InstructionCombining.cpp revision a63395a30f9227bde826749d3480046301b47332
1//===- InstructionCombining.cpp - Combine multiple instructions -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// InstructionCombining - Combine instructions to form fewer, simple
11// instructions.  This pass does not modify the CFG.  This pass is where
12// algebraic simplification happens.
13//
14// This pass combines things like:
15//    %Y = add i32 %X, 1
16//    %Z = add i32 %Y, 1
17// into:
18//    %Z = add i32 %X, 2
19//
20// This is a simple worklist driven algorithm.
21//
22// This pass guarantees that the following canonicalizations are performed on
23// the program:
24//    1. If a binary operator has a constant operand, it is moved to the RHS
25//    2. Bitwise operators with constant operands are always grouped so that
26//       shifts are performed first, then or's, then and's, then xor's.
27//    3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible
28//    4. All cmp instructions on boolean values are replaced with logical ops
29//    5. add X, X is represented as (X*2) => (X << 1)
30//    6. Multiplies with a power-of-two constant argument are transformed into
31//       shifts.
32//   ... etc.
33//
34//===----------------------------------------------------------------------===//
35
36#define DEBUG_TYPE "instcombine"
37#include "llvm/Transforms/Scalar.h"
38#include "InstCombine.h"
39#include "llvm/IntrinsicInst.h"
40#include "llvm/Analysis/ConstantFolding.h"
41#include "llvm/Analysis/InstructionSimplify.h"
42#include "llvm/Analysis/MemoryBuiltins.h"
43#include "llvm/Target/TargetData.h"
44#include "llvm/Transforms/Utils/Local.h"
45#include "llvm/Support/CFG.h"
46#include "llvm/Support/Debug.h"
47#include "llvm/Support/GetElementPtrTypeIterator.h"
48#include "llvm/Support/PatternMatch.h"
49#include "llvm/ADT/SmallPtrSet.h"
50#include "llvm/ADT/Statistic.h"
51#include "llvm-c/Initialization.h"
52#include <algorithm>
53#include <climits>
54using namespace llvm;
55using namespace llvm::PatternMatch;
56
57STATISTIC(NumCombined , "Number of insts combined");
58STATISTIC(NumConstProp, "Number of constant folds");
59STATISTIC(NumDeadInst , "Number of dead inst eliminated");
60STATISTIC(NumSunkInst , "Number of instructions sunk");
61
62// Initialization Routines
63void llvm::initializeInstCombine(PassRegistry &Registry) {
64  initializeInstCombinerPass(Registry);
65}
66
67void LLVMInitializeInstCombine(LLVMPassRegistryRef R) {
68  initializeInstCombine(*unwrap(R));
69}
70
71char InstCombiner::ID = 0;
72INITIALIZE_PASS(InstCombiner, "instcombine",
73                "Combine redundant instructions", false, false)
74
75void InstCombiner::getAnalysisUsage(AnalysisUsage &AU) const {
76  AU.addPreservedID(LCSSAID);
77  AU.setPreservesCFG();
78}
79
80
81/// ShouldChangeType - Return true if it is desirable to convert a computation
82/// from 'From' to 'To'.  We don't want to convert from a legal to an illegal
83/// type for example, or from a smaller to a larger illegal type.
84bool InstCombiner::ShouldChangeType(const Type *From, const Type *To) const {
85  assert(From->isIntegerTy() && To->isIntegerTy());
86
87  // If we don't have TD, we don't know if the source/dest are legal.
88  if (!TD) return false;
89
90  unsigned FromWidth = From->getPrimitiveSizeInBits();
91  unsigned ToWidth = To->getPrimitiveSizeInBits();
92  bool FromLegal = TD->isLegalInteger(FromWidth);
93  bool ToLegal = TD->isLegalInteger(ToWidth);
94
95  // If this is a legal integer from type, and the result would be an illegal
96  // type, don't do the transformation.
97  if (FromLegal && !ToLegal)
98    return false;
99
100  // Otherwise, if both are illegal, do not increase the size of the result. We
101  // do allow things like i160 -> i64, but not i64 -> i160.
102  if (!FromLegal && !ToLegal && ToWidth > FromWidth)
103    return false;
104
105  return true;
106}
107
108
109/// SimplifyAssociativeOrCommutative - This performs a few simplifications for
110/// operators which are associative or commutative:
111//
112//  Commutative operators:
113//
114//  1. Order operands such that they are listed from right (least complex) to
115//     left (most complex).  This puts constants before unary operators before
116//     binary operators.
117//
118//  Associative operators:
119//
120//  2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
121//  3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
122//
123//  Associative and commutative operators:
124//
125//  4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
126//  5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
127//  6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
128//     if C1 and C2 are constants.
129//
130bool InstCombiner::SimplifyAssociativeOrCommutative(BinaryOperator &I) {
131  Instruction::BinaryOps Opcode = I.getOpcode();
132  bool Changed = false;
133
134  do {
135    // Order operands such that they are listed from right (least complex) to
136    // left (most complex).  This puts constants before unary operators before
137    // binary operators.
138    if (I.isCommutative() && getComplexity(I.getOperand(0)) <
139        getComplexity(I.getOperand(1)))
140      Changed = !I.swapOperands();
141
142    BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0));
143    BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1));
144
145    if (I.isAssociative()) {
146      // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
147      if (Op0 && Op0->getOpcode() == Opcode) {
148        Value *A = Op0->getOperand(0);
149        Value *B = Op0->getOperand(1);
150        Value *C = I.getOperand(1);
151
152        // Does "B op C" simplify?
153        if (Value *V = SimplifyBinOp(Opcode, B, C, TD)) {
154          // It simplifies to V.  Form "A op V".
155          I.setOperand(0, A);
156          I.setOperand(1, V);
157          Changed = true;
158          continue;
159        }
160      }
161
162      // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
163      if (Op1 && Op1->getOpcode() == Opcode) {
164        Value *A = I.getOperand(0);
165        Value *B = Op1->getOperand(0);
166        Value *C = Op1->getOperand(1);
167
168        // Does "A op B" simplify?
169        if (Value *V = SimplifyBinOp(Opcode, A, B, TD)) {
170          // It simplifies to V.  Form "V op C".
171          I.setOperand(0, V);
172          I.setOperand(1, C);
173          Changed = true;
174          continue;
175        }
176      }
177    }
178
179    if (I.isAssociative() && I.isCommutative()) {
180      // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
181      if (Op0 && Op0->getOpcode() == Opcode) {
182        Value *A = Op0->getOperand(0);
183        Value *B = Op0->getOperand(1);
184        Value *C = I.getOperand(1);
185
186        // Does "C op A" simplify?
187        if (Value *V = SimplifyBinOp(Opcode, C, A, TD)) {
188          // It simplifies to V.  Form "V op B".
189          I.setOperand(0, V);
190          I.setOperand(1, B);
191          Changed = true;
192          continue;
193        }
194      }
195
196      // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
197      if (Op1 && Op1->getOpcode() == Opcode) {
198        Value *A = I.getOperand(0);
199        Value *B = Op1->getOperand(0);
200        Value *C = Op1->getOperand(1);
201
202        // Does "C op A" simplify?
203        if (Value *V = SimplifyBinOp(Opcode, C, A, TD)) {
204          // It simplifies to V.  Form "B op V".
205          I.setOperand(0, B);
206          I.setOperand(1, V);
207          Changed = true;
208          continue;
209        }
210      }
211
212      // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
213      // if C1 and C2 are constants.
214      if (Op0 && Op1 &&
215          Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode &&
216          isa<Constant>(Op0->getOperand(1)) &&
217          isa<Constant>(Op1->getOperand(1)) &&
218          Op0->hasOneUse() && Op1->hasOneUse()) {
219        Value *A = Op0->getOperand(0);
220        Constant *C1 = cast<Constant>(Op0->getOperand(1));
221        Value *B = Op1->getOperand(0);
222        Constant *C2 = cast<Constant>(Op1->getOperand(1));
223
224        Constant *Folded = ConstantExpr::get(Opcode, C1, C2);
225        Instruction *New = BinaryOperator::Create(Opcode, A, B, Op1->getName(),
226                                                  &I);
227        Worklist.Add(New);
228        I.setOperand(0, New);
229        I.setOperand(1, Folded);
230        Changed = true;
231        continue;
232      }
233    }
234
235    // No further simplifications.
236    return Changed;
237  } while (1);
238}
239
240// dyn_castNegVal - Given a 'sub' instruction, return the RHS of the instruction
241// if the LHS is a constant zero (which is the 'negate' form).
242//
243Value *InstCombiner::dyn_castNegVal(Value *V) const {
244  if (BinaryOperator::isNeg(V))
245    return BinaryOperator::getNegArgument(V);
246
247  // Constants can be considered to be negated values if they can be folded.
248  if (ConstantInt *C = dyn_cast<ConstantInt>(V))
249    return ConstantExpr::getNeg(C);
250
251  if (ConstantVector *C = dyn_cast<ConstantVector>(V))
252    if (C->getType()->getElementType()->isIntegerTy())
253      return ConstantExpr::getNeg(C);
254
255  return 0;
256}
257
258// dyn_castFNegVal - Given a 'fsub' instruction, return the RHS of the
259// instruction if the LHS is a constant negative zero (which is the 'negate'
260// form).
261//
262Value *InstCombiner::dyn_castFNegVal(Value *V) const {
263  if (BinaryOperator::isFNeg(V))
264    return BinaryOperator::getFNegArgument(V);
265
266  // Constants can be considered to be negated values if they can be folded.
267  if (ConstantFP *C = dyn_cast<ConstantFP>(V))
268    return ConstantExpr::getFNeg(C);
269
270  if (ConstantVector *C = dyn_cast<ConstantVector>(V))
271    if (C->getType()->getElementType()->isFloatingPointTy())
272      return ConstantExpr::getFNeg(C);
273
274  return 0;
275}
276
277static Value *FoldOperationIntoSelectOperand(Instruction &I, Value *SO,
278                                             InstCombiner *IC) {
279  if (CastInst *CI = dyn_cast<CastInst>(&I))
280    return IC->Builder->CreateCast(CI->getOpcode(), SO, I.getType());
281
282  // Figure out if the constant is the left or the right argument.
283  bool ConstIsRHS = isa<Constant>(I.getOperand(1));
284  Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS));
285
286  if (Constant *SOC = dyn_cast<Constant>(SO)) {
287    if (ConstIsRHS)
288      return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand);
289    return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC);
290  }
291
292  Value *Op0 = SO, *Op1 = ConstOperand;
293  if (!ConstIsRHS)
294    std::swap(Op0, Op1);
295
296  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I))
297    return IC->Builder->CreateBinOp(BO->getOpcode(), Op0, Op1,
298                                    SO->getName()+".op");
299  if (ICmpInst *CI = dyn_cast<ICmpInst>(&I))
300    return IC->Builder->CreateICmp(CI->getPredicate(), Op0, Op1,
301                                   SO->getName()+".cmp");
302  if (FCmpInst *CI = dyn_cast<FCmpInst>(&I))
303    return IC->Builder->CreateICmp(CI->getPredicate(), Op0, Op1,
304                                   SO->getName()+".cmp");
305  llvm_unreachable("Unknown binary instruction type!");
306}
307
308// FoldOpIntoSelect - Given an instruction with a select as one operand and a
309// constant as the other operand, try to fold the binary operator into the
310// select arguments.  This also works for Cast instructions, which obviously do
311// not have a second operand.
312Instruction *InstCombiner::FoldOpIntoSelect(Instruction &Op, SelectInst *SI) {
313  // Don't modify shared select instructions
314  if (!SI->hasOneUse()) return 0;
315  Value *TV = SI->getOperand(1);
316  Value *FV = SI->getOperand(2);
317
318  if (isa<Constant>(TV) || isa<Constant>(FV)) {
319    // Bool selects with constant operands can be folded to logical ops.
320    if (SI->getType()->isIntegerTy(1)) return 0;
321
322    Value *SelectTrueVal = FoldOperationIntoSelectOperand(Op, TV, this);
323    Value *SelectFalseVal = FoldOperationIntoSelectOperand(Op, FV, this);
324
325    return SelectInst::Create(SI->getCondition(), SelectTrueVal,
326                              SelectFalseVal);
327  }
328  return 0;
329}
330
331
332/// FoldOpIntoPhi - Given a binary operator, cast instruction, or select which
333/// has a PHI node as operand #0, see if we can fold the instruction into the
334/// PHI (which is only possible if all operands to the PHI are constants).
335///
336/// If AllowAggressive is true, FoldOpIntoPhi will allow certain transforms
337/// that would normally be unprofitable because they strongly encourage jump
338/// threading.
339Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I,
340                                         bool AllowAggressive) {
341  AllowAggressive = false;
342  PHINode *PN = cast<PHINode>(I.getOperand(0));
343  unsigned NumPHIValues = PN->getNumIncomingValues();
344  if (NumPHIValues == 0 ||
345      // We normally only transform phis with a single use, unless we're trying
346      // hard to make jump threading happen.
347      (!PN->hasOneUse() && !AllowAggressive))
348    return 0;
349
350
351  // Check to see if all of the operands of the PHI are simple constants
352  // (constantint/constantfp/undef).  If there is one non-constant value,
353  // remember the BB it is in.  If there is more than one or if *it* is a PHI,
354  // bail out.  We don't do arbitrary constant expressions here because moving
355  // their computation can be expensive without a cost model.
356  BasicBlock *NonConstBB = 0;
357  for (unsigned i = 0; i != NumPHIValues; ++i)
358    if (!isa<Constant>(PN->getIncomingValue(i)) ||
359        isa<ConstantExpr>(PN->getIncomingValue(i))) {
360      if (NonConstBB) return 0;  // More than one non-const value.
361      if (isa<PHINode>(PN->getIncomingValue(i))) return 0;  // Itself a phi.
362      NonConstBB = PN->getIncomingBlock(i);
363
364      // If the incoming non-constant value is in I's block, we have an infinite
365      // loop.
366      if (NonConstBB == I.getParent())
367        return 0;
368    }
369
370  // If there is exactly one non-constant value, we can insert a copy of the
371  // operation in that block.  However, if this is a critical edge, we would be
372  // inserting the computation one some other paths (e.g. inside a loop).  Only
373  // do this if the pred block is unconditionally branching into the phi block.
374  if (NonConstBB != 0 && !AllowAggressive) {
375    BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator());
376    if (!BI || !BI->isUnconditional()) return 0;
377  }
378
379  // Okay, we can do the transformation: create the new PHI node.
380  PHINode *NewPN = PHINode::Create(I.getType(), "");
381  NewPN->reserveOperandSpace(PN->getNumOperands()/2);
382  InsertNewInstBefore(NewPN, *PN);
383  NewPN->takeName(PN);
384
385  // Next, add all of the operands to the PHI.
386  if (SelectInst *SI = dyn_cast<SelectInst>(&I)) {
387    // We only currently try to fold the condition of a select when it is a phi,
388    // not the true/false values.
389    Value *TrueV = SI->getTrueValue();
390    Value *FalseV = SI->getFalseValue();
391    BasicBlock *PhiTransBB = PN->getParent();
392    for (unsigned i = 0; i != NumPHIValues; ++i) {
393      BasicBlock *ThisBB = PN->getIncomingBlock(i);
394      Value *TrueVInPred = TrueV->DoPHITranslation(PhiTransBB, ThisBB);
395      Value *FalseVInPred = FalseV->DoPHITranslation(PhiTransBB, ThisBB);
396      Value *InV = 0;
397      if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) {
398        InV = InC->isNullValue() ? FalseVInPred : TrueVInPred;
399      } else {
400        assert(PN->getIncomingBlock(i) == NonConstBB);
401        InV = SelectInst::Create(PN->getIncomingValue(i), TrueVInPred,
402                                 FalseVInPred,
403                                 "phitmp", NonConstBB->getTerminator());
404        Worklist.Add(cast<Instruction>(InV));
405      }
406      NewPN->addIncoming(InV, ThisBB);
407    }
408  } else if (I.getNumOperands() == 2) {
409    Constant *C = cast<Constant>(I.getOperand(1));
410    for (unsigned i = 0; i != NumPHIValues; ++i) {
411      Value *InV = 0;
412      if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) {
413        if (CmpInst *CI = dyn_cast<CmpInst>(&I))
414          InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C);
415        else
416          InV = ConstantExpr::get(I.getOpcode(), InC, C);
417      } else {
418        assert(PN->getIncomingBlock(i) == NonConstBB);
419        if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I))
420          InV = BinaryOperator::Create(BO->getOpcode(),
421                                       PN->getIncomingValue(i), C, "phitmp",
422                                       NonConstBB->getTerminator());
423        else if (CmpInst *CI = dyn_cast<CmpInst>(&I))
424          InV = CmpInst::Create(CI->getOpcode(),
425                                CI->getPredicate(),
426                                PN->getIncomingValue(i), C, "phitmp",
427                                NonConstBB->getTerminator());
428        else
429          llvm_unreachable("Unknown binop!");
430
431        Worklist.Add(cast<Instruction>(InV));
432      }
433      NewPN->addIncoming(InV, PN->getIncomingBlock(i));
434    }
435  } else {
436    CastInst *CI = cast<CastInst>(&I);
437    const Type *RetTy = CI->getType();
438    for (unsigned i = 0; i != NumPHIValues; ++i) {
439      Value *InV;
440      if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) {
441        InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy);
442      } else {
443        assert(PN->getIncomingBlock(i) == NonConstBB);
444        InV = CastInst::Create(CI->getOpcode(), PN->getIncomingValue(i),
445                               I.getType(), "phitmp",
446                               NonConstBB->getTerminator());
447        Worklist.Add(cast<Instruction>(InV));
448      }
449      NewPN->addIncoming(InV, PN->getIncomingBlock(i));
450    }
451  }
452  return ReplaceInstUsesWith(I, NewPN);
453}
454
455/// FindElementAtOffset - Given a type and a constant offset, determine whether
456/// or not there is a sequence of GEP indices into the type that will land us at
457/// the specified offset.  If so, fill them into NewIndices and return the
458/// resultant element type, otherwise return null.
459const Type *InstCombiner::FindElementAtOffset(const Type *Ty, int64_t Offset,
460                                          SmallVectorImpl<Value*> &NewIndices) {
461  if (!TD) return 0;
462  if (!Ty->isSized()) return 0;
463
464  // Start with the index over the outer type.  Note that the type size
465  // might be zero (even if the offset isn't zero) if the indexed type
466  // is something like [0 x {int, int}]
467  const Type *IntPtrTy = TD->getIntPtrType(Ty->getContext());
468  int64_t FirstIdx = 0;
469  if (int64_t TySize = TD->getTypeAllocSize(Ty)) {
470    FirstIdx = Offset/TySize;
471    Offset -= FirstIdx*TySize;
472
473    // Handle hosts where % returns negative instead of values [0..TySize).
474    if (Offset < 0) {
475      --FirstIdx;
476      Offset += TySize;
477      assert(Offset >= 0);
478    }
479    assert((uint64_t)Offset < (uint64_t)TySize && "Out of range offset");
480  }
481
482  NewIndices.push_back(ConstantInt::get(IntPtrTy, FirstIdx));
483
484  // Index into the types.  If we fail, set OrigBase to null.
485  while (Offset) {
486    // Indexing into tail padding between struct/array elements.
487    if (uint64_t(Offset*8) >= TD->getTypeSizeInBits(Ty))
488      return 0;
489
490    if (const StructType *STy = dyn_cast<StructType>(Ty)) {
491      const StructLayout *SL = TD->getStructLayout(STy);
492      assert(Offset < (int64_t)SL->getSizeInBytes() &&
493             "Offset must stay within the indexed type");
494
495      unsigned Elt = SL->getElementContainingOffset(Offset);
496      NewIndices.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
497                                            Elt));
498
499      Offset -= SL->getElementOffset(Elt);
500      Ty = STy->getElementType(Elt);
501    } else if (const ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
502      uint64_t EltSize = TD->getTypeAllocSize(AT->getElementType());
503      assert(EltSize && "Cannot index into a zero-sized array");
504      NewIndices.push_back(ConstantInt::get(IntPtrTy,Offset/EltSize));
505      Offset %= EltSize;
506      Ty = AT->getElementType();
507    } else {
508      // Otherwise, we can't index into the middle of this atomic type, bail.
509      return 0;
510    }
511  }
512
513  return Ty;
514}
515
516
517
518Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
519  SmallVector<Value*, 8> Ops(GEP.op_begin(), GEP.op_end());
520
521  if (Value *V = SimplifyGEPInst(&Ops[0], Ops.size(), TD))
522    return ReplaceInstUsesWith(GEP, V);
523
524  Value *PtrOp = GEP.getOperand(0);
525
526  // Eliminate unneeded casts for indices, and replace indices which displace
527  // by multiples of a zero size type with zero.
528  if (TD) {
529    bool MadeChange = false;
530    const Type *IntPtrTy = TD->getIntPtrType(GEP.getContext());
531
532    gep_type_iterator GTI = gep_type_begin(GEP);
533    for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end();
534         I != E; ++I, ++GTI) {
535      // Skip indices into struct types.
536      const SequentialType *SeqTy = dyn_cast<SequentialType>(*GTI);
537      if (!SeqTy) continue;
538
539      // If the element type has zero size then any index over it is equivalent
540      // to an index of zero, so replace it with zero if it is not zero already.
541      if (SeqTy->getElementType()->isSized() &&
542          TD->getTypeAllocSize(SeqTy->getElementType()) == 0)
543        if (!isa<Constant>(*I) || !cast<Constant>(*I)->isNullValue()) {
544          *I = Constant::getNullValue(IntPtrTy);
545          MadeChange = true;
546        }
547
548      if ((*I)->getType() != IntPtrTy) {
549        // If we are using a wider index than needed for this platform, shrink
550        // it to what we need.  If narrower, sign-extend it to what we need.
551        // This explicit cast can make subsequent optimizations more obvious.
552        *I = Builder->CreateIntCast(*I, IntPtrTy, true);
553        MadeChange = true;
554      }
555    }
556    if (MadeChange) return &GEP;
557  }
558
559  // Combine Indices - If the source pointer to this getelementptr instruction
560  // is a getelementptr instruction, combine the indices of the two
561  // getelementptr instructions into a single instruction.
562  //
563  if (GEPOperator *Src = dyn_cast<GEPOperator>(PtrOp)) {
564    // Note that if our source is a gep chain itself that we wait for that
565    // chain to be resolved before we perform this transformation.  This
566    // avoids us creating a TON of code in some cases.
567    //
568    if (GetElementPtrInst *SrcGEP =
569          dyn_cast<GetElementPtrInst>(Src->getOperand(0)))
570      if (SrcGEP->getNumOperands() == 2)
571        return 0;   // Wait until our source is folded to completion.
572
573    SmallVector<Value*, 8> Indices;
574
575    // Find out whether the last index in the source GEP is a sequential idx.
576    bool EndsWithSequential = false;
577    for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src);
578         I != E; ++I)
579      EndsWithSequential = !(*I)->isStructTy();
580
581    // Can we combine the two pointer arithmetics offsets?
582    if (EndsWithSequential) {
583      // Replace: gep (gep %P, long B), long A, ...
584      // With:    T = long A+B; gep %P, T, ...
585      //
586      Value *Sum;
587      Value *SO1 = Src->getOperand(Src->getNumOperands()-1);
588      Value *GO1 = GEP.getOperand(1);
589      if (SO1 == Constant::getNullValue(SO1->getType())) {
590        Sum = GO1;
591      } else if (GO1 == Constant::getNullValue(GO1->getType())) {
592        Sum = SO1;
593      } else {
594        // If they aren't the same type, then the input hasn't been processed
595        // by the loop above yet (which canonicalizes sequential index types to
596        // intptr_t).  Just avoid transforming this until the input has been
597        // normalized.
598        if (SO1->getType() != GO1->getType())
599          return 0;
600        Sum = Builder->CreateAdd(SO1, GO1, PtrOp->getName()+".sum");
601      }
602
603      // Update the GEP in place if possible.
604      if (Src->getNumOperands() == 2) {
605        GEP.setOperand(0, Src->getOperand(0));
606        GEP.setOperand(1, Sum);
607        return &GEP;
608      }
609      Indices.append(Src->op_begin()+1, Src->op_end()-1);
610      Indices.push_back(Sum);
611      Indices.append(GEP.op_begin()+2, GEP.op_end());
612    } else if (isa<Constant>(*GEP.idx_begin()) &&
613               cast<Constant>(*GEP.idx_begin())->isNullValue() &&
614               Src->getNumOperands() != 1) {
615      // Otherwise we can do the fold if the first index of the GEP is a zero
616      Indices.append(Src->op_begin()+1, Src->op_end());
617      Indices.append(GEP.idx_begin()+1, GEP.idx_end());
618    }
619
620    if (!Indices.empty())
621      return (GEP.isInBounds() && Src->isInBounds()) ?
622        GetElementPtrInst::CreateInBounds(Src->getOperand(0), Indices.begin(),
623                                          Indices.end(), GEP.getName()) :
624        GetElementPtrInst::Create(Src->getOperand(0), Indices.begin(),
625                                  Indices.end(), GEP.getName());
626  }
627
628  // Handle gep(bitcast x) and gep(gep x, 0, 0, 0).
629  Value *StrippedPtr = PtrOp->stripPointerCasts();
630  if (StrippedPtr != PtrOp) {
631    const PointerType *StrippedPtrTy =cast<PointerType>(StrippedPtr->getType());
632
633    bool HasZeroPointerIndex = false;
634    if (ConstantInt *C = dyn_cast<ConstantInt>(GEP.getOperand(1)))
635      HasZeroPointerIndex = C->isZero();
636
637    // Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ...
638    // into     : GEP [10 x i8]* X, i32 0, ...
639    //
640    // Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ...
641    //           into     : GEP i8* X, ...
642    //
643    // This occurs when the program declares an array extern like "int X[];"
644    if (HasZeroPointerIndex) {
645      const PointerType *CPTy = cast<PointerType>(PtrOp->getType());
646      if (const ArrayType *CATy =
647          dyn_cast<ArrayType>(CPTy->getElementType())) {
648        // GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ?
649        if (CATy->getElementType() == StrippedPtrTy->getElementType()) {
650          // -> GEP i8* X, ...
651          SmallVector<Value*, 8> Idx(GEP.idx_begin()+1, GEP.idx_end());
652          GetElementPtrInst *Res =
653            GetElementPtrInst::Create(StrippedPtr, Idx.begin(),
654                                      Idx.end(), GEP.getName());
655          Res->setIsInBounds(GEP.isInBounds());
656          return Res;
657        }
658
659        if (const ArrayType *XATy =
660              dyn_cast<ArrayType>(StrippedPtrTy->getElementType())){
661          // GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ?
662          if (CATy->getElementType() == XATy->getElementType()) {
663            // -> GEP [10 x i8]* X, i32 0, ...
664            // At this point, we know that the cast source type is a pointer
665            // to an array of the same type as the destination pointer
666            // array.  Because the array type is never stepped over (there
667            // is a leading zero) we can fold the cast into this GEP.
668            GEP.setOperand(0, StrippedPtr);
669            return &GEP;
670          }
671        }
672      }
673    } else if (GEP.getNumOperands() == 2) {
674      // Transform things like:
675      // %t = getelementptr i32* bitcast ([2 x i32]* %str to i32*), i32 %V
676      // into:  %t1 = getelementptr [2 x i32]* %str, i32 0, i32 %V; bitcast
677      const Type *SrcElTy = StrippedPtrTy->getElementType();
678      const Type *ResElTy=cast<PointerType>(PtrOp->getType())->getElementType();
679      if (TD && SrcElTy->isArrayTy() &&
680          TD->getTypeAllocSize(cast<ArrayType>(SrcElTy)->getElementType()) ==
681          TD->getTypeAllocSize(ResElTy)) {
682        Value *Idx[2];
683        Idx[0] = Constant::getNullValue(Type::getInt32Ty(GEP.getContext()));
684        Idx[1] = GEP.getOperand(1);
685        Value *NewGEP = GEP.isInBounds() ?
686          Builder->CreateInBoundsGEP(StrippedPtr, Idx, Idx + 2, GEP.getName()) :
687          Builder->CreateGEP(StrippedPtr, Idx, Idx + 2, GEP.getName());
688        // V and GEP are both pointer types --> BitCast
689        return new BitCastInst(NewGEP, GEP.getType());
690      }
691
692      // Transform things like:
693      // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp
694      //   (where tmp = 8*tmp2) into:
695      // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast
696
697      if (TD && SrcElTy->isArrayTy() && ResElTy->isIntegerTy(8)) {
698        uint64_t ArrayEltSize =
699            TD->getTypeAllocSize(cast<ArrayType>(SrcElTy)->getElementType());
700
701        // Check to see if "tmp" is a scale by a multiple of ArrayEltSize.  We
702        // allow either a mul, shift, or constant here.
703        Value *NewIdx = 0;
704        ConstantInt *Scale = 0;
705        if (ArrayEltSize == 1) {
706          NewIdx = GEP.getOperand(1);
707          Scale = ConstantInt::get(cast<IntegerType>(NewIdx->getType()), 1);
708        } else if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP.getOperand(1))) {
709          NewIdx = ConstantInt::get(CI->getType(), 1);
710          Scale = CI;
711        } else if (Instruction *Inst =dyn_cast<Instruction>(GEP.getOperand(1))){
712          if (Inst->getOpcode() == Instruction::Shl &&
713              isa<ConstantInt>(Inst->getOperand(1))) {
714            ConstantInt *ShAmt = cast<ConstantInt>(Inst->getOperand(1));
715            uint32_t ShAmtVal = ShAmt->getLimitedValue(64);
716            Scale = ConstantInt::get(cast<IntegerType>(Inst->getType()),
717                                     1ULL << ShAmtVal);
718            NewIdx = Inst->getOperand(0);
719          } else if (Inst->getOpcode() == Instruction::Mul &&
720                     isa<ConstantInt>(Inst->getOperand(1))) {
721            Scale = cast<ConstantInt>(Inst->getOperand(1));
722            NewIdx = Inst->getOperand(0);
723          }
724        }
725
726        // If the index will be to exactly the right offset with the scale taken
727        // out, perform the transformation. Note, we don't know whether Scale is
728        // signed or not. We'll use unsigned version of division/modulo
729        // operation after making sure Scale doesn't have the sign bit set.
730        if (ArrayEltSize && Scale && Scale->getSExtValue() >= 0LL &&
731            Scale->getZExtValue() % ArrayEltSize == 0) {
732          Scale = ConstantInt::get(Scale->getType(),
733                                   Scale->getZExtValue() / ArrayEltSize);
734          if (Scale->getZExtValue() != 1) {
735            Constant *C = ConstantExpr::getIntegerCast(Scale, NewIdx->getType(),
736                                                       false /*ZExt*/);
737            NewIdx = Builder->CreateMul(NewIdx, C, "idxscale");
738          }
739
740          // Insert the new GEP instruction.
741          Value *Idx[2];
742          Idx[0] = Constant::getNullValue(Type::getInt32Ty(GEP.getContext()));
743          Idx[1] = NewIdx;
744          Value *NewGEP = GEP.isInBounds() ?
745            Builder->CreateInBoundsGEP(StrippedPtr, Idx, Idx + 2,GEP.getName()):
746            Builder->CreateGEP(StrippedPtr, Idx, Idx + 2, GEP.getName());
747          // The NewGEP must be pointer typed, so must the old one -> BitCast
748          return new BitCastInst(NewGEP, GEP.getType());
749        }
750      }
751    }
752  }
753
754  /// See if we can simplify:
755  ///   X = bitcast A* to B*
756  ///   Y = gep X, <...constant indices...>
757  /// into a gep of the original struct.  This is important for SROA and alias
758  /// analysis of unions.  If "A" is also a bitcast, wait for A/X to be merged.
759  if (BitCastInst *BCI = dyn_cast<BitCastInst>(PtrOp)) {
760    if (TD &&
761        !isa<BitCastInst>(BCI->getOperand(0)) && GEP.hasAllConstantIndices()) {
762      // Determine how much the GEP moves the pointer.  We are guaranteed to get
763      // a constant back from EmitGEPOffset.
764      ConstantInt *OffsetV = cast<ConstantInt>(EmitGEPOffset(&GEP));
765      int64_t Offset = OffsetV->getSExtValue();
766
767      // If this GEP instruction doesn't move the pointer, just replace the GEP
768      // with a bitcast of the real input to the dest type.
769      if (Offset == 0) {
770        // If the bitcast is of an allocation, and the allocation will be
771        // converted to match the type of the cast, don't touch this.
772        if (isa<AllocaInst>(BCI->getOperand(0)) ||
773            isMalloc(BCI->getOperand(0))) {
774          // See if the bitcast simplifies, if so, don't nuke this GEP yet.
775          if (Instruction *I = visitBitCast(*BCI)) {
776            if (I != BCI) {
777              I->takeName(BCI);
778              BCI->getParent()->getInstList().insert(BCI, I);
779              ReplaceInstUsesWith(*BCI, I);
780            }
781            return &GEP;
782          }
783        }
784        return new BitCastInst(BCI->getOperand(0), GEP.getType());
785      }
786
787      // Otherwise, if the offset is non-zero, we need to find out if there is a
788      // field at Offset in 'A's type.  If so, we can pull the cast through the
789      // GEP.
790      SmallVector<Value*, 8> NewIndices;
791      const Type *InTy =
792        cast<PointerType>(BCI->getOperand(0)->getType())->getElementType();
793      if (FindElementAtOffset(InTy, Offset, NewIndices)) {
794        Value *NGEP = GEP.isInBounds() ?
795          Builder->CreateInBoundsGEP(BCI->getOperand(0), NewIndices.begin(),
796                                     NewIndices.end()) :
797          Builder->CreateGEP(BCI->getOperand(0), NewIndices.begin(),
798                             NewIndices.end());
799
800        if (NGEP->getType() == GEP.getType())
801          return ReplaceInstUsesWith(GEP, NGEP);
802        NGEP->takeName(&GEP);
803        return new BitCastInst(NGEP, GEP.getType());
804      }
805    }
806  }
807
808  return 0;
809}
810
811
812
813static bool IsOnlyNullComparedAndFreed(const Value &V) {
814  for (Value::const_use_iterator UI = V.use_begin(), UE = V.use_end();
815       UI != UE; ++UI) {
816    const User *U = *UI;
817    if (isFreeCall(U))
818      continue;
819    if (const ICmpInst *ICI = dyn_cast<ICmpInst>(U))
820      if (ICI->isEquality() && isa<ConstantPointerNull>(ICI->getOperand(1)))
821        continue;
822    return false;
823  }
824  return true;
825}
826
827Instruction *InstCombiner::visitMalloc(Instruction &MI) {
828  // If we have a malloc call which is only used in any amount of comparisons
829  // to null and free calls, delete the calls and replace the comparisons with
830  // true or false as appropriate.
831  if (IsOnlyNullComparedAndFreed(MI)) {
832    for (Value::use_iterator UI = MI.use_begin(), UE = MI.use_end();
833         UI != UE;) {
834      // We can assume that every remaining use is a free call or an icmp eq/ne
835      // to null, so the cast is safe.
836      Instruction *I = cast<Instruction>(*UI);
837
838      // Early increment here, as we're about to get rid of the user.
839      ++UI;
840
841      if (isFreeCall(I)) {
842        EraseInstFromFunction(*cast<CallInst>(I));
843        continue;
844      }
845      // Again, the cast is safe.
846      ICmpInst *C = cast<ICmpInst>(I);
847      ReplaceInstUsesWith(*C, ConstantInt::get(Type::getInt1Ty(C->getContext()),
848                                               C->isFalseWhenEqual()));
849      EraseInstFromFunction(*C);
850    }
851    return EraseInstFromFunction(MI);
852  }
853  return 0;
854}
855
856
857
858Instruction *InstCombiner::visitFree(CallInst &FI) {
859  Value *Op = FI.getArgOperand(0);
860
861  // free undef -> unreachable.
862  if (isa<UndefValue>(Op)) {
863    // Insert a new store to null because we cannot modify the CFG here.
864    new StoreInst(ConstantInt::getTrue(FI.getContext()),
865           UndefValue::get(Type::getInt1PtrTy(FI.getContext())), &FI);
866    return EraseInstFromFunction(FI);
867  }
868
869  // If we have 'free null' delete the instruction.  This can happen in stl code
870  // when lots of inlining happens.
871  if (isa<ConstantPointerNull>(Op))
872    return EraseInstFromFunction(FI);
873
874  return 0;
875}
876
877
878
879Instruction *InstCombiner::visitBranchInst(BranchInst &BI) {
880  // Change br (not X), label True, label False to: br X, label False, True
881  Value *X = 0;
882  BasicBlock *TrueDest;
883  BasicBlock *FalseDest;
884  if (match(&BI, m_Br(m_Not(m_Value(X)), TrueDest, FalseDest)) &&
885      !isa<Constant>(X)) {
886    // Swap Destinations and condition...
887    BI.setCondition(X);
888    BI.setSuccessor(0, FalseDest);
889    BI.setSuccessor(1, TrueDest);
890    return &BI;
891  }
892
893  // Cannonicalize fcmp_one -> fcmp_oeq
894  FCmpInst::Predicate FPred; Value *Y;
895  if (match(&BI, m_Br(m_FCmp(FPred, m_Value(X), m_Value(Y)),
896                             TrueDest, FalseDest)) &&
897      BI.getCondition()->hasOneUse())
898    if (FPred == FCmpInst::FCMP_ONE || FPred == FCmpInst::FCMP_OLE ||
899        FPred == FCmpInst::FCMP_OGE) {
900      FCmpInst *Cond = cast<FCmpInst>(BI.getCondition());
901      Cond->setPredicate(FCmpInst::getInversePredicate(FPred));
902
903      // Swap Destinations and condition.
904      BI.setSuccessor(0, FalseDest);
905      BI.setSuccessor(1, TrueDest);
906      Worklist.Add(Cond);
907      return &BI;
908    }
909
910  // Cannonicalize icmp_ne -> icmp_eq
911  ICmpInst::Predicate IPred;
912  if (match(&BI, m_Br(m_ICmp(IPred, m_Value(X), m_Value(Y)),
913                      TrueDest, FalseDest)) &&
914      BI.getCondition()->hasOneUse())
915    if (IPred == ICmpInst::ICMP_NE  || IPred == ICmpInst::ICMP_ULE ||
916        IPred == ICmpInst::ICMP_SLE || IPred == ICmpInst::ICMP_UGE ||
917        IPred == ICmpInst::ICMP_SGE) {
918      ICmpInst *Cond = cast<ICmpInst>(BI.getCondition());
919      Cond->setPredicate(ICmpInst::getInversePredicate(IPred));
920      // Swap Destinations and condition.
921      BI.setSuccessor(0, FalseDest);
922      BI.setSuccessor(1, TrueDest);
923      Worklist.Add(Cond);
924      return &BI;
925    }
926
927  return 0;
928}
929
930Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) {
931  Value *Cond = SI.getCondition();
932  if (Instruction *I = dyn_cast<Instruction>(Cond)) {
933    if (I->getOpcode() == Instruction::Add)
934      if (ConstantInt *AddRHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
935        // change 'switch (X+4) case 1:' into 'switch (X) case -3'
936        for (unsigned i = 2, e = SI.getNumOperands(); i != e; i += 2)
937          SI.setOperand(i,
938                   ConstantExpr::getSub(cast<Constant>(SI.getOperand(i)),
939                                                AddRHS));
940        SI.setOperand(0, I->getOperand(0));
941        Worklist.Add(I);
942        return &SI;
943      }
944  }
945  return 0;
946}
947
948Instruction *InstCombiner::visitExtractValueInst(ExtractValueInst &EV) {
949  Value *Agg = EV.getAggregateOperand();
950
951  if (!EV.hasIndices())
952    return ReplaceInstUsesWith(EV, Agg);
953
954  if (Constant *C = dyn_cast<Constant>(Agg)) {
955    if (isa<UndefValue>(C))
956      return ReplaceInstUsesWith(EV, UndefValue::get(EV.getType()));
957
958    if (isa<ConstantAggregateZero>(C))
959      return ReplaceInstUsesWith(EV, Constant::getNullValue(EV.getType()));
960
961    if (isa<ConstantArray>(C) || isa<ConstantStruct>(C)) {
962      // Extract the element indexed by the first index out of the constant
963      Value *V = C->getOperand(*EV.idx_begin());
964      if (EV.getNumIndices() > 1)
965        // Extract the remaining indices out of the constant indexed by the
966        // first index
967        return ExtractValueInst::Create(V, EV.idx_begin() + 1, EV.idx_end());
968      else
969        return ReplaceInstUsesWith(EV, V);
970    }
971    return 0; // Can't handle other constants
972  }
973  if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) {
974    // We're extracting from an insertvalue instruction, compare the indices
975    const unsigned *exti, *exte, *insi, *inse;
976    for (exti = EV.idx_begin(), insi = IV->idx_begin(),
977         exte = EV.idx_end(), inse = IV->idx_end();
978         exti != exte && insi != inse;
979         ++exti, ++insi) {
980      if (*insi != *exti)
981        // The insert and extract both reference distinctly different elements.
982        // This means the extract is not influenced by the insert, and we can
983        // replace the aggregate operand of the extract with the aggregate
984        // operand of the insert. i.e., replace
985        // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
986        // %E = extractvalue { i32, { i32 } } %I, 0
987        // with
988        // %E = extractvalue { i32, { i32 } } %A, 0
989        return ExtractValueInst::Create(IV->getAggregateOperand(),
990                                        EV.idx_begin(), EV.idx_end());
991    }
992    if (exti == exte && insi == inse)
993      // Both iterators are at the end: Index lists are identical. Replace
994      // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
995      // %C = extractvalue { i32, { i32 } } %B, 1, 0
996      // with "i32 42"
997      return ReplaceInstUsesWith(EV, IV->getInsertedValueOperand());
998    if (exti == exte) {
999      // The extract list is a prefix of the insert list. i.e. replace
1000      // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
1001      // %E = extractvalue { i32, { i32 } } %I, 1
1002      // with
1003      // %X = extractvalue { i32, { i32 } } %A, 1
1004      // %E = insertvalue { i32 } %X, i32 42, 0
1005      // by switching the order of the insert and extract (though the
1006      // insertvalue should be left in, since it may have other uses).
1007      Value *NewEV = Builder->CreateExtractValue(IV->getAggregateOperand(),
1008                                                 EV.idx_begin(), EV.idx_end());
1009      return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(),
1010                                     insi, inse);
1011    }
1012    if (insi == inse)
1013      // The insert list is a prefix of the extract list
1014      // We can simply remove the common indices from the extract and make it
1015      // operate on the inserted value instead of the insertvalue result.
1016      // i.e., replace
1017      // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
1018      // %E = extractvalue { i32, { i32 } } %I, 1, 0
1019      // with
1020      // %E extractvalue { i32 } { i32 42 }, 0
1021      return ExtractValueInst::Create(IV->getInsertedValueOperand(),
1022                                      exti, exte);
1023  }
1024  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Agg)) {
1025    // We're extracting from an intrinsic, see if we're the only user, which
1026    // allows us to simplify multiple result intrinsics to simpler things that
1027    // just get one value.
1028    if (II->hasOneUse()) {
1029      // Check if we're grabbing the overflow bit or the result of a 'with
1030      // overflow' intrinsic.  If it's the latter we can remove the intrinsic
1031      // and replace it with a traditional binary instruction.
1032      switch (II->getIntrinsicID()) {
1033      case Intrinsic::uadd_with_overflow:
1034      case Intrinsic::sadd_with_overflow:
1035        if (*EV.idx_begin() == 0) {  // Normal result.
1036          Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
1037          II->replaceAllUsesWith(UndefValue::get(II->getType()));
1038          EraseInstFromFunction(*II);
1039          return BinaryOperator::CreateAdd(LHS, RHS);
1040        }
1041        break;
1042      case Intrinsic::usub_with_overflow:
1043      case Intrinsic::ssub_with_overflow:
1044        if (*EV.idx_begin() == 0) {  // Normal result.
1045          Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
1046          II->replaceAllUsesWith(UndefValue::get(II->getType()));
1047          EraseInstFromFunction(*II);
1048          return BinaryOperator::CreateSub(LHS, RHS);
1049        }
1050        break;
1051      case Intrinsic::umul_with_overflow:
1052      case Intrinsic::smul_with_overflow:
1053        if (*EV.idx_begin() == 0) {  // Normal result.
1054          Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
1055          II->replaceAllUsesWith(UndefValue::get(II->getType()));
1056          EraseInstFromFunction(*II);
1057          return BinaryOperator::CreateMul(LHS, RHS);
1058        }
1059        break;
1060      default:
1061        break;
1062      }
1063    }
1064  }
1065  // Can't simplify extracts from other values. Note that nested extracts are
1066  // already simplified implicitely by the above (extract ( extract (insert) )
1067  // will be translated into extract ( insert ( extract ) ) first and then just
1068  // the value inserted, if appropriate).
1069  return 0;
1070}
1071
1072
1073
1074
1075/// TryToSinkInstruction - Try to move the specified instruction from its
1076/// current block into the beginning of DestBlock, which can only happen if it's
1077/// safe to move the instruction past all of the instructions between it and the
1078/// end of its block.
1079static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) {
1080  assert(I->hasOneUse() && "Invariants didn't hold!");
1081
1082  // Cannot move control-flow-involving, volatile loads, vaarg, etc.
1083  if (isa<PHINode>(I) || I->mayHaveSideEffects() || isa<TerminatorInst>(I))
1084    return false;
1085
1086  // Do not sink alloca instructions out of the entry block.
1087  if (isa<AllocaInst>(I) && I->getParent() ==
1088        &DestBlock->getParent()->getEntryBlock())
1089    return false;
1090
1091  // We can only sink load instructions if there is nothing between the load and
1092  // the end of block that could change the value.
1093  if (I->mayReadFromMemory()) {
1094    for (BasicBlock::iterator Scan = I, E = I->getParent()->end();
1095         Scan != E; ++Scan)
1096      if (Scan->mayWriteToMemory())
1097        return false;
1098  }
1099
1100  BasicBlock::iterator InsertPos = DestBlock->getFirstNonPHI();
1101
1102  I->moveBefore(InsertPos);
1103  ++NumSunkInst;
1104  return true;
1105}
1106
1107
1108/// AddReachableCodeToWorklist - Walk the function in depth-first order, adding
1109/// all reachable code to the worklist.
1110///
1111/// This has a couple of tricks to make the code faster and more powerful.  In
1112/// particular, we constant fold and DCE instructions as we go, to avoid adding
1113/// them to the worklist (this significantly speeds up instcombine on code where
1114/// many instructions are dead or constant).  Additionally, if we find a branch
1115/// whose condition is a known constant, we only visit the reachable successors.
1116///
1117static bool AddReachableCodeToWorklist(BasicBlock *BB,
1118                                       SmallPtrSet<BasicBlock*, 64> &Visited,
1119                                       InstCombiner &IC,
1120                                       const TargetData *TD) {
1121  bool MadeIRChange = false;
1122  SmallVector<BasicBlock*, 256> Worklist;
1123  Worklist.push_back(BB);
1124
1125  SmallVector<Instruction*, 128> InstrsForInstCombineWorklist;
1126  SmallPtrSet<ConstantExpr*, 64> FoldedConstants;
1127
1128  do {
1129    BB = Worklist.pop_back_val();
1130
1131    // We have now visited this block!  If we've already been here, ignore it.
1132    if (!Visited.insert(BB)) continue;
1133
1134    for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
1135      Instruction *Inst = BBI++;
1136
1137      // DCE instruction if trivially dead.
1138      if (isInstructionTriviallyDead(Inst)) {
1139        ++NumDeadInst;
1140        DEBUG(errs() << "IC: DCE: " << *Inst << '\n');
1141        Inst->eraseFromParent();
1142        continue;
1143      }
1144
1145      // ConstantProp instruction if trivially constant.
1146      if (!Inst->use_empty() && isa<Constant>(Inst->getOperand(0)))
1147        if (Constant *C = ConstantFoldInstruction(Inst, TD)) {
1148          DEBUG(errs() << "IC: ConstFold to: " << *C << " from: "
1149                       << *Inst << '\n');
1150          Inst->replaceAllUsesWith(C);
1151          ++NumConstProp;
1152          Inst->eraseFromParent();
1153          continue;
1154        }
1155
1156      if (TD) {
1157        // See if we can constant fold its operands.
1158        for (User::op_iterator i = Inst->op_begin(), e = Inst->op_end();
1159             i != e; ++i) {
1160          ConstantExpr *CE = dyn_cast<ConstantExpr>(i);
1161          if (CE == 0) continue;
1162
1163          // If we already folded this constant, don't try again.
1164          if (!FoldedConstants.insert(CE))
1165            continue;
1166
1167          Constant *NewC = ConstantFoldConstantExpression(CE, TD);
1168          if (NewC && NewC != CE) {
1169            *i = NewC;
1170            MadeIRChange = true;
1171          }
1172        }
1173      }
1174
1175      InstrsForInstCombineWorklist.push_back(Inst);
1176    }
1177
1178    // Recursively visit successors.  If this is a branch or switch on a
1179    // constant, only visit the reachable successor.
1180    TerminatorInst *TI = BB->getTerminator();
1181    if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
1182      if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) {
1183        bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue();
1184        BasicBlock *ReachableBB = BI->getSuccessor(!CondVal);
1185        Worklist.push_back(ReachableBB);
1186        continue;
1187      }
1188    } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
1189      if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) {
1190        // See if this is an explicit destination.
1191        for (unsigned i = 1, e = SI->getNumSuccessors(); i != e; ++i)
1192          if (SI->getCaseValue(i) == Cond) {
1193            BasicBlock *ReachableBB = SI->getSuccessor(i);
1194            Worklist.push_back(ReachableBB);
1195            continue;
1196          }
1197
1198        // Otherwise it is the default destination.
1199        Worklist.push_back(SI->getSuccessor(0));
1200        continue;
1201      }
1202    }
1203
1204    for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
1205      Worklist.push_back(TI->getSuccessor(i));
1206  } while (!Worklist.empty());
1207
1208  // Once we've found all of the instructions to add to instcombine's worklist,
1209  // add them in reverse order.  This way instcombine will visit from the top
1210  // of the function down.  This jives well with the way that it adds all uses
1211  // of instructions to the worklist after doing a transformation, thus avoiding
1212  // some N^2 behavior in pathological cases.
1213  IC.Worklist.AddInitialGroup(&InstrsForInstCombineWorklist[0],
1214                              InstrsForInstCombineWorklist.size());
1215
1216  return MadeIRChange;
1217}
1218
1219bool InstCombiner::DoOneIteration(Function &F, unsigned Iteration) {
1220  MadeIRChange = false;
1221
1222  DEBUG(errs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on "
1223        << F.getNameStr() << "\n");
1224
1225  {
1226    // Do a depth-first traversal of the function, populate the worklist with
1227    // the reachable instructions.  Ignore blocks that are not reachable.  Keep
1228    // track of which blocks we visit.
1229    SmallPtrSet<BasicBlock*, 64> Visited;
1230    MadeIRChange |= AddReachableCodeToWorklist(F.begin(), Visited, *this, TD);
1231
1232    // Do a quick scan over the function.  If we find any blocks that are
1233    // unreachable, remove any instructions inside of them.  This prevents
1234    // the instcombine code from having to deal with some bad special cases.
1235    for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
1236      if (!Visited.count(BB)) {
1237        Instruction *Term = BB->getTerminator();
1238        while (Term != BB->begin()) {   // Remove instrs bottom-up
1239          BasicBlock::iterator I = Term; --I;
1240
1241          DEBUG(errs() << "IC: DCE: " << *I << '\n');
1242          // A debug intrinsic shouldn't force another iteration if we weren't
1243          // going to do one without it.
1244          if (!isa<DbgInfoIntrinsic>(I)) {
1245            ++NumDeadInst;
1246            MadeIRChange = true;
1247          }
1248
1249          // If I is not void type then replaceAllUsesWith undef.
1250          // This allows ValueHandlers and custom metadata to adjust itself.
1251          if (!I->getType()->isVoidTy())
1252            I->replaceAllUsesWith(UndefValue::get(I->getType()));
1253          I->eraseFromParent();
1254        }
1255      }
1256  }
1257
1258  while (!Worklist.isEmpty()) {
1259    Instruction *I = Worklist.RemoveOne();
1260    if (I == 0) continue;  // skip null values.
1261
1262    // Check to see if we can DCE the instruction.
1263    if (isInstructionTriviallyDead(I)) {
1264      DEBUG(errs() << "IC: DCE: " << *I << '\n');
1265      EraseInstFromFunction(*I);
1266      ++NumDeadInst;
1267      MadeIRChange = true;
1268      continue;
1269    }
1270
1271    // Instruction isn't dead, see if we can constant propagate it.
1272    if (!I->use_empty() && isa<Constant>(I->getOperand(0)))
1273      if (Constant *C = ConstantFoldInstruction(I, TD)) {
1274        DEBUG(errs() << "IC: ConstFold to: " << *C << " from: " << *I << '\n');
1275
1276        // Add operands to the worklist.
1277        ReplaceInstUsesWith(*I, C);
1278        ++NumConstProp;
1279        EraseInstFromFunction(*I);
1280        MadeIRChange = true;
1281        continue;
1282      }
1283
1284    // See if we can trivially sink this instruction to a successor basic block.
1285    if (I->hasOneUse()) {
1286      BasicBlock *BB = I->getParent();
1287      Instruction *UserInst = cast<Instruction>(I->use_back());
1288      BasicBlock *UserParent;
1289
1290      // Get the block the use occurs in.
1291      if (PHINode *PN = dyn_cast<PHINode>(UserInst))
1292        UserParent = PN->getIncomingBlock(I->use_begin().getUse());
1293      else
1294        UserParent = UserInst->getParent();
1295
1296      if (UserParent != BB) {
1297        bool UserIsSuccessor = false;
1298        // See if the user is one of our successors.
1299        for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI)
1300          if (*SI == UserParent) {
1301            UserIsSuccessor = true;
1302            break;
1303          }
1304
1305        // If the user is one of our immediate successors, and if that successor
1306        // only has us as a predecessors (we'd have to split the critical edge
1307        // otherwise), we can keep going.
1308        if (UserIsSuccessor && UserParent->getSinglePredecessor())
1309          // Okay, the CFG is simple enough, try to sink this instruction.
1310          MadeIRChange |= TryToSinkInstruction(I, UserParent);
1311      }
1312    }
1313
1314    // Now that we have an instruction, try combining it to simplify it.
1315    Builder->SetInsertPoint(I->getParent(), I);
1316
1317#ifndef NDEBUG
1318    std::string OrigI;
1319#endif
1320    DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str(););
1321    DEBUG(errs() << "IC: Visiting: " << OrigI << '\n');
1322
1323    if (Instruction *Result = visit(*I)) {
1324      ++NumCombined;
1325      // Should we replace the old instruction with a new one?
1326      if (Result != I) {
1327        DEBUG(errs() << "IC: Old = " << *I << '\n'
1328                     << "    New = " << *Result << '\n');
1329
1330        // Everything uses the new instruction now.
1331        I->replaceAllUsesWith(Result);
1332
1333        // Push the new instruction and any users onto the worklist.
1334        Worklist.Add(Result);
1335        Worklist.AddUsersToWorkList(*Result);
1336
1337        // Move the name to the new instruction first.
1338        Result->takeName(I);
1339
1340        // Insert the new instruction into the basic block...
1341        BasicBlock *InstParent = I->getParent();
1342        BasicBlock::iterator InsertPos = I;
1343
1344        if (!isa<PHINode>(Result))        // If combining a PHI, don't insert
1345          while (isa<PHINode>(InsertPos)) // middle of a block of PHIs.
1346            ++InsertPos;
1347
1348        InstParent->getInstList().insert(InsertPos, Result);
1349
1350        EraseInstFromFunction(*I);
1351      } else {
1352#ifndef NDEBUG
1353        DEBUG(errs() << "IC: Mod = " << OrigI << '\n'
1354                     << "    New = " << *I << '\n');
1355#endif
1356
1357        // If the instruction was modified, it's possible that it is now dead.
1358        // if so, remove it.
1359        if (isInstructionTriviallyDead(I)) {
1360          EraseInstFromFunction(*I);
1361        } else {
1362          Worklist.Add(I);
1363          Worklist.AddUsersToWorkList(*I);
1364        }
1365      }
1366      MadeIRChange = true;
1367    }
1368  }
1369
1370  Worklist.Zap();
1371  return MadeIRChange;
1372}
1373
1374
1375bool InstCombiner::runOnFunction(Function &F) {
1376  MustPreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
1377  TD = getAnalysisIfAvailable<TargetData>();
1378
1379
1380  /// Builder - This is an IRBuilder that automatically inserts new
1381  /// instructions into the worklist when they are created.
1382  IRBuilder<true, TargetFolder, InstCombineIRInserter>
1383    TheBuilder(F.getContext(), TargetFolder(TD),
1384               InstCombineIRInserter(Worklist));
1385  Builder = &TheBuilder;
1386
1387  bool EverMadeChange = false;
1388
1389  // Iterate while there is work to do.
1390  unsigned Iteration = 0;
1391  while (DoOneIteration(F, Iteration++))
1392    EverMadeChange = true;
1393
1394  Builder = 0;
1395  return EverMadeChange;
1396}
1397
1398FunctionPass *llvm::createInstructionCombiningPass() {
1399  return new InstCombiner();
1400}
1401