FrameIndex) const {
797  if (isFrameLoadOpcode(MI->getOpcode())) {
798    unsigned Reg;
799    if ((Reg = isLoadFromStackSlot(MI, FrameIndex)))
800      return Reg;
801    // Check for post-frame index elimination operations
802    const MachineMemOperand *Dummy;
803    return hasLoadFromStackSlot(MI, Dummy, FrameIndex);
804  }
805  return 0;
806}
807
808bool X86InstrInfo::hasLoadFromStackSlot(const MachineInstr *MI,
809                                        const MachineMemOperand *&MMO,
810                                        int &FrameIndex) const {
811  for (MachineInstr::mmo_iterator o = MI->memoperands_begin(),
812         oe = MI->memoperands_end();
813       o != oe;
814       ++o) {
815    if ((*o)->isLoad() && (*o)->getValue())
816      if (const FixedStackPseudoSourceValue *Value =
817          dyn_cast<const FixedStackPseudoSourceValue>((*o)->getValue())) {
818        FrameIndex = Value->getFrameIndex();
819        MMO = *o;
820        return true;
821      }
822  }
823  return false;
824}
825
826unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr *MI,
827                                          int &FrameIndex) const {
828  if (isFrameStoreOpcode(MI->getOpcode()))
829    if (isFrameOperand(MI, 0, FrameIndex))
830      return MI->getOperand(X86::AddrNumOperands).getReg();
831  return 0;
832}
833
834unsigned X86InstrInfo::isStoreToStackSlotPostFE(const MachineInstr *MI,
835                                                int &FrameIndex) const {
836  if (isFrameStoreOpcode(MI->getOpcode())) {
837    unsigned Reg;
838    if ((Reg = isStoreToStackSlot(MI, FrameIndex)))
839      return Reg;
840    // Check for post-frame index elimination operations
841    const MachineMemOperand *Dummy;
842    return hasStoreToStackSlot(MI, Dummy, FrameIndex);
843  }
844  return 0;
845}
846
847bool X86InstrInfo::hasStoreToStackSlot(const MachineInstr *MI,
848                                       const MachineMemOperand *&MMO,
849                                       int &FrameIndex) const {
850  for (MachineInstr::mmo_iterator o = MI->memoperands_begin(),
851         oe = MI->memoperands_end();
852       o != oe;
853       ++o) {
854    if ((*o)->isStore() && (*o)->getValue())
855      if (const FixedStackPseudoSourceValue *Value =
856          dyn_cast<const FixedStackPseudoSourceValue>((*o)->getValue())) {
857        FrameIndex = Value->getFrameIndex();
858        MMO = *o;
859        return true;
860      }
861  }
862  return false;
863}
864
865/// regIsPICBase - Return true if register is PIC base (i.e.g defined by
866/// X86::MOVPC32r.
867static bool regIsPICBase(unsigned BaseReg, const MachineRegisterInfo &MRI) {
868  bool isPICBase = false;
869  for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg),
870         E = MRI.def_end(); I != E; ++I) {
871    MachineInstr *DefMI = I.getOperand().getParent();
872    if (DefMI->getOpcode() != X86::MOVPC32r)
873      return false;
874    assert(!isPICBase && "More than one PIC base?");
875    isPICBase = true;
876  }
877  return isPICBase;
878}
879
880bool
881X86InstrInfo::isReallyTriviallyReMaterializable(const MachineInstr *MI,
882                                                AliasAnalysis *AA) const {
883  switch (MI->getOpcode()) {
884  default: break;
885    case X86::MOV8rm:
886    case X86::MOV16rm:
887    case X86::MOV32rm:
888    case X86::MOV64rm:
889    case X86::LD_Fp64m:
890    case X86::MOVSSrm:
891    case X86::MOVSDrm:
892    case X86::MOVAPSrm:
893    case X86::MOVUPSrm:
894    case X86::MOVUPSrm_Int:
895    case X86::MOVAPDrm:
896    case X86::MOVDQArm:
897    case X86::MMX_MOVD64rm:
898    case X86::MMX_MOVQ64rm:
899    case X86::FsMOVAPSrm:
900    case X86::FsMOVAPDrm: {
901      // Loads from constant pools are trivially rematerializable.
902      if (MI->getOperand(1).isReg() &&
903          MI->getOperand(2).isImm() &&
904          MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 &&
905          MI->isInvariantLoad(AA)) {
906        unsigned BaseReg = MI->getOperand(1).getReg();
907        if (BaseReg == 0 || BaseReg == X86::RIP)
908          return true;
909        // Allow re-materialization of PIC load.
910        if (!ReMatPICStubLoad && MI->getOperand(4).isGlobal())
911          return false;
912        const MachineFunction &MF = *MI->getParent()->getParent();
913        const MachineRegisterInfo &MRI = MF.getRegInfo();
914        bool isPICBase = false;
915        for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg),
916               E = MRI.def_end(); I != E; ++I) {
917          MachineInstr *DefMI = I.getOperand().getParent();
918          if (DefMI->getOpcode() != X86::MOVPC32r)
919            return false;
920          assert(!isPICBase && "More than one PIC base?");
921          isPICBase = true;
922        }
923        return isPICBase;
924      }
925      return false;
926    }
927
928     case X86::LEA32r:
929     case X86::LEA64r: {
930       if (MI->getOperand(2).isImm() &&
931           MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 &&
932           !MI->getOperand(4).isReg()) {
933         // lea fi#, lea GV, etc. are all rematerializable.
934         if (!MI->getOperand(1).isReg())
935           return true;
936         unsigned BaseReg = MI->getOperand(1).getReg();
937         if (BaseReg == 0)
938           return true;
939         // Allow re-materialization of lea PICBase + x.
940         const MachineFunction &MF = *MI->getParent()->getParent();
941         const MachineRegisterInfo &MRI = MF.getRegInfo();
942         return regIsPICBase(BaseReg, MRI);
943       }
944       return false;
945     }
946  }
947
948  // All other instructions marked M_REMATERIALIZABLE are always trivially
949  // rematerializable.
950  return true;
951}
952
953/// isSafeToClobberEFLAGS - Return true if it's safe insert an instruction that
954/// would clobber the EFLAGS condition register. Note the result may be
955/// conservative. If it cannot definitely determine the safety after visiting
956/// a few instructions in each direction it assumes it's not safe.
957static bool isSafeToClobberEFLAGS(MachineBasicBlock &MBB,
958                                  MachineBasicBlock::iterator I) {
959  MachineBasicBlock::iterator E = MBB.end();
960
961  // It's always safe to clobber EFLAGS at the end of a block.
962  if (I == E)
963    return true;
964
965  // For compile time consideration, if we are not able to determine the
966  // safety after visiting 4 instructions in each direction, we will assume
967  // it's not safe.
968  MachineBasicBlock::iterator Iter = I;
969  for (unsigned i = 0; i < 4; ++i) {
970    bool SeenDef = false;
971    for (unsigned j = 0, e = Iter->getNumOperands(); j != e; ++j) {
972      MachineOperand &MO = Iter->getOperand(j);
973      if (!MO.isReg())
974        continue;
975      if (MO.getReg() == X86::EFLAGS) {
976        if (MO.isUse())
977          return false;
978        SeenDef = true;
979      }
980    }
981
982    if (SeenDef)
983      // This instruction defines EFLAGS, no need to look any further.
984      return true;
985    ++Iter;
986    // Skip over DBG_VALUE.
987    while (Iter != E && Iter->isDebugValue())
988      ++Iter;
989
990    // If we make it to the end of the block, it's safe to clobber EFLAGS.
991    if (Iter == E)
992      return true;
993  }
994
995  MachineBasicBlock::iterator B = MBB.begin();
996  Iter = I;
997  for (unsigned i = 0; i < 4; ++i) {
998    // If we make it to the beginning of the block, it's safe to clobber
999    // EFLAGS iff EFLAGS is not live-in.
1000    if (Iter == B)
1001      return !MBB.isLiveIn(X86::EFLAGS);
1002
1003    --Iter;
1004    // Skip over DBG_VALUE.
1005    while (Iter != B && Iter->isDebugValue())
1006      --Iter;
1007
1008    bool SawKill = false;
1009    for (unsigned j = 0, e = Iter->getNumOperands(); j != e; ++j) {
1010      MachineOperand &MO = Iter->getOperand(j);
1011      if (MO.isReg() && MO.getReg() == X86::EFLAGS) {
1012        if (MO.isDef()) return MO.isDead();
1013        if (MO.isKill()) SawKill = true;
1014      }
1015    }
1016
1017    if (SawKill)
1018      // This instruction kills EFLAGS and doesn't redefine it, so
1019      // there's no need to look further.
1020      return true;
1021  }
1022
1023  // Conservative answer.
1024  return false;
1025}
1026
1027void X86InstrInfo::reMaterialize(MachineBasicBlock &MBB,
1028                                 MachineBasicBlock::iterator I,
1029                                 unsigned DestReg, unsigned SubIdx,
1030                                 const MachineInstr *Orig,
1031                                 const TargetRegisterInfo &TRI) const {
1032  DebugLoc DL = Orig->getDebugLoc();
1033
1034  // MOV32r0 etc. are implemented with xor which clobbers condition code.
1035  // Re-materialize them as movri instructions to avoid side effects.
1036  bool Clone = true;
1037  unsigned Opc = Orig->getOpcode();
1038  switch (Opc) {
1039  default: break;
1040  case X86::MOV8r0:
1041  case X86::MOV16r0:
1042  case X86::MOV32r0:
1043  case X86::MOV64r0: {
1044    if (!isSafeToClobberEFLAGS(MBB, I)) {
1045      switch (Opc) {
1046      default: break;
1047      case X86::MOV8r0:  Opc = X86::MOV8ri;  break;
1048      case X86::MOV16r0: Opc = X86::MOV16ri; break;
1049      case X86::MOV32r0: Opc = X86::MOV32ri; break;
1050      case X86::MOV64r0: Opc = X86::MOV64ri64i32; break;
1051      }
1052      Clone = false;
1053    }
1054    break;
1055  }
1056  }
1057
1058  if (Clone) {
1059    MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig);
1060    MBB.insert(I, MI);
1061  } else {
1062    BuildMI(MBB, I, DL, get(Opc)).addOperand(Orig->getOperand(0)).addImm(0);
1063  }
1064
1065  MachineInstr *NewMI = prior(I);
1066  NewMI->substituteRegister(Orig->getOperand(0).getReg(), DestReg, SubIdx, TRI);
1067}
1068
1069/// hasLiveCondCodeDef - True if MI has a condition code def, e.g. EFLAGS, that
1070/// is not marked dead.
1071static bool hasLiveCondCodeDef(MachineInstr *MI) {
1072  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1073    MachineOperand &MO = MI->getOperand(i);
1074    if (MO.isReg() && MO.isDef() &&
1075        MO.getReg() == X86::EFLAGS && !MO.isDead()) {
1076      return true;
1077    }
1078  }
1079  return false;
1080}
1081
1082/// convertToThreeAddressWithLEA - Helper for convertToThreeAddress when
1083/// 16-bit LEA is disabled, use 32-bit LEA to form 3-address code by promoting
1084/// to a 32-bit superregister and then truncating back down to a 16-bit
1085/// subregister.
1086MachineInstr *
1087X86InstrInfo::convertToThreeAddressWithLEA(unsigned MIOpc,
1088                                           MachineFunction::iterator &MFI,
1089                                           MachineBasicBlock::iterator &MBBI,
1090                                           LiveVariables *LV) const {
1091  MachineInstr *MI = MBBI;
1092  unsigned Dest = MI->getOperand(0).getReg();
1093  unsigned Src = MI->getOperand(1).getReg();
1094  bool isDead = MI->getOperand(0).isDead();
1095  bool isKill = MI->getOperand(1).isKill();
1096
1097  unsigned Opc = TM.getSubtarget<X86Subtarget>().is64Bit()
1098    ? X86::LEA64_32r : X86::LEA32r;
1099  MachineRegisterInfo &RegInfo = MFI->getParent()->getRegInfo();
1100  unsigned leaInReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
1101  unsigned leaOutReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
1102
1103  // Build and insert into an implicit UNDEF value. This is OK because
1104  // well be shifting and then extracting the lower 16-bits.
1105  // This has the potential to cause partial register stall. e.g.
1106  //   movw    (%rbp,%rcx,2), %dx
1107  //   leal    -65(%rdx), %esi
1108  // But testing has shown this *does* help performance in 64-bit mode (at
1109  // least on modern x86 machines).
1110  BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(X86::IMPLICIT_DEF), leaInReg);
1111  MachineInstr *InsMI =
1112    BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(TargetOpcode::COPY))
1113    .addReg(leaInReg, RegState::Define, X86::sub_16bit)
1114    .addReg(Src, getKillRegState(isKill));
1115
1116  MachineInstrBuilder MIB = BuildMI(*MFI, MBBI, MI->getDebugLoc(),
1117                                    get(Opc), leaOutReg);
1118  switch (MIOpc) {
1119  default:
1120    llvm_unreachable(0);
1121    break;
1122  case X86::SHL16ri: {
1123    unsigned ShAmt = MI->getOperand(2).getImm();
1124    MIB.addReg(0).addImm(1 << ShAmt)
1125       .addReg(leaInReg, RegState::Kill).addImm(0).addReg(0);
1126    break;
1127  }
1128  case X86::INC16r:
1129  case X86::INC64_16r:
1130    addRegOffset(MIB, leaInReg, true, 1);
1131    break;
1132  case X86::DEC16r:
1133  case X86::DEC64_16r:
1134    addRegOffset(MIB, leaInReg, true, -1);
1135    break;
1136  case X86::ADD16ri:
1137  case X86::ADD16ri8:
1138    addRegOffset(MIB, leaInReg, true, MI->getOperand(2).getImm());
1139    break;
1140  case X86::ADD16rr: {
1141    unsigned Src2 = MI->getOperand(2).getReg();
1142    bool isKill2 = MI->getOperand(2).isKill();
1143    unsigned leaInReg2 = 0;
1144    MachineInstr *InsMI2 = 0;
1145    if (Src == Src2) {
1146      // ADD16rr %reg1028<kill>, %reg1028
1147      // just a single insert_subreg.
1148      addRegReg(MIB, leaInReg, true, leaInReg, false);
1149    } else {
1150      leaInReg2 = RegInfo.createVirtualRegister(&X86::GR32RegClass);
1151      // Build and insert into an implicit UNDEF value. This is OK because
1152      // well be shifting and then extracting the lower 16-bits.
1153      BuildMI(*MFI, MIB, MI->getDebugLoc(), get(X86::IMPLICIT_DEF), leaInReg2);
1154      InsMI2 =
1155        BuildMI(*MFI, MIB, MI->getDebugLoc(), get(TargetOpcode::COPY))
1156        .addReg(leaInReg2, RegState::Define, X86::sub_16bit)
1157        .addReg(Src2, getKillRegState(isKill2));
1158      addRegReg(MIB, leaInReg, true, leaInReg2, true);
1159    }
1160    if (LV && isKill2 && InsMI2)
1161      LV->replaceKillInstruction(Src2, MI, InsMI2);
1162    break;
1163  }
1164  }
1165
1166  MachineInstr *NewMI = MIB;
1167  MachineInstr *ExtMI =
1168    BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(TargetOpcode::COPY))
1169    .addReg(Dest, RegState::Define | getDeadRegState(isDead))
1170    .addReg(leaOutReg, RegState::Kill, X86::sub_16bit);
1171
1172  if (LV) {
1173    // Update live variables
1174    LV->getVarInfo(leaInReg).Kills.push_back(NewMI);
1175    LV->getVarInfo(leaOutReg).Kills.push_back(ExtMI);
1176    if (isKill)
1177      LV->replaceKillInstruction(Src, MI, InsMI);
1178    if (isDead)
1179      LV->replaceKillInstruction(Dest, MI, ExtMI);
1180  }
1181
1182  return ExtMI;
1183}
1184
1185/// convertToThreeAddress - This method must be implemented by targets that
1186/// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
1187/// may be able to convert a two-address instruction into a true
1188/// three-address instruction on demand.  This allows the X86 target (for
1189/// example) to convert ADD and SHL instructions into LEA instructions if they
1190/// would require register copies due to two-addressness.
1191///
1192/// This method returns a null pointer if the transformation cannot be
1193/// performed, otherwise it returns the new instruction.
1194///
1195MachineInstr *
1196X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
1197                                    MachineBasicBlock::iterator &MBBI,
1198                                    LiveVariables *LV) const {
1199  MachineInstr *MI = MBBI;
1200  MachineFunction &MF = *MI->getParent()->getParent();
1201  // All instructions input are two-addr instructions.  Get the known operands.
1202  unsigned Dest = MI->getOperand(0).getReg();
1203  unsigned Src = MI->getOperand(1).getReg();
1204  bool isDead = MI->getOperand(0).isDead();
1205  bool isKill = MI->getOperand(1).isKill();
1206
1207  MachineInstr *NewMI = NULL;
1208  // FIXME: 16-bit LEA's are really slow on Athlons, but not bad on P4's.  When
1209  // we have better subtarget support, enable the 16-bit LEA generation here.
1210  // 16-bit LEA is also slow on Core2.
1211  bool DisableLEA16 = true;
1212  bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
1213
1214  unsigned MIOpc = MI->getOpcode();
1215  switch (MIOpc) {
1216  case X86::SHUFPSrri: {
1217    assert(MI->getNumOperands() == 4 && "Unknown shufps instruction!");
1218    if (!TM.getSubtarget<X86Subtarget>().hasSSE2()) return 0;
1219
1220    unsigned B = MI->getOperand(1).getReg();
1221    unsigned C = MI->getOperand(2).getReg();
1222    if (B != C) return 0;
1223    unsigned A = MI->getOperand(0).getReg();
1224    unsigned M = MI->getOperand(3).getImm();
1225    NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::PSHUFDri))
1226      .addReg(A, RegState::Define | getDeadRegState(isDead))
1227      .addReg(B, getKillRegState(isKill)).addImm(M);
1228    break;
1229  }
1230  case X86::SHL64ri: {
1231    assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
1232    // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1233    // the flags produced by a shift yet, so this is safe.
1234    unsigned ShAmt = MI->getOperand(2).getImm();
1235    if (ShAmt == 0 || ShAmt >= 4) return 0;
1236
1237    NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::LEA64r))
1238      .addReg(Dest, RegState::Define | getDeadRegState(isDead))
1239      .addReg(0).addImm(1 << ShAmt)
1240      .addReg(Src, getKillRegState(isKill))
1241      .addImm(0).addReg(0);
1242    break;
1243  }
1244  case X86::SHL32ri: {
1245    assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
1246    // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1247    // the flags produced by a shift yet, so this is safe.
1248    unsigned ShAmt = MI->getOperand(2).getImm();
1249    if (ShAmt == 0 || ShAmt >= 4) return 0;
1250
1251    unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
1252    NewMI = BuildMI(MF, MI->getDebugLoc(), get(Opc))
1253      .addReg(Dest, RegState::Define | getDeadRegState(isDead))
1254      .addReg(0).addImm(1 << ShAmt)
1255      .addReg(Src, getKillRegState(isKill)).addImm(0).addReg(0);
1256    break;
1257  }
1258  case X86::SHL16ri: {
1259    assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
1260    // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1261    // the flags produced by a shift yet, so this is safe.
1262    unsigned ShAmt = MI->getOperand(2).getImm();
1263    if (ShAmt == 0 || ShAmt >= 4) return 0;
1264
1265    if (DisableLEA16)
1266      return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
1267    NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
1268      .addReg(Dest, RegState::Define | getDeadRegState(isDead))
1269      .addReg(0).addImm(1 << ShAmt)
1270      .addReg(Src, getKillRegState(isKill))
1271      .addImm(0).addReg(0);
1272    break;
1273  }
1274  default: {
1275    // The following opcodes also sets the condition code register(s). Only
1276    // convert them to equivalent lea if the condition code register def's
1277    // are dead!
1278    if (hasLiveCondCodeDef(MI))
1279      return 0;
1280
1281    switch (MIOpc) {
1282    default: return 0;
1283    case X86::INC64r:
1284    case X86::INC32r:
1285    case X86::INC64_32r: {
1286      assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
1287      unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r
1288        : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
1289      NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc))
1290                              .addReg(Dest, RegState::Define |
1291                                      getDeadRegState(isDead)),
1292                              Src, isKill, 1);
1293      break;
1294    }
1295    case X86::INC16r:
1296    case X86::INC64_16r:
1297      if (DisableLEA16)
1298        return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
1299      assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
1300      NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
1301                           .addReg(Dest, RegState::Define |
1302                                   getDeadRegState(isDead)),
1303                           Src, isKill, 1);
1304      break;
1305    case X86::DEC64r:
1306    case X86::DEC32r:
1307    case X86::DEC64_32r: {
1308      assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
1309      unsigned Opc = MIOpc == X86::DEC64r ? X86::LEA64r
1310        : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
1311      NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc))
1312                              .addReg(Dest, RegState::Define |
1313                                      getDeadRegState(isDead)),
1314                              Src, isKill, -1);
1315      break;
1316    }
1317    case X86::DEC16r:
1318    case X86::DEC64_16r:
1319      if (DisableLEA16)
1320        return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
1321      assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
1322      NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
1323                           .addReg(Dest, RegState::Define |
1324                                   getDeadRegState(isDead)),
1325                           Src, isKill, -1);
1326      break;
1327    case X86::ADD64rr:
1328    case X86::ADD32rr: {
1329      assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1330      unsigned Opc = MIOpc == X86::ADD64rr ? X86::LEA64r
1331        : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
1332      unsigned Src2 = MI->getOperand(2).getReg();
1333      bool isKill2 = MI->getOperand(2).isKill();
1334      NewMI = addRegReg(BuildMI(MF, MI->getDebugLoc(), get(Opc))
1335                        .addReg(Dest, RegState::Define |
1336                                getDeadRegState(isDead)),
1337                        Src, isKill, Src2, isKill2);
1338      if (LV && isKill2)
1339        LV->replaceKillInstruction(Src2, MI, NewMI);
1340      break;
1341    }
1342    case X86::ADD16rr: {
1343      if (DisableLEA16)
1344        return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
1345      assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1346      unsigned Src2 = MI->getOperand(2).getReg();
1347      bool isKill2 = MI->getOperand(2).isKill();
1348      NewMI = addRegReg(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
1349                        .addReg(Dest, RegState::Define |
1350                                getDeadRegState(isDead)),
1351                        Src, isKill, Src2, isKill2);
1352      if (LV && isKill2)
1353        LV->replaceKillInstruction(Src2, MI, NewMI);
1354      break;
1355    }
1356    case X86::ADD64ri32:
1357    case X86::ADD64ri8:
1358      assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1359      NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA64r))
1360                              .addReg(Dest, RegState::Define |
1361                                      getDeadRegState(isDead)),
1362                              Src, isKill, MI->getOperand(2).getImm());
1363      break;
1364    case X86::ADD32ri:
1365    case X86::ADD32ri8: {
1366      assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1367      unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
1368      NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc))
1369                              .addReg(Dest, RegState::Define |
1370                                      getDeadRegState(isDead)),
1371                                Src, isKill, MI->getOperand(2).getImm());
1372      break;
1373    }
1374    case X86::ADD16ri:
1375    case X86::ADD16ri8:
1376      if (DisableLEA16)
1377        return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
1378      assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1379      NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
1380                              .addReg(Dest, RegState::Define |
1381                                      getDeadRegState(isDead)),
1382                              Src, isKill, MI->getOperand(2).getImm());
1383      break;
1384    }
1385  }
1386  }
1387
1388  if (!NewMI) return 0;
1389
1390  if (LV) {  // Update live variables
1391    if (isKill)
1392      LV->replaceKillInstruction(Src, MI, NewMI);
1393    if (isDead)
1394      LV->replaceKillInstruction(Dest, MI, NewMI);
1395  }
1396
1397  MFI->insert(MBBI, NewMI);          // Insert the new inst
1398  return NewMI;
1399}
1400
1401/// commuteInstruction - We have a few instructions that must be hacked on to
1402/// commute them.
1403///
1404MachineInstr *
1405X86InstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const {
1406  switch (MI->getOpcode()) {
1407  case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I)
1408  case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I)
1409  case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I)
1410  case X86::SHLD32rri8: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I)
1411  case X86::SHRD64rri8: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I)
1412  case X86::SHLD64rri8:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I)
1413    unsigned Opc;
1414    unsigned Size;
1415    switch (MI->getOpcode()) {
1416    default: llvm_unreachable("Unreachable!");
1417    case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break;
1418    case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break;
1419    case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break;
1420    case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break;
1421    case X86::SHRD64rri8: Size = 64; Opc = X86::SHLD64rri8; break;
1422    case X86::SHLD64rri8: Size = 64; Opc = X86::SHRD64rri8; break;
1423    }
1424    unsigned Amt = MI->getOperand(3).getImm();
1425    if (NewMI) {
1426      MachineFunction &MF = *MI->getParent()->getParent();
1427      MI = MF.CloneMachineInstr(MI);
1428      NewMI = false;
1429    }
1430    MI->setDesc(get(Opc));
1431    MI->getOperand(3).setImm(Size-Amt);
1432    return TargetInstrInfoImpl::commuteInstruction(MI, NewMI);
1433  }
1434  case X86::CMOVB16rr:
1435  case X86::CMOVB32rr:
1436  case X86::CMOVB64rr:
1437  case X86::CMOVAE16rr:
1438  case X86::CMOVAE32rr:
1439  case X86::CMOVAE64rr:
1440  case X86::CMOVE16rr:
1441  case X86::CMOVE32rr:
1442  case X86::CMOVE64rr:
1443  case X86::CMOVNE16rr:
1444  case X86::CMOVNE32rr:
1445  case X86::CMOVNE64rr:
1446  case X86::CMOVBE16rr:
1447  case X86::CMOVBE32rr:
1448  case X86::CMOVBE64rr:
1449  case X86::CMOVA16rr:
1450  case X86::CMOVA32rr:
1451  case X86::CMOVA64rr:
1452  case X86::CMOVL16rr:
1453  case X86::CMOVL32rr:
1454  case X86::CMOVL64rr:
1455  case X86::CMOVGE16rr:
1456  case X86::CMOVGE32rr:
1457  case X86::CMOVGE64rr:
1458  case X86::CMOVLE16rr:
1459  case X86::CMOVLE32rr:
1460  case X86::CMOVLE64rr:
1461  case X86::CMOVG16rr:
1462  case X86::CMOVG32rr:
1463  case X86::CMOVG64rr:
1464  case X86::CMOVS16rr:
1465  case X86::CMOVS32rr:
1466  case X86::CMOVS64rr:
1467  case X86::CMOVNS16rr:
1468  case X86::CMOVNS32rr:
1469  case X86::CMOVNS64rr:
1470  case X86::CMOVP16rr:
1471  case X86::CMOVP32rr:
1472  case X86::CMOVP64rr:
1473  case X86::CMOVNP16rr:
1474  case X86::CMOVNP32rr:
1475  case X86::CMOVNP64rr:
1476  case X86::CMOVO16rr:
1477  case X86::CMOVO32rr:
1478  case X86::CMOVO64rr:
1479  case X86::CMOVNO16rr:
1480  case X86::CMOVNO32rr:
1481  case X86::CMOVNO64rr: {
1482    unsigned Opc = 0;
1483    switch (MI->getOpcode()) {
1484    default: break;
1485    case X86::CMOVB16rr:  Opc = X86::CMOVAE16rr; break;
1486    case X86::CMOVB32rr:  Opc = X86::CMOVAE32rr; break;
1487    case X86::CMOVB64rr:  Opc = X86::CMOVAE64rr; break;
1488    case X86::CMOVAE16rr: Opc = X86::CMOVB16rr; break;
1489    case X86::CMOVAE32rr: Opc = X86::CMOVB32rr; break;
1490    case X86::CMOVAE64rr: Opc = X86::CMOVB64rr; break;
1491    case X86::CMOVE16rr:  Opc = X86::CMOVNE16rr; break;
1492    case X86::CMOVE32rr:  Opc = X86::CMOVNE32rr; break;
1493    case X86::CMOVE64rr:  Opc = X86::CMOVNE64rr; break;
1494    case X86::CMOVNE16rr: Opc = X86::CMOVE16rr; break;
1495    case X86::CMOVNE32rr: Opc = X86::CMOVE32rr; break;
1496    case X86::CMOVNE64rr: Opc = X86::CMOVE64rr; break;
1497    case X86::CMOVBE16rr: Opc = X86::CMOVA16rr; break;
1498    case X86::CMOVBE32rr: Opc = X86::CMOVA32rr; break;
1499    case X86::CMOVBE64rr: Opc = X86::CMOVA64rr; break;
1500    case X86::CMOVA16rr:  Opc = X86::CMOVBE16rr; break;
1501    case X86::CMOVA32rr:  Opc = X86::CMOVBE32rr; break;
1502    case X86::CMOVA64rr:  Opc = X86::CMOVBE64rr; break;
1503    case X86::CMOVL16rr:  Opc = X86::CMOVGE16rr; break;
1504    case X86::CMOVL32rr:  Opc = X86::CMOVGE32rr; break;
1505    case X86::CMOVL64rr:  Opc = X86::CMOVGE64rr; break;
1506    case X86::CMOVGE16rr: Opc = X86::CMOVL16rr; break;
1507    case X86::CMOVGE32rr: Opc = X86::CMOVL32rr; break;
1508    case X86::CMOVGE64rr: Opc = X86::CMOVL64rr; break;
1509    case X86::CMOVLE16rr: Opc = X86::CMOVG16rr; break;
1510    case X86::CMOVLE32rr: Opc = X86::CMOVG32rr; break;
1511    case X86::CMOVLE64rr: Opc = X86::CMOVG64rr; break;
1512    case X86::CMOVG16rr:  Opc = X86::CMOVLE16rr; break;
1513    case X86::CMOVG32rr:  Opc = X86::CMOVLE32rr; break;
1514    case X86::CMOVG64rr:  Opc = X86::CMOVLE64rr; break;
1515    case X86::CMOVS16rr:  Opc = X86::CMOVNS16rr; break;
1516    case X86::CMOVS32rr:  Opc = X86::CMOVNS32rr; break;
1517    case X86::CMOVS64rr:  Opc = X86::CMOVNS64rr; break;
1518    case X86::CMOVNS16rr: Opc = X86::CMOVS16rr; break;
1519    case X86::CMOVNS32rr: Opc = X86::CMOVS32rr; break;
1520    case X86::CMOVNS64rr: Opc = X86::CMOVS64rr; break;
1521    case X86::CMOVP16rr:  Opc = X86::CMOVNP16rr; break;
1522    case X86::CMOVP32rr:  Opc = X86::CMOVNP32rr; break;
1523    case X86::CMOVP64rr:  Opc = X86::CMOVNP64rr; break;
1524    case X86::CMOVNP16rr: Opc = X86::CMOVP16rr; break;
1525    case X86::CMOVNP32rr: Opc = X86::CMOVP32rr; break;
1526    case X86::CMOVNP64rr: Opc = X86::CMOVP64rr; break;
1527    case X86::CMOVO16rr:  Opc = X86::CMOVNO16rr; break;
1528    case X86::CMOVO32rr:  Opc = X86::CMOVNO32rr; break;
1529    case X86::CMOVO64rr:  Opc = X86::CMOVNO64rr; break;
1530    case X86::CMOVNO16rr: Opc = X86::CMOVO16rr; break;
1531    case X86::CMOVNO32rr: Opc = X86::CMOVO32rr; break;
1532    case X86::CMOVNO64rr: Opc = X86::CMOVO64rr; break;
1533    }
1534    if (NewMI) {
1535      MachineFunction &MF = *MI->getParent()->getParent();
1536      MI = MF.CloneMachineInstr(MI);
1537      NewMI = false;
1538    }
1539    MI->setDesc(get(Opc));
1540    // Fallthrough intended.
1541  }
1542  default:
1543    return TargetInstrInfoImpl::commuteInstruction(MI, NewMI);
1544  }
1545}
1546
1547static X86::CondCode GetCondFromBranchOpc(unsigned BrOpc) {
1548  switch (BrOpc) {
1549  default: return X86::COND_INVALID;
1550  case X86::JE_4:  return X86::COND_E;
1551  case X86::JNE_4: return X86::COND_NE;
1552  case X86::JL_4:  return X86::COND_L;
1553  case X86::JLE_4: return X86::COND_LE;
1554  case X86::JG_4:  return X86::COND_G;
1555  case X86::JGE_4: return X86::COND_GE;
1556  case X86::JB_4:  return X86::COND_B;
1557  case X86::JBE_4: return X86::COND_BE;
1558  case X86::JA_4:  return X86::COND_A;
1559  case X86::JAE_4: return X86::COND_AE;
1560  case X86::JS_4:  return X86::COND_S;
1561  case X86::JNS_4: return X86::COND_NS;
1562  case X86::JP_4:  return X86::COND_P;
1563  case X86::JNP_4: return X86::COND_NP;
1564  case X86::JO_4:  return X86::COND_O;
1565  case X86::JNO_4: return X86::COND_NO;
1566  }
1567}
1568
1569unsigned X86::GetCondBranchFromCond(X86::CondCode CC) {
1570  switch (CC) {
1571  default: llvm_unreachable("Illegal condition code!");
1572  case X86::COND_E:  return X86::JE_4;
1573  case X86::COND_NE: return X86::JNE_4;
1574  case X86::COND_L:  return X86::JL_4;
1575  case X86::COND_LE: return X86::JLE_4;
1576  case X86::COND_G:  return X86::JG_4;
1577  case X86::COND_GE: return X86::JGE_4;
1578  case X86::COND_B:  return X86::JB_4;
1579  case X86::COND_BE: return X86::JBE_4;
1580  case X86::COND_A:  return X86::JA_4;
1581  case X86::COND_AE: return X86::JAE_4;
1582  case X86::COND_S:  return X86::JS_4;
1583  case X86::COND_NS: return X86::JNS_4;
1584  case X86::COND_P:  return X86::JP_4;
1585  case X86::COND_NP: return X86::JNP_4;
1586  case X86::COND_O:  return X86::JO_4;
1587  case X86::COND_NO: return X86::JNO_4;
1588  }
1589}
1590
1591/// GetOppositeBranchCondition - Return the inverse of the specified condition,
1592/// e.g. turning COND_E to COND_NE.
1593X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) {
1594  switch (CC) {
1595  default: llvm_unreachable("Illegal condition code!");
1596  case X86::COND_E:  return X86::COND_NE;
1597  case X86::COND_NE: return X86::COND_E;
1598  case X86::COND_L:  return X86::COND_GE;
1599  case X86::COND_LE: return X86::COND_G;
1600  case X86::COND_G:  return X86::COND_LE;
1601  case X86::COND_GE: return X86::COND_L;
1602  case X86::COND_B:  return X86::COND_AE;
1603  case X86::COND_BE: return X86::COND_A;
1604  case X86::COND_A:  return X86::COND_BE;
1605  case X86::COND_AE: return X86::COND_B;
1606  case X86::COND_S:  return X86::COND_NS;
1607  case X86::COND_NS: return X86::COND_S;
1608  case X86::COND_P:  return X86::COND_NP;
1609  case X86::COND_NP: return X86::COND_P;
1610  case X86::COND_O:  return X86::COND_NO;
1611  case X86::COND_NO: return X86::COND_O;
1612  }
1613}
1614
1615bool X86InstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const {
1616  const TargetInstrDesc &TID = MI->getDesc();
1617  if (!TID.isTerminator()) return false;
1618
1619  // Conditional branch is a special case.
1620  if (TID.isBranch() && !TID.isBarrier())
1621    return true;
1622  if (!TID.isPredicable())
1623    return true;
1624  return !isPredicated(MI);
1625}
1626
1627bool X86InstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
1628                                 MachineBasicBlock *&TBB,
1629                                 MachineBasicBlock *&FBB,
1630                                 SmallVectorImpl<MachineOperand> &Cond,
1631                                 bool AllowModify) const {
1632  // Start from the bottom of the block and work up, examining the
1633  // terminator instructions.
1634  MachineBasicBlock::iterator I = MBB.end();
1635  MachineBasicBlock::iterator UnCondBrIter = MBB.end();
1636  while (I != MBB.begin()) {
1637    --I;
1638    if (I->isDebugValue())
1639      continue;
1640
1641    // Working from the bottom, when we see a non-terminator instruction, we're
1642    // done.
1643    if (!isUnpredicatedTerminator(I))
1644      break;
1645
1646    // A terminator that isn't a branch can't easily be handled by this
1647    // analysis.
1648    if (!I->getDesc().isBranch())
1649      return true;
1650
1651    // Handle unconditional branches.
1652    if (I->getOpcode() == X86::JMP_4) {
1653      UnCondBrIter = I;
1654
1655      if (!AllowModify) {
1656        TBB = I->getOperand(0).getMBB();
1657        continue;
1658      }
1659
1660      // If the block has any instructions after a JMP, delete them.
1661      while (llvm::next(I) != MBB.end())
1662        llvm::next(I)->eraseFromParent();
1663
1664      Cond.clear();
1665      FBB = 0;
1666
1667      // Delete the JMP if it's equivalent to a fall-through.
1668      if (MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
1669        TBB = 0;
1670        I->eraseFromParent();
1671        I = MBB.end();
1672        UnCondBrIter = MBB.end();
1673        continue;
1674      }
1675
1676      // TBB is used to indicate the unconditional destination.
1677      TBB = I->getOperand(0).getMBB();
1678      continue;
1679    }
1680
1681    // Handle conditional branches.
1682    X86::CondCode BranchCode = GetCondFromBranchOpc(I->getOpcode());
1683    if (BranchCode == X86::COND_INVALID)
1684      return true;  // Can't handle indirect branch.
1685
1686    // Working from the bottom, handle the first conditional branch.
1687    if (Cond.empty()) {
1688      MachineBasicBlock *TargetBB = I->getOperand(0).getMBB();
1689      if (AllowModify && UnCondBrIter != MBB.end() &&
1690          MBB.isLayoutSuccessor(TargetBB)) {
1691        // If we can modify the code and it ends in something like:
1692        //
1693        //     jCC L1
1694        //     jmp L2
1695        //   L1:
1696        //     ...
1697        //   L2:
1698        //
1699        // Then we can change this to:
1700        //
1701        //     jnCC L2
1702        //   L1:
1703        //     ...
1704        //   L2:
1705        //
1706        // Which is a bit more efficient.
1707        // We conditionally jump to the fall-through block.
1708        BranchCode = GetOppositeBranchCondition(BranchCode);
1709        unsigned JNCC = GetCondBranchFromCond(BranchCode);
1710        MachineBasicBlock::iterator OldInst = I;
1711
1712        BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(JNCC))
1713          .addMBB(UnCondBrIter->getOperand(0).getMBB());
1714        BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(X86::JMP_4))
1715          .addMBB(TargetBB);
1716        MBB.addSuccessor(TargetBB);
1717
1718        OldInst->eraseFromParent();
1719        UnCondBrIter->eraseFromParent();
1720
1721        // Restart the analysis.
1722        UnCondBrIter = MBB.end();
1723        I = MBB.end();
1724        continue;
1725      }
1726
1727      FBB = TBB;
1728      TBB = I->getOperand(0).getMBB();
1729      Cond.push_back(MachineOperand::CreateImm(BranchCode));
1730      continue;
1731    }
1732
1733    // Handle subsequent conditional branches. Only handle the case where all
1734    // conditional branches branch to the same destination and their condition
1735    // opcodes fit one of the special multi-branch idioms.
1736    assert(Cond.size() == 1);
1737    assert(TBB);
1738
1739    // Only handle the case where all conditional branches branch to the same
1740    // destination.
1741    if (TBB != I->getOperand(0).getMBB())
1742      return true;
1743
1744    // If the conditions are the same, we can leave them alone.
1745    X86::CondCode OldBranchCode = (X86::CondCode)Cond[0].getImm();
1746    if (OldBranchCode == BranchCode)
1747      continue;
1748
1749    // If they differ, see if they fit one of the known patterns. Theoretically,
1750    // we could handle more patterns here, but we shouldn't expect to see them
1751    // if instruction selection has done a reasonable job.
1752    if ((OldBranchCode == X86::COND_NP &&
1753         BranchCode == X86::COND_E) ||
1754        (OldBranchCode == X86::COND_E &&
1755         BranchCode == X86::COND_NP))
1756      BranchCode = X86::COND_NP_OR_E;
1757    else if ((OldBranchCode == X86::COND_P &&
1758              BranchCode == X86::COND_NE) ||
1759             (OldBranchCode == X86::COND_NE &&
1760              BranchCode == X86::COND_P))
1761      BranchCode = X86::COND_NE_OR_P;
1762    else
1763      return true;
1764
1765    // Update the MachineOperand.
1766    Cond[0].setImm(BranchCode);
1767  }
1768
1769  return false;
1770}
1771
1772unsigned X86InstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
1773  MachineBasicBlock::iterator I = MBB.end();
1774  unsigned Count = 0;
1775
1776  while (I != MBB.begin()) {
1777    --I;
1778    if (I->isDebugValue())
1779      continue;
1780    if (I->getOpcode() != X86::JMP_4 &&
1781        GetCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID)
1782      break;
1783    // Remove the branch.
1784    I->eraseFromParent();
1785    I = MBB.end();
1786    ++Count;
1787  }
1788
1789  return Count;
1790}
1791
1792unsigned
1793X86InstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
1794                           MachineBasicBlock *FBB,
1795                           const SmallVectorImpl<MachineOperand> &Cond,
1796                           DebugLoc DL) const {
1797  // Shouldn't be a fall through.
1798  assert(TBB && "InsertBranch must not be told to insert a fallthrough");
1799  assert((Cond.size() == 1 || Cond.size() == 0) &&
1800         "X86 branch conditions have one component!");
1801
1802  if (Cond.empty()) {
1803    // Unconditional branch?
1804    assert(!FBB && "Unconditional branch with multiple successors!");
1805    BuildMI(&MBB, DL, get(X86::JMP_4)).addMBB(TBB);
1806    return 1;
1807  }
1808
1809  // Conditional branch.
1810  unsigned Count = 0;
1811  X86::CondCode CC = (X86::CondCode)Cond[0].getImm();
1812  switch (CC) {
1813  case X86::COND_NP_OR_E:
1814    // Synthesize NP_OR_E with two branches.
1815    BuildMI(&MBB, DL, get(X86::JNP_4)).addMBB(TBB);
1816    ++Count;
1817    BuildMI(&MBB, DL, get(X86::JE_4)).addMBB(TBB);
1818    ++Count;
1819    break;
1820  case X86::COND_NE_OR_P:
1821    // Synthesize NE_OR_P with two branches.
1822    BuildMI(&MBB, DL, get(X86::JNE_4)).addMBB(TBB);
1823    ++Count;
1824    BuildMI(&MBB, DL, get(X86::JP_4)).addMBB(TBB);
1825    ++Count;
1826    break;
1827  default: {
1828    unsigned Opc = GetCondBranchFromCond(CC);
1829    BuildMI(&MBB, DL, get(Opc)).addMBB(TBB);
1830    ++Count;
1831  }
1832  }
1833  if (FBB) {
1834    // Two-way Conditional branch. Insert the second branch.
1835    BuildMI(&MBB, DL, get(X86::JMP_4)).addMBB(FBB);
1836    ++Count;
1837  }
1838  return Count;
1839}
1840
1841/// isHReg - Test if the given register is a physical h register.
1842static bool isHReg(unsigned Reg) {
1843  return X86::GR8_ABCD_HRegClass.contains(Reg);
1844}
1845
1846void X86InstrInfo::copyPhysReg(MachineBasicBlock &MBB,
1847                               MachineBasicBlock::iterator MI, DebugLoc DL,
1848                               unsigned DestReg, unsigned SrcReg,
1849                               bool KillSrc) const {
1850  // First deal with the normal symmetric copies.
1851  unsigned Opc = 0;
1852  if (X86::GR64RegClass.contains(DestReg, SrcReg))
1853    Opc = X86::MOV64rr;
1854  else if (X86::GR32RegClass.contains(DestReg, SrcReg))
1855    Opc = X86::MOV32rr;
1856  else if (X86::GR16RegClass.contains(DestReg, SrcReg))
1857    Opc = X86::MOV16rr;
1858  else if (X86::GR8RegClass.contains(DestReg, SrcReg)) {
1859    // Copying to or from a physical H register on x86-64 requires a NOREX
1860    // move.  Otherwise use a normal move.
1861    if ((isHReg(DestReg) || isHReg(SrcReg)) &&
1862        TM.getSubtarget<X86Subtarget>().is64Bit())
1863      Opc = X86::MOV8rr_NOREX;
1864    else
1865      Opc = X86::MOV8rr;
1866  } else if (X86::VR128RegClass.contains(DestReg, SrcReg))
1867    Opc = X86::MOVAPSrr;
1868  else if (X86::VR64RegClass.contains(DestReg, SrcReg))
1869    Opc = X86::MMX_MOVQ64rr;
1870
1871  if (Opc) {
1872    BuildMI(MBB, MI, DL, get(Opc), DestReg)
1873      .addReg(SrcReg, getKillRegState(KillSrc));
1874    return;
1875  }
1876
1877  // Moving EFLAGS to / from another register requires a push and a pop.
1878  if (SrcReg == X86::EFLAGS) {
1879    if (X86::GR64RegClass.contains(DestReg)) {
1880      BuildMI(MBB, MI, DL, get(X86::PUSHF64));
1881      BuildMI(MBB, MI, DL, get(X86::POP64r), DestReg);
1882      return;
1883    } else if (X86::GR32RegClass.contains(DestReg)) {
1884      BuildMI(MBB, MI, DL, get(X86::PUSHF32));
1885      BuildMI(MBB, MI, DL, get(X86::POP32r), DestReg);
1886      return;
1887    }
1888  }
1889  if (DestReg == X86::EFLAGS) {
1890    if (X86::GR64RegClass.contains(SrcReg)) {
1891      BuildMI(MBB, MI, DL, get(X86::PUSH64r))
1892        .addReg(SrcReg, getKillRegState(KillSrc));
1893      BuildMI(MBB, MI, DL, get(X86::POPF64));
1894      return;
1895    } else if (X86::GR32RegClass.contains(SrcReg)) {
1896      BuildMI(MBB, MI, DL, get(X86::PUSH32r))
1897        .addReg(SrcReg, getKillRegState(KillSrc));
1898      BuildMI(MBB, MI, DL, get(X86::POPF32));
1899      return;
1900    }
1901  }
1902
1903  DEBUG(dbgs() << "Cannot copy " << RI.getName(SrcReg)
1904               << " to " << RI.getName(DestReg) << '\n');
1905  llvm_unreachable("Cannot emit physreg copy instruction");
1906}
1907
1908static unsigned getLoadStoreRegOpcode(unsigned Reg,
1909                                      const TargetRegisterClass *RC,
1910                                      bool isStackAligned,
1911                                      const TargetMachine &TM,
1912                                      bool load) {
1913  switch (RC->getID()) {
1914  default:
1915    llvm_unreachable("Unknown regclass");
1916  case X86::GR64RegClassID:
1917  case X86::GR64_NOSPRegClassID:
1918    return load ? X86::MOV64rm : X86::MOV64mr;
1919  case X86::GR32RegClassID:
1920  case X86::GR32_NOSPRegClassID:
1921  case X86::GR32_ADRegClassID:
1922    return load ? X86::MOV32rm : X86::MOV32mr;
1923  case X86::GR16RegClassID:
1924    return load ? X86::MOV16rm : X86::MOV16mr;
1925  case X86::GR8RegClassID:
1926    // Copying to or from a physical H register on x86-64 requires a NOREX
1927    // move.  Otherwise use a normal move.
1928    if (isHReg(Reg) &&
1929        TM.getSubtarget<X86Subtarget>().is64Bit())
1930      return load ? X86::MOV8rm_NOREX : X86::MOV8mr_NOREX;
1931    else
1932      return load ? X86::MOV8rm : X86::MOV8mr;
1933  case X86::GR64_ABCDRegClassID:
1934    return load ? X86::MOV64rm : X86::MOV64mr;
1935  case X86::GR32_ABCDRegClassID:
1936    return load ? X86::MOV32rm : X86::MOV32mr;
1937  case X86::GR16_ABCDRegClassID:
1938    return load ? X86::MOV16rm : X86::MOV16mr;
1939  case X86::GR8_ABCD_LRegClassID:
1940    return load ? X86::MOV8rm :X86::MOV8mr;
1941  case X86::GR8_ABCD_HRegClassID:
1942    if (TM.getSubtarget<X86Subtarget>().is64Bit())
1943      return load ? X86::MOV8rm_NOREX : X86::MOV8mr_NOREX;
1944    else
1945      return load ? X86::MOV8rm : X86::MOV8mr;
1946  case X86::GR64_NOREXRegClassID:
1947  case X86::GR64_NOREX_NOSPRegClassID:
1948    return load ? X86::MOV64rm : X86::MOV64mr;
1949  case X86::GR32_NOREXRegClassID:
1950    return load ? X86::MOV32rm : X86::MOV32mr;
1951  case X86::GR16_NOREXRegClassID:
1952    return load ? X86::MOV16rm : X86::MOV16mr;
1953  case X86::GR8_NOREXRegClassID:
1954    return load ? X86::MOV8rm : X86::MOV8mr;
1955  case X86::GR64_TCRegClassID:
1956    return load ? X86::MOV64rm_TC : X86::MOV64mr_TC;
1957  case X86::GR32_TCRegClassID:
1958    return load ? X86::MOV32rm_TC : X86::MOV32mr_TC;
1959  case X86::RFP80RegClassID:
1960    return load ? X86::LD_Fp80m : X86::ST_FpP80m;
1961  case X86::RFP64RegClassID:
1962    return load ? X86::LD_Fp64m : X86::ST_Fp64m;
1963  case X86::RFP32RegClassID:
1964    return load ? X86::LD_Fp32m : X86::ST_Fp32m;
1965  case X86::FR32RegClassID:
1966    return load ? X86::MOVSSrm : X86::MOVSSmr;
1967  case X86::FR64RegClassID:
1968    return load ? X86::MOVSDrm : X86::MOVSDmr;
1969  case X86::VR128RegClassID:
1970    // If stack is realigned we can use aligned stores.
1971    if (isStackAligned)
1972      return load ? X86::MOVAPSrm : X86::MOVAPSmr;
1973    else
1974      return load ? X86::MOVUPSrm : X86::MOVUPSmr;
1975  case X86::VR64RegClassID:
1976    return load ? X86::MMX_MOVQ64rm : X86::MMX_MOVQ64mr;
1977  }
1978}
1979
1980static unsigned getStoreRegOpcode(unsigned SrcReg,
1981                                  const TargetRegisterClass *RC,
1982                                  bool isStackAligned,
1983                                  TargetMachine &TM) {
1984  return getLoadStoreRegOpcode(SrcReg, RC, isStackAligned, TM, false);
1985}
1986
1987
1988static unsigned getLoadRegOpcode(unsigned DestReg,
1989                                 const TargetRegisterClass *RC,
1990                                 bool isStackAligned,
1991                                 const TargetMachine &TM) {
1992  return getLoadStoreRegOpcode(DestReg, RC, isStackAligned, TM, true);
1993}
1994
1995void X86InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
1996                                       MachineBasicBlock::iterator MI,
1997                                       unsigned SrcReg, bool isKill, int FrameIdx,
1998                                       const TargetRegisterClass *RC,
1999                                       const TargetRegisterInfo *TRI) const {
2000  const MachineFunction &MF = *MBB.getParent();
2001  bool isAligned = (RI.getStackAlignment() >= 16) || RI.canRealignStack(MF);
2002  unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, TM);
2003  DebugLoc DL = MBB.findDebugLoc(MI);
2004  addFrameReference(BuildMI(MBB, MI, DL, get(Opc)), FrameIdx)
2005    .addReg(SrcReg, getKillRegState(isKill));
2006}
2007
2008void X86InstrInfo::storeRegToAddr(MachineFunction &MF, unsigned SrcReg,
2009                                  bool isKill,
2010                                  SmallVectorImpl<MachineOperand> &Addr,
2011                                  const TargetRegisterClass *RC,
2012                                  MachineInstr::mmo_iterator MMOBegin,
2013                                  MachineInstr::mmo_iterator MMOEnd,
2014                                  SmallVectorImpl<MachineInstr*> &NewMIs) const {
2015  bool isAligned = MMOBegin != MMOEnd && (*MMOBegin)->getAlignment() >= 16;
2016  unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, TM);
2017  DebugLoc DL;
2018  MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc));
2019  for (unsigned i = 0, e = Addr.size(); i != e; ++i)
2020    MIB.addOperand(Addr[i]);
2021  MIB.addReg(SrcReg, getKillRegState(isKill));
2022  (*MIB).setMemRefs(MMOBegin, MMOEnd);
2023  NewMIs.push_back(MIB);
2024}
2025
2026
2027void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
2028                                        MachineBasicBlock::iterator MI,
2029                                        unsigned DestReg, int FrameIdx,
2030                                        const TargetRegisterClass *RC,
2031                                        const TargetRegisterInfo *TRI) const {
2032  const MachineFunction &MF = *MBB.getParent();
2033  bool isAligned = (RI.getStackAlignment() >= 16) || RI.canRealignStack(MF);
2034  unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, TM);
2035  DebugLoc DL = MBB.findDebugLoc(MI);
2036  addFrameReference(BuildMI(MBB, MI, DL, get(Opc), DestReg), FrameIdx);
2037}
2038
2039void X86InstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
2040                                 SmallVectorImpl<MachineOperand> &Addr,
2041                                 const TargetRegisterClass *RC,
2042                                 MachineInstr::mmo_iterator MMOBegin,
2043                                 MachineInstr::mmo_iterator MMOEnd,
2044                                 SmallVectorImpl<MachineInstr*> &NewMIs) const {
2045  bool isAligned = MMOBegin != MMOEnd && (*MMOBegin)->getAlignment() >= 16;
2046  unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, TM);
2047  DebugLoc DL;
2048  MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc), DestReg);
2049  for (unsigned i = 0, e = Addr.size(); i != e; ++i)
2050    MIB.addOperand(Addr[i]);
2051  (*MIB).setMemRefs(MMOBegin, MMOEnd);
2052  NewMIs.push_back(MIB);
2053}
2054
2055bool X86InstrInfo::spillCalleeSavedRegisters(MachineBasicBlock &MBB,
2056                                             MachineBasicBlock::iterator MI,
2057                                        const std::vector<CalleeSavedInfo> &CSI,
2058                                          const TargetRegisterInfo *TRI) const {
2059  if (CSI.empty())
2060    return false;
2061
2062  DebugLoc DL = MBB.findDebugLoc(MI);
2063
2064  bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
2065  unsigned SlotSize = is64Bit ? 8 : 4;
2066
2067  MachineFunction &MF = *MBB.getParent();
2068  unsigned FPReg = RI.getFrameRegister(MF);
2069  X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
2070  unsigned CalleeFrameSize = 0;
2071
2072  unsigned Opc = is64Bit ? X86::PUSH64r : X86::PUSH32r;
2073  for (unsigned i = CSI.size(); i != 0; --i) {
2074    unsigned Reg = CSI[i-1].getReg();
2075    // Add the callee-saved register as live-in. It's killed at the spill.
2076    MBB.addLiveIn(Reg);
2077    if (Reg == FPReg)
2078      // X86RegisterInfo::emitPrologue will handle spilling of frame register.
2079      continue;
2080    if (!X86::VR128RegClass.contains(Reg)) {
2081      CalleeFrameSize += SlotSize;
2082      BuildMI(MBB, MI, DL, get(Opc)).addReg(Reg, RegState::Kill);
2083    } else {
2084      storeRegToStackSlot(MBB, MI, Reg, true, CSI[i-1].getFrameIdx(),
2085                          &X86::VR128RegClass, &RI);
2086    }
2087  }
2088
2089  X86FI->setCalleeSavedFrameSize(CalleeFrameSize);
2090  return true;
2091}
2092
2093bool X86InstrInfo::restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
2094                                               MachineBasicBlock::iterator MI,
2095                                        const std::vector<CalleeSavedInfo> &CSI,
2096                                          const TargetRegisterInfo *TRI) const {
2097  if (CSI.empty())
2098    return false;
2099
2100  DebugLoc DL = MBB.findDebugLoc(MI);
2101
2102  MachineFunction &MF = *MBB.getParent();
2103  unsigned FPReg = RI.getFrameRegister(MF);
2104  bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
2105  unsigned Opc = is64Bit ? X86::POP64r : X86::POP32r;
2106  for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
2107    unsigned Reg = CSI[i].getReg();
2108    if (Reg == FPReg)
2109      // X86RegisterInfo::emitEpilogue will handle restoring of frame register.
2110      continue;
2111    if (!X86::VR128RegClass.contains(Reg)) {
2112      BuildMI(MBB, MI, DL, get(Opc), Reg);
2113    } else {
2114      loadRegFromStackSlot(MBB, MI, Reg, CSI[i].getFrameIdx(),
2115                           &X86::VR128RegClass, &RI);
2116    }
2117  }
2118  return true;
2119}
2120
2121MachineInstr*
2122X86InstrInfo::emitFrameIndexDebugValue(MachineFunction &MF,
2123                                       int FrameIx, uint64_t Offset,
2124                                       const MDNode *MDPtr,
2125                                       DebugLoc DL) const {
2126  X86AddressMode AM;
2127  AM.BaseType = X86AddressMode::FrameIndexBase;
2128  AM.Base.FrameIndex = FrameIx;
2129  MachineInstrBuilder MIB = BuildMI(MF, DL, get(X86::DBG_VALUE));
2130  addFullAddress(MIB, AM).addImm(Offset).addMetadata(MDPtr);
2131  return &*MIB;
2132}
2133
2134static MachineInstr *FuseTwoAddrInst(MachineFunction &MF, unsigned Opcode,
2135                                     const SmallVectorImpl<MachineOperand> &MOs,
2136                                     MachineInstr *MI,
2137                                     const TargetInstrInfo &TII) {
2138  // Create the base instruction with the memory operand as the first part.
2139  MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode),
2140                                              MI->getDebugLoc(), true);
2141  MachineInstrBuilder MIB(NewMI);
2142  unsigned NumAddrOps = MOs.size();
2143  for (unsigned i = 0; i != NumAddrOps; ++i)
2144    MIB.addOperand(MOs[i]);
2145  if (NumAddrOps < 4)  // FrameIndex only
2146    addOffset(MIB, 0);
2147
2148  // Loop over the rest of the ri operands, converting them over.
2149  unsigned NumOps = MI->getDesc().getNumOperands()-2;
2150  for (unsigned i = 0; i != NumOps; ++i) {
2151    MachineOperand &MO = MI->getOperand(i+2);
2152    MIB.addOperand(MO);
2153  }
2154  for (unsigned i = NumOps+2, e = MI->getNumOperands(); i != e; ++i) {
2155    MachineOperand &MO = MI->getOperand(i);
2156    MIB.addOperand(MO);
2157  }
2158  return MIB;
2159}
2160
2161static MachineInstr *FuseInst(MachineFunction &MF,
2162                              unsigned Opcode, unsigned OpNo,
2163                              const SmallVectorImpl<MachineOperand> &MOs,
2164                              MachineInstr *MI, const TargetInstrInfo &TII) {
2165  MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode),
2166                                              MI->getDebugLoc(), true);
2167  MachineInstrBuilder MIB(NewMI);
2168
2169  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
2170    MachineOperand &MO = MI->getOperand(i);
2171    if (i == OpNo) {
2172      assert(MO.isReg() && "Expected to fold into reg operand!");
2173      unsigned NumAddrOps = MOs.size();
2174      for (unsigned i = 0; i != NumAddrOps; ++i)
2175        MIB.addOperand(MOs[i]);
2176      if (NumAddrOps < 4)  // FrameIndex only
2177        addOffset(MIB, 0);
2178    } else {
2179      MIB.addOperand(MO);
2180    }
2181  }
2182  return MIB;
2183}
2184
2185static MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode,
2186                                const SmallVectorImpl<MachineOperand> &MOs,
2187                                MachineInstr *MI) {
2188  MachineFunction &MF = *MI->getParent()->getParent();
2189  MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), TII.get(Opcode));
2190
2191  unsigned NumAddrOps = MOs.size();
2192  for (unsigned i = 0; i != NumAddrOps; ++i)
2193    MIB.addOperand(MOs[i]);
2194  if (NumAddrOps < 4)  // FrameIndex only
2195    addOffset(MIB, 0);
2196  return MIB.addImm(0);
2197}
2198
2199MachineInstr*
2200X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
2201                                    MachineInstr *MI, unsigned i,
2202                                    const SmallVectorImpl<MachineOperand> &MOs,
2203                                    unsigned Size, unsigned Align) const {
2204  const DenseMap<unsigned*, std::pair<unsigned,unsigned> > *OpcodeTablePtr=NULL;
2205  bool isTwoAddrFold = false;
2206  unsigned NumOps = MI->getDesc().getNumOperands();
2207  bool isTwoAddr = NumOps > 1 &&
2208    MI->getDesc().getOperandConstraint(1, TOI::TIED_TO) != -1;
2209
2210  MachineInstr *NewMI = NULL;
2211  // Folding a memory location into the two-address part of a two-address
2212  // instruction is different than folding it other places.  It requires
2213  // replacing the *two* registers with the memory location.
2214  if (isTwoAddr && NumOps >= 2 && i < 2 &&
2215      MI->getOperand(0).isReg() &&
2216      MI->getOperand(1).isReg() &&
2217      MI->getOperand(0).getReg() == MI->getOperand(1).getReg()) {
2218    OpcodeTablePtr = &RegOp2MemOpTable2Addr;
2219    isTwoAddrFold = true;
2220  } else if (i == 0) { // If operand 0
2221    if (MI->getOpcode() == X86::MOV64r0)
2222      NewMI = MakeM0Inst(*this, X86::MOV64mi32, MOs, MI);
2223    else if (MI->getOpcode() == X86::MOV32r0)
2224      NewMI = MakeM0Inst(*this, X86::MOV32mi, MOs, MI);
2225    else if (MI->getOpcode() == X86::MOV16r0)
2226      NewMI = MakeM0Inst(*this, X86::MOV16mi, MOs, MI);
2227    else if (MI->getOpcode() == X86::MOV8r0)
2228      NewMI = MakeM0Inst(*this, X86::MOV8mi, MOs, MI);
2229    if (NewMI)
2230      return NewMI;
2231
2232    OpcodeTablePtr = &RegOp2MemOpTable0;
2233  } else if (i == 1) {
2234    OpcodeTablePtr = &RegOp2MemOpTable1;
2235  } else if (i == 2) {
2236    OpcodeTablePtr = &RegOp2MemOpTable2;
2237  }
2238
2239  // If table selected...
2240  if (OpcodeTablePtr) {
2241    // Find the Opcode to fuse
2242    DenseMap<unsigned*, std::pair<unsigned,unsigned> >::const_iterator I =
2243      OpcodeTablePtr->find((unsigned*)MI->getOpcode());
2244    if (I != OpcodeTablePtr->end()) {
2245      unsigned Opcode = I->second.first;
2246      unsigned MinAlign = I->second.second;
2247      if (Align < MinAlign)
2248        return NULL;
2249      bool NarrowToMOV32rm = false;
2250      if (Size) {
2251        unsigned RCSize =  MI->getDesc().OpInfo[i].getRegClass(&RI)->getSize();
2252        if (Size < RCSize) {
2253          // Check if it's safe to fold the load. If the size of the object is
2254          // narrower than the load width, then it's not.
2255          if (Opcode != X86::MOV64rm || RCSize != 8 || Size != 4)
2256            return NULL;
2257          // If this is a 64-bit load, but the spill slot is 32, then we can do
2258          // a 32-bit load which is implicitly zero-extended. This likely is due
2259          // to liveintervalanalysis remat'ing a load from stack slot.
2260          if (MI->getOperand(0).getSubReg() || MI->getOperand(1).getSubReg())
2261            return NULL;
2262          Opcode = X86::MOV32rm;
2263          NarrowToMOV32rm = true;
2264        }
2265      }
2266
2267      if (isTwoAddrFold)
2268        NewMI = FuseTwoAddrInst(MF, Opcode, MOs, MI, *this);
2269      else
2270        NewMI = FuseInst(MF, Opcode, i, MOs, MI, *this);
2271
2272      if (NarrowToMOV32rm) {
2273        // If this is the special case where we use a MOV32rm to load a 32-bit
2274        // value and zero-extend the top bits. Change the destination register
2275        // to a 32-bit one.
2276        unsigned DstReg = NewMI->getOperand(0).getReg();
2277        if (TargetRegisterInfo::isPhysicalRegister(DstReg))
2278          NewMI->getOperand(0).setReg(RI.getSubReg(DstReg,
2279                                                   X86::sub_32bit));
2280        else
2281          NewMI->getOperand(0).setSubReg(X86::sub_32bit);
2282      }
2283      return NewMI;
2284    }
2285  }
2286
2287  // No fusion
2288  if (PrintFailedFusing && !MI->isCopy())
2289    dbgs() << "We failed to fuse operand " << i << " in " << *MI;
2290  return NULL;
2291}
2292
2293
2294MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
2295                                                  MachineInstr *MI,
2296                                           const SmallVectorImpl<unsigned> &Ops,
2297                                                  int FrameIndex) const {
2298  // Check switch flag
2299  if (NoFusing) return NULL;
2300
2301  if (!MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize))
2302    switch (MI->getOpcode()) {
2303    case X86::CVTSD2SSrr:
2304    case X86::Int_CVTSD2SSrr:
2305    case X86::CVTSS2SDrr:
2306    case X86::Int_CVTSS2SDrr:
2307    case X86::RCPSSr:
2308    case X86::RCPSSr_Int:
2309    case X86::ROUNDSDr_Int:
2310    case X86::ROUNDSSr_Int:
2311    case X86::RSQRTSSr:
2312    case X86::RSQRTSSr_Int:
2313    case X86::SQRTSSr:
2314    case X86::SQRTSSr_Int:
2315      return 0;
2316    }
2317
2318  const MachineFrameInfo *MFI = MF.getFrameInfo();
2319  unsigned Size = MFI->getObjectSize(FrameIndex);
2320  unsigned Alignment = MFI->getObjectAlignment(FrameIndex);
2321  if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
2322    unsigned NewOpc = 0;
2323    unsigned RCSize = 0;
2324    switch (MI->getOpcode()) {
2325    default: return NULL;
2326    case X86::TEST8rr:  NewOpc = X86::CMP8ri; RCSize = 1; break;
2327    case X86::TEST16rr: NewOpc = X86::CMP16ri8; RCSize = 2; break;
2328    case X86::TEST32rr: NewOpc = X86::CMP32ri8; RCSize = 4; break;
2329    case X86::TEST64rr: NewOpc = X86::CMP64ri8; RCSize = 8; break;
2330    }
2331    // Check if it's safe to fold the load. If the size of the object is
2332    // narrower than the load width, then it's not.
2333    if (Size < RCSize)
2334      return NULL;
2335    // Change to CMPXXri r, 0 first.
2336    MI->setDesc(get(NewOpc));
2337    MI->getOperand(1).ChangeToImmediate(0);
2338  } else if (Ops.size() != 1)
2339    return NULL;
2340
2341  SmallVector<MachineOperand,4> MOs;
2342  MOs.push_back(MachineOperand::CreateFI(FrameIndex));
2343  return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, Size, Alignment);
2344}
2345
2346MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
2347                                                  MachineInstr *MI,
2348                                           const SmallVectorImpl<unsigned> &Ops,
2349                                                  MachineInstr *LoadMI) const {
2350  // Check switch flag
2351  if (NoFusing) return NULL;
2352
2353  if (!MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize))
2354    switch (MI->getOpcode()) {
2355    case X86::CVTSD2SSrr:
2356    case X86::Int_CVTSD2SSrr:
2357    case X86::CVTSS2SDrr:
2358    case X86::Int_CVTSS2SDrr:
2359    case X86::RCPSSr:
2360    case X86::RCPSSr_Int:
2361    case X86::ROUNDSDr_Int:
2362    case X86::ROUNDSSr_Int:
2363    case X86::RSQRTSSr:
2364    case X86::RSQRTSSr_Int:
2365    case X86::SQRTSSr:
2366    case X86::SQRTSSr_Int:
2367      return 0;
2368    }
2369
2370  // Determine the alignment of the load.
2371  unsigned Alignment = 0;
2372  if (LoadMI->hasOneMemOperand())
2373    Alignment = (*LoadMI->memoperands_begin())->getAlignment();
2374  else
2375    switch (LoadMI->getOpcode()) {
2376    case X86::V_SET0PS:
2377    case X86::V_SET0PD:
2378    case X86::V_SET0PI:
2379    case X86::V_SETALLONES:
2380      Alignment = 16;
2381      break;
2382    case X86::FsFLD0SD:
2383      Alignment = 8;
2384      break;
2385    case X86::FsFLD0SS:
2386      Alignment = 4;
2387      break;
2388    default:
2389      llvm_unreachable("Don't know how to fold this instruction!");
2390    }
2391  if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
2392    unsigned NewOpc = 0;
2393    switch (MI->getOpcode()) {
2394    default: return NULL;
2395    case X86::TEST8rr:  NewOpc = X86::CMP8ri; break;
2396    case X86::TEST16rr: NewOpc = X86::CMP16ri8; break;
2397    case X86::TEST32rr: NewOpc = X86::CMP32ri8; break;
2398    case X86::TEST64rr: NewOpc = X86::CMP64ri8; break;
2399    }
2400    // Change to CMPXXri r, 0 first.
2401    MI->setDesc(get(NewOpc));
2402    MI->getOperand(1).ChangeToImmediate(0);
2403  } else if (Ops.size() != 1)
2404    return NULL;
2405
2406  SmallVector<MachineOperand,X86::AddrNumOperands> MOs;
2407  switch (LoadMI->getOpcode()) {
2408  case X86::V_SET0PS:
2409  case X86::V_SET0PD:
2410  case X86::V_SET0PI:
2411  case X86::V_SETALLONES:
2412  case X86::FsFLD0SD:
2413  case X86::FsFLD0SS: {
2414    // Folding a V_SET0P? or V_SETALLONES as a load, to ease register pressure.
2415    // Create a constant-pool entry and operands to load from it.
2416
2417    // Medium and large mode can't fold loads this way.
2418    if (TM.getCodeModel() != CodeModel::Small &&
2419        TM.getCodeModel() != CodeModel::Kernel)
2420      return NULL;
2421
2422    // x86-32 PIC requires a PIC base register for constant pools.
2423    unsigned PICBase = 0;
2424    if (TM.getRelocationModel() == Reloc::PIC_) {
2425      if (TM.getSubtarget<X86Subtarget>().is64Bit())
2426        PICBase = X86::RIP;
2427      else
2428        // FIXME: PICBase = getGlobalBaseReg(&MF);
2429        // This doesn't work for several reasons.
2430        // 1. GlobalBaseReg may have been spilled.
2431        // 2. It may not be live at MI.
2432        return NULL;
2433    }
2434
2435    // Create a constant-pool entry.
2436    MachineConstantPool &MCP = *MF.getConstantPool();
2437    const Type *Ty;
2438    if (LoadMI->getOpcode() == X86::FsFLD0SS)
2439      Ty = Type::getFloatTy(MF.getFunction()->getContext());
2440    else if (LoadMI->getOpcode() == X86::FsFLD0SD)
2441      Ty = Type::getDoubleTy(MF.getFunction()->getContext());
2442    else
2443      Ty = VectorType::get(Type::getInt32Ty(MF.getFunction()->getContext()), 4);
2444    const Constant *C = LoadMI->getOpcode() == X86::V_SETALLONES ?
2445                    Constant::getAllOnesValue(Ty) :
2446                    Constant::getNullValue(Ty);
2447    unsigned CPI = MCP.getConstantPoolIndex(C, Alignment);
2448
2449    // Create operands to load from the constant pool entry.
2450    MOs.push_back(MachineOperand::CreateReg(PICBase, false));
2451    MOs.push_back(MachineOperand::CreateImm(1));
2452    MOs.push_back(MachineOperand::CreateReg(0, false));
2453    MOs.push_back(MachineOperand::CreateCPI(CPI, 0));
2454    MOs.push_back(MachineOperand::CreateReg(0, false));
2455    break;
2456  }
2457  default: {
2458    // Folding a normal load. Just copy the load's address operands.
2459    unsigned NumOps = LoadMI->getDesc().getNumOperands();
2460    for (unsigned i = NumOps - X86::AddrNumOperands; i != NumOps; ++i)
2461      MOs.push_back(LoadMI->getOperand(i));
2462    break;
2463  }
2464  }
2465  return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, 0, Alignment);
2466}
2467
2468
2469bool X86InstrInfo::canFoldMemoryOperand(const MachineInstr *MI,
2470                                  const SmallVectorImpl<unsigned> &Ops) const {
2471  // Check switch flag
2472  if (NoFusing) return 0;
2473
2474  if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
2475    switch (MI->getOpcode()) {
2476    default: return false;
2477    case X86::TEST8rr:
2478    case X86::TEST16rr:
2479    case X86::TEST32rr:
2480    case X86::TEST64rr:
2481      return true;
2482    }
2483  }
2484
2485  if (Ops.size() != 1)
2486    return false;
2487
2488  unsigned OpNum = Ops[0];
2489  unsigned Opc = MI->getOpcode();
2490  unsigned NumOps = MI->getDesc().getNumOperands();
2491  bool isTwoAddr = NumOps > 1 &&
2492    MI->getDesc().getOperandConstraint(1, TOI::TIED_TO) != -1;
2493
2494  // Folding a memory location into the two-address part of a two-address
2495  // instruction is different than folding it other places.  It requires
2496  // replacing the *two* registers with the memory location.
2497  const DenseMap<unsigned*, std::pair<unsigned,unsigned> > *OpcodeTablePtr=NULL;
2498  if (isTwoAddr && NumOps >= 2 && OpNum < 2) {
2499    OpcodeTablePtr = &RegOp2MemOpTable2Addr;
2500  } else if (OpNum == 0) { // If operand 0
2501    switch (Opc) {
2502    case X86::MOV8r0:
2503    case X86::MOV16r0:
2504    case X86::MOV32r0:
2505    case X86::MOV64r0:
2506      return true;
2507    default: break;
2508    }
2509    OpcodeTablePtr = &RegOp2MemOpTable0;
2510  } else if (OpNum == 1) {
2511    OpcodeTablePtr = &RegOp2MemOpTable1;
2512  } else if (OpNum == 2) {
2513    OpcodeTablePtr = &RegOp2MemOpTable2;
2514  }
2515
2516  if (OpcodeTablePtr) {
2517    // Find the Opcode to fuse
2518    DenseMap<unsigned*, std::pair<unsigned,unsigned> >::const_iterator I =
2519      OpcodeTablePtr->find((unsigned*)Opc);
2520    if (I != OpcodeTablePtr->end())
2521      return true;
2522  }
2523  return TargetInstrInfoImpl::canFoldMemoryOperand(MI, Ops);
2524}
2525
2526bool X86InstrInfo::unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
2527                                unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
2528                                SmallVectorImpl<MachineInstr*> &NewMIs) const {
2529  DenseMap<unsigned*, std::pair<unsigned,unsigned> >::const_iterator I =
2530    MemOp2RegOpTable.find((unsigned*)MI->getOpcode());
2531  if (I == MemOp2RegOpTable.end())
2532    return false;
2533  unsigned Opc = I->second.first;
2534  unsigned Index = I->second.second & 0xf;
2535  bool FoldedLoad = I->second.second & (1 << 4);
2536  bool FoldedStore = I->second.second & (1 << 5);
2537  if (UnfoldLoad && !FoldedLoad)
2538    return false;
2539  UnfoldLoad &= FoldedLoad;
2540  if (UnfoldStore && !FoldedStore)
2541    return false;
2542  UnfoldStore &= FoldedStore;
2543
2544  const TargetInstrDesc &TID = get(Opc);
2545  const TargetOperandInfo &TOI = TID.OpInfo[Index];
2546  const TargetRegisterClass *RC = TOI.getRegClass(&RI);
2547  if (!MI->hasOneMemOperand() &&
2548      RC == &X86::VR128RegClass &&
2549      !TM.getSubtarget<X86Subtarget>().isUnalignedMemAccessFast())
2550    // Without memoperands, loadRegFromAddr and storeRegToStackSlot will
2551    // conservatively assume the address is unaligned. That's bad for
2552    // performance.
2553    return false;
2554  SmallVector<MachineOperand, X86::AddrNumOperands> AddrOps;
2555  SmallVector<MachineOperand,2> BeforeOps;
2556  SmallVector<MachineOperand,2> AfterOps;
2557  SmallVector<MachineOperand,4> ImpOps;
2558  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
2559    MachineOperand &Op = MI->getOperand(i);
2560    if (i >= Index && i < Index + X86::AddrNumOperands)
2561      AddrOps.push_back(Op);
2562    else if (Op.isReg() && Op.isImplicit())
2563      ImpOps.push_back(Op);
2564    else if (i < Index)
2565      BeforeOps.push_back(Op);
2566    else if (i > Index)
2567      AfterOps.push_back(Op);
2568  }
2569
2570  // Emit the load instruction.
2571  if (UnfoldLoad) {
2572    std::pair<MachineInstr::mmo_iterator,
2573              MachineInstr::mmo_iterator> MMOs =
2574      MF.extractLoadMemRefs(MI->memoperands_begin(),
2575                            MI->memoperands_end());
2576    loadRegFromAddr(MF, Reg, AddrOps, RC, MMOs.first, MMOs.second, NewMIs);
2577    if (UnfoldStore) {
2578      // Address operands cannot be marked isKill.
2579      for (unsigned i = 1; i != 1 + X86::AddrNumOperands; ++i) {
2580        MachineOperand &MO = NewMIs[0]->getOperand(i);
2581        if (MO.isReg())
2582          MO.setIsKill(false);
2583      }
2584    }
2585  }
2586
2587  // Emit the data processing instruction.
2588  MachineInstr *DataMI = MF.CreateMachineInstr(TID, MI->getDebugLoc(), true);
2589  MachineInstrBuilder MIB(DataMI);
2590
2591  if (FoldedStore)
2592    MIB.addReg(Reg, RegState::Define);
2593  for (unsigned i = 0, e = BeforeOps.size(); i != e; ++i)
2594    MIB.addOperand(BeforeOps[i]);
2595  if (FoldedLoad)
2596    MIB.addReg(Reg);
2597  for (unsigned i = 0, e = AfterOps.size(); i != e; ++i)
2598    MIB.addOperand(AfterOps[i]);
2599  for (unsigned i = 0, e = ImpOps.size(); i != e; ++i) {
2600    MachineOperand &MO = ImpOps[i];
2601    MIB.addReg(MO.getReg(),
2602               getDefRegState(MO.isDef()) |
2603               RegState::Implicit |
2604               getKillRegState(MO.isKill()) |
2605               getDeadRegState(MO.isDead()) |
2606               getUndefRegState(MO.isUndef()));
2607  }
2608  // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
2609  unsigned NewOpc = 0;
2610  switch (DataMI->getOpcode()) {
2611  default: break;
2612  case X86::CMP64ri32:
2613  case X86::CMP64ri8:
2614  case X86::CMP32ri:
2615  case X86::CMP32ri8:
2616  case X86::CMP16ri:
2617  case X86::CMP16ri8:
2618  case X86::CMP8ri: {
2619    MachineOperand &MO0 = DataMI->getOperand(0);
2620    MachineOperand &MO1 = DataMI->getOperand(1);
2621    if (MO1.getImm() == 0) {
2622      switch (DataMI->getOpcode()) {
2623      default: break;
2624      case X86::CMP64ri8:
2625      case X86::CMP64ri32: NewOpc = X86::TEST64rr; break;
2626      case X86::CMP32ri8:
2627      case X86::CMP32ri:   NewOpc = X86::TEST32rr; break;
2628      case X86::CMP16ri8:
2629      case X86::CMP16ri:   NewOpc = X86::TEST16rr; break;
2630      case X86::CMP8ri:    NewOpc = X86::TEST8rr; break;
2631      }
2632      DataMI->setDesc(get(NewOpc));
2633      MO1.ChangeToRegister(MO0.getReg(), false);
2634    }
2635  }
2636  }
2637  NewMIs.push_back(DataMI);
2638
2639  // Emit the store instruction.
2640  if (UnfoldStore) {
2641    const TargetRegisterClass *DstRC = TID.OpInfo[0].getRegClass(&RI);
2642    std::pair<MachineInstr::mmo_iterator,
2643              MachineInstr::mmo_iterator> MMOs =
2644      MF.extractStoreMemRefs(MI->memoperands_begin(),
2645                             MI->memoperands_end());
2646    storeRegToAddr(MF, Reg, true, AddrOps, DstRC, MMOs.first, MMOs.second, NewMIs);
2647  }
2648
2649  return true;
2650}
2651
2652bool
2653X86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
2654                                  SmallVectorImpl<SDNode*> &NewNodes) const {
2655  if (!N->isMachineOpcode())
2656    return false;
2657
2658  DenseMap<unsigned*, std::pair<unsigned,unsigned> >::const_iterator I =
2659    MemOp2RegOpTable.find((unsigned*)N->getMachineOpcode());
2660  if (I == MemOp2RegOpTable.end())
2661    return false;
2662  unsigned Opc = I->second.first;
2663  unsigned Index = I->second.second & 0xf;
2664  bool FoldedLoad = I->second.second & (1 << 4);
2665  bool FoldedStore = I->second.second & (1 << 5);
2666  const TargetInstrDesc &TID = get(Opc);
2667  const TargetRegisterClass *RC = TID.OpInfo[Index].getRegClass(&RI);
2668  unsigned NumDefs = TID.NumDefs;
2669  std::vector<SDValue> AddrOps;
2670  std::vector<SDValue> BeforeOps;
2671  std::vector<SDValue> AfterOps;
2672  DebugLoc dl = N->getDebugLoc();
2673  unsigned NumOps = N->getNumOperands();
2674  for (unsigned i = 0; i != NumOps-1; ++i) {
2675    SDValue Op = N->getOperand(i);
2676    if (i >= Index-NumDefs && i < Index-NumDefs + X86::AddrNumOperands)
2677      AddrOps.push_back(Op);
2678    else if (i < Index-NumDefs)
2679      BeforeOps.push_back(Op);
2680    else if (i > Index-NumDefs)
2681      AfterOps.push_back(Op);
2682  }
2683  SDValue Chain = N->getOperand(NumOps-1);
2684  AddrOps.push_back(Chain);
2685
2686  // Emit the load instruction.
2687  SDNode *Load = 0;
2688  MachineFunction &MF = DAG.getMachineFunction();
2689  if (FoldedLoad) {
2690    EVT VT = *RC->vt_begin();
2691    std::pair<MachineInstr::mmo_iterator,
2692              MachineInstr::mmo_iterator> MMOs =
2693      MF.extractLoadMemRefs(cast<MachineSDNode>(N)->memoperands_begin(),
2694                            cast<MachineSDNode>(N)->memoperands_end());
2695    if (!(*MMOs.first) &&
2696        RC == &X86::VR128RegClass &&
2697        !TM.getSubtarget<X86Subtarget>().isUnalignedMemAccessFast())
2698      // Do not introduce a slow unaligned load.
2699      return false;
2700    bool isAligned = (*MMOs.first) && (*MMOs.first)->getAlignment() >= 16;
2701    Load = DAG.getMachineNode(getLoadRegOpcode(0, RC, isAligned, TM), dl,
2702                              VT, MVT::Other, &AddrOps[0], AddrOps.size());
2703    NewNodes.push_back(Load);
2704
2705    // Preserve memory reference information.
2706    cast<MachineSDNode>(Load)->setMemRefs(MMOs.first, MMOs.second);
2707  }
2708
2709  // Emit the data processing instruction.
2710  std::vector<EVT> VTs;
2711  const TargetRegisterClass *DstRC = 0;
2712  if (TID.getNumDefs() > 0) {
2713    DstRC = TID.OpInfo[0].getRegClass(&RI);
2714    VTs.push_back(*DstRC->vt_begin());
2715  }
2716  for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
2717    EVT VT = N->getValueType(i);
2718    if (VT != MVT::Other && i >= (unsigned)TID.getNumDefs())
2719      VTs.push_back(VT);
2720  }
2721  if (Load)
2722    BeforeOps.push_back(SDValue(Load, 0));
2723  std::copy(AfterOps.begin(), AfterOps.end(), std::back_inserter(BeforeOps));
2724  SDNode *NewNode= DAG.getMachineNode(Opc, dl, VTs, &BeforeOps[0],
2725                                      BeforeOps.size());
2726  NewNodes.push_back(NewNode);
2727
2728  // Emit the store instruction.
2729  if (FoldedStore) {
2730    AddrOps.pop_back();
2731    AddrOps.push_back(SDValue(NewNode, 0));
2732    AddrOps.push_back(Chain);
2733    std::pair<MachineInstr::mmo_iterator,
2734              MachineInstr::mmo_iterator> MMOs =
2735      MF.extractStoreMemRefs(cast<MachineSDNode>(N)->memoperands_begin(),
2736                             cast<MachineSDNode>(N)->memoperands_end());
2737    if (!(*MMOs.first) &&
2738        RC == &X86::VR128RegClass &&
2739        !TM.getSubtarget<X86Subtarget>().isUnalignedMemAccessFast())
2740      // Do not introduce a slow unaligned store.
2741      return false;
2742    bool isAligned = (*MMOs.first) && (*MMOs.first)->getAlignment() >= 16;
2743    SDNode *Store = DAG.getMachineNode(getStoreRegOpcode(0, DstRC,
2744                                                         isAligned, TM),
2745                                       dl, MVT::Other,
2746                                       &AddrOps[0], AddrOps.size());
2747    NewNodes.push_back(Store);
2748
2749    // Preserve memory reference information.
2750    cast<MachineSDNode>(Load)->setMemRefs(MMOs.first, MMOs.second);
2751  }
2752
2753  return true;
2754}
2755
2756unsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc,
2757                                      bool UnfoldLoad, bool UnfoldStore,
2758                                      unsigned *LoadRegIndex) const {
2759  DenseMap<unsigned*, std::pair<unsigned,unsigned> >::const_iterator I =
2760    MemOp2RegOpTable.find((unsigned*)Opc);
2761  if (I == MemOp2RegOpTable.end())
2762    return 0;
2763  bool FoldedLoad = I->second.second & (1 << 4);
2764  bool FoldedStore = I->second.second & (1 << 5);
2765  if (UnfoldLoad && !FoldedLoad)
2766    return 0;
2767  if (UnfoldStore && !FoldedStore)
2768    return 0;
2769  if (LoadRegIndex)
2770    *LoadRegIndex = I->second.second & 0xf;
2771  return I->second.first;
2772}
2773
2774bool
2775X86InstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
2776                                     int64_t &Offset1, int64_t &Offset2) const {
2777  if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode())
2778    return false;
2779  unsigned Opc1 = Load1->getMachineOpcode();
2780  unsigned Opc2 = Load2->getMachineOpcode();
2781  switch (Opc1) {
2782  default: return false;
2783  case X86::MOV8rm:
2784  case X86::MOV16rm:
2785  case X86::MOV32rm:
2786  case X86::MOV64rm:
2787  case X86::LD_Fp32m:
2788  case X86::LD_Fp64m:
2789  case X86::LD_Fp80m:
2790  case X86::MOVSSrm:
2791  case X86::MOVSDrm:
2792  case X86::MMX_MOVD64rm:
2793  case X86::MMX_MOVQ64rm:
2794  case X86::FsMOVAPSrm:
2795  case X86::FsMOVAPDrm:
2796  case X86::MOVAPSrm:
2797  case X86::MOVUPSrm:
2798  case X86::MOVUPSrm_Int:
2799  case X86::MOVAPDrm:
2800  case X86::MOVDQArm:
2801  case X86::MOVDQUrm:
2802  case X86::MOVDQUrm_Int:
2803    break;
2804  }
2805  switch (Opc2) {
2806  default: return false;
2807  case X86::MOV8rm:
2808  case X86::MOV16rm:
2809  case X86::MOV32rm:
2810  case X86::MOV64rm:
2811  case X86::LD_Fp32m:
2812  case X86::LD_Fp64m:
2813  case X86::LD_Fp80m:
2814  case X86::MOVSSrm:
2815  case X86::MOVSDrm:
2816  case X86::MMX_MOVD64rm:
2817  case X86::MMX_MOVQ64rm:
2818  case X86::FsMOVAPSrm:
2819  case X86::FsMOVAPDrm:
2820  case X86::MOVAPSrm:
2821  case X86::MOVUPSrm:
2822  case X86::MOVUPSrm_Int:
2823  case X86::MOVAPDrm:
2824  case X86::MOVDQArm:
2825  case X86::MOVDQUrm:
2826  case X86::MOVDQUrm_Int:
2827    break;
2828  }
2829
2830  // Check if chain operands and base addresses match.
2831  if (Load1->getOperand(0) != Load2->getOperand(0) ||
2832      Load1->getOperand(5) != Load2->getOperand(5))
2833    return false;
2834  // Segment operands should match as well.
2835  if (Load1->getOperand(4) != Load2->getOperand(4))
2836    return false;
2837  // Scale should be 1, Index should be Reg0.
2838  if (Load1->getOperand(1) == Load2->getOperand(1) &&
2839      Load1->getOperand(2) == Load2->getOperand(2)) {
2840    if (cast<ConstantSDNode>(Load1->getOperand(1))->getZExtValue() != 1)
2841      return false;
2842
2843    // Now let's examine the displacements.
2844    if (isa<ConstantSDNode>(Load1->getOperand(3)) &&
2845        isa<ConstantSDNode>(Load2->getOperand(3))) {
2846      Offset1 = cast<ConstantSDNode>(Load1->getOperand(3))->getSExtValue();
2847      Offset2 = cast<ConstantSDNode>(Load2->getOperand(3))->getSExtValue();
2848      return true;
2849    }
2850  }
2851  return false;
2852}
2853
2854bool X86InstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
2855                                           int64_t Offset1, int64_t Offset2,
2856                                           unsigned NumLoads) const {
2857  assert(Offset2 > Offset1);
2858  if ((Offset2 - Offset1) / 8 > 64)
2859    return false;
2860
2861  unsigned Opc1 = Load1->getMachineOpcode();
2862  unsigned Opc2 = Load2->getMachineOpcode();
2863  if (Opc1 != Opc2)
2864    return false;  // FIXME: overly conservative?
2865
2866  switch (Opc1) {
2867  default: break;
2868  case X86::LD_Fp32m:
2869  case X86::LD_Fp64m:
2870  case X86::LD_Fp80m:
2871  case X86::MMX_MOVD64rm:
2872  case X86::MMX_MOVQ64rm:
2873    return false;
2874  }
2875
2876  EVT VT = Load1->getValueType(0);
2877  switch (VT.getSimpleVT().SimpleTy) {
2878  default:
2879    // XMM registers. In 64-bit mode we can be a bit more aggressive since we
2880    // have 16 of them to play with.
2881    if (TM.getSubtargetImpl()->is64Bit()) {
2882      if (NumLoads >= 3)
2883        return false;
2884    } else if (NumLoads) {
2885      return false;
2886    }
2887    break;
2888  case MVT::i8:
2889  case MVT::i16:
2890  case MVT::i32:
2891  case MVT::i64:
2892  case MVT::f32:
2893  case MVT::f64:
2894    if (NumLoads)
2895      return false;
2896    break;
2897  }
2898
2899  return true;
2900}
2901
2902
2903bool X86InstrInfo::
2904ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
2905  assert(Cond.size() == 1 && "Invalid X86 branch condition!");
2906  X86::CondCode CC = static_cast<X86::CondCode>(Cond[0].getImm());
2907  if (CC == X86::COND_NE_OR_P || CC == X86::COND_NP_OR_E)
2908    return true;
2909  Cond[0].setImm(GetOppositeBranchCondition(CC));
2910  return false;
2911}
2912
2913bool X86InstrInfo::
2914isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
2915  // FIXME: Return false for x87 stack register classes for now. We can't
2916  // allow any loads of these registers before FpGet_ST0_80.
2917  return !(RC == &X86::CCRRegClass || RC == &X86::RFP32RegClass ||
2918           RC == &X86::RFP64RegClass || RC == &X86::RFP80RegClass);
2919}
2920
2921
2922/// isX86_64ExtendedReg - Is the MachineOperand a x86-64 extended (r8 or higher)
2923/// register?  e.g. r8, xmm8, xmm13, etc.
2924bool X86InstrInfo::isX86_64ExtendedReg(unsigned RegNo) {
2925  switch (RegNo) {
2926  default: break;
2927  case X86::R8:    case X86::R9:    case X86::R10:   case X86::R11:
2928  case X86::R12:   case X86::R13:   case X86::R14:   case X86::R15:
2929  case X86::R8D:   case X86::R9D:   case X86::R10D:  case X86::R11D:
2930  case X86::R12D:  case X86::R13D:  case X86::R14D:  case X86::R15D:
2931  case X86::R8W:   case X86::R9W:   case X86::R10W:  case X86::R11W:
2932  case X86::R12W:  case X86::R13W:  case X86::R14W:  case X86::R15W:
2933  case X86::R8B:   case X86::R9B:   case X86::R10B:  case X86::R11B:
2934  case X86::R12B:  case X86::R13B:  case X86::R14B:  case X86::R15B:
2935  case X86::XMM8:  case X86::XMM9:  case X86::XMM10: case X86::XMM11:
2936  case X86::XMM12: case X86::XMM13: case X86::XMM14: case X86::XMM15:
2937  case X86::YMM8:  case X86::YMM9:  case X86::YMM10: case X86::YMM11:
2938  case X86::YMM12: case X86::YMM13: case X86::YMM14: case X86::YMM15:
2939    return true;
2940  }
2941  return false;
2942}
2943
2944
2945/// determineREX - Determine if the MachineInstr has to be encoded with a X86-64
2946/// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand
2947/// size, and 3) use of X86-64 extended registers.
2948unsigned X86InstrInfo::determineREX(const MachineInstr &MI) {
2949  unsigned REX = 0;
2950  const TargetInstrDesc &Desc = MI.getDesc();
2951
2952  // Pseudo instructions do not need REX prefix byte.
2953  if ((Desc.TSFlags & X86II::FormMask) == X86II::Pseudo)
2954    return 0;
2955  if (Desc.TSFlags & X86II::REX_W)
2956    REX |= 1 << 3;
2957
2958  unsigned NumOps = Desc.getNumOperands();
2959  if (NumOps) {
2960    bool isTwoAddr = NumOps > 1 &&
2961      Desc.getOperandConstraint(1, TOI::TIED_TO) != -1;
2962
2963    // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix.
2964    unsigned i = isTwoAddr ? 1 : 0;
2965    for (unsigned e = NumOps; i != e; ++i) {
2966      const MachineOperand& MO = MI.getOperand(i);
2967      if (MO.isReg()) {
2968        unsigned Reg = MO.getReg();
2969        if (isX86_64NonExtLowByteReg(Reg))
2970          REX |= 0x40;
2971      }
2972    }
2973
2974    switch (Desc.TSFlags & X86II::FormMask) {
2975    case X86II::MRMInitReg:
2976      if (isX86_64ExtendedReg(MI.getOperand(0)))
2977        REX |= (1 << 0) | (1 << 2);
2978      break;
2979    case X86II::MRMSrcReg: {
2980      if (isX86_64ExtendedReg(MI.getOperand(0)))
2981        REX |= 1 << 2;
2982      i = isTwoAddr ? 2 : 1;
2983      for (unsigned e = NumOps; i != e; ++i) {
2984        const MachineOperand& MO = MI.getOperand(i);
2985        if (isX86_64ExtendedReg(MO))
2986          REX |= 1 << 0;
2987      }
2988      break;
2989    }
2990    case X86II::MRMSrcMem: {
2991      if (isX86_64ExtendedReg(MI.getOperand(0)))
2992        REX |= 1 << 2;
2993      unsigned Bit = 0;
2994      i = isTwoAddr ? 2 : 1;
2995      for (; i != NumOps; ++i) {
2996        const MachineOperand& MO = MI.getOperand(i);
2997        if (MO.isReg()) {
2998          if (isX86_64ExtendedReg(MO))
2999            REX |= 1 << Bit;
3000          Bit++;
3001        }
3002      }
3003      break;
3004    }
3005    case X86II::MRM0m: case X86II::MRM1m:
3006    case X86II::MRM2m: case X86II::MRM3m:
3007    case X86II::MRM4m: case X86II::MRM5m:
3008    case X86II::MRM6m: case X86II::MRM7m:
3009    case X86II::MRMDestMem: {
3010      unsigned e = (isTwoAddr ? X86::AddrNumOperands+1 : X86::AddrNumOperands);
3011      i = isTwoAddr ? 1 : 0;
3012      if (NumOps > e && isX86_64ExtendedReg(MI.getOperand(e)))
3013        REX |= 1 << 2;
3014      unsigned Bit = 0;
3015      for (; i != e; ++i) {
3016        const MachineOperand& MO = MI.getOperand(i);
3017        if (MO.isReg()) {
3018          if (isX86_64ExtendedReg(MO))
3019            REX |= 1 << Bit;
3020          Bit++;
3021        }
3022      }
3023      break;
3024    }
3025    default: {
3026      if (isX86_64ExtendedReg(MI.getOperand(0)))
3027        REX |= 1 << 0;
3028      i = isTwoAddr ? 2 : 1;
3029      for (unsigned e = NumOps; i != e; ++i) {
3030        const MachineOperand& MO = MI.getOperand(i);
3031        if (isX86_64ExtendedReg(MO))
3032          REX |= 1 << 2;
3033      }
3034      break;
3035    }
3036    }
3037  }
3038  return REX;
3039}
3040
3041/// sizePCRelativeBlockAddress - This method returns the size of a PC
3042/// relative block address instruction
3043///
3044static unsigned sizePCRelativeBlockAddress() {
3045  return 4;
3046}
3047
3048/// sizeGlobalAddress - Give the size of the emission of this global address
3049///
3050static unsigned sizeGlobalAddress(bool dword) {
3051  return dword ? 8 : 4;
3052}
3053
3054/// sizeConstPoolAddress - Give the size of the emission of this constant
3055/// pool address
3056///
3057static unsigned sizeConstPoolAddress(bool dword) {
3058  return dword ? 8 : 4;
3059}
3060
3061/// sizeExternalSymbolAddress - Give the size of the emission of this external
3062/// symbol
3063///
3064static unsigned sizeExternalSymbolAddress(bool dword) {
3065  return dword ? 8 : 4;
3066}
3067
3068/// sizeJumpTableAddress - Give the size of the emission of this jump
3069/// table address
3070///
3071static unsigned sizeJumpTableAddress(bool dword) {
3072  return dword ? 8 : 4;
3073}
3074
3075static unsigned sizeConstant(unsigned Size) {
3076  return Size;
3077}
3078
3079static unsigned sizeRegModRMByte(){
3080  return 1;
3081}
3082
3083static unsigned sizeSIBByte(){
3084  return 1;
3085}
3086
3087static unsigned getDisplacementFieldSize(const MachineOperand *RelocOp) {
3088  unsigned FinalSize = 0;
3089  // If this is a simple integer displacement that doesn't require a relocation.
3090  if (!RelocOp) {
3091    FinalSize += sizeConstant(4);
3092    return FinalSize;
3093  }
3094
3095  // Otherwise, this is something that requires a relocation.
3096  if (RelocOp->isGlobal()) {
3097    FinalSize += sizeGlobalAddress(false);
3098  } else if (RelocOp->isCPI()) {
3099    FinalSize += sizeConstPoolAddress(false);
3100  } else if (RelocOp->isJTI()) {
3101    FinalSize += sizeJumpTableAddress(false);
3102  } else {
3103    llvm_unreachable("Unknown value to relocate!");
3104  }
3105  return FinalSize;
3106}
3107
3108static unsigned getMemModRMByteSize(const MachineInstr &MI, unsigned Op,
3109                                    bool IsPIC, bool Is64BitMode) {
3110  const MachineOperand &Op3 = MI.getOperand(Op+3);
3111  int DispVal = 0;
3112  const MachineOperand *DispForReloc = 0;
3113  unsigned FinalSize = 0;
3114
3115  // Figure out what sort of displacement we have to handle here.
3116  if (Op3.isGlobal()) {
3117    DispForReloc = &Op3;
3118  } else if (Op3.isCPI()) {
3119    if (Is64BitMode || IsPIC) {
3120      DispForReloc = &Op3;
3121    } else {
3122      DispVal = 1;
3123    }
3124  } else if (Op3.isJTI()) {
3125    if (Is64BitMode || IsPIC) {
3126      DispForReloc = &Op3;
3127    } else {
3128      DispVal = 1;
3129    }
3130  } else {
3131    DispVal = 1;
3132  }
3133
3134  const MachineOperand &Base     = MI.getOperand(Op);
3135  const MachineOperand &IndexReg = MI.getOperand(Op+2);
3136
3137  unsigned BaseReg = Base.getReg();
3138
3139  // Is a SIB byte needed?
3140  if ((!Is64BitMode || DispForReloc || BaseReg != 0) &&
3141      IndexReg.getReg() == 0 &&
3142      (BaseReg == 0 || X86RegisterInfo::getX86RegNum(BaseReg) != N86::ESP)) {
3143    if (BaseReg == 0) {  // Just a displacement?
3144      // Emit special case [disp32] encoding
3145      ++FinalSize;
3146      FinalSize += getDisplacementFieldSize(DispForReloc);
3147    } else {
3148      unsigned BaseRegNo = X86RegisterInfo::getX86RegNum(BaseReg);
3149      if (!DispForReloc && DispVal == 0 && BaseRegNo != N86::EBP) {
3150        // Emit simple indirect register encoding... [EAX] f.e.
3151        ++FinalSize;
3152      // Be pessimistic and assume it's a disp32, not a disp8
3153      } else {
3154        // Emit the most general non-SIB encoding: [REG+disp32]
3155        ++FinalSize;
3156        FinalSize += getDisplacementFieldSize(DispForReloc);
3157      }
3158    }
3159
3160  } else {  // We need a SIB byte, so start by outputting the ModR/M byte first
3161    assert(IndexReg.getReg() != X86::ESP &&
3162           IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");
3163
3164    bool ForceDisp32 = false;
3165    if (BaseReg == 0 || DispForReloc) {
3166      // Emit the normal disp32 encoding.
3167      ++FinalSize;
3168      ForceDisp32 = true;
3169    } else {
3170      ++FinalSize;
3171    }
3172
3173    FinalSize += sizeSIBByte();
3174
3175    // Do we need to output a displacement?
3176    if (DispVal != 0 || ForceDisp32) {
3177      FinalSize += getDisplacementFieldSize(DispForReloc);
3178    }
3179  }
3180  return FinalSize;
3181}
3182
3183
3184static unsigned GetInstSizeWithDesc(const MachineInstr &MI,
3185                                    const TargetInstrDesc *Desc,
3186                                    bool IsPIC, bool Is64BitMode) {
3187
3188  unsigned Opcode = Desc->Opcode;
3189  unsigned FinalSize = 0;
3190
3191  // Emit the lock opcode prefix as needed.
3192  if (Desc->TSFlags & X86II::LOCK) ++FinalSize;
3193
3194  // Emit segment override opcode prefix as needed.
3195  switch (Desc->TSFlags & X86II::SegOvrMask) {
3196  case X86II::FS:
3197  case X86II::GS:
3198   ++FinalSize;
3199   break;
3200  default: llvm_unreachable("Invalid segment!");
3201  case 0: break;  // No segment override!
3202  }
3203
3204  // Emit the repeat opcode prefix as needed.
3205  if ((Desc->TSFlags & X86II::Op0Mask) == X86II::REP) ++FinalSize;
3206
3207  // Emit the operand size opcode prefix as needed.
3208  if (Desc->TSFlags & X86II::OpSize) ++FinalSize;
3209
3210  // Emit the address size opcode prefix as needed.
3211  if (Desc->TSFlags & X86II::AdSize) ++FinalSize;
3212
3213  bool Need0FPrefix = false;
3214  switch (Desc->TSFlags & X86II::Op0Mask) {
3215  case X86II::TB:  // Two-byte opcode prefix
3216  case X86II::T8:  // 0F 38
3217  case X86II::TA:  // 0F 3A
3218    Need0FPrefix = true;
3219    break;
3220  case X86II::TF: // F2 0F 38
3221    ++FinalSize;
3222    Need0FPrefix = true;
3223    break;
3224  case X86II::REP: break; // already handled.
3225  case X86II::XS:   // F3 0F
3226    ++FinalSize;
3227    Need0FPrefix = true;
3228    break;
3229  case X86II::XD:   // F2 0F
3230    ++FinalSize;
3231    Need0FPrefix = true;
3232    break;
3233  case X86II::D8: case X86II::D9: case X86II::DA: case X86II::DB:
3234  case X86II::DC: case X86II::DD: case X86II::DE: case X86II::DF:
3235    ++FinalSize;
3236    break; // Two-byte opcode prefix
3237  default: llvm_unreachable("Invalid prefix!");
3238  case 0: break;  // No prefix!
3239  }
3240
3241  if (Is64BitMode) {
3242    // REX prefix
3243    unsigned REX = X86InstrInfo::determineREX(MI);
3244    if (REX)
3245      ++FinalSize;
3246  }
3247
3248  // 0x0F escape code must be emitted just before the opcode.
3249  if (Need0FPrefix)
3250    ++FinalSize;
3251
3252  switch (Desc->TSFlags & X86II::Op0Mask) {
3253  case X86II::T8:  // 0F 38
3254    ++FinalSize;
3255    break;
3256  case X86II::TA:  // 0F 3A
3257    ++FinalSize;
3258    break;
3259  case X86II::TF: // F2 0F 38
3260    ++FinalSize;
3261    break;
3262  }
3263
3264  // If this is a two-address instruction, skip one of the register operands.
3265  unsigned NumOps = Desc->getNumOperands();
3266  unsigned CurOp = 0;
3267  if (NumOps > 1 && Desc->getOperandConstraint(1, TOI::TIED_TO) != -1)
3268    CurOp++;
3269  else if (NumOps > 2 && Desc->getOperandConstraint(NumOps-1, TOI::TIED_TO)== 0)
3270    // Skip the last source operand that is tied_to the dest reg. e.g. LXADD32
3271    --NumOps;
3272
3273  switch (Desc->TSFlags & X86II::FormMask) {
3274  default: llvm_unreachable("Unknown FormMask value in X86 MachineCodeEmitter!");
3275  case X86II::Pseudo:
3276    // Remember the current PC offset, this is the PIC relocation
3277    // base address.
3278    switch (Opcode) {
3279    default:
3280      break;
3281    case TargetOpcode::INLINEASM: {
3282      const MachineFunction *MF = MI.getParent()->getParent();
3283      const TargetInstrInfo &TII = *MF->getTarget().getInstrInfo();
3284      FinalSize += TII.getInlineAsmLength(MI.getOperand(0).getSymbolName(),
3285                                          *MF->getTarget().getMCAsmInfo());
3286      break;
3287    }
3288    case TargetOpcode::PROLOG_LABEL:
3289    case TargetOpcode::EH_LABEL:
3290    case TargetOpcode::DBG_VALUE:
3291      break;
3292    case TargetOpcode::IMPLICIT_DEF:
3293    case TargetOpcode::KILL:
3294      break;
3295    case X86::MOVPC32r: {
3296      // This emits the "call" portion of this pseudo instruction.
3297      ++FinalSize;
3298      FinalSize += sizeConstant(X86II::getSizeOfImm(Desc->TSFlags));
3299      break;
3300    }
3301    }
3302    CurOp = NumOps;
3303    break;
3304  case X86II::RawFrm:
3305    ++FinalSize;
3306
3307    if (CurOp != NumOps) {
3308      const MachineOperand &MO = MI.getOperand(CurOp++);
3309      if (MO.isMBB()) {
3310        FinalSize += sizePCRelativeBlockAddress();
3311      } else if (MO.isGlobal()) {
3312        FinalSize += sizeGlobalAddress(false);
3313      } else if (MO.isSymbol()) {
3314        FinalSize += sizeExternalSymbolAddress(false);
3315      } else if (MO.isImm()) {
3316        FinalSize += sizeConstant(X86II::getSizeOfImm(Desc->TSFlags));
3317      } else {
3318        llvm_unreachable("Unknown RawFrm operand!");
3319      }
3320    }
3321    break;
3322
3323  case X86II::AddRegFrm:
3324    ++FinalSize;
3325    ++CurOp;
3326
3327    if (CurOp != NumOps) {
3328      const MachineOperand &MO1 = MI.getOperand(CurOp++);
3329      unsigned Size = X86II::getSizeOfImm(Desc->TSFlags);
3330      if (MO1.isImm())
3331        FinalSize += sizeConstant(Size);
3332      else {
3333        bool dword = false;
3334        if (Opcode == X86::MOV64ri)
3335          dword = true;
3336        if (MO1.isGlobal()) {
3337          FinalSize += sizeGlobalAddress(dword);
3338        } else if (MO1.isSymbol())
3339          FinalSize += sizeExternalSymbolAddress(dword);
3340        else if (MO1.isCPI())
3341          FinalSize += sizeConstPoolAddress(dword);
3342        else if (MO1.isJTI())
3343          FinalSize += sizeJumpTableAddress(dword);
3344      }
3345    }
3346    break;
3347
3348  case X86II::MRMDestReg: {
3349    ++FinalSize;
3350    FinalSize += sizeRegModRMByte();
3351    CurOp += 2;
3352    if (CurOp != NumOps) {
3353      ++CurOp;
3354      FinalSize += sizeConstant(X86II::getSizeOfImm(Desc->TSFlags));
3355    }
3356    break;
3357  }
3358  case X86II::MRMDestMem: {
3359    ++FinalSize;
3360    FinalSize += getMemModRMByteSize(MI, CurOp, IsPIC, Is64BitMode);
3361    CurOp +=  X86::AddrNumOperands + 1;
3362    if (CurOp != NumOps) {
3363      ++CurOp;
3364      FinalSize += sizeConstant(X86II::getSizeOfImm(Desc->TSFlags));
3365    }
3366    break;
3367  }
3368
3369  case X86II::MRMSrcReg:
3370    ++FinalSize;
3371    FinalSize += sizeRegModRMByte();
3372    CurOp += 2;
3373    if (CurOp != NumOps) {
3374      ++CurOp;
3375      FinalSize += sizeConstant(X86II::getSizeOfImm(Desc->TSFlags));
3376    }
3377    break;
3378
3379  case X86II::MRMSrcMem: {
3380    ++FinalSize;
3381    FinalSize += getMemModRMByteSize(MI, CurOp+1, IsPIC, Is64BitMode);
3382    CurOp += X86::AddrNumOperands + 1;
3383    if (CurOp != NumOps) {
3384      ++CurOp;
3385      FinalSize += sizeConstant(X86II::getSizeOfImm(Desc->TSFlags));
3386    }
3387    break;
3388  }
3389
3390  case X86II::MRM0r: case X86II::MRM1r:
3391  case X86II::MRM2r: case X86II::MRM3r:
3392  case X86II::MRM4r: case X86II::MRM5r:
3393  case X86II::MRM6r: case X86II::MRM7r:
3394    ++FinalSize;
3395    if (Desc->getOpcode() == X86::LFENCE ||
3396        Desc->getOpcode() == X86::MFENCE) {
3397      // Special handling of lfence and mfence;
3398      FinalSize += sizeRegModRMByte();
3399    } else if (Desc->getOpcode() == X86::MONITOR ||
3400               Desc->getOpcode() == X86::MWAIT) {
3401      // Special handling of monitor and mwait.
3402      FinalSize += sizeRegModRMByte() + 1; // +1 for the opcode.
3403    } else {
3404      ++CurOp;
3405      FinalSize += sizeRegModRMByte();
3406    }
3407
3408    if (CurOp != NumOps) {
3409      const MachineOperand &MO1 = MI.getOperand(CurOp++);
3410      unsigned Size = X86II::getSizeOfImm(Desc->TSFlags);
3411      if (MO1.isImm())
3412        FinalSize += sizeConstant(Size);
3413      else {
3414        bool dword = false;
3415        if (Opcode == X86::MOV64ri32)
3416          dword = true;
3417        if (MO1.isGlobal()) {
3418          FinalSize += sizeGlobalAddress(dword);
3419        } else if (MO1.isSymbol())
3420          FinalSize += sizeExternalSymbolAddress(dword);
3421        else if (MO1.isCPI())
3422          FinalSize += sizeConstPoolAddress(dword);
3423        else if (MO1.isJTI())
3424          FinalSize += sizeJumpTableAddress(dword);
3425      }
3426    }
3427    break;
3428
3429  case X86II::MRM0m: case X86II::MRM1m:
3430  case X86II::MRM2m: case X86II::MRM3m:
3431  case X86II::MRM4m: case X86II::MRM5m:
3432  case X86II::MRM6m: case X86II::MRM7m: {
3433
3434    ++FinalSize;
3435    FinalSize += getMemModRMByteSize(MI, CurOp, IsPIC, Is64BitMode);
3436    CurOp += X86::AddrNumOperands;
3437
3438    if (CurOp != NumOps) {
3439      const MachineOperand &MO = MI.getOperand(CurOp++);
3440      unsigned Size = X86II::getSizeOfImm(Desc->TSFlags);
3441      if (MO.isImm())
3442        FinalSize += sizeConstant(Size);
3443      else {
3444        bool dword = false;
3445        if (Opcode == X86::MOV64mi32)
3446          dword = true;
3447        if (MO.isGlobal()) {
3448          FinalSize += sizeGlobalAddress(dword);
3449        } else if (MO.isSymbol())
3450          FinalSize += sizeExternalSymbolAddress(dword);
3451        else if (MO.isCPI())
3452          FinalSize += sizeConstPoolAddress(dword);
3453        else if (MO.isJTI())
3454          FinalSize += sizeJumpTableAddress(dword);
3455      }
3456    }
3457    break;
3458
3459  case X86II::MRM_C1:
3460  case X86II::MRM_C8:
3461  case X86II::MRM_C9:
3462  case X86II::MRM_E8:
3463  case X86II::MRM_F0:
3464    FinalSize += 2;
3465    break;
3466  }
3467
3468  case X86II::MRMInitReg:
3469    ++FinalSize;
3470    // Duplicate register, used by things like MOV8r0 (aka xor reg,reg).
3471    FinalSize += sizeRegModRMByte();
3472    ++CurOp;
3473    break;
3474  }
3475
3476  if (!Desc->isVariadic() && CurOp != NumOps) {
3477    std::string msg;
3478    raw_string_ostream Msg(msg);
3479    Msg << "Cannot determine size: " << MI;
3480    report_fatal_error(Msg.str());
3481  }
3482
3483
3484  return FinalSize;
3485}
3486
3487
3488unsigned X86InstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const {
3489  const TargetInstrDesc &Desc = MI->getDesc();
3490  bool IsPIC = TM.getRelocationModel() == Reloc::PIC_;
3491  bool Is64BitMode = TM.getSubtargetImpl()->is64Bit();
3492  unsigned Size = GetInstSizeWithDesc(*MI, &Desc, IsPIC, Is64BitMode);
3493  if (Desc.getOpcode() == X86::MOVPC32r)
3494    Size += GetInstSizeWithDesc(*MI, &get(X86::POP32r), IsPIC, Is64BitMode);
3495  return Size;
3496}
3497
3498/// getGlobalBaseReg - Return a virtual register initialized with the
3499/// the global base register value. Output instructions required to
3500/// initialize the register in the function entry block, if necessary.
3501///
3502/// TODO: Eliminate this and move the code to X86MachineFunctionInfo.
3503///
3504unsigned X86InstrInfo::getGlobalBaseReg(MachineFunction *MF) const {
3505  assert(!TM.getSubtarget<X86Subtarget>().is64Bit() &&
3506         "X86-64 PIC uses RIP relative addressing");
3507
3508  X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>();
3509  unsigned GlobalBaseReg = X86FI->getGlobalBaseReg();
3510  if (GlobalBaseReg != 0)
3511    return GlobalBaseReg;
3512
3513  // Create the register. The code to initialize it is inserted
3514  // later, by the CGBR pass (below).
3515  MachineRegisterInfo &RegInfo = MF->getRegInfo();
3516  GlobalBaseReg = RegInfo.createVirtualRegister(X86::GR32RegisterClass);
3517  X86FI->setGlobalBaseReg(GlobalBaseReg);
3518  return GlobalBaseReg;
3519}
3520
3521// These are the replaceable SSE instructions. Some of these have Int variants
3522// that we don't include here. We don't want to replace instructions selected
3523// by intrinsics.
3524static const unsigned ReplaceableInstrs[][3] = {
3525  //PackedInt       PackedSingle     PackedDouble
3526  { X86::MOVAPSmr,   X86::MOVAPDmr,  X86::MOVDQAmr  },
3527  { X86::MOVAPSrm,   X86::MOVAPDrm,  X86::MOVDQArm  },
3528  { X86::MOVAPSrr,   X86::MOVAPDrr,  X86::MOVDQArr  },
3529  { X86::MOVUPSmr,   X86::MOVUPDmr,  X86::MOVDQUmr  },
3530  { X86::MOVUPSrm,   X86::MOVUPDrm,  X86::MOVDQUrm  },
3531  { X86::MOVNTPSmr,  X86::MOVNTPDmr, X86::MOVNTDQmr },
3532  { X86::ANDNPSrm,   X86::ANDNPDrm,  X86::PANDNrm   },
3533  { X86::ANDNPSrr,   X86::ANDNPDrr,  X86::PANDNrr   },
3534  { X86::ANDPSrm,    X86::ANDPDrm,   X86::PANDrm    },
3535  { X86::ANDPSrr,    X86::ANDPDrr,   X86::PANDrr    },
3536  { X86::ORPSrm,     X86::ORPDrm,    X86::PORrm     },
3537  { X86::ORPSrr,     X86::ORPDrr,    X86::PORrr     },
3538  { X86::V_SET0PS,   X86::V_SET0PD,  X86::V_SET0PI  },
3539  { X86::XORPSrm,    X86::XORPDrm,   X86::PXORrm    },
3540  { X86::XORPSrr,    X86::XORPDrr,   X86::PXORrr    },
3541};
3542
3543// FIXME: Some shuffle and unpack instructions have equivalents in different
3544// domains, but they require a bit more work than just switching opcodes.
3545
3546static const unsigned *lookup(unsigned opcode, unsigned domain) {
3547  for (unsigned i = 0, e = array_lengthof(ReplaceableInstrs); i != e; ++i)
3548    if (ReplaceableInstrs[i][domain-1] == opcode)
3549      return ReplaceableInstrs[i];
3550  return 0;
3551}
3552
3553std::pair<uint16_t, uint16_t>
3554X86InstrInfo::GetSSEDomain(const MachineInstr *MI) const {
3555  uint16_t domain = (MI->getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
3556  return std::make_pair(domain,
3557                        domain && lookup(MI->getOpcode(), domain) ? 0xe : 0);
3558}
3559
3560void X86InstrInfo::SetSSEDomain(MachineInstr *MI, unsigned Domain) const {
3561  assert(Domain>0 && Domain<4 && "Invalid execution domain");
3562  uint16_t dom = (MI->getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
3563  assert(dom && "Not an SSE instruction");
3564  const unsigned *table = lookup(MI->getOpcode(), dom);
3565  assert(table && "Cannot change domain");
3566  MI->setDesc(get(table[Domain-1]));
3567}
3568
3569/// getNoopForMachoTarget - Return the noop instruction to use for a noop.
3570void X86InstrInfo::getNoopForMachoTarget(MCInst &NopInst) const {
3571  NopInst.setOpcode(X86::NOOP);
3572}
3573
3574namespace {
3575  /// CGBR - Create Global Base Reg pass. This initializes the PIC
3576  /// global base register for x86-32.
3577  struct CGBR : public MachineFunctionPass {
3578    static char ID;
3579    CGBR() : MachineFunctionPass(&ID) {}
3580
3581    virtual bool runOnMachineFunction(MachineFunction &MF) {
3582      const X86TargetMachine *TM =
3583        static_cast<const X86TargetMachine *>(&MF.getTarget());
3584
3585      assert(!TM->getSubtarget<X86Subtarget>().is64Bit() &&
3586             "X86-64 PIC uses RIP relative addressing");
3587
3588      // Only emit a global base reg in PIC mode.
3589      if (TM->getRelocationModel() != Reloc::PIC_)
3590        return false;
3591
3592      // Insert the set of GlobalBaseReg into the first MBB of the function
3593      MachineBasicBlock &FirstMBB = MF.front();
3594      MachineBasicBlock::iterator MBBI = FirstMBB.begin();
3595      DebugLoc DL = FirstMBB.findDebugLoc(MBBI);
3596      MachineRegisterInfo &RegInfo = MF.getRegInfo();
3597      const X86InstrInfo *TII = TM->getInstrInfo();
3598
3599      unsigned PC;
3600      if (TM->getSubtarget<X86Subtarget>().isPICStyleGOT())
3601        PC = RegInfo.createVirtualRegister(X86::GR32RegisterClass);
3602      else
3603        PC = TII->getGlobalBaseReg(&MF);
3604
3605      // Operand of MovePCtoStack is completely ignored by asm printer. It's
3606      // only used in JIT code emission as displacement to pc.
3607      BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOVPC32r), PC).addImm(0);
3608
3609      // If we're using vanilla 'GOT' PIC style, we should use relative addressing
3610      // not to pc, but to _GLOBAL_OFFSET_TABLE_ external.
3611      if (TM->getSubtarget<X86Subtarget>().isPICStyleGOT()) {
3612        unsigned GlobalBaseReg = TII->getGlobalBaseReg(&MF);
3613        // Generate addl $__GLOBAL_OFFSET_TABLE_ + [.-piclabel], %some_register
3614        BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD32ri), GlobalBaseReg)
3615          .addReg(PC).addExternalSymbol("_GLOBAL_OFFSET_TABLE_",
3616                                        X86II::MO_GOT_ABSOLUTE_ADDRESS);
3617      }
3618
3619      return true;
3620    }
3621
3622    virtual const char *getPassName() const {
3623      return "X86 PIC Global Base Reg Initialization";
3624    }
3625
3626    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
3627      AU.setPreservesCFG();
3628      MachineFunctionPass::getAnalysisUsage(AU);
3629    }
3630  };
3631}
3632
3633char CGBR::ID = 0;
3634FunctionPass*
3635llvm::createGlobalBaseRegPass() { return new CGBR(); }
3636