1e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner//===- InstCombineSimplifyDemanded.cpp ------------------------------------===//
2e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner//
3e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner//                     The LLVM Compiler Infrastructure
4e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner//
5e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner// This file is distributed under the University of Illinois Open Source
6e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner// License. See LICENSE.TXT for details.
7e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner//
8e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner//===----------------------------------------------------------------------===//
9e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner//
10e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner// This file contains logic for simplifying instructions based on information
11e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner// about how they are used.
12e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner//
13e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner//===----------------------------------------------------------------------===//
14e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner
15e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner
16e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner#include "InstCombine.h"
170b8c9a80f20772c3793201ab5b251d3520b9cea3Chandler Carruth#include "llvm/IR/DataLayout.h"
180b8c9a80f20772c3793201ab5b251d3520b9cea3Chandler Carruth#include "llvm/IR/IntrinsicInst.h"
19c811976b0400257511f2a255ec70538c3614f85eShuxin Yang#include "llvm/Support/PatternMatch.h"
20e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner
21e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattnerusing namespace llvm;
22c811976b0400257511f2a255ec70538c3614f85eShuxin Yangusing namespace llvm::PatternMatch;
23e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner
248a8413d75cb1b6dbbb77a775052568548382cbb4Craig Topper/// ShrinkDemandedConstant - Check to see if the specified operand of the
25e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner/// specified instruction is a constant integer.  If so, check to see if there
26e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner/// are any bits set in the constant that are not demanded.  If so, shrink the
27e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner/// constant and return true.
288a8413d75cb1b6dbbb77a775052568548382cbb4Craig Topperstatic bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo,
29e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner                                   APInt Demanded) {
30e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner  assert(I && "No instruction?");
31e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner  assert(OpNo < I->getNumOperands() && "Operand index too large");
32e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner
33e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner  // If the operand is not a constant integer, nothing to do.
34e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner  ConstantInt *OpC = dyn_cast<ConstantInt>(I->getOperand(OpNo));
35e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner  if (!OpC) return false;
36e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner
37e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner  // If there are no bits set that aren't demanded, nothing to do.
3840f8f6264d5af2c38e797e0dc59827cd231e8ff7Jay Foad  Demanded = Demanded.zextOrTrunc(OpC->getValue().getBitWidth());
39e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner  if ((~Demanded & OpC->getValue()) == 0)
40e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    return false;
41e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner
42e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner  // This instruction is producing bits that are not demanded. Shrink the RHS.
43e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner  Demanded &= OpC->getValue();
44e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner  I->setOperand(OpNo, ConstantInt::get(OpC->getType(), Demanded));
45e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner  return true;
46e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner}
47e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner
48e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner
49e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner
50e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner/// SimplifyDemandedInstructionBits - Inst is an integer instruction that
51e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner/// SimplifyDemandedBits knows about.  See if the instruction has any
52e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner/// properties that allow us to simplify its operands.
53e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattnerbool InstCombiner::SimplifyDemandedInstructionBits(Instruction &Inst) {
54e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner  unsigned BitWidth = Inst.getType()->getScalarSizeInBits();
55e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner  APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
56e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner  APInt DemandedMask(APInt::getAllOnesValue(BitWidth));
578a8413d75cb1b6dbbb77a775052568548382cbb4Craig Topper
588a8413d75cb1b6dbbb77a775052568548382cbb4Craig Topper  Value *V = SimplifyDemandedUseBits(&Inst, DemandedMask,
59e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner                                     KnownZero, KnownOne, 0);
60e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner  if (V == 0) return false;
61e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner  if (V == &Inst) return true;
62e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner  ReplaceInstUsesWith(Inst, V);
63e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner  return true;
64e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner}
65e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner
66e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner/// SimplifyDemandedBits - This form of SimplifyDemandedBits simplifies the
67e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner/// specified instruction operand if possible, updating it in place.  It returns
68e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner/// true if it made any change and false otherwise.
698a8413d75cb1b6dbbb77a775052568548382cbb4Craig Topperbool InstCombiner::SimplifyDemandedBits(Use &U, APInt DemandedMask,
70e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner                                        APInt &KnownZero, APInt &KnownOne,
71e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner                                        unsigned Depth) {
72e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner  Value *NewVal = SimplifyDemandedUseBits(U.get(), DemandedMask,
73e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner                                          KnownZero, KnownOne, Depth);
74e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner  if (NewVal == 0) return false;
75e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner  U = NewVal;
76e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner  return true;
77e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner}
78e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner
79e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner
80e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner/// SimplifyDemandedUseBits - This function attempts to replace V with a simpler
81e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner/// value based on the demanded bits.  When this function is called, it is known
82e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner/// that only the bits set in DemandedMask of the result of V are ever used
83e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner/// downstream. Consequently, depending on the mask and V, it may be possible
84e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner/// to replace V with a constant or one of its operands. In such cases, this
85e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner/// function does the replacement and returns true. In all other cases, it
86e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner/// returns false after analyzing the expression and setting KnownOne and known
87e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner/// to be one in the expression.  KnownZero contains all the bits that are known
88e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner/// to be zero in the expression. These are provided to potentially allow the
89e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner/// caller (which might recursively be SimplifyDemandedBits itself) to simplify
908a8413d75cb1b6dbbb77a775052568548382cbb4Craig Topper/// the expression. KnownOne and KnownZero always follow the invariant that
91e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner/// KnownOne & KnownZero == 0. That is, a bit can't be both 1 and 0. Note that
92e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner/// the bits in KnownOne and KnownZero may only be accurate for those bits set
93e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner/// in DemandedMask. Note also that the bitwidth of V, DemandedMask, KnownZero
94e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner/// and KnownOne must all be the same.
95e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner///
96e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner/// This returns null if it did not change anything and it permits no
97e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner/// simplification.  This returns V itself if it did some simplification of V's
98e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner/// operands based on the information about what bits are demanded. This returns
99e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner/// some other non-null value if it found out that V is equal to another value
100e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner/// in the context where the specified bits are demanded, but not for all users.
101e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris LattnerValue *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
102e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner                                             APInt &KnownZero, APInt &KnownOne,
103e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner                                             unsigned Depth) {
104e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner  assert(V != 0 && "Null pointer of Value???");
105e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner  assert(Depth <= 6 && "Limit Search Depth");
106e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner  uint32_t BitWidth = DemandedMask.getBitWidth();
107db125cfaf57cc83e7dd7453de2d509bc8efd0e5eChris Lattner  Type *VTy = V->getType();
1081df9859c40492511b8aa4321eb76496005d3b75bDuncan Sands  assert((TD || !VTy->isPointerTy()) &&
109e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner         "SimplifyDemandedBits needs to know bit widths!");
110e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner  assert((!TD || TD->getTypeSizeInBits(VTy->getScalarType()) == BitWidth) &&
111b0bc6c361da9009e8414efde317d9bbff755f6c0Duncan Sands         (!VTy->isIntOrIntVectorTy() ||
112e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner          VTy->getScalarSizeInBits() == BitWidth) &&
113e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner         KnownZero.getBitWidth() == BitWidth &&
114e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner         KnownOne.getBitWidth() == BitWidth &&
115e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner         "Value *V, DemandedMask, KnownZero and KnownOne "
116e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner         "must have same BitWidth");
117e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner  if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
118e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    // We know all of the bits for a constant!
119e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    KnownOne = CI->getValue() & DemandedMask;
120e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    KnownZero = ~KnownOne & DemandedMask;
121e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    return 0;
122e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner  }
123e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner  if (isa<ConstantPointerNull>(V)) {
124e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    // We know all of the bits for a constant!
1257a874ddda037349184fbeb22838cc11a1a9bb78fJay Foad    KnownOne.clearAllBits();
126e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    KnownZero = DemandedMask;
127e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    return 0;
128e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner  }
129e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner
1307a874ddda037349184fbeb22838cc11a1a9bb78fJay Foad  KnownZero.clearAllBits();
1317a874ddda037349184fbeb22838cc11a1a9bb78fJay Foad  KnownOne.clearAllBits();
132e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner  if (DemandedMask == 0) {   // Not demanding any bits from V.
133e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    if (isa<UndefValue>(V))
134e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      return 0;
135e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    return UndefValue::get(VTy);
136e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner  }
1378a8413d75cb1b6dbbb77a775052568548382cbb4Craig Topper
138e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner  if (Depth == 6)        // Limit search depth.
139e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    return 0;
1408a8413d75cb1b6dbbb77a775052568548382cbb4Craig Topper
141e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner  APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
142ac512171ff12829c5961ca2614dfaf4b37bf8c2eDuncan Sands  APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
143e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner
144e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner  Instruction *I = dyn_cast<Instruction>(V);
145e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner  if (!I) {
14626c8dcc692fb2addd475446cfff24d6a4e958bcaRafael Espindola    ComputeMaskedBits(V, KnownZero, KnownOne, Depth);
147e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    return 0;        // Only analyze instructions.
148e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner  }
149e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner
150e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner  // If there are multiple uses of this value and we aren't at the root, then
151e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner  // we can't do any simplifications of the operands, because DemandedMask
152e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner  // only reflects the bits demanded by *one* of the users.
153e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner  if (Depth != 0 && !I->hasOneUse()) {
154e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    // Despite the fact that we can't simplify this instruction in all User's
155e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    // context, we can at least compute the knownzero/knownone bits, and we can
156e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    // do simplifications that apply to *just* the one user if we know that
157e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    // this instruction has a simpler value in that context.
158e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    if (I->getOpcode() == Instruction::And) {
159e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      // If either the LHS or the RHS are Zero, the result is zero.
16026c8dcc692fb2addd475446cfff24d6a4e958bcaRafael Espindola      ComputeMaskedBits(I->getOperand(1), RHSKnownZero, RHSKnownOne, Depth+1);
16126c8dcc692fb2addd475446cfff24d6a4e958bcaRafael Espindola      ComputeMaskedBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth+1);
1628a8413d75cb1b6dbbb77a775052568548382cbb4Craig Topper
163e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      // If all of the demanded bits are known 1 on one side, return the other.
164e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      // These bits cannot contribute to the result of the 'and' in this
165e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      // context.
1668a8413d75cb1b6dbbb77a775052568548382cbb4Craig Topper      if ((DemandedMask & ~LHSKnownZero & RHSKnownOne) ==
167e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner          (DemandedMask & ~LHSKnownZero))
168e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner        return I->getOperand(0);
1698a8413d75cb1b6dbbb77a775052568548382cbb4Craig Topper      if ((DemandedMask & ~RHSKnownZero & LHSKnownOne) ==
170e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner          (DemandedMask & ~RHSKnownZero))
171e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner        return I->getOperand(1);
1728a8413d75cb1b6dbbb77a775052568548382cbb4Craig Topper
173e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      // If all of the demanded bits in the inputs are known zeros, return zero.
174e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      if ((DemandedMask & (RHSKnownZero|LHSKnownZero)) == DemandedMask)
175e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner        return Constant::getNullValue(VTy);
1768a8413d75cb1b6dbbb77a775052568548382cbb4Craig Topper
177e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    } else if (I->getOpcode() == Instruction::Or) {
178e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      // We can simplify (X|Y) -> X or Y in the user's context if we know that
179e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      // only bits from X or Y are demanded.
1808a8413d75cb1b6dbbb77a775052568548382cbb4Craig Topper
181e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      // If either the LHS or the RHS are One, the result is One.
18226c8dcc692fb2addd475446cfff24d6a4e958bcaRafael Espindola      ComputeMaskedBits(I->getOperand(1), RHSKnownZero, RHSKnownOne, Depth+1);
18326c8dcc692fb2addd475446cfff24d6a4e958bcaRafael Espindola      ComputeMaskedBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth+1);
1848a8413d75cb1b6dbbb77a775052568548382cbb4Craig Topper
185e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      // If all of the demanded bits are known zero on one side, return the
186e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      // other.  These bits cannot contribute to the result of the 'or' in this
187e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      // context.
1888a8413d75cb1b6dbbb77a775052568548382cbb4Craig Topper      if ((DemandedMask & ~LHSKnownOne & RHSKnownZero) ==
189e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner          (DemandedMask & ~LHSKnownOne))
190e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner        return I->getOperand(0);
1918a8413d75cb1b6dbbb77a775052568548382cbb4Craig Topper      if ((DemandedMask & ~RHSKnownOne & LHSKnownZero) ==
192e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner          (DemandedMask & ~RHSKnownOne))
193e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner        return I->getOperand(1);
1948a8413d75cb1b6dbbb77a775052568548382cbb4Craig Topper
195e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      // If all of the potentially set bits on one side are known to be set on
196e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      // the other side, just use the 'other' side.
1978a8413d75cb1b6dbbb77a775052568548382cbb4Craig Topper      if ((DemandedMask & (~RHSKnownZero) & LHSKnownOne) ==
198e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner          (DemandedMask & (~RHSKnownZero)))
199e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner        return I->getOperand(0);
2008a8413d75cb1b6dbbb77a775052568548382cbb4Craig Topper      if ((DemandedMask & (~LHSKnownZero) & RHSKnownOne) ==
201e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner          (DemandedMask & (~LHSKnownZero)))
202e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner        return I->getOperand(1);
203a09e18fcfab0e998526724357f8fc5ef7f4c3e7aShuxin Yang    } else if (I->getOpcode() == Instruction::Xor) {
204a09e18fcfab0e998526724357f8fc5ef7f4c3e7aShuxin Yang      // We can simplify (X^Y) -> X or Y in the user's context if we know that
205a09e18fcfab0e998526724357f8fc5ef7f4c3e7aShuxin Yang      // only bits from X or Y are demanded.
2068a8413d75cb1b6dbbb77a775052568548382cbb4Craig Topper
207a09e18fcfab0e998526724357f8fc5ef7f4c3e7aShuxin Yang      ComputeMaskedBits(I->getOperand(1), RHSKnownZero, RHSKnownOne, Depth+1);
208a09e18fcfab0e998526724357f8fc5ef7f4c3e7aShuxin Yang      ComputeMaskedBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth+1);
2098a8413d75cb1b6dbbb77a775052568548382cbb4Craig Topper
210a09e18fcfab0e998526724357f8fc5ef7f4c3e7aShuxin Yang      // If all of the demanded bits are known zero on one side, return the
2118a8413d75cb1b6dbbb77a775052568548382cbb4Craig Topper      // other.
212a09e18fcfab0e998526724357f8fc5ef7f4c3e7aShuxin Yang      if ((DemandedMask & RHSKnownZero) == DemandedMask)
213a09e18fcfab0e998526724357f8fc5ef7f4c3e7aShuxin Yang        return I->getOperand(0);
214a09e18fcfab0e998526724357f8fc5ef7f4c3e7aShuxin Yang      if ((DemandedMask & LHSKnownZero) == DemandedMask)
215a09e18fcfab0e998526724357f8fc5ef7f4c3e7aShuxin Yang        return I->getOperand(1);
216e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    }
217a09e18fcfab0e998526724357f8fc5ef7f4c3e7aShuxin Yang
218e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    // Compute the KnownZero/KnownOne bits to simplify things downstream.
21926c8dcc692fb2addd475446cfff24d6a4e958bcaRafael Espindola    ComputeMaskedBits(I, KnownZero, KnownOne, Depth);
220e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    return 0;
221e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner  }
2228a8413d75cb1b6dbbb77a775052568548382cbb4Craig Topper
223e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner  // If this is the root being simplified, allow it to have multiple uses,
224e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner  // just set the DemandedMask to all bits so that we can try to simplify the
225e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner  // operands.  This allows visitTruncInst (for example) to simplify the
226e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner  // operand of a trunc without duplicating all the logic below.
227e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner  if (Depth == 0 && !V->hasOneUse())
228e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    DemandedMask = APInt::getAllOnesValue(BitWidth);
2298a8413d75cb1b6dbbb77a775052568548382cbb4Craig Topper
230e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner  switch (I->getOpcode()) {
231e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner  default:
23226c8dcc692fb2addd475446cfff24d6a4e958bcaRafael Espindola    ComputeMaskedBits(I, KnownZero, KnownOne, Depth);
233e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    break;
234e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner  case Instruction::And:
235e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    // If either the LHS or the RHS are Zero, the result is zero.
236e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask,
237e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner                             RHSKnownZero, RHSKnownOne, Depth+1) ||
238e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner        SimplifyDemandedBits(I->getOperandUse(0), DemandedMask & ~RHSKnownZero,
239e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner                             LHSKnownZero, LHSKnownOne, Depth+1))
240e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      return I;
2418a8413d75cb1b6dbbb77a775052568548382cbb4Craig Topper    assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
2428a8413d75cb1b6dbbb77a775052568548382cbb4Craig Topper    assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
243e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner
244e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    // If all of the demanded bits are known 1 on one side, return the other.
245e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    // These bits cannot contribute to the result of the 'and'.
2468a8413d75cb1b6dbbb77a775052568548382cbb4Craig Topper    if ((DemandedMask & ~LHSKnownZero & RHSKnownOne) ==
247e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner        (DemandedMask & ~LHSKnownZero))
248e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      return I->getOperand(0);
2498a8413d75cb1b6dbbb77a775052568548382cbb4Craig Topper    if ((DemandedMask & ~RHSKnownZero & LHSKnownOne) ==
250e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner        (DemandedMask & ~RHSKnownZero))
251e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      return I->getOperand(1);
2528a8413d75cb1b6dbbb77a775052568548382cbb4Craig Topper
253e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    // If all of the demanded bits in the inputs are known zeros, return zero.
254e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    if ((DemandedMask & (RHSKnownZero|LHSKnownZero)) == DemandedMask)
255e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      return Constant::getNullValue(VTy);
2568a8413d75cb1b6dbbb77a775052568548382cbb4Craig Topper
257e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    // If the RHS is a constant, see if we can simplify it.
258e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnownZero))
259e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      return I;
2608a8413d75cb1b6dbbb77a775052568548382cbb4Craig Topper
261e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    // Output known-1 bits are only known if set in both the LHS & RHS.
262ac512171ff12829c5961ca2614dfaf4b37bf8c2eDuncan Sands    KnownOne = RHSKnownOne & LHSKnownOne;
263e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    // Output known-0 are known to be clear if zero in either the LHS | RHS.
264ac512171ff12829c5961ca2614dfaf4b37bf8c2eDuncan Sands    KnownZero = RHSKnownZero | LHSKnownZero;
265e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    break;
266e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner  case Instruction::Or:
267e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    // If either the LHS or the RHS are One, the result is One.
2688a8413d75cb1b6dbbb77a775052568548382cbb4Craig Topper    if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask,
269e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner                             RHSKnownZero, RHSKnownOne, Depth+1) ||
2708a8413d75cb1b6dbbb77a775052568548382cbb4Craig Topper        SimplifyDemandedBits(I->getOperandUse(0), DemandedMask & ~RHSKnownOne,
271e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner                             LHSKnownZero, LHSKnownOne, Depth+1))
272e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      return I;
2738a8413d75cb1b6dbbb77a775052568548382cbb4Craig Topper    assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
2748a8413d75cb1b6dbbb77a775052568548382cbb4Craig Topper    assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
2758a8413d75cb1b6dbbb77a775052568548382cbb4Craig Topper
276e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    // If all of the demanded bits are known zero on one side, return the other.
277e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    // These bits cannot contribute to the result of the 'or'.
2788a8413d75cb1b6dbbb77a775052568548382cbb4Craig Topper    if ((DemandedMask & ~LHSKnownOne & RHSKnownZero) ==
279e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner        (DemandedMask & ~LHSKnownOne))
280e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      return I->getOperand(0);
2818a8413d75cb1b6dbbb77a775052568548382cbb4Craig Topper    if ((DemandedMask & ~RHSKnownOne & LHSKnownZero) ==
282e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner        (DemandedMask & ~RHSKnownOne))
283e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      return I->getOperand(1);
284e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner
285e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    // If all of the potentially set bits on one side are known to be set on
286e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    // the other side, just use the 'other' side.
2878a8413d75cb1b6dbbb77a775052568548382cbb4Craig Topper    if ((DemandedMask & (~RHSKnownZero) & LHSKnownOne) ==
288e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner        (DemandedMask & (~RHSKnownZero)))
289e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      return I->getOperand(0);
2908a8413d75cb1b6dbbb77a775052568548382cbb4Craig Topper    if ((DemandedMask & (~LHSKnownZero) & RHSKnownOne) ==
291e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner        (DemandedMask & (~LHSKnownZero)))
292e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      return I->getOperand(1);
2938a8413d75cb1b6dbbb77a775052568548382cbb4Craig Topper
294e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    // If the RHS is a constant, see if we can simplify it.
295e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    if (ShrinkDemandedConstant(I, 1, DemandedMask))
296e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      return I;
2978a8413d75cb1b6dbbb77a775052568548382cbb4Craig Topper
298e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    // Output known-0 bits are only known if clear in both the LHS & RHS.
299ac512171ff12829c5961ca2614dfaf4b37bf8c2eDuncan Sands    KnownZero = RHSKnownZero & LHSKnownZero;
300e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    // Output known-1 are known to be set if set in either the LHS | RHS.
301ac512171ff12829c5961ca2614dfaf4b37bf8c2eDuncan Sands    KnownOne = RHSKnownOne | LHSKnownOne;
302e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    break;
303e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner  case Instruction::Xor: {
304e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask,
305e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner                             RHSKnownZero, RHSKnownOne, Depth+1) ||
3068a8413d75cb1b6dbbb77a775052568548382cbb4Craig Topper        SimplifyDemandedBits(I->getOperandUse(0), DemandedMask,
307e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner                             LHSKnownZero, LHSKnownOne, Depth+1))
308e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      return I;
3098a8413d75cb1b6dbbb77a775052568548382cbb4Craig Topper    assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
3108a8413d75cb1b6dbbb77a775052568548382cbb4Craig Topper    assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
3118a8413d75cb1b6dbbb77a775052568548382cbb4Craig Topper
312e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    // If all of the demanded bits are known zero on one side, return the other.
313e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    // These bits cannot contribute to the result of the 'xor'.
314e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    if ((DemandedMask & RHSKnownZero) == DemandedMask)
315e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      return I->getOperand(0);
316e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    if ((DemandedMask & LHSKnownZero) == DemandedMask)
317e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      return I->getOperand(1);
3188a8413d75cb1b6dbbb77a775052568548382cbb4Craig Topper
319e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    // If all of the demanded bits are known to be zero on one side or the
320e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    // other, turn this into an *inclusive* or.
32194c22716d60ff5edf6a98a3c67e0faa001be1142Sylvestre Ledru    //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
322e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    if ((DemandedMask & ~RHSKnownZero & ~LHSKnownZero) == 0) {
3238a8413d75cb1b6dbbb77a775052568548382cbb4Craig Topper      Instruction *Or =
324e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner        BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1),
325e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner                                 I->getName());
3266fd5a6000bb6d23d6e41f6a8b8d07ad3cca3ea76Eli Friedman      return InsertNewInstWith(Or, *I);
327e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    }
3288a8413d75cb1b6dbbb77a775052568548382cbb4Craig Topper
329e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    // If all of the demanded bits on one side are known, and all of the set
330e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    // bits on that side are also known to be set on the other side, turn this
331e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    // into an AND, as we know the bits will be cleared.
33294c22716d60ff5edf6a98a3c67e0faa001be1142Sylvestre Ledru    //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
3338a8413d75cb1b6dbbb77a775052568548382cbb4Craig Topper    if ((DemandedMask & (RHSKnownZero|RHSKnownOne)) == DemandedMask) {
334e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      // all known
335e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      if ((RHSKnownOne & LHSKnownOne) == RHSKnownOne) {
336e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner        Constant *AndC = Constant::getIntegerValue(VTy,
337e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner                                                   ~RHSKnownOne & DemandedMask);
338a9390a4d5f5d568059a80970d22194b165d097a7Benjamin Kramer        Instruction *And = BinaryOperator::CreateAnd(I->getOperand(0), AndC);
3396fd5a6000bb6d23d6e41f6a8b8d07ad3cca3ea76Eli Friedman        return InsertNewInstWith(And, *I);
340e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      }
341e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    }
3428a8413d75cb1b6dbbb77a775052568548382cbb4Craig Topper
343e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    // If the RHS is a constant, see if we can simplify it.
344e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1.
345e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    if (ShrinkDemandedConstant(I, 1, DemandedMask))
346e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      return I;
3478a8413d75cb1b6dbbb77a775052568548382cbb4Craig Topper
348e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    // If our LHS is an 'and' and if it has one use, and if any of the bits we
349e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    // are flipping are known to be set, then the xor is just resetting those
350e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    // bits to zero.  We can just knock out bits from the 'and' and the 'xor',
351e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    // simplifying both of them.
352e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    if (Instruction *LHSInst = dyn_cast<Instruction>(I->getOperand(0)))
353e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      if (LHSInst->getOpcode() == Instruction::And && LHSInst->hasOneUse() &&
354e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner          isa<ConstantInt>(I->getOperand(1)) &&
355e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner          isa<ConstantInt>(LHSInst->getOperand(1)) &&
356e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner          (LHSKnownOne & RHSKnownOne & DemandedMask) != 0) {
357e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner        ConstantInt *AndRHS = cast<ConstantInt>(LHSInst->getOperand(1));
358e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner        ConstantInt *XorRHS = cast<ConstantInt>(I->getOperand(1));
359e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner        APInt NewMask = ~(LHSKnownOne & RHSKnownOne & DemandedMask);
3608a8413d75cb1b6dbbb77a775052568548382cbb4Craig Topper
361e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner        Constant *AndC =
362e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner          ConstantInt::get(I->getType(), NewMask & AndRHS->getValue());
363a9390a4d5f5d568059a80970d22194b165d097a7Benjamin Kramer        Instruction *NewAnd = BinaryOperator::CreateAnd(I->getOperand(0), AndC);
3646fd5a6000bb6d23d6e41f6a8b8d07ad3cca3ea76Eli Friedman        InsertNewInstWith(NewAnd, *I);
3658a8413d75cb1b6dbbb77a775052568548382cbb4Craig Topper
366e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner        Constant *XorC =
367e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner          ConstantInt::get(I->getType(), NewMask & XorRHS->getValue());
368a9390a4d5f5d568059a80970d22194b165d097a7Benjamin Kramer        Instruction *NewXor = BinaryOperator::CreateXor(NewAnd, XorC);
3696fd5a6000bb6d23d6e41f6a8b8d07ad3cca3ea76Eli Friedman        return InsertNewInstWith(NewXor, *I);
370e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      }
371ac512171ff12829c5961ca2614dfaf4b37bf8c2eDuncan Sands
372ac512171ff12829c5961ca2614dfaf4b37bf8c2eDuncan Sands    // Output known-0 bits are known if clear or set in both the LHS & RHS.
373ac512171ff12829c5961ca2614dfaf4b37bf8c2eDuncan Sands    KnownZero= (RHSKnownZero & LHSKnownZero) | (RHSKnownOne & LHSKnownOne);
374ac512171ff12829c5961ca2614dfaf4b37bf8c2eDuncan Sands    // Output known-1 are known to be set if set in only one of the LHS, RHS.
375ac512171ff12829c5961ca2614dfaf4b37bf8c2eDuncan Sands    KnownOne = (RHSKnownZero & LHSKnownOne) | (RHSKnownOne & LHSKnownZero);
376e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    break;
377e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner  }
378e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner  case Instruction::Select:
379e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    if (SimplifyDemandedBits(I->getOperandUse(2), DemandedMask,
380e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner                             RHSKnownZero, RHSKnownOne, Depth+1) ||
3818a8413d75cb1b6dbbb77a775052568548382cbb4Craig Topper        SimplifyDemandedBits(I->getOperandUse(1), DemandedMask,
382e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner                             LHSKnownZero, LHSKnownOne, Depth+1))
383e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      return I;
3848a8413d75cb1b6dbbb77a775052568548382cbb4Craig Topper    assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
3858a8413d75cb1b6dbbb77a775052568548382cbb4Craig Topper    assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
3868a8413d75cb1b6dbbb77a775052568548382cbb4Craig Topper
387e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    // If the operands are constants, see if we can simplify them.
388e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    if (ShrinkDemandedConstant(I, 1, DemandedMask) ||
389e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner        ShrinkDemandedConstant(I, 2, DemandedMask))
390e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      return I;
3918a8413d75cb1b6dbbb77a775052568548382cbb4Craig Topper
392e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    // Only known if known in both the LHS and RHS.
393ac512171ff12829c5961ca2614dfaf4b37bf8c2eDuncan Sands    KnownOne = RHSKnownOne & LHSKnownOne;
394ac512171ff12829c5961ca2614dfaf4b37bf8c2eDuncan Sands    KnownZero = RHSKnownZero & LHSKnownZero;
395e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    break;
396e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner  case Instruction::Trunc: {
397e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    unsigned truncBf = I->getOperand(0)->getType()->getScalarSizeInBits();
39840f8f6264d5af2c38e797e0dc59827cd231e8ff7Jay Foad    DemandedMask = DemandedMask.zext(truncBf);
39940f8f6264d5af2c38e797e0dc59827cd231e8ff7Jay Foad    KnownZero = KnownZero.zext(truncBf);
40040f8f6264d5af2c38e797e0dc59827cd231e8ff7Jay Foad    KnownOne = KnownOne.zext(truncBf);
4018a8413d75cb1b6dbbb77a775052568548382cbb4Craig Topper    if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask,
402ac512171ff12829c5961ca2614dfaf4b37bf8c2eDuncan Sands                             KnownZero, KnownOne, Depth+1))
403e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      return I;
40440f8f6264d5af2c38e797e0dc59827cd231e8ff7Jay Foad    DemandedMask = DemandedMask.trunc(BitWidth);
40540f8f6264d5af2c38e797e0dc59827cd231e8ff7Jay Foad    KnownZero = KnownZero.trunc(BitWidth);
40640f8f6264d5af2c38e797e0dc59827cd231e8ff7Jay Foad    KnownOne = KnownOne.trunc(BitWidth);
4078a8413d75cb1b6dbbb77a775052568548382cbb4Craig Topper    assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
408e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    break;
409e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner  }
410e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner  case Instruction::BitCast:
411b0bc6c361da9009e8414efde317d9bbff755f6c0Duncan Sands    if (!I->getOperand(0)->getType()->isIntOrIntVectorTy())
412ac512171ff12829c5961ca2614dfaf4b37bf8c2eDuncan Sands      return 0;  // vector->int or fp->int?
413e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner
414db125cfaf57cc83e7dd7453de2d509bc8efd0e5eChris Lattner    if (VectorType *DstVTy = dyn_cast<VectorType>(I->getType())) {
415db125cfaf57cc83e7dd7453de2d509bc8efd0e5eChris Lattner      if (VectorType *SrcVTy =
416e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner            dyn_cast<VectorType>(I->getOperand(0)->getType())) {
417e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner        if (DstVTy->getNumElements() != SrcVTy->getNumElements())
418e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner          // Don't touch a bitcast between vectors of different element counts.
419ac512171ff12829c5961ca2614dfaf4b37bf8c2eDuncan Sands          return 0;
420e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      } else
421e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner        // Don't touch a scalar-to-vector bitcast.
422ac512171ff12829c5961ca2614dfaf4b37bf8c2eDuncan Sands        return 0;
4231df9859c40492511b8aa4321eb76496005d3b75bDuncan Sands    } else if (I->getOperand(0)->getType()->isVectorTy())
424e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      // Don't touch a vector-to-scalar bitcast.
425ac512171ff12829c5961ca2614dfaf4b37bf8c2eDuncan Sands      return 0;
426e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner
427e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask,
428ac512171ff12829c5961ca2614dfaf4b37bf8c2eDuncan Sands                             KnownZero, KnownOne, Depth+1))
429e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      return I;
4308a8413d75cb1b6dbbb77a775052568548382cbb4Craig Topper    assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
431e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    break;
432e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner  case Instruction::ZExt: {
433e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    // Compute the bits in the result that are not present in the input.
434e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    unsigned SrcBitWidth =I->getOperand(0)->getType()->getScalarSizeInBits();
4358a8413d75cb1b6dbbb77a775052568548382cbb4Craig Topper
43640f8f6264d5af2c38e797e0dc59827cd231e8ff7Jay Foad    DemandedMask = DemandedMask.trunc(SrcBitWidth);
43740f8f6264d5af2c38e797e0dc59827cd231e8ff7Jay Foad    KnownZero = KnownZero.trunc(SrcBitWidth);
43840f8f6264d5af2c38e797e0dc59827cd231e8ff7Jay Foad    KnownOne = KnownOne.trunc(SrcBitWidth);
439e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask,
440ac512171ff12829c5961ca2614dfaf4b37bf8c2eDuncan Sands                             KnownZero, KnownOne, Depth+1))
441e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      return I;
44240f8f6264d5af2c38e797e0dc59827cd231e8ff7Jay Foad    DemandedMask = DemandedMask.zext(BitWidth);
44340f8f6264d5af2c38e797e0dc59827cd231e8ff7Jay Foad    KnownZero = KnownZero.zext(BitWidth);
44440f8f6264d5af2c38e797e0dc59827cd231e8ff7Jay Foad    KnownOne = KnownOne.zext(BitWidth);
4458a8413d75cb1b6dbbb77a775052568548382cbb4Craig Topper    assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
446e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    // The top bits are known to be zero.
447ac512171ff12829c5961ca2614dfaf4b37bf8c2eDuncan Sands    KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
448e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    break;
449e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner  }
450e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner  case Instruction::SExt: {
451e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    // Compute the bits in the result that are not present in the input.
452e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    unsigned SrcBitWidth =I->getOperand(0)->getType()->getScalarSizeInBits();
4538a8413d75cb1b6dbbb77a775052568548382cbb4Craig Topper
4548a8413d75cb1b6dbbb77a775052568548382cbb4Craig Topper    APInt InputDemandedBits = DemandedMask &
455e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner                              APInt::getLowBitsSet(BitWidth, SrcBitWidth);
456e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner
457e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    APInt NewBits(APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth));
458e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    // If any of the sign extended bits are demanded, we know that the sign
459e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    // bit is demanded.
460e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    if ((NewBits & DemandedMask) != 0)
4617a874ddda037349184fbeb22838cc11a1a9bb78fJay Foad      InputDemandedBits.setBit(SrcBitWidth-1);
4628a8413d75cb1b6dbbb77a775052568548382cbb4Craig Topper
46340f8f6264d5af2c38e797e0dc59827cd231e8ff7Jay Foad    InputDemandedBits = InputDemandedBits.trunc(SrcBitWidth);
46440f8f6264d5af2c38e797e0dc59827cd231e8ff7Jay Foad    KnownZero = KnownZero.trunc(SrcBitWidth);
46540f8f6264d5af2c38e797e0dc59827cd231e8ff7Jay Foad    KnownOne = KnownOne.trunc(SrcBitWidth);
466e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    if (SimplifyDemandedBits(I->getOperandUse(0), InputDemandedBits,
467ac512171ff12829c5961ca2614dfaf4b37bf8c2eDuncan Sands                             KnownZero, KnownOne, Depth+1))
468e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      return I;
46940f8f6264d5af2c38e797e0dc59827cd231e8ff7Jay Foad    InputDemandedBits = InputDemandedBits.zext(BitWidth);
47040f8f6264d5af2c38e797e0dc59827cd231e8ff7Jay Foad    KnownZero = KnownZero.zext(BitWidth);
47140f8f6264d5af2c38e797e0dc59827cd231e8ff7Jay Foad    KnownOne = KnownOne.zext(BitWidth);
4728a8413d75cb1b6dbbb77a775052568548382cbb4Craig Topper    assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
4738a8413d75cb1b6dbbb77a775052568548382cbb4Craig Topper
474e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    // If the sign bit of the input is known set or clear, then we know the
475e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    // top bits of the result.
476e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner
477e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    // If the input sign bit is known zero, or if the NewBits are not demanded
478e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    // convert this into a zero extension.
479ac512171ff12829c5961ca2614dfaf4b37bf8c2eDuncan Sands    if (KnownZero[SrcBitWidth-1] || (NewBits & ~DemandedMask) == NewBits) {
480e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      // Convert to ZExt cast
481e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName());
4826fd5a6000bb6d23d6e41f6a8b8d07ad3cca3ea76Eli Friedman      return InsertNewInstWith(NewCast, *I);
483ac512171ff12829c5961ca2614dfaf4b37bf8c2eDuncan Sands    } else if (KnownOne[SrcBitWidth-1]) {    // Input sign bit known set
484ac512171ff12829c5961ca2614dfaf4b37bf8c2eDuncan Sands      KnownOne |= NewBits;
485e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    }
486e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    break;
487e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner  }
488e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner  case Instruction::Add: {
489e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    // Figure out what the input bits are.  If the top bits of the and result
490e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    // are not demanded, then the add doesn't demand them from its input
491e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    // either.
492e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    unsigned NLZ = DemandedMask.countLeadingZeros();
4938a8413d75cb1b6dbbb77a775052568548382cbb4Craig Topper
494e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    // If there is a constant on the RHS, there are a variety of xformations
495e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    // we can do.
496e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
497e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      // If null, this should be simplified elsewhere.  Some of the xforms here
498e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      // won't work if the RHS is zero.
499e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      if (RHS->isZero())
500e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner        break;
5018a8413d75cb1b6dbbb77a775052568548382cbb4Craig Topper
502e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      // If the top bit of the output is demanded, demand everything from the
503e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      // input.  Otherwise, we demand all the input bits except NLZ top bits.
504e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      APInt InDemandedBits(APInt::getLowBitsSet(BitWidth, BitWidth - NLZ));
505e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner
506e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      // Find information about known zero/one bits in the input.
5078a8413d75cb1b6dbbb77a775052568548382cbb4Craig Topper      if (SimplifyDemandedBits(I->getOperandUse(0), InDemandedBits,
508e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner                               LHSKnownZero, LHSKnownOne, Depth+1))
509e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner        return I;
510e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner
511e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      // If the RHS of the add has bits set that can't affect the input, reduce
512e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      // the constant.
513e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      if (ShrinkDemandedConstant(I, 1, InDemandedBits))
514e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner        return I;
5158a8413d75cb1b6dbbb77a775052568548382cbb4Craig Topper
516e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      // Avoid excess work.
517e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      if (LHSKnownZero == 0 && LHSKnownOne == 0)
518e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner        break;
5198a8413d75cb1b6dbbb77a775052568548382cbb4Craig Topper
520e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      // Turn it into OR if input bits are zero.
521e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      if ((LHSKnownZero & RHS->getValue()) == RHS->getValue()) {
522e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner        Instruction *Or =
523e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner          BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1),
524e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner                                   I->getName());
5256fd5a6000bb6d23d6e41f6a8b8d07ad3cca3ea76Eli Friedman        return InsertNewInstWith(Or, *I);
526e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      }
5278a8413d75cb1b6dbbb77a775052568548382cbb4Craig Topper
528e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      // We can say something about the output known-zero and known-one bits,
529e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      // depending on potential carries from the input constant and the
530e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      // unknowns.  For example if the LHS is known to have at most the 0x0F0F0
531e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      // bits set and the RHS constant is 0x01001, then we know we have a known
532e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      // one mask of 0x00001 and a known zero mask of 0xE0F0E.
5338a8413d75cb1b6dbbb77a775052568548382cbb4Craig Topper
534e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      // To compute this, we first compute the potential carry bits.  These are
535e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      // the bits which may be modified.  I'm not aware of a better way to do
536e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      // this scan.
537e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      const APInt &RHSVal = RHS->getValue();
538e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      APInt CarryBits((~LHSKnownZero + RHSVal) ^ (~LHSKnownZero ^ RHSVal));
5398a8413d75cb1b6dbbb77a775052568548382cbb4Craig Topper
540e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      // Now that we know which bits have carries, compute the known-1/0 sets.
5418a8413d75cb1b6dbbb77a775052568548382cbb4Craig Topper
542e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      // Bits are known one if they are known zero in one operand and one in the
543e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      // other, and there is no input carry.
5448a8413d75cb1b6dbbb77a775052568548382cbb4Craig Topper      KnownOne = ((LHSKnownZero & RHSVal) |
545ac512171ff12829c5961ca2614dfaf4b37bf8c2eDuncan Sands                  (LHSKnownOne & ~RHSVal)) & ~CarryBits;
5468a8413d75cb1b6dbbb77a775052568548382cbb4Craig Topper
547e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      // Bits are known zero if they are known zero in both operands and there
548e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      // is no input carry.
549ac512171ff12829c5961ca2614dfaf4b37bf8c2eDuncan Sands      KnownZero = LHSKnownZero & ~RHSVal & ~CarryBits;
550e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    } else {
551e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      // If the high-bits of this ADD are not demanded, then it does not demand
552e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      // the high bits of its LHS or RHS.
553e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      if (DemandedMask[BitWidth-1] == 0) {
554e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner        // Right fill the mask of bits for this ADD to demand the most
555e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner        // significant bit and all those below it.
556e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner        APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ));
557e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner        if (SimplifyDemandedBits(I->getOperandUse(0), DemandedFromOps,
558e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner                                 LHSKnownZero, LHSKnownOne, Depth+1) ||
559e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner            SimplifyDemandedBits(I->getOperandUse(1), DemandedFromOps,
560e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner                                 LHSKnownZero, LHSKnownOne, Depth+1))
561e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner          return I;
562e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      }
563e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    }
564e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    break;
565e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner  }
566e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner  case Instruction::Sub:
567e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    // If the high-bits of this SUB are not demanded, then it does not demand
568e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    // the high bits of its LHS or RHS.
569e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    if (DemandedMask[BitWidth-1] == 0) {
570e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      // Right fill the mask of bits for this SUB to demand the most
571e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      // significant bit and all those below it.
572e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      uint32_t NLZ = DemandedMask.countLeadingZeros();
573e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ));
574e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      if (SimplifyDemandedBits(I->getOperandUse(0), DemandedFromOps,
575e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner                               LHSKnownZero, LHSKnownOne, Depth+1) ||
576e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner          SimplifyDemandedBits(I->getOperandUse(1), DemandedFromOps,
577e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner                               LHSKnownZero, LHSKnownOne, Depth+1))
578e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner        return I;
579e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    }
5801fdfae05b0a4356d1ed0633bf3d6cdc6eba2e173Benjamin Kramer
581e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    // Otherwise just hand the sub off to ComputeMaskedBits to fill in
582e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    // the known zeros and ones.
58326c8dcc692fb2addd475446cfff24d6a4e958bcaRafael Espindola    ComputeMaskedBits(V, KnownZero, KnownOne, Depth);
5841fdfae05b0a4356d1ed0633bf3d6cdc6eba2e173Benjamin Kramer
5851fdfae05b0a4356d1ed0633bf3d6cdc6eba2e173Benjamin Kramer    // Turn this into a xor if LHS is 2^n-1 and the remaining bits are known
5861fdfae05b0a4356d1ed0633bf3d6cdc6eba2e173Benjamin Kramer    // zero.
5871fdfae05b0a4356d1ed0633bf3d6cdc6eba2e173Benjamin Kramer    if (ConstantInt *C0 = dyn_cast<ConstantInt>(I->getOperand(0))) {
5881fdfae05b0a4356d1ed0633bf3d6cdc6eba2e173Benjamin Kramer      APInt I0 = C0->getValue();
5891fdfae05b0a4356d1ed0633bf3d6cdc6eba2e173Benjamin Kramer      if ((I0 + 1).isPowerOf2() && (I0 | KnownZero).isAllOnesValue()) {
5901fdfae05b0a4356d1ed0633bf3d6cdc6eba2e173Benjamin Kramer        Instruction *Xor = BinaryOperator::CreateXor(I->getOperand(1), C0);
5911fdfae05b0a4356d1ed0633bf3d6cdc6eba2e173Benjamin Kramer        return InsertNewInstWith(Xor, *I);
5921fdfae05b0a4356d1ed0633bf3d6cdc6eba2e173Benjamin Kramer      }
5931fdfae05b0a4356d1ed0633bf3d6cdc6eba2e173Benjamin Kramer    }
594e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    break;
595e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner  case Instruction::Shl:
596e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
597c811976b0400257511f2a255ec70538c3614f85eShuxin Yang      {
598c811976b0400257511f2a255ec70538c3614f85eShuxin Yang        Value *VarX; ConstantInt *C1;
599c811976b0400257511f2a255ec70538c3614f85eShuxin Yang        if (match(I->getOperand(0), m_Shr(m_Value(VarX), m_ConstantInt(C1)))) {
600c811976b0400257511f2a255ec70538c3614f85eShuxin Yang          Instruction *Shr = cast<Instruction>(I->getOperand(0));
601c811976b0400257511f2a255ec70538c3614f85eShuxin Yang          Value *R = SimplifyShrShlDemandedBits(Shr, I, DemandedMask,
602c811976b0400257511f2a255ec70538c3614f85eShuxin Yang                                                KnownZero, KnownOne);
603c811976b0400257511f2a255ec70538c3614f85eShuxin Yang          if (R)
604c811976b0400257511f2a255ec70538c3614f85eShuxin Yang            return R;
605c811976b0400257511f2a255ec70538c3614f85eShuxin Yang        }
606c811976b0400257511f2a255ec70538c3614f85eShuxin Yang      }
607c811976b0400257511f2a255ec70538c3614f85eShuxin Yang
608a81556fb52e39e3f6cde0c11c1acd2bdf8a560a2Chris Lattner      uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
609e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt));
6108a8413d75cb1b6dbbb77a775052568548382cbb4Craig Topper
611a81556fb52e39e3f6cde0c11c1acd2bdf8a560a2Chris Lattner      // If the shift is NUW/NSW, then it does demand the high bits.
612a81556fb52e39e3f6cde0c11c1acd2bdf8a560a2Chris Lattner      ShlOperator *IOp = cast<ShlOperator>(I);
613a81556fb52e39e3f6cde0c11c1acd2bdf8a560a2Chris Lattner      if (IOp->hasNoSignedWrap())
614a81556fb52e39e3f6cde0c11c1acd2bdf8a560a2Chris Lattner        DemandedMaskIn |= APInt::getHighBitsSet(BitWidth, ShiftAmt+1);
615a81556fb52e39e3f6cde0c11c1acd2bdf8a560a2Chris Lattner      else if (IOp->hasNoUnsignedWrap())
616a81556fb52e39e3f6cde0c11c1acd2bdf8a560a2Chris Lattner        DemandedMaskIn |= APInt::getHighBitsSet(BitWidth, ShiftAmt);
6178a8413d75cb1b6dbbb77a775052568548382cbb4Craig Topper
6188a8413d75cb1b6dbbb77a775052568548382cbb4Craig Topper      if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn,
619ac512171ff12829c5961ca2614dfaf4b37bf8c2eDuncan Sands                               KnownZero, KnownOne, Depth+1))
620e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner        return I;
621ac512171ff12829c5961ca2614dfaf4b37bf8c2eDuncan Sands      assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
622ac512171ff12829c5961ca2614dfaf4b37bf8c2eDuncan Sands      KnownZero <<= ShiftAmt;
623ac512171ff12829c5961ca2614dfaf4b37bf8c2eDuncan Sands      KnownOne  <<= ShiftAmt;
624e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      // low bits known zero.
625e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      if (ShiftAmt)
626ac512171ff12829c5961ca2614dfaf4b37bf8c2eDuncan Sands        KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
627e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    }
628e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    break;
629e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner  case Instruction::LShr:
630e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    // For a logical shift right
631e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
632a81556fb52e39e3f6cde0c11c1acd2bdf8a560a2Chris Lattner      uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
6338a8413d75cb1b6dbbb77a775052568548382cbb4Craig Topper
634e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      // Unsigned shift right.
635e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
6368a8413d75cb1b6dbbb77a775052568548382cbb4Craig Topper
637a81556fb52e39e3f6cde0c11c1acd2bdf8a560a2Chris Lattner      // If the shift is exact, then it does demand the low bits (and knows that
638a81556fb52e39e3f6cde0c11c1acd2bdf8a560a2Chris Lattner      // they are zero).
639a81556fb52e39e3f6cde0c11c1acd2bdf8a560a2Chris Lattner      if (cast<LShrOperator>(I)->isExact())
640a81556fb52e39e3f6cde0c11c1acd2bdf8a560a2Chris Lattner        DemandedMaskIn |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
6418a8413d75cb1b6dbbb77a775052568548382cbb4Craig Topper
642e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn,
643ac512171ff12829c5961ca2614dfaf4b37bf8c2eDuncan Sands                               KnownZero, KnownOne, Depth+1))
644e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner        return I;
645ac512171ff12829c5961ca2614dfaf4b37bf8c2eDuncan Sands      assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
646ac512171ff12829c5961ca2614dfaf4b37bf8c2eDuncan Sands      KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
647ac512171ff12829c5961ca2614dfaf4b37bf8c2eDuncan Sands      KnownOne  = APIntOps::lshr(KnownOne, ShiftAmt);
648e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      if (ShiftAmt) {
649e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner        // Compute the new bits that are at the top now.
650e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner        APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
651ac512171ff12829c5961ca2614dfaf4b37bf8c2eDuncan Sands        KnownZero |= HighBits;  // high bits known zero.
652e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      }
653e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    }
654e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    break;
655e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner  case Instruction::AShr:
656e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    // If this is an arithmetic shift right and only the low-bit is set, we can
657e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    // always convert this into a logical shr, even if the shift amount is
658e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    // variable.  The low bit of the shift cannot be an input sign bit unless
659e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    // the shift amount is >= the size of the datatype, which is undefined.
660e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    if (DemandedMask == 1) {
661e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      // Perform the logical shift right.
662e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      Instruction *NewVal = BinaryOperator::CreateLShr(
663e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner                        I->getOperand(0), I->getOperand(1), I->getName());
6646fd5a6000bb6d23d6e41f6a8b8d07ad3cca3ea76Eli Friedman      return InsertNewInstWith(NewVal, *I);
6658a8413d75cb1b6dbbb77a775052568548382cbb4Craig Topper    }
666e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner
667e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    // If the sign bit is the only bit demanded by this ashr, then there is no
668e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    // need to do it, the shift doesn't change the high bit.
669e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    if (DemandedMask.isSignBit())
670e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      return I->getOperand(0);
6718a8413d75cb1b6dbbb77a775052568548382cbb4Craig Topper
672e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
673a81556fb52e39e3f6cde0c11c1acd2bdf8a560a2Chris Lattner      uint32_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
6748a8413d75cb1b6dbbb77a775052568548382cbb4Craig Topper
675e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      // Signed shift right.
676e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
677e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      // If any of the "high bits" are demanded, we should set the sign bit as
678e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      // demanded.
679e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      if (DemandedMask.countLeadingZeros() <= ShiftAmt)
6807a874ddda037349184fbeb22838cc11a1a9bb78fJay Foad        DemandedMaskIn.setBit(BitWidth-1);
6818a8413d75cb1b6dbbb77a775052568548382cbb4Craig Topper
682a81556fb52e39e3f6cde0c11c1acd2bdf8a560a2Chris Lattner      // If the shift is exact, then it does demand the low bits (and knows that
683a81556fb52e39e3f6cde0c11c1acd2bdf8a560a2Chris Lattner      // they are zero).
684a81556fb52e39e3f6cde0c11c1acd2bdf8a560a2Chris Lattner      if (cast<AShrOperator>(I)->isExact())
685a81556fb52e39e3f6cde0c11c1acd2bdf8a560a2Chris Lattner        DemandedMaskIn |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
6868a8413d75cb1b6dbbb77a775052568548382cbb4Craig Topper
687e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn,
688ac512171ff12829c5961ca2614dfaf4b37bf8c2eDuncan Sands                               KnownZero, KnownOne, Depth+1))
689e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner        return I;
690ac512171ff12829c5961ca2614dfaf4b37bf8c2eDuncan Sands      assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
691e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      // Compute the new bits that are at the top now.
692e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
693ac512171ff12829c5961ca2614dfaf4b37bf8c2eDuncan Sands      KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
694ac512171ff12829c5961ca2614dfaf4b37bf8c2eDuncan Sands      KnownOne  = APIntOps::lshr(KnownOne, ShiftAmt);
6958a8413d75cb1b6dbbb77a775052568548382cbb4Craig Topper
696e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      // Handle the sign bits.
697e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      APInt SignBit(APInt::getSignBit(BitWidth));
698e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      // Adjust to where it is now in the mask.
6998a8413d75cb1b6dbbb77a775052568548382cbb4Craig Topper      SignBit = APIntOps::lshr(SignBit, ShiftAmt);
7008a8413d75cb1b6dbbb77a775052568548382cbb4Craig Topper
701e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      // If the input sign bit is known to be zero, or if none of the top bits
702e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      // are demanded, turn this into an unsigned shift right.
7038a8413d75cb1b6dbbb77a775052568548382cbb4Craig Topper      if (BitWidth <= ShiftAmt || KnownZero[BitWidth-ShiftAmt-1] ||
704e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner          (HighBits & ~DemandedMask) == HighBits) {
705e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner        // Perform the logical shift right.
706148fd55ef3b47e224539eac7342c936bbf138ed5Nick Lewycky        BinaryOperator *NewVal = BinaryOperator::CreateLShr(I->getOperand(0),
707148fd55ef3b47e224539eac7342c936bbf138ed5Nick Lewycky                                                            SA, I->getName());
708148fd55ef3b47e224539eac7342c936bbf138ed5Nick Lewycky        NewVal->setIsExact(cast<BinaryOperator>(I)->isExact());
7096fd5a6000bb6d23d6e41f6a8b8d07ad3cca3ea76Eli Friedman        return InsertNewInstWith(NewVal, *I);
710ac512171ff12829c5961ca2614dfaf4b37bf8c2eDuncan Sands      } else if ((KnownOne & SignBit) != 0) { // New bits are known one.
711ac512171ff12829c5961ca2614dfaf4b37bf8c2eDuncan Sands        KnownOne |= HighBits;
712e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      }
713e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    }
714e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    break;
715e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner  case Instruction::SRem:
716e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
717c6b018b7379f4e1bcc4166a07b17d08180ed776dEli Friedman      // X % -1 demands all the bits because we don't want to introduce
718c6b018b7379f4e1bcc4166a07b17d08180ed776dEli Friedman      // INT_MIN % -1 (== undef) by accident.
719c6b018b7379f4e1bcc4166a07b17d08180ed776dEli Friedman      if (Rem->isAllOnesValue())
720c6b018b7379f4e1bcc4166a07b17d08180ed776dEli Friedman        break;
721e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      APInt RA = Rem->getValue().abs();
722e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      if (RA.isPowerOf2()) {
723e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner        if (DemandedMask.ult(RA))    // srem won't affect demanded bits
724e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner          return I->getOperand(0);
725e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner
726e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner        APInt LowBits = RA - 1;
727e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
728e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner        if (SimplifyDemandedBits(I->getOperandUse(0), Mask2,
729e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner                                 LHSKnownZero, LHSKnownOne, Depth+1))
730e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner          return I;
731e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner
7322c47368a7d843486a59e12a08595297003e3cb2dDuncan Sands        // The low bits of LHS are unchanged by the srem.
733ac512171ff12829c5961ca2614dfaf4b37bf8c2eDuncan Sands        KnownZero = LHSKnownZero & LowBits;
734ac512171ff12829c5961ca2614dfaf4b37bf8c2eDuncan Sands        KnownOne = LHSKnownOne & LowBits;
7352c47368a7d843486a59e12a08595297003e3cb2dDuncan Sands
7362c47368a7d843486a59e12a08595297003e3cb2dDuncan Sands        // If LHS is non-negative or has all low bits zero, then the upper bits
7372c47368a7d843486a59e12a08595297003e3cb2dDuncan Sands        // are all zero.
738e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner        if (LHSKnownZero[BitWidth-1] || ((LHSKnownZero & LowBits) == LowBits))
7392c47368a7d843486a59e12a08595297003e3cb2dDuncan Sands          KnownZero |= ~LowBits;
740e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner
7412c47368a7d843486a59e12a08595297003e3cb2dDuncan Sands        // If LHS is negative and not all low bits are zero, then the upper bits
7422c47368a7d843486a59e12a08595297003e3cb2dDuncan Sands        // are all one.
7432c47368a7d843486a59e12a08595297003e3cb2dDuncan Sands        if (LHSKnownOne[BitWidth-1] && ((LHSKnownOne & LowBits) != 0))
7442c47368a7d843486a59e12a08595297003e3cb2dDuncan Sands          KnownOne |= ~LowBits;
745e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner
7468a8413d75cb1b6dbbb77a775052568548382cbb4Craig Topper        assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
747e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      }
748e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    }
749c14bc77315ac4867f16c1585181b41919339eb3cNick Lewycky
750c14bc77315ac4867f16c1585181b41919339eb3cNick Lewycky    // The sign bit is the LHS's sign bit, except when the result of the
751c14bc77315ac4867f16c1585181b41919339eb3cNick Lewycky    // remainder is zero.
752c14bc77315ac4867f16c1585181b41919339eb3cNick Lewycky    if (DemandedMask.isNegative() && KnownZero.isNonNegative()) {
753c14bc77315ac4867f16c1585181b41919339eb3cNick Lewycky      APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
75426c8dcc692fb2addd475446cfff24d6a4e958bcaRafael Espindola      ComputeMaskedBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth+1);
755c14bc77315ac4867f16c1585181b41919339eb3cNick Lewycky      // If it's known zero, our sign bit is also zero.
756c14bc77315ac4867f16c1585181b41919339eb3cNick Lewycky      if (LHSKnownZero.isNegative())
757c14bc77315ac4867f16c1585181b41919339eb3cNick Lewycky        KnownZero |= LHSKnownZero;
758c14bc77315ac4867f16c1585181b41919339eb3cNick Lewycky    }
759e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    break;
760e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner  case Instruction::URem: {
761e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    APInt KnownZero2(BitWidth, 0), KnownOne2(BitWidth, 0);
762e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
763e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    if (SimplifyDemandedBits(I->getOperandUse(0), AllOnes,
764e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner                             KnownZero2, KnownOne2, Depth+1) ||
765e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner        SimplifyDemandedBits(I->getOperandUse(1), AllOnes,
766e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner                             KnownZero2, KnownOne2, Depth+1))
767e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      return I;
768e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner
769e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    unsigned Leaders = KnownZero2.countLeadingOnes();
770e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    Leaders = std::max(Leaders,
771e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner                       KnownZero2.countLeadingOnes());
772e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & DemandedMask;
773e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    break;
774e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner  }
775e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner  case Instruction::Call:
776e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
777e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      switch (II->getIntrinsicID()) {
778e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      default: break;
779e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      case Intrinsic::bswap: {
780e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner        // If the only bits demanded come from one byte of the bswap result,
781e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner        // just shift the input byte into position to eliminate the bswap.
782e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner        unsigned NLZ = DemandedMask.countLeadingZeros();
783e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner        unsigned NTZ = DemandedMask.countTrailingZeros();
7848a8413d75cb1b6dbbb77a775052568548382cbb4Craig Topper
785e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner        // Round NTZ down to the next byte.  If we have 11 trailing zeros, then
786e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner        // we need all the bits down to bit 8.  Likewise, round NLZ.  If we
787e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner        // have 14 leading zeros, round to 8.
788e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner        NLZ &= ~7;
789e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner        NTZ &= ~7;
790e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner        // If we need exactly one byte, we can do this transformation.
791e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner        if (BitWidth-NLZ-NTZ == 8) {
792e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner          unsigned ResultBit = NTZ;
793e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner          unsigned InputBit = BitWidth-NTZ-8;
7948a8413d75cb1b6dbbb77a775052568548382cbb4Craig Topper
795e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner          // Replace this with either a left or right shift to get the byte into
796e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner          // the right place.
797e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner          Instruction *NewVal;
798e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner          if (InputBit > ResultBit)
7993e84e2e90f560aa75e08957e1509b9e6d9d502bbGabor Greif            NewVal = BinaryOperator::CreateLShr(II->getArgOperand(0),
800e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner                    ConstantInt::get(I->getType(), InputBit-ResultBit));
801e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner          else
8023e84e2e90f560aa75e08957e1509b9e6d9d502bbGabor Greif            NewVal = BinaryOperator::CreateShl(II->getArgOperand(0),
803e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner                    ConstantInt::get(I->getType(), ResultBit-InputBit));
804e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner          NewVal->takeName(I);
8056fd5a6000bb6d23d6e41f6a8b8d07ad3cca3ea76Eli Friedman          return InsertNewInstWith(NewVal, *I);
806e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner        }
8078a8413d75cb1b6dbbb77a775052568548382cbb4Craig Topper
808e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner        // TODO: Could compute known zero/one bits based on the input.
809e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner        break;
810e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      }
81162660310d9e5f9ecf329fd3cacb67c344a12ddbcChad Rosier      case Intrinsic::x86_sse42_crc32_64_8:
81262660310d9e5f9ecf329fd3cacb67c344a12ddbcChad Rosier      case Intrinsic::x86_sse42_crc32_64_64:
8132e6496026f41d2c05ff038d14df9972f8a27fb94Evan Cheng        KnownZero = APInt::getHighBitsSet(64, 32);
8142e6496026f41d2c05ff038d14df9972f8a27fb94Evan Cheng        return 0;
815e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      }
816e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    }
81726c8dcc692fb2addd475446cfff24d6a4e958bcaRafael Espindola    ComputeMaskedBits(V, KnownZero, KnownOne, Depth);
818e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    break;
819e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner  }
8208a8413d75cb1b6dbbb77a775052568548382cbb4Craig Topper
821e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner  // If the client is only demanding bits that we know, return the known
822e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner  // constant.
823ac512171ff12829c5961ca2614dfaf4b37bf8c2eDuncan Sands  if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask)
824ac512171ff12829c5961ca2614dfaf4b37bf8c2eDuncan Sands    return Constant::getIntegerValue(VTy, KnownOne);
825ac512171ff12829c5961ca2614dfaf4b37bf8c2eDuncan Sands  return 0;
826e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner}
827e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner
828c811976b0400257511f2a255ec70538c3614f85eShuxin Yang/// Helper routine of SimplifyDemandedUseBits. It tries to simplify
829c811976b0400257511f2a255ec70538c3614f85eShuxin Yang/// "E1 = (X lsr C1) << C2", where the C1 and C2 are constant, into
830c811976b0400257511f2a255ec70538c3614f85eShuxin Yang/// "E2 = X << (C2 - C1)" or "E2 = X >> (C1 - C2)", depending on the sign
831c811976b0400257511f2a255ec70538c3614f85eShuxin Yang/// of "C2-C1".
832c811976b0400257511f2a255ec70538c3614f85eShuxin Yang///
833c811976b0400257511f2a255ec70538c3614f85eShuxin Yang/// Suppose E1 and E2 are generally different in bits S={bm, bm+1,
834c811976b0400257511f2a255ec70538c3614f85eShuxin Yang/// ..., bn}, without considering the specific value X is holding.
835c811976b0400257511f2a255ec70538c3614f85eShuxin Yang/// This transformation is legal iff one of following conditions is hold:
836c811976b0400257511f2a255ec70538c3614f85eShuxin Yang///  1) All the bit in S are 0, in this case E1 == E2.
837c811976b0400257511f2a255ec70538c3614f85eShuxin Yang///  2) We don't care those bits in S, per the input DemandedMask.
838c811976b0400257511f2a255ec70538c3614f85eShuxin Yang///  3) Combination of 1) and 2). Some bits in S are 0, and we don't care the
839c811976b0400257511f2a255ec70538c3614f85eShuxin Yang///     rest bits.
840c811976b0400257511f2a255ec70538c3614f85eShuxin Yang///
841c811976b0400257511f2a255ec70538c3614f85eShuxin Yang/// Currently we only test condition 2).
842c811976b0400257511f2a255ec70538c3614f85eShuxin Yang///
843c811976b0400257511f2a255ec70538c3614f85eShuxin Yang/// As with SimplifyDemandedUseBits, it returns NULL if the simplification was
844c811976b0400257511f2a255ec70538c3614f85eShuxin Yang/// not successful.
845c811976b0400257511f2a255ec70538c3614f85eShuxin YangValue *InstCombiner::SimplifyShrShlDemandedBits(Instruction *Shr,
846c811976b0400257511f2a255ec70538c3614f85eShuxin Yang  Instruction *Shl, APInt DemandedMask, APInt &KnownZero, APInt &KnownOne) {
847c811976b0400257511f2a255ec70538c3614f85eShuxin Yang
848c811976b0400257511f2a255ec70538c3614f85eShuxin Yang  unsigned ShlAmt = cast<ConstantInt>(Shl->getOperand(1))->getZExtValue();
849c811976b0400257511f2a255ec70538c3614f85eShuxin Yang  unsigned ShrAmt = cast<ConstantInt>(Shr->getOperand(1))->getZExtValue();
850c811976b0400257511f2a255ec70538c3614f85eShuxin Yang
851c811976b0400257511f2a255ec70538c3614f85eShuxin Yang  KnownOne.clearAllBits();
852c811976b0400257511f2a255ec70538c3614f85eShuxin Yang  KnownZero = APInt::getBitsSet(KnownZero.getBitWidth(), 0, ShlAmt-1);
853c811976b0400257511f2a255ec70538c3614f85eShuxin Yang  KnownZero &= DemandedMask;
854c811976b0400257511f2a255ec70538c3614f85eShuxin Yang
855c811976b0400257511f2a255ec70538c3614f85eShuxin Yang  if (ShlAmt == 0 || ShrAmt == 0)
856c811976b0400257511f2a255ec70538c3614f85eShuxin Yang    return 0;
857c811976b0400257511f2a255ec70538c3614f85eShuxin Yang
858c811976b0400257511f2a255ec70538c3614f85eShuxin Yang  Value *VarX = Shr->getOperand(0);
859c811976b0400257511f2a255ec70538c3614f85eShuxin Yang  Type *Ty = VarX->getType();
860c811976b0400257511f2a255ec70538c3614f85eShuxin Yang
8615f70c2e934c8cf7814fc047f4824ac89b35dd72dShuxin Yang  APInt BitMask1(APInt::getAllOnesValue(Ty->getIntegerBitWidth()));
8625f70c2e934c8cf7814fc047f4824ac89b35dd72dShuxin Yang  APInt BitMask2(APInt::getAllOnesValue(Ty->getIntegerBitWidth()));
863c811976b0400257511f2a255ec70538c3614f85eShuxin Yang
864c811976b0400257511f2a255ec70538c3614f85eShuxin Yang  bool isLshr = (Shr->getOpcode() == Instruction::LShr);
865c811976b0400257511f2a255ec70538c3614f85eShuxin Yang  BitMask1 = isLshr ? (BitMask1.lshr(ShrAmt) << ShlAmt) :
866c811976b0400257511f2a255ec70538c3614f85eShuxin Yang                      (BitMask1.ashr(ShrAmt) << ShlAmt);
867c811976b0400257511f2a255ec70538c3614f85eShuxin Yang
868c811976b0400257511f2a255ec70538c3614f85eShuxin Yang  if (ShrAmt <= ShlAmt) {
869c811976b0400257511f2a255ec70538c3614f85eShuxin Yang    BitMask2 <<= (ShlAmt - ShrAmt);
870c811976b0400257511f2a255ec70538c3614f85eShuxin Yang  } else {
871c811976b0400257511f2a255ec70538c3614f85eShuxin Yang    BitMask2 = isLshr ? BitMask2.lshr(ShrAmt - ShlAmt):
872c811976b0400257511f2a255ec70538c3614f85eShuxin Yang                        BitMask2.ashr(ShrAmt - ShlAmt);
873c811976b0400257511f2a255ec70538c3614f85eShuxin Yang  }
874c811976b0400257511f2a255ec70538c3614f85eShuxin Yang
875c811976b0400257511f2a255ec70538c3614f85eShuxin Yang  // Check if condition-2 (see the comment to this function) is satified.
876c811976b0400257511f2a255ec70538c3614f85eShuxin Yang  if ((BitMask1 & DemandedMask) == (BitMask2 & DemandedMask)) {
877c811976b0400257511f2a255ec70538c3614f85eShuxin Yang    if (ShrAmt == ShlAmt)
878c811976b0400257511f2a255ec70538c3614f85eShuxin Yang      return VarX;
879c811976b0400257511f2a255ec70538c3614f85eShuxin Yang
880c811976b0400257511f2a255ec70538c3614f85eShuxin Yang    if (!Shr->hasOneUse())
881c811976b0400257511f2a255ec70538c3614f85eShuxin Yang      return 0;
882c811976b0400257511f2a255ec70538c3614f85eShuxin Yang
883c811976b0400257511f2a255ec70538c3614f85eShuxin Yang    BinaryOperator *New;
884c811976b0400257511f2a255ec70538c3614f85eShuxin Yang    if (ShrAmt < ShlAmt) {
885c811976b0400257511f2a255ec70538c3614f85eShuxin Yang      Constant *Amt = ConstantInt::get(VarX->getType(), ShlAmt - ShrAmt);
886c811976b0400257511f2a255ec70538c3614f85eShuxin Yang      New = BinaryOperator::CreateShl(VarX, Amt);
887c811976b0400257511f2a255ec70538c3614f85eShuxin Yang      BinaryOperator *Orig = cast<BinaryOperator>(Shl);
888c811976b0400257511f2a255ec70538c3614f85eShuxin Yang      New->setHasNoSignedWrap(Orig->hasNoSignedWrap());
889c811976b0400257511f2a255ec70538c3614f85eShuxin Yang      New->setHasNoUnsignedWrap(Orig->hasNoUnsignedWrap());
890c811976b0400257511f2a255ec70538c3614f85eShuxin Yang    } else {
891c811976b0400257511f2a255ec70538c3614f85eShuxin Yang      Constant *Amt = ConstantInt::get(VarX->getType(), ShrAmt - ShlAmt);
892bba3eb054a4e0e052cdeff22e678c52c4e59f07eShuxin Yang      New = isLshr ? BinaryOperator::CreateLShr(VarX, Amt) :
893bba3eb054a4e0e052cdeff22e678c52c4e59f07eShuxin Yang                     BinaryOperator::CreateAShr(VarX, Amt);
8945f70c2e934c8cf7814fc047f4824ac89b35dd72dShuxin Yang      if (cast<BinaryOperator>(Shr)->isExact())
8955f70c2e934c8cf7814fc047f4824ac89b35dd72dShuxin Yang        New->setIsExact(true);
896c811976b0400257511f2a255ec70538c3614f85eShuxin Yang    }
897c811976b0400257511f2a255ec70538c3614f85eShuxin Yang
898c811976b0400257511f2a255ec70538c3614f85eShuxin Yang    return InsertNewInstWith(New, *Shl);
899c811976b0400257511f2a255ec70538c3614f85eShuxin Yang  }
900c811976b0400257511f2a255ec70538c3614f85eShuxin Yang
901c811976b0400257511f2a255ec70538c3614f85eShuxin Yang  return 0;
902c811976b0400257511f2a255ec70538c3614f85eShuxin Yang}
903e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner
904e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner/// SimplifyDemandedVectorElts - The specified value produces a vector with
905e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner/// any number of elements. DemandedElts contains the set of elements that are
906e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner/// actually used by the caller.  This method analyzes which elements of the
907e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner/// operand are undef and returns that information in UndefElts.
908e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner///
909e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner/// If the information about demanded elements can be used to simplify the
910e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner/// operation, the operation is simplified, then the resultant value is
911e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner/// returned.  This returns null if no change was made.
912e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris LattnerValue *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
9138609fda0f7e4446de85f882755601ffcbd540324Chris Lattner                                                APInt &UndefElts,
914e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner                                                unsigned Depth) {
915e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner  unsigned VWidth = cast<VectorType>(V->getType())->getNumElements();
916e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner  APInt EltMask(APInt::getAllOnesValue(VWidth));
917e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner  assert((DemandedElts & ~EltMask) == 0 && "Invalid DemandedElts!");
918e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner
919e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner  if (isa<UndefValue>(V)) {
920e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    // If the entire vector is undefined, just return this info.
921e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    UndefElts = EltMask;
922e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    return 0;
9238609fda0f7e4446de85f882755601ffcbd540324Chris Lattner  }
9248a8413d75cb1b6dbbb77a775052568548382cbb4Craig Topper
9258609fda0f7e4446de85f882755601ffcbd540324Chris Lattner  if (DemandedElts == 0) { // If nothing is demanded, provide undef.
926e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    UndefElts = EltMask;
927e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    return UndefValue::get(V->getType());
928e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner  }
929e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner
930e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner  UndefElts = 0;
9318a8413d75cb1b6dbbb77a775052568548382cbb4Craig Topper
932a1f00f4d488eb5daff52faaf99c62ee652fd3b85Chris Lattner  // Handle ConstantAggregateZero, ConstantVector, ConstantDataSequential.
933a1f00f4d488eb5daff52faaf99c62ee652fd3b85Chris Lattner  if (Constant *C = dyn_cast<Constant>(V)) {
934a1f00f4d488eb5daff52faaf99c62ee652fd3b85Chris Lattner    // Check if this is identity. If so, return 0 since we are not simplifying
935a1f00f4d488eb5daff52faaf99c62ee652fd3b85Chris Lattner    // anything.
936a1f00f4d488eb5daff52faaf99c62ee652fd3b85Chris Lattner    if (DemandedElts.isAllOnesValue())
937a1f00f4d488eb5daff52faaf99c62ee652fd3b85Chris Lattner      return 0;
938a1f00f4d488eb5daff52faaf99c62ee652fd3b85Chris Lattner
939db125cfaf57cc83e7dd7453de2d509bc8efd0e5eChris Lattner    Type *EltTy = cast<VectorType>(V->getType())->getElementType();
940e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    Constant *Undef = UndefValue::get(EltTy);
9418a8413d75cb1b6dbbb77a775052568548382cbb4Craig Topper
942a1f00f4d488eb5daff52faaf99c62ee652fd3b85Chris Lattner    SmallVector<Constant*, 16> Elts;
943a1f00f4d488eb5daff52faaf99c62ee652fd3b85Chris Lattner    for (unsigned i = 0; i != VWidth; ++i) {
944e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      if (!DemandedElts[i]) {   // If not demanded, set to undef.
945e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner        Elts.push_back(Undef);
9467a874ddda037349184fbeb22838cc11a1a9bb78fJay Foad        UndefElts.setBit(i);
947a1f00f4d488eb5daff52faaf99c62ee652fd3b85Chris Lattner        continue;
948a1f00f4d488eb5daff52faaf99c62ee652fd3b85Chris Lattner      }
9498a8413d75cb1b6dbbb77a775052568548382cbb4Craig Topper
950a1f00f4d488eb5daff52faaf99c62ee652fd3b85Chris Lattner      Constant *Elt = C->getAggregateElement(i);
951a1f00f4d488eb5daff52faaf99c62ee652fd3b85Chris Lattner      if (Elt == 0) return 0;
9528a8413d75cb1b6dbbb77a775052568548382cbb4Craig Topper
953a1f00f4d488eb5daff52faaf99c62ee652fd3b85Chris Lattner      if (isa<UndefValue>(Elt)) {   // Already undef.
954e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner        Elts.push_back(Undef);
9557a874ddda037349184fbeb22838cc11a1a9bb78fJay Foad        UndefElts.setBit(i);
956e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      } else {                               // Otherwise, defined.
957a1f00f4d488eb5daff52faaf99c62ee652fd3b85Chris Lattner        Elts.push_back(Elt);
958e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      }
959a1f00f4d488eb5daff52faaf99c62ee652fd3b85Chris Lattner    }
9608a8413d75cb1b6dbbb77a775052568548382cbb4Craig Topper
961e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    // If we changed the constant, return it.
9624ca829e89567f002fc74eb0e3e532a7c7662e031Chris Lattner    Constant *NewCV = ConstantVector::get(Elts);
963a1f00f4d488eb5daff52faaf99c62ee652fd3b85Chris Lattner    return NewCV != C ? NewCV : 0;
964e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner  }
9658a8413d75cb1b6dbbb77a775052568548382cbb4Craig Topper
966e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner  // Limit search depth.
967e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner  if (Depth == 10)
968e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    return 0;
969e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner
970ca1ef485854d668f794bf389154aa371aa2ed535Stuart Hastings  // If multiple users are using the root value, proceed with
971e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner  // simplification conservatively assuming that all elements
972e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner  // are needed.
973e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner  if (!V->hasOneUse()) {
974e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    // Quit if we find multiple users of a non-root value though.
975e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    // They'll be handled when it's their turn to be visited by
976e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    // the main instcombine process.
977e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    if (Depth != 0)
978e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      // TODO: Just compute the UndefElts information recursively.
979e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      return 0;
980e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner
981e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    // Conservatively assume that all elements are needed.
982e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    DemandedElts = EltMask;
983e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner  }
9848a8413d75cb1b6dbbb77a775052568548382cbb4Craig Topper
985e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner  Instruction *I = dyn_cast<Instruction>(V);
986e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner  if (!I) return 0;        // Only analyze instructions.
9878a8413d75cb1b6dbbb77a775052568548382cbb4Craig Topper
988e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner  bool MadeChange = false;
989e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner  APInt UndefElts2(VWidth, 0);
990e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner  Value *TmpV;
991e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner  switch (I->getOpcode()) {
992e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner  default: break;
9938a8413d75cb1b6dbbb77a775052568548382cbb4Craig Topper
994e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner  case Instruction::InsertElement: {
995e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    // If this is a variable index, we don't know which element it overwrites.
996e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    // demand exactly the same input as we produce.
997e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2));
998e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    if (Idx == 0) {
999e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      // Note that we can't propagate undef elt info, because we don't know
1000e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      // which elt is getting updated.
1001e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts,
1002e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner                                        UndefElts2, Depth+1);
1003e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1004e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      break;
1005e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    }
10068a8413d75cb1b6dbbb77a775052568548382cbb4Craig Topper
1007e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    // If this is inserting an element that isn't demanded, remove this
1008e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    // insertelement.
1009e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    unsigned IdxNo = Idx->getZExtValue();
1010e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    if (IdxNo >= VWidth || !DemandedElts[IdxNo]) {
1011e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      Worklist.Add(I);
1012e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      return I->getOperand(0);
1013e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    }
10148a8413d75cb1b6dbbb77a775052568548382cbb4Craig Topper
1015e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    // Otherwise, the element inserted overwrites whatever was there, so the
1016e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    // input demanded set is simpler than the output set.
1017e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    APInt DemandedElts2 = DemandedElts;
10187a874ddda037349184fbeb22838cc11a1a9bb78fJay Foad    DemandedElts2.clearBit(IdxNo);
1019e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts2,
1020e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner                                      UndefElts, Depth+1);
1021e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1022e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner
1023e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    // The inserted element is defined.
10247a874ddda037349184fbeb22838cc11a1a9bb78fJay Foad    UndefElts.clearBit(IdxNo);
1025e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    break;
1026e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner  }
1027e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner  case Instruction::ShuffleVector: {
1028e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I);
1029e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    uint64_t LHSVWidth =
1030e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      cast<VectorType>(Shuffle->getOperand(0)->getType())->getNumElements();
1031e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    APInt LeftDemanded(LHSVWidth, 0), RightDemanded(LHSVWidth, 0);
1032e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    for (unsigned i = 0; i < VWidth; i++) {
1033e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      if (DemandedElts[i]) {
1034e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner        unsigned MaskVal = Shuffle->getMaskValue(i);
1035e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner        if (MaskVal != -1u) {
1036e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner          assert(MaskVal < LHSVWidth * 2 &&
1037e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner                 "shufflevector mask index out of range!");
1038e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner          if (MaskVal < LHSVWidth)
10397a874ddda037349184fbeb22838cc11a1a9bb78fJay Foad            LeftDemanded.setBit(MaskVal);
1040e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner          else
10417a874ddda037349184fbeb22838cc11a1a9bb78fJay Foad            RightDemanded.setBit(MaskVal - LHSVWidth);
1042e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner        }
1043e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      }
1044e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    }
1045e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner
1046e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    APInt UndefElts4(LHSVWidth, 0);
1047e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    TmpV = SimplifyDemandedVectorElts(I->getOperand(0), LeftDemanded,
1048e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner                                      UndefElts4, Depth+1);
1049e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1050e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner
1051e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    APInt UndefElts3(LHSVWidth, 0);
1052e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    TmpV = SimplifyDemandedVectorElts(I->getOperand(1), RightDemanded,
1053e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner                                      UndefElts3, Depth+1);
1054e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
1055e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner
1056e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    bool NewUndefElts = false;
1057e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    for (unsigned i = 0; i < VWidth; i++) {
1058e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      unsigned MaskVal = Shuffle->getMaskValue(i);
1059e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      if (MaskVal == -1u) {
10607a874ddda037349184fbeb22838cc11a1a9bb78fJay Foad        UndefElts.setBit(i);
1061c82751dd6761e3db62668b6b1cfddd4f659855b6Eli Friedman      } else if (!DemandedElts[i]) {
1062c82751dd6761e3db62668b6b1cfddd4f659855b6Eli Friedman        NewUndefElts = true;
1063c82751dd6761e3db62668b6b1cfddd4f659855b6Eli Friedman        UndefElts.setBit(i);
1064e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      } else if (MaskVal < LHSVWidth) {
1065e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner        if (UndefElts4[MaskVal]) {
1066e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner          NewUndefElts = true;
10677a874ddda037349184fbeb22838cc11a1a9bb78fJay Foad          UndefElts.setBit(i);
1068e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner        }
1069e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      } else {
1070e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner        if (UndefElts3[MaskVal - LHSVWidth]) {
1071e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner          NewUndefElts = true;
10727a874ddda037349184fbeb22838cc11a1a9bb78fJay Foad          UndefElts.setBit(i);
1073e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner        }
1074e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      }
1075e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    }
1076e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner
1077e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    if (NewUndefElts) {
1078e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      // Add additional discovered undefs.
1079a78fa8cc2dd6d2ffe5e4fe605f38aae7b3d2fb7aChris Lattner      SmallVector<Constant*, 16> Elts;
1080e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      for (unsigned i = 0; i < VWidth; ++i) {
1081e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner        if (UndefElts[i])
1082e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner          Elts.push_back(UndefValue::get(Type::getInt32Ty(I->getContext())));
1083e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner        else
1084e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner          Elts.push_back(ConstantInt::get(Type::getInt32Ty(I->getContext()),
1085e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner                                          Shuffle->getMaskValue(i)));
1086e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      }
1087e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      I->setOperand(2, ConstantVector::get(Elts));
1088e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      MadeChange = true;
1089e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    }
1090e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    break;
1091e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner  }
10927971de4178d3be9b31ac03c20e2b50c3e7f4641cPete Cooper  case Instruction::Select: {
10937971de4178d3be9b31ac03c20e2b50c3e7f4641cPete Cooper    APInt LeftDemanded(DemandedElts), RightDemanded(DemandedElts);
10947971de4178d3be9b31ac03c20e2b50c3e7f4641cPete Cooper    if (ConstantVector* CV = dyn_cast<ConstantVector>(I->getOperand(0))) {
10957971de4178d3be9b31ac03c20e2b50c3e7f4641cPete Cooper      for (unsigned i = 0; i < VWidth; i++) {
10967971de4178d3be9b31ac03c20e2b50c3e7f4641cPete Cooper        if (CV->getAggregateElement(i)->isNullValue())
10977971de4178d3be9b31ac03c20e2b50c3e7f4641cPete Cooper          LeftDemanded.clearBit(i);
10987971de4178d3be9b31ac03c20e2b50c3e7f4641cPete Cooper        else
10997971de4178d3be9b31ac03c20e2b50c3e7f4641cPete Cooper          RightDemanded.clearBit(i);
11007971de4178d3be9b31ac03c20e2b50c3e7f4641cPete Cooper      }
11017971de4178d3be9b31ac03c20e2b50c3e7f4641cPete Cooper    }
11027971de4178d3be9b31ac03c20e2b50c3e7f4641cPete Cooper
11037971de4178d3be9b31ac03c20e2b50c3e7f4641cPete Cooper    TmpV = SimplifyDemandedVectorElts(I->getOperand(1), LeftDemanded,
11047971de4178d3be9b31ac03c20e2b50c3e7f4641cPete Cooper                                      UndefElts, Depth+1);
11057971de4178d3be9b31ac03c20e2b50c3e7f4641cPete Cooper    if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
11067971de4178d3be9b31ac03c20e2b50c3e7f4641cPete Cooper
11077971de4178d3be9b31ac03c20e2b50c3e7f4641cPete Cooper    TmpV = SimplifyDemandedVectorElts(I->getOperand(2), RightDemanded,
11087971de4178d3be9b31ac03c20e2b50c3e7f4641cPete Cooper                                      UndefElts2, Depth+1);
11097971de4178d3be9b31ac03c20e2b50c3e7f4641cPete Cooper    if (TmpV) { I->setOperand(2, TmpV); MadeChange = true; }
11108a8413d75cb1b6dbbb77a775052568548382cbb4Craig Topper
11117971de4178d3be9b31ac03c20e2b50c3e7f4641cPete Cooper    // Output elements are undefined if both are undefined.
11127971de4178d3be9b31ac03c20e2b50c3e7f4641cPete Cooper    UndefElts &= UndefElts2;
11137971de4178d3be9b31ac03c20e2b50c3e7f4641cPete Cooper    break;
11147971de4178d3be9b31ac03c20e2b50c3e7f4641cPete Cooper  }
1115e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner  case Instruction::BitCast: {
1116e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    // Vector->vector casts only.
1117db125cfaf57cc83e7dd7453de2d509bc8efd0e5eChris Lattner    VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType());
1118e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    if (!VTy) break;
1119e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    unsigned InVWidth = VTy->getNumElements();
1120e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    APInt InputDemandedElts(InVWidth, 0);
1121e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    unsigned Ratio;
1122e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner
1123e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    if (VWidth == InVWidth) {
1124e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      // If we are converting from <4 x i32> -> <4 x f32>, we demand the same
1125e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      // elements as are demanded of us.
1126e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      Ratio = 1;
1127e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      InputDemandedElts = DemandedElts;
1128e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    } else if (VWidth > InVWidth) {
1129e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      // Untested so far.
1130e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      break;
11318a8413d75cb1b6dbbb77a775052568548382cbb4Craig Topper
1132e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      // If there are more elements in the result than there are in the source,
1133e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      // then an input element is live if any of the corresponding output
1134e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      // elements are live.
1135e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      Ratio = VWidth/InVWidth;
1136e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) {
1137e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner        if (DemandedElts[OutIdx])
11387a874ddda037349184fbeb22838cc11a1a9bb78fJay Foad          InputDemandedElts.setBit(OutIdx/Ratio);
1139e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      }
1140e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    } else {
1141e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      // Untested so far.
1142e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      break;
11438a8413d75cb1b6dbbb77a775052568548382cbb4Craig Topper
1144e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      // If there are more elements in the source than there are in the result,
1145e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      // then an input element is live if the corresponding output element is
1146e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      // live.
1147e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      Ratio = InVWidth/VWidth;
1148e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx)
1149e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner        if (DemandedElts[InIdx/Ratio])
11507a874ddda037349184fbeb22838cc11a1a9bb78fJay Foad          InputDemandedElts.setBit(InIdx);
1151e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    }
11528a8413d75cb1b6dbbb77a775052568548382cbb4Craig Topper
1153e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    // div/rem demand all inputs, because they don't want divide by zero.
1154e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    TmpV = SimplifyDemandedVectorElts(I->getOperand(0), InputDemandedElts,
1155e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner                                      UndefElts2, Depth+1);
1156e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    if (TmpV) {
1157e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      I->setOperand(0, TmpV);
1158e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      MadeChange = true;
1159e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    }
11608a8413d75cb1b6dbbb77a775052568548382cbb4Craig Topper
1161e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    UndefElts = UndefElts2;
1162e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    if (VWidth > InVWidth) {
1163e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      llvm_unreachable("Unimp");
1164e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      // If there are more elements in the result than there are in the source,
1165e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      // then an output element is undef if the corresponding input element is
1166e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      // undef.
1167e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx)
1168e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner        if (UndefElts2[OutIdx/Ratio])
11697a874ddda037349184fbeb22838cc11a1a9bb78fJay Foad          UndefElts.setBit(OutIdx);
1170e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    } else if (VWidth < InVWidth) {
1171e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      llvm_unreachable("Unimp");
1172e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      // If there are more elements in the source than there are in the result,
1173e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      // then a result element is undef if all of the corresponding input
1174e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      // elements are undef.
1175e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      UndefElts = ~0ULL >> (64-VWidth);  // Start out all undef.
1176e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx)
1177e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner        if (!UndefElts2[InIdx])            // Not undef?
11787a874ddda037349184fbeb22838cc11a1a9bb78fJay Foad          UndefElts.clearBit(InIdx/Ratio);    // Clear undef bit.
1179e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    }
1180e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    break;
1181e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner  }
1182e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner  case Instruction::And:
1183e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner  case Instruction::Or:
1184e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner  case Instruction::Xor:
1185e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner  case Instruction::Add:
1186e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner  case Instruction::Sub:
1187e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner  case Instruction::Mul:
1188e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    // div/rem demand all inputs, because they don't want divide by zero.
1189e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts,
1190e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner                                      UndefElts, Depth+1);
1191e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1192e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    TmpV = SimplifyDemandedVectorElts(I->getOperand(1), DemandedElts,
1193e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner                                      UndefElts2, Depth+1);
1194e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
11958a8413d75cb1b6dbbb77a775052568548382cbb4Craig Topper
1196e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    // Output elements are undefined if both are undefined.  Consider things
1197e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    // like undef&0.  The result is known zero, not undef.
1198e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    UndefElts &= UndefElts2;
1199e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    break;
12001121c786fc24a4a8ce6c778cb9b5acdfa9006ffbPete Cooper  case Instruction::FPTrunc:
12011121c786fc24a4a8ce6c778cb9b5acdfa9006ffbPete Cooper  case Instruction::FPExt:
12021121c786fc24a4a8ce6c778cb9b5acdfa9006ffbPete Cooper    TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts,
12031121c786fc24a4a8ce6c778cb9b5acdfa9006ffbPete Cooper                                      UndefElts, Depth+1);
12041121c786fc24a4a8ce6c778cb9b5acdfa9006ffbPete Cooper    if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
12051121c786fc24a4a8ce6c778cb9b5acdfa9006ffbPete Cooper    break;
12068a8413d75cb1b6dbbb77a775052568548382cbb4Craig Topper
1207e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner  case Instruction::Call: {
1208e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    IntrinsicInst *II = dyn_cast<IntrinsicInst>(I);
1209e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    if (!II) break;
1210e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    switch (II->getIntrinsicID()) {
1211e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    default: break;
12128a8413d75cb1b6dbbb77a775052568548382cbb4Craig Topper
1213e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    // Binary vector operations that work column-wise.  A dest element is a
1214e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    // function of the corresponding input elements from the two inputs.
1215e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    case Intrinsic::x86_sse_sub_ss:
1216e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    case Intrinsic::x86_sse_mul_ss:
1217e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    case Intrinsic::x86_sse_min_ss:
1218e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    case Intrinsic::x86_sse_max_ss:
1219e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    case Intrinsic::x86_sse2_sub_sd:
1220e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    case Intrinsic::x86_sse2_mul_sd:
1221e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    case Intrinsic::x86_sse2_min_sd:
1222e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    case Intrinsic::x86_sse2_max_sd:
122330d2577f644a947d51bb81cf1b6e863d8147cccfGabor Greif      TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts,
1224551754c4958086cc6910da7c950f2875e212f5cfEric Christopher                                        UndefElts, Depth+1);
122530d2577f644a947d51bb81cf1b6e863d8147cccfGabor Greif      if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; }
122630d2577f644a947d51bb81cf1b6e863d8147cccfGabor Greif      TmpV = SimplifyDemandedVectorElts(II->getArgOperand(1), DemandedElts,
1227551754c4958086cc6910da7c950f2875e212f5cfEric Christopher                                        UndefElts2, Depth+1);
122830d2577f644a947d51bb81cf1b6e863d8147cccfGabor Greif      if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; }
1229e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner
1230e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      // If only the low elt is demanded and this is a scalarizable intrinsic,
1231e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      // scalarize it now.
1232e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      if (DemandedElts == 1) {
1233e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner        switch (II->getIntrinsicID()) {
1234e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner        default: break;
1235e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner        case Intrinsic::x86_sse_sub_ss:
1236e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner        case Intrinsic::x86_sse_mul_ss:
1237e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner        case Intrinsic::x86_sse2_sub_sd:
1238e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner        case Intrinsic::x86_sse2_mul_sd:
1239e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner          // TODO: Lower MIN/MAX/ABS/etc
12403e84e2e90f560aa75e08957e1509b9e6d9d502bbGabor Greif          Value *LHS = II->getArgOperand(0);
12413e84e2e90f560aa75e08957e1509b9e6d9d502bbGabor Greif          Value *RHS = II->getArgOperand(1);
1242e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner          // Extract the element as scalars.
12438a8413d75cb1b6dbbb77a775052568548382cbb4Craig Topper          LHS = InsertNewInstWith(ExtractElementInst::Create(LHS,
1244e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner            ConstantInt::get(Type::getInt32Ty(I->getContext()), 0U)), *II);
12456fd5a6000bb6d23d6e41f6a8b8d07ad3cca3ea76Eli Friedman          RHS = InsertNewInstWith(ExtractElementInst::Create(RHS,
1246e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner            ConstantInt::get(Type::getInt32Ty(I->getContext()), 0U)), *II);
12478a8413d75cb1b6dbbb77a775052568548382cbb4Craig Topper
1248e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner          switch (II->getIntrinsicID()) {
1249e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner          default: llvm_unreachable("Case stmts out of sync!");
1250e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner          case Intrinsic::x86_sse_sub_ss:
1251e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner          case Intrinsic::x86_sse2_sub_sd:
12526fd5a6000bb6d23d6e41f6a8b8d07ad3cca3ea76Eli Friedman            TmpV = InsertNewInstWith(BinaryOperator::CreateFSub(LHS, RHS,
1253e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner                                                        II->getName()), *II);
1254e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner            break;
1255e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner          case Intrinsic::x86_sse_mul_ss:
1256e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner          case Intrinsic::x86_sse2_mul_sd:
12576fd5a6000bb6d23d6e41f6a8b8d07ad3cca3ea76Eli Friedman            TmpV = InsertNewInstWith(BinaryOperator::CreateFMul(LHS, RHS,
1258e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner                                                         II->getName()), *II);
1259e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner            break;
1260e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner          }
12618a8413d75cb1b6dbbb77a775052568548382cbb4Craig Topper
1262e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner          Instruction *New =
1263e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner            InsertElementInst::Create(
1264e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner              UndefValue::get(II->getType()), TmpV,
1265e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner              ConstantInt::get(Type::getInt32Ty(I->getContext()), 0U, false),
1266e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner                                      II->getName());
12676fd5a6000bb6d23d6e41f6a8b8d07ad3cca3ea76Eli Friedman          InsertNewInstWith(New, *II);
1268e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner          return New;
12698a8413d75cb1b6dbbb77a775052568548382cbb4Craig Topper        }
1270e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      }
12718a8413d75cb1b6dbbb77a775052568548382cbb4Craig Topper
1272e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      // Output elements are undefined if both are undefined.  Consider things
1273e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      // like undef&0.  The result is known zero, not undef.
1274e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      UndefElts &= UndefElts2;
1275e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner      break;
1276e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    }
1277e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner    break;
1278e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner  }
1279e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner  }
1280e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner  return MadeChange ? I : 0;
1281e0b4b721aa82796c6ee5cf501ecd85f4974732eeChris Lattner}
1282