InstructionCombining.cpp revision a8d1393093d67091d47fa87a4ce86c0adcead6a0
1//===- InstructionCombining.cpp - Combine multiple instructions -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// InstructionCombining - Combine instructions to form fewer, simple
11// instructions.  This pass does not modify the CFG.  This pass is where
12// algebraic simplification happens.
13//
14// This pass combines things like:
15//    %Y = add i32 %X, 1
16//    %Z = add i32 %Y, 1
17// into:
18//    %Z = add i32 %X, 2
19//
20// This is a simple worklist driven algorithm.
21//
22// This pass guarantees that the following canonicalizations are performed on
23// the program:
24//    1. If a binary operator has a constant operand, it is moved to the RHS
25//    2. Bitwise operators with constant operands are always grouped so that
26//       shifts are performed first, then or's, then and's, then xor's.
27//    3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible
28//    4. All cmp instructions on boolean values are replaced with logical ops
29//    5. add X, X is represented as (X*2) => (X << 1)
30//    6. Multiplies with a power-of-two constant argument are transformed into
31//       shifts.
32//   ... etc.
33//
34//===----------------------------------------------------------------------===//
35
36#define DEBUG_TYPE "instcombine"
37#include "llvm/Transforms/Scalar.h"
38#include "InstCombine.h"
39#include "llvm/IntrinsicInst.h"
40#include "llvm/Analysis/ConstantFolding.h"
41#include "llvm/Analysis/InstructionSimplify.h"
42#include "llvm/Analysis/MemoryBuiltins.h"
43#include "llvm/Target/TargetData.h"
44#include "llvm/Transforms/Utils/Local.h"
45#include "llvm/Support/CFG.h"
46#include "llvm/Support/Debug.h"
47#include "llvm/Support/GetElementPtrTypeIterator.h"
48#include "llvm/Support/PatternMatch.h"
49#include "llvm/Support/ValueHandle.h"
50#include "llvm/ADT/SmallPtrSet.h"
51#include "llvm/ADT/Statistic.h"
52#include "llvm-c/Initialization.h"
53#include <algorithm>
54#include <climits>
55using namespace llvm;
56using namespace llvm::PatternMatch;
57
58STATISTIC(NumCombined , "Number of insts combined");
59STATISTIC(NumConstProp, "Number of constant folds");
60STATISTIC(NumDeadInst , "Number of dead inst eliminated");
61STATISTIC(NumSunkInst , "Number of instructions sunk");
62STATISTIC(NumExpand,    "Number of expansions");
63STATISTIC(NumFactor   , "Number of factorizations");
64STATISTIC(NumReassoc  , "Number of reassociations");
65
66// Initialization Routines
67void llvm::initializeInstCombine(PassRegistry &Registry) {
68  initializeInstCombinerPass(Registry);
69}
70
71void LLVMInitializeInstCombine(LLVMPassRegistryRef R) {
72  initializeInstCombine(*unwrap(R));
73}
74
75char InstCombiner::ID = 0;
76INITIALIZE_PASS(InstCombiner, "instcombine",
77                "Combine redundant instructions", false, false)
78
79void InstCombiner::getAnalysisUsage(AnalysisUsage &AU) const {
80  AU.setPreservesCFG();
81}
82
83
84/// ShouldChangeType - Return true if it is desirable to convert a computation
85/// from 'From' to 'To'.  We don't want to convert from a legal to an illegal
86/// type for example, or from a smaller to a larger illegal type.
87bool InstCombiner::ShouldChangeType(Type *From, Type *To) const {
88  assert(From->isIntegerTy() && To->isIntegerTy());
89
90  // If we don't have TD, we don't know if the source/dest are legal.
91  if (!TD) return false;
92
93  unsigned FromWidth = From->getPrimitiveSizeInBits();
94  unsigned ToWidth = To->getPrimitiveSizeInBits();
95  bool FromLegal = TD->isLegalInteger(FromWidth);
96  bool ToLegal = TD->isLegalInteger(ToWidth);
97
98  // If this is a legal integer from type, and the result would be an illegal
99  // type, don't do the transformation.
100  if (FromLegal && !ToLegal)
101    return false;
102
103  // Otherwise, if both are illegal, do not increase the size of the result. We
104  // do allow things like i160 -> i64, but not i64 -> i160.
105  if (!FromLegal && !ToLegal && ToWidth > FromWidth)
106    return false;
107
108  return true;
109}
110
111// Return true, if No Signed Wrap should be maintained for I.
112// The No Signed Wrap flag can be kept if the operation "B (I.getOpcode) C",
113// where both B and C should be ConstantInts, results in a constant that does
114// not overflow. This function only handles the Add and Sub opcodes. For
115// all other opcodes, the function conservatively returns false.
116static bool MaintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C) {
117  OverflowingBinaryOperator *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
118  if (!OBO || !OBO->hasNoSignedWrap()) {
119    return false;
120  }
121
122  // We reason about Add and Sub Only.
123  Instruction::BinaryOps Opcode = I.getOpcode();
124  if (Opcode != Instruction::Add &&
125      Opcode != Instruction::Sub) {
126    return false;
127  }
128
129  ConstantInt *CB = dyn_cast<ConstantInt>(B);
130  ConstantInt *CC = dyn_cast<ConstantInt>(C);
131
132  if (!CB || !CC) {
133    return false;
134  }
135
136  const APInt &BVal = CB->getValue();
137  const APInt &CVal = CC->getValue();
138  bool Overflow = false;
139
140  if (Opcode == Instruction::Add) {
141    BVal.sadd_ov(CVal, Overflow);
142  } else {
143    BVal.ssub_ov(CVal, Overflow);
144  }
145
146  return !Overflow;
147}
148
149/// SimplifyAssociativeOrCommutative - This performs a few simplifications for
150/// operators which are associative or commutative:
151//
152//  Commutative operators:
153//
154//  1. Order operands such that they are listed from right (least complex) to
155//     left (most complex).  This puts constants before unary operators before
156//     binary operators.
157//
158//  Associative operators:
159//
160//  2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
161//  3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
162//
163//  Associative and commutative operators:
164//
165//  4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
166//  5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
167//  6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
168//     if C1 and C2 are constants.
169//
170bool InstCombiner::SimplifyAssociativeOrCommutative(BinaryOperator &I) {
171  Instruction::BinaryOps Opcode = I.getOpcode();
172  bool Changed = false;
173
174  do {
175    // Order operands such that they are listed from right (least complex) to
176    // left (most complex).  This puts constants before unary operators before
177    // binary operators.
178    if (I.isCommutative() && getComplexity(I.getOperand(0)) <
179        getComplexity(I.getOperand(1)))
180      Changed = !I.swapOperands();
181
182    BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0));
183    BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1));
184
185    if (I.isAssociative()) {
186      // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
187      if (Op0 && Op0->getOpcode() == Opcode) {
188        Value *A = Op0->getOperand(0);
189        Value *B = Op0->getOperand(1);
190        Value *C = I.getOperand(1);
191
192        // Does "B op C" simplify?
193        if (Value *V = SimplifyBinOp(Opcode, B, C, TD)) {
194          // It simplifies to V.  Form "A op V".
195          I.setOperand(0, A);
196          I.setOperand(1, V);
197          // Conservatively clear the optional flags, since they may not be
198          // preserved by the reassociation.
199          if (MaintainNoSignedWrap(I, B, C) &&
200	      (!Op0 || (isa<BinaryOperator>(Op0) && Op0->hasNoSignedWrap()))) {
201            // Note: this is only valid because SimplifyBinOp doesn't look at
202            // the operands to Op0.
203            I.clearSubclassOptionalData();
204            I.setHasNoSignedWrap(true);
205          } else {
206            I.clearSubclassOptionalData();
207          }
208
209          Changed = true;
210          ++NumReassoc;
211          continue;
212        }
213      }
214
215      // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
216      if (Op1 && Op1->getOpcode() == Opcode) {
217        Value *A = I.getOperand(0);
218        Value *B = Op1->getOperand(0);
219        Value *C = Op1->getOperand(1);
220
221        // Does "A op B" simplify?
222        if (Value *V = SimplifyBinOp(Opcode, A, B, TD)) {
223          // It simplifies to V.  Form "V op C".
224          I.setOperand(0, V);
225          I.setOperand(1, C);
226          // Conservatively clear the optional flags, since they may not be
227          // preserved by the reassociation.
228          I.clearSubclassOptionalData();
229          Changed = true;
230          ++NumReassoc;
231          continue;
232        }
233      }
234    }
235
236    if (I.isAssociative() && I.isCommutative()) {
237      // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
238      if (Op0 && Op0->getOpcode() == Opcode) {
239        Value *A = Op0->getOperand(0);
240        Value *B = Op0->getOperand(1);
241        Value *C = I.getOperand(1);
242
243        // Does "C op A" simplify?
244        if (Value *V = SimplifyBinOp(Opcode, C, A, TD)) {
245          // It simplifies to V.  Form "V op B".
246          I.setOperand(0, V);
247          I.setOperand(1, B);
248          // Conservatively clear the optional flags, since they may not be
249          // preserved by the reassociation.
250          I.clearSubclassOptionalData();
251          Changed = true;
252          ++NumReassoc;
253          continue;
254        }
255      }
256
257      // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
258      if (Op1 && Op1->getOpcode() == Opcode) {
259        Value *A = I.getOperand(0);
260        Value *B = Op1->getOperand(0);
261        Value *C = Op1->getOperand(1);
262
263        // Does "C op A" simplify?
264        if (Value *V = SimplifyBinOp(Opcode, C, A, TD)) {
265          // It simplifies to V.  Form "B op V".
266          I.setOperand(0, B);
267          I.setOperand(1, V);
268          // Conservatively clear the optional flags, since they may not be
269          // preserved by the reassociation.
270          I.clearSubclassOptionalData();
271          Changed = true;
272          ++NumReassoc;
273          continue;
274        }
275      }
276
277      // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
278      // if C1 and C2 are constants.
279      if (Op0 && Op1 &&
280          Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode &&
281          isa<Constant>(Op0->getOperand(1)) &&
282          isa<Constant>(Op1->getOperand(1)) &&
283          Op0->hasOneUse() && Op1->hasOneUse()) {
284        Value *A = Op0->getOperand(0);
285        Constant *C1 = cast<Constant>(Op0->getOperand(1));
286        Value *B = Op1->getOperand(0);
287        Constant *C2 = cast<Constant>(Op1->getOperand(1));
288
289        Constant *Folded = ConstantExpr::get(Opcode, C1, C2);
290        BinaryOperator *New = BinaryOperator::Create(Opcode, A, B);
291        InsertNewInstWith(New, I);
292        New->takeName(Op1);
293        I.setOperand(0, New);
294        I.setOperand(1, Folded);
295        // Conservatively clear the optional flags, since they may not be
296        // preserved by the reassociation.
297        I.clearSubclassOptionalData();
298
299        Changed = true;
300        continue;
301      }
302    }
303
304    // No further simplifications.
305    return Changed;
306  } while (1);
307}
308
309/// LeftDistributesOverRight - Whether "X LOp (Y ROp Z)" is always equal to
310/// "(X LOp Y) ROp (X LOp Z)".
311static bool LeftDistributesOverRight(Instruction::BinaryOps LOp,
312                                     Instruction::BinaryOps ROp) {
313  switch (LOp) {
314  default:
315    return false;
316
317  case Instruction::And:
318    // And distributes over Or and Xor.
319    switch (ROp) {
320    default:
321      return false;
322    case Instruction::Or:
323    case Instruction::Xor:
324      return true;
325    }
326
327  case Instruction::Mul:
328    // Multiplication distributes over addition and subtraction.
329    switch (ROp) {
330    default:
331      return false;
332    case Instruction::Add:
333    case Instruction::Sub:
334      return true;
335    }
336
337  case Instruction::Or:
338    // Or distributes over And.
339    switch (ROp) {
340    default:
341      return false;
342    case Instruction::And:
343      return true;
344    }
345  }
346}
347
348/// RightDistributesOverLeft - Whether "(X LOp Y) ROp Z" is always equal to
349/// "(X ROp Z) LOp (Y ROp Z)".
350static bool RightDistributesOverLeft(Instruction::BinaryOps LOp,
351                                     Instruction::BinaryOps ROp) {
352  if (Instruction::isCommutative(ROp))
353    return LeftDistributesOverRight(ROp, LOp);
354  // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z",
355  // but this requires knowing that the addition does not overflow and other
356  // such subtleties.
357  return false;
358}
359
360/// SimplifyUsingDistributiveLaws - This tries to simplify binary operations
361/// which some other binary operation distributes over either by factorizing
362/// out common terms (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this
363/// results in simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is
364/// a win).  Returns the simplified value, or null if it didn't simplify.
365Value *InstCombiner::SimplifyUsingDistributiveLaws(BinaryOperator &I) {
366  Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
367  BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
368  BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
369  Instruction::BinaryOps TopLevelOpcode = I.getOpcode(); // op
370
371  // Factorization.
372  if (Op0 && Op1 && Op0->getOpcode() == Op1->getOpcode()) {
373    // The instruction has the form "(A op' B) op (C op' D)".  Try to factorize
374    // a common term.
375    Value *A = Op0->getOperand(0), *B = Op0->getOperand(1);
376    Value *C = Op1->getOperand(0), *D = Op1->getOperand(1);
377    Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op'
378
379    // Does "X op' Y" always equal "Y op' X"?
380    bool InnerCommutative = Instruction::isCommutative(InnerOpcode);
381
382    // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"?
383    if (LeftDistributesOverRight(InnerOpcode, TopLevelOpcode))
384      // Does the instruction have the form "(A op' B) op (A op' D)" or, in the
385      // commutative case, "(A op' B) op (C op' A)"?
386      if (A == C || (InnerCommutative && A == D)) {
387        if (A != C)
388          std::swap(C, D);
389        // Consider forming "A op' (B op D)".
390        // If "B op D" simplifies then it can be formed with no cost.
391        Value *V = SimplifyBinOp(TopLevelOpcode, B, D, TD);
392        // If "B op D" doesn't simplify then only go on if both of the existing
393        // operations "A op' B" and "C op' D" will be zapped as no longer used.
394        if (!V && Op0->hasOneUse() && Op1->hasOneUse())
395          V = Builder->CreateBinOp(TopLevelOpcode, B, D, Op1->getName());
396        if (V) {
397          ++NumFactor;
398          V = Builder->CreateBinOp(InnerOpcode, A, V);
399          V->takeName(&I);
400          return V;
401        }
402      }
403
404    // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"?
405    if (RightDistributesOverLeft(TopLevelOpcode, InnerOpcode))
406      // Does the instruction have the form "(A op' B) op (C op' B)" or, in the
407      // commutative case, "(A op' B) op (B op' D)"?
408      if (B == D || (InnerCommutative && B == C)) {
409        if (B != D)
410          std::swap(C, D);
411        // Consider forming "(A op C) op' B".
412        // If "A op C" simplifies then it can be formed with no cost.
413        Value *V = SimplifyBinOp(TopLevelOpcode, A, C, TD);
414        // If "A op C" doesn't simplify then only go on if both of the existing
415        // operations "A op' B" and "C op' D" will be zapped as no longer used.
416        if (!V && Op0->hasOneUse() && Op1->hasOneUse())
417          V = Builder->CreateBinOp(TopLevelOpcode, A, C, Op0->getName());
418        if (V) {
419          ++NumFactor;
420          V = Builder->CreateBinOp(InnerOpcode, V, B);
421          V->takeName(&I);
422          return V;
423        }
424      }
425  }
426
427  // Expansion.
428  if (Op0 && RightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) {
429    // The instruction has the form "(A op' B) op C".  See if expanding it out
430    // to "(A op C) op' (B op C)" results in simplifications.
431    Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
432    Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op'
433
434    // Do "A op C" and "B op C" both simplify?
435    if (Value *L = SimplifyBinOp(TopLevelOpcode, A, C, TD))
436      if (Value *R = SimplifyBinOp(TopLevelOpcode, B, C, TD)) {
437        // They do! Return "L op' R".
438        ++NumExpand;
439        // If "L op' R" equals "A op' B" then "L op' R" is just the LHS.
440        if ((L == A && R == B) ||
441            (Instruction::isCommutative(InnerOpcode) && L == B && R == A))
442          return Op0;
443        // Otherwise return "L op' R" if it simplifies.
444        if (Value *V = SimplifyBinOp(InnerOpcode, L, R, TD))
445          return V;
446        // Otherwise, create a new instruction.
447        C = Builder->CreateBinOp(InnerOpcode, L, R);
448        C->takeName(&I);
449        return C;
450      }
451  }
452
453  if (Op1 && LeftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) {
454    // The instruction has the form "A op (B op' C)".  See if expanding it out
455    // to "(A op B) op' (A op C)" results in simplifications.
456    Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
457    Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op'
458
459    // Do "A op B" and "A op C" both simplify?
460    if (Value *L = SimplifyBinOp(TopLevelOpcode, A, B, TD))
461      if (Value *R = SimplifyBinOp(TopLevelOpcode, A, C, TD)) {
462        // They do! Return "L op' R".
463        ++NumExpand;
464        // If "L op' R" equals "B op' C" then "L op' R" is just the RHS.
465        if ((L == B && R == C) ||
466            (Instruction::isCommutative(InnerOpcode) && L == C && R == B))
467          return Op1;
468        // Otherwise return "L op' R" if it simplifies.
469        if (Value *V = SimplifyBinOp(InnerOpcode, L, R, TD))
470          return V;
471        // Otherwise, create a new instruction.
472        A = Builder->CreateBinOp(InnerOpcode, L, R);
473        A->takeName(&I);
474        return A;
475      }
476  }
477
478  return 0;
479}
480
481// dyn_castNegVal - Given a 'sub' instruction, return the RHS of the instruction
482// if the LHS is a constant zero (which is the 'negate' form).
483//
484Value *InstCombiner::dyn_castNegVal(Value *V) const {
485  if (BinaryOperator::isNeg(V))
486    return BinaryOperator::getNegArgument(V);
487
488  // Constants can be considered to be negated values if they can be folded.
489  if (ConstantInt *C = dyn_cast<ConstantInt>(V))
490    return ConstantExpr::getNeg(C);
491
492  if (ConstantVector *C = dyn_cast<ConstantVector>(V))
493    if (C->getType()->getElementType()->isIntegerTy())
494      return ConstantExpr::getNeg(C);
495
496  return 0;
497}
498
499// dyn_castFNegVal - Given a 'fsub' instruction, return the RHS of the
500// instruction if the LHS is a constant negative zero (which is the 'negate'
501// form).
502//
503Value *InstCombiner::dyn_castFNegVal(Value *V) const {
504  if (BinaryOperator::isFNeg(V))
505    return BinaryOperator::getFNegArgument(V);
506
507  // Constants can be considered to be negated values if they can be folded.
508  if (ConstantFP *C = dyn_cast<ConstantFP>(V))
509    return ConstantExpr::getFNeg(C);
510
511  if (ConstantVector *C = dyn_cast<ConstantVector>(V))
512    if (C->getType()->getElementType()->isFloatingPointTy())
513      return ConstantExpr::getFNeg(C);
514
515  return 0;
516}
517
518static Value *FoldOperationIntoSelectOperand(Instruction &I, Value *SO,
519                                             InstCombiner *IC) {
520  if (CastInst *CI = dyn_cast<CastInst>(&I)) {
521    return IC->Builder->CreateCast(CI->getOpcode(), SO, I.getType());
522  }
523
524  // Figure out if the constant is the left or the right argument.
525  bool ConstIsRHS = isa<Constant>(I.getOperand(1));
526  Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS));
527
528  if (Constant *SOC = dyn_cast<Constant>(SO)) {
529    if (ConstIsRHS)
530      return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand);
531    return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC);
532  }
533
534  Value *Op0 = SO, *Op1 = ConstOperand;
535  if (!ConstIsRHS)
536    std::swap(Op0, Op1);
537
538  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I))
539    return IC->Builder->CreateBinOp(BO->getOpcode(), Op0, Op1,
540                                    SO->getName()+".op");
541  if (ICmpInst *CI = dyn_cast<ICmpInst>(&I))
542    return IC->Builder->CreateICmp(CI->getPredicate(), Op0, Op1,
543                                   SO->getName()+".cmp");
544  if (FCmpInst *CI = dyn_cast<FCmpInst>(&I))
545    return IC->Builder->CreateICmp(CI->getPredicate(), Op0, Op1,
546                                   SO->getName()+".cmp");
547  llvm_unreachable("Unknown binary instruction type!");
548}
549
550// FoldOpIntoSelect - Given an instruction with a select as one operand and a
551// constant as the other operand, try to fold the binary operator into the
552// select arguments.  This also works for Cast instructions, which obviously do
553// not have a second operand.
554Instruction *InstCombiner::FoldOpIntoSelect(Instruction &Op, SelectInst *SI) {
555  // Don't modify shared select instructions
556  if (!SI->hasOneUse()) return 0;
557  Value *TV = SI->getOperand(1);
558  Value *FV = SI->getOperand(2);
559
560  if (isa<Constant>(TV) || isa<Constant>(FV)) {
561    // Bool selects with constant operands can be folded to logical ops.
562    if (SI->getType()->isIntegerTy(1)) return 0;
563
564    // If it's a bitcast involving vectors, make sure it has the same number of
565    // elements on both sides.
566    if (BitCastInst *BC = dyn_cast<BitCastInst>(&Op)) {
567      VectorType *DestTy = dyn_cast<VectorType>(BC->getDestTy());
568      VectorType *SrcTy = dyn_cast<VectorType>(BC->getSrcTy());
569
570      // Verify that either both or neither are vectors.
571      if ((SrcTy == NULL) != (DestTy == NULL)) return 0;
572      // If vectors, verify that they have the same number of elements.
573      if (SrcTy && SrcTy->getNumElements() != DestTy->getNumElements())
574        return 0;
575    }
576
577    Value *SelectTrueVal = FoldOperationIntoSelectOperand(Op, TV, this);
578    Value *SelectFalseVal = FoldOperationIntoSelectOperand(Op, FV, this);
579
580    return SelectInst::Create(SI->getCondition(),
581                              SelectTrueVal, SelectFalseVal);
582  }
583  return 0;
584}
585
586
587/// FoldOpIntoPhi - Given a binary operator, cast instruction, or select which
588/// has a PHI node as operand #0, see if we can fold the instruction into the
589/// PHI (which is only possible if all operands to the PHI are constants).
590///
591Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I) {
592  PHINode *PN = cast<PHINode>(I.getOperand(0));
593  unsigned NumPHIValues = PN->getNumIncomingValues();
594  if (NumPHIValues == 0)
595    return 0;
596
597  // We normally only transform phis with a single use.  However, if a PHI has
598  // multiple uses and they are all the same operation, we can fold *all* of the
599  // uses into the PHI.
600  if (!PN->hasOneUse()) {
601    // Walk the use list for the instruction, comparing them to I.
602    for (Value::use_iterator UI = PN->use_begin(), E = PN->use_end();
603         UI != E; ++UI) {
604      Instruction *User = cast<Instruction>(*UI);
605      if (User != &I && !I.isIdenticalTo(User))
606        return 0;
607    }
608    // Otherwise, we can replace *all* users with the new PHI we form.
609  }
610
611  // Check to see if all of the operands of the PHI are simple constants
612  // (constantint/constantfp/undef).  If there is one non-constant value,
613  // remember the BB it is in.  If there is more than one or if *it* is a PHI,
614  // bail out.  We don't do arbitrary constant expressions here because moving
615  // their computation can be expensive without a cost model.
616  BasicBlock *NonConstBB = 0;
617  for (unsigned i = 0; i != NumPHIValues; ++i) {
618    Value *InVal = PN->getIncomingValue(i);
619    if (isa<Constant>(InVal) && !isa<ConstantExpr>(InVal))
620      continue;
621
622    if (isa<PHINode>(InVal)) return 0;  // Itself a phi.
623    if (NonConstBB) return 0;  // More than one non-const value.
624
625    NonConstBB = PN->getIncomingBlock(i);
626
627    // If the InVal is an invoke at the end of the pred block, then we can't
628    // insert a computation after it without breaking the edge.
629    if (InvokeInst *II = dyn_cast<InvokeInst>(InVal))
630      if (II->getParent() == NonConstBB)
631        return 0;
632
633    // If the incoming non-constant value is in I's block, we will remove one
634    // instruction, but insert another equivalent one, leading to infinite
635    // instcombine.
636    if (NonConstBB == I.getParent())
637      return 0;
638  }
639
640  // If there is exactly one non-constant value, we can insert a copy of the
641  // operation in that block.  However, if this is a critical edge, we would be
642  // inserting the computation one some other paths (e.g. inside a loop).  Only
643  // do this if the pred block is unconditionally branching into the phi block.
644  if (NonConstBB != 0) {
645    BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator());
646    if (!BI || !BI->isUnconditional()) return 0;
647  }
648
649  // Okay, we can do the transformation: create the new PHI node.
650  PHINode *NewPN = PHINode::Create(I.getType(), PN->getNumIncomingValues());
651  InsertNewInstBefore(NewPN, *PN);
652  NewPN->takeName(PN);
653
654  // If we are going to have to insert a new computation, do so right before the
655  // predecessors terminator.
656  if (NonConstBB)
657    Builder->SetInsertPoint(NonConstBB->getTerminator());
658
659  // Next, add all of the operands to the PHI.
660  if (SelectInst *SI = dyn_cast<SelectInst>(&I)) {
661    // We only currently try to fold the condition of a select when it is a phi,
662    // not the true/false values.
663    Value *TrueV = SI->getTrueValue();
664    Value *FalseV = SI->getFalseValue();
665    BasicBlock *PhiTransBB = PN->getParent();
666    for (unsigned i = 0; i != NumPHIValues; ++i) {
667      BasicBlock *ThisBB = PN->getIncomingBlock(i);
668      Value *TrueVInPred = TrueV->DoPHITranslation(PhiTransBB, ThisBB);
669      Value *FalseVInPred = FalseV->DoPHITranslation(PhiTransBB, ThisBB);
670      Value *InV = 0;
671      if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
672        InV = InC->isNullValue() ? FalseVInPred : TrueVInPred;
673      else
674        InV = Builder->CreateSelect(PN->getIncomingValue(i),
675                                    TrueVInPred, FalseVInPred, "phitmp");
676      NewPN->addIncoming(InV, ThisBB);
677    }
678  } else if (CmpInst *CI = dyn_cast<CmpInst>(&I)) {
679    Constant *C = cast<Constant>(I.getOperand(1));
680    for (unsigned i = 0; i != NumPHIValues; ++i) {
681      Value *InV = 0;
682      if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
683        InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C);
684      else if (isa<ICmpInst>(CI))
685        InV = Builder->CreateICmp(CI->getPredicate(), PN->getIncomingValue(i),
686                                  C, "phitmp");
687      else
688        InV = Builder->CreateFCmp(CI->getPredicate(), PN->getIncomingValue(i),
689                                  C, "phitmp");
690      NewPN->addIncoming(InV, PN->getIncomingBlock(i));
691    }
692  } else if (I.getNumOperands() == 2) {
693    Constant *C = cast<Constant>(I.getOperand(1));
694    for (unsigned i = 0; i != NumPHIValues; ++i) {
695      Value *InV = 0;
696      if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
697        InV = ConstantExpr::get(I.getOpcode(), InC, C);
698      else
699        InV = Builder->CreateBinOp(cast<BinaryOperator>(I).getOpcode(),
700                                   PN->getIncomingValue(i), C, "phitmp");
701      NewPN->addIncoming(InV, PN->getIncomingBlock(i));
702    }
703  } else {
704    CastInst *CI = cast<CastInst>(&I);
705    Type *RetTy = CI->getType();
706    for (unsigned i = 0; i != NumPHIValues; ++i) {
707      Value *InV;
708      if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
709        InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy);
710      else
711        InV = Builder->CreateCast(CI->getOpcode(),
712                                PN->getIncomingValue(i), I.getType(), "phitmp");
713      NewPN->addIncoming(InV, PN->getIncomingBlock(i));
714    }
715  }
716
717  for (Value::use_iterator UI = PN->use_begin(), E = PN->use_end();
718       UI != E; ) {
719    Instruction *User = cast<Instruction>(*UI++);
720    if (User == &I) continue;
721    ReplaceInstUsesWith(*User, NewPN);
722    EraseInstFromFunction(*User);
723  }
724  return ReplaceInstUsesWith(I, NewPN);
725}
726
727/// FindElementAtOffset - Given a type and a constant offset, determine whether
728/// or not there is a sequence of GEP indices into the type that will land us at
729/// the specified offset.  If so, fill them into NewIndices and return the
730/// resultant element type, otherwise return null.
731Type *InstCombiner::FindElementAtOffset(Type *Ty, int64_t Offset,
732                                          SmallVectorImpl<Value*> &NewIndices) {
733  if (!TD) return 0;
734  if (!Ty->isSized()) return 0;
735
736  // Start with the index over the outer type.  Note that the type size
737  // might be zero (even if the offset isn't zero) if the indexed type
738  // is something like [0 x {int, int}]
739  Type *IntPtrTy = TD->getIntPtrType(Ty->getContext());
740  int64_t FirstIdx = 0;
741  if (int64_t TySize = TD->getTypeAllocSize(Ty)) {
742    FirstIdx = Offset/TySize;
743    Offset -= FirstIdx*TySize;
744
745    // Handle hosts where % returns negative instead of values [0..TySize).
746    if (Offset < 0) {
747      --FirstIdx;
748      Offset += TySize;
749      assert(Offset >= 0);
750    }
751    assert((uint64_t)Offset < (uint64_t)TySize && "Out of range offset");
752  }
753
754  NewIndices.push_back(ConstantInt::get(IntPtrTy, FirstIdx));
755
756  // Index into the types.  If we fail, set OrigBase to null.
757  while (Offset) {
758    // Indexing into tail padding between struct/array elements.
759    if (uint64_t(Offset*8) >= TD->getTypeSizeInBits(Ty))
760      return 0;
761
762    if (StructType *STy = dyn_cast<StructType>(Ty)) {
763      const StructLayout *SL = TD->getStructLayout(STy);
764      assert(Offset < (int64_t)SL->getSizeInBytes() &&
765             "Offset must stay within the indexed type");
766
767      unsigned Elt = SL->getElementContainingOffset(Offset);
768      NewIndices.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
769                                            Elt));
770
771      Offset -= SL->getElementOffset(Elt);
772      Ty = STy->getElementType(Elt);
773    } else if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
774      uint64_t EltSize = TD->getTypeAllocSize(AT->getElementType());
775      assert(EltSize && "Cannot index into a zero-sized array");
776      NewIndices.push_back(ConstantInt::get(IntPtrTy,Offset/EltSize));
777      Offset %= EltSize;
778      Ty = AT->getElementType();
779    } else {
780      // Otherwise, we can't index into the middle of this atomic type, bail.
781      return 0;
782    }
783  }
784
785  return Ty;
786}
787
788static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src) {
789  // If this GEP has only 0 indices, it is the same pointer as
790  // Src. If Src is not a trivial GEP too, don't combine
791  // the indices.
792  if (GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() &&
793      !Src.hasOneUse())
794    return false;
795  return true;
796}
797
798Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
799  SmallVector<Value*, 8> Ops(GEP.op_begin(), GEP.op_end());
800
801  if (Value *V = SimplifyGEPInst(Ops, TD))
802    return ReplaceInstUsesWith(GEP, V);
803
804  Value *PtrOp = GEP.getOperand(0);
805
806  // Eliminate unneeded casts for indices, and replace indices which displace
807  // by multiples of a zero size type with zero.
808  if (TD) {
809    bool MadeChange = false;
810    Type *IntPtrTy = TD->getIntPtrType(GEP.getContext());
811
812    gep_type_iterator GTI = gep_type_begin(GEP);
813    for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end();
814         I != E; ++I, ++GTI) {
815      // Skip indices into struct types.
816      SequentialType *SeqTy = dyn_cast<SequentialType>(*GTI);
817      if (!SeqTy) continue;
818
819      // If the element type has zero size then any index over it is equivalent
820      // to an index of zero, so replace it with zero if it is not zero already.
821      if (SeqTy->getElementType()->isSized() &&
822          TD->getTypeAllocSize(SeqTy->getElementType()) == 0)
823        if (!isa<Constant>(*I) || !cast<Constant>(*I)->isNullValue()) {
824          *I = Constant::getNullValue(IntPtrTy);
825          MadeChange = true;
826        }
827
828      if ((*I)->getType() != IntPtrTy) {
829        // If we are using a wider index than needed for this platform, shrink
830        // it to what we need.  If narrower, sign-extend it to what we need.
831        // This explicit cast can make subsequent optimizations more obvious.
832        *I = Builder->CreateIntCast(*I, IntPtrTy, true);
833        MadeChange = true;
834      }
835    }
836    if (MadeChange) return &GEP;
837  }
838
839  // Combine Indices - If the source pointer to this getelementptr instruction
840  // is a getelementptr instruction, combine the indices of the two
841  // getelementptr instructions into a single instruction.
842  //
843  if (GEPOperator *Src = dyn_cast<GEPOperator>(PtrOp)) {
844    if (!shouldMergeGEPs(*cast<GEPOperator>(&GEP), *Src))
845      return 0;
846
847    // Note that if our source is a gep chain itself that we wait for that
848    // chain to be resolved before we perform this transformation.  This
849    // avoids us creating a TON of code in some cases.
850    if (GEPOperator *SrcGEP =
851          dyn_cast<GEPOperator>(Src->getOperand(0)))
852      if (SrcGEP->getNumOperands() == 2 && shouldMergeGEPs(*Src, *SrcGEP))
853        return 0;   // Wait until our source is folded to completion.
854
855    SmallVector<Value*, 8> Indices;
856
857    // Find out whether the last index in the source GEP is a sequential idx.
858    bool EndsWithSequential = false;
859    for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src);
860         I != E; ++I)
861      EndsWithSequential = !(*I)->isStructTy();
862
863    // Can we combine the two pointer arithmetics offsets?
864    if (EndsWithSequential) {
865      // Replace: gep (gep %P, long B), long A, ...
866      // With:    T = long A+B; gep %P, T, ...
867      //
868      Value *Sum;
869      Value *SO1 = Src->getOperand(Src->getNumOperands()-1);
870      Value *GO1 = GEP.getOperand(1);
871      if (SO1 == Constant::getNullValue(SO1->getType())) {
872        Sum = GO1;
873      } else if (GO1 == Constant::getNullValue(GO1->getType())) {
874        Sum = SO1;
875      } else {
876        // If they aren't the same type, then the input hasn't been processed
877        // by the loop above yet (which canonicalizes sequential index types to
878        // intptr_t).  Just avoid transforming this until the input has been
879        // normalized.
880        if (SO1->getType() != GO1->getType())
881          return 0;
882        Sum = Builder->CreateAdd(SO1, GO1, PtrOp->getName()+".sum");
883      }
884
885      // Update the GEP in place if possible.
886      if (Src->getNumOperands() == 2) {
887        GEP.setOperand(0, Src->getOperand(0));
888        GEP.setOperand(1, Sum);
889        return &GEP;
890      }
891      Indices.append(Src->op_begin()+1, Src->op_end()-1);
892      Indices.push_back(Sum);
893      Indices.append(GEP.op_begin()+2, GEP.op_end());
894    } else if (isa<Constant>(*GEP.idx_begin()) &&
895               cast<Constant>(*GEP.idx_begin())->isNullValue() &&
896               Src->getNumOperands() != 1) {
897      // Otherwise we can do the fold if the first index of the GEP is a zero
898      Indices.append(Src->op_begin()+1, Src->op_end());
899      Indices.append(GEP.idx_begin()+1, GEP.idx_end());
900    }
901
902    if (!Indices.empty())
903      return (GEP.isInBounds() && Src->isInBounds()) ?
904        GetElementPtrInst::CreateInBounds(Src->getOperand(0), Indices,
905                                          GEP.getName()) :
906        GetElementPtrInst::Create(Src->getOperand(0), Indices, GEP.getName());
907  }
908
909  // Handle gep(bitcast x) and gep(gep x, 0, 0, 0).
910  Value *StrippedPtr = PtrOp->stripPointerCasts();
911  PointerType *StrippedPtrTy =cast<PointerType>(StrippedPtr->getType());
912  if (StrippedPtr != PtrOp &&
913    StrippedPtrTy->getAddressSpace() == GEP.getPointerAddressSpace()) {
914
915    bool HasZeroPointerIndex = false;
916    if (ConstantInt *C = dyn_cast<ConstantInt>(GEP.getOperand(1)))
917      HasZeroPointerIndex = C->isZero();
918
919    // Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ...
920    // into     : GEP [10 x i8]* X, i32 0, ...
921    //
922    // Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ...
923    //           into     : GEP i8* X, ...
924    //
925    // This occurs when the program declares an array extern like "int X[];"
926    if (HasZeroPointerIndex) {
927      PointerType *CPTy = cast<PointerType>(PtrOp->getType());
928      if (ArrayType *CATy =
929          dyn_cast<ArrayType>(CPTy->getElementType())) {
930        // GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ?
931        if (CATy->getElementType() == StrippedPtrTy->getElementType()) {
932          // -> GEP i8* X, ...
933          SmallVector<Value*, 8> Idx(GEP.idx_begin()+1, GEP.idx_end());
934          GetElementPtrInst *Res =
935            GetElementPtrInst::Create(StrippedPtr, Idx, GEP.getName());
936          Res->setIsInBounds(GEP.isInBounds());
937          return Res;
938        }
939
940        if (ArrayType *XATy =
941              dyn_cast<ArrayType>(StrippedPtrTy->getElementType())){
942          // GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ?
943          if (CATy->getElementType() == XATy->getElementType()) {
944            // -> GEP [10 x i8]* X, i32 0, ...
945            // At this point, we know that the cast source type is a pointer
946            // to an array of the same type as the destination pointer
947            // array.  Because the array type is never stepped over (there
948            // is a leading zero) we can fold the cast into this GEP.
949            GEP.setOperand(0, StrippedPtr);
950            return &GEP;
951          }
952        }
953      }
954    } else if (GEP.getNumOperands() == 2) {
955      // Transform things like:
956      // %t = getelementptr i32* bitcast ([2 x i32]* %str to i32*), i32 %V
957      // into:  %t1 = getelementptr [2 x i32]* %str, i32 0, i32 %V; bitcast
958      Type *SrcElTy = StrippedPtrTy->getElementType();
959      Type *ResElTy=cast<PointerType>(PtrOp->getType())->getElementType();
960      if (TD && SrcElTy->isArrayTy() &&
961          TD->getTypeAllocSize(cast<ArrayType>(SrcElTy)->getElementType()) ==
962          TD->getTypeAllocSize(ResElTy)) {
963        Value *Idx[2];
964        Idx[0] = Constant::getNullValue(Type::getInt32Ty(GEP.getContext()));
965        Idx[1] = GEP.getOperand(1);
966        Value *NewGEP = GEP.isInBounds() ?
967          Builder->CreateInBoundsGEP(StrippedPtr, Idx, GEP.getName()) :
968          Builder->CreateGEP(StrippedPtr, Idx, GEP.getName());
969        // V and GEP are both pointer types --> BitCast
970        return new BitCastInst(NewGEP, GEP.getType());
971      }
972
973      // Transform things like:
974      // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp
975      //   (where tmp = 8*tmp2) into:
976      // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast
977
978      if (TD && SrcElTy->isArrayTy() && ResElTy->isIntegerTy(8)) {
979        uint64_t ArrayEltSize =
980            TD->getTypeAllocSize(cast<ArrayType>(SrcElTy)->getElementType());
981
982        // Check to see if "tmp" is a scale by a multiple of ArrayEltSize.  We
983        // allow either a mul, shift, or constant here.
984        Value *NewIdx = 0;
985        ConstantInt *Scale = 0;
986        if (ArrayEltSize == 1) {
987          NewIdx = GEP.getOperand(1);
988          Scale = ConstantInt::get(cast<IntegerType>(NewIdx->getType()), 1);
989        } else if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP.getOperand(1))) {
990          NewIdx = ConstantInt::get(CI->getType(), 1);
991          Scale = CI;
992        } else if (Instruction *Inst =dyn_cast<Instruction>(GEP.getOperand(1))){
993          if (Inst->getOpcode() == Instruction::Shl &&
994              isa<ConstantInt>(Inst->getOperand(1))) {
995            ConstantInt *ShAmt = cast<ConstantInt>(Inst->getOperand(1));
996            uint32_t ShAmtVal = ShAmt->getLimitedValue(64);
997            Scale = ConstantInt::get(cast<IntegerType>(Inst->getType()),
998                                     1ULL << ShAmtVal);
999            NewIdx = Inst->getOperand(0);
1000          } else if (Inst->getOpcode() == Instruction::Mul &&
1001                     isa<ConstantInt>(Inst->getOperand(1))) {
1002            Scale = cast<ConstantInt>(Inst->getOperand(1));
1003            NewIdx = Inst->getOperand(0);
1004          }
1005        }
1006
1007        // If the index will be to exactly the right offset with the scale taken
1008        // out, perform the transformation. Note, we don't know whether Scale is
1009        // signed or not. We'll use unsigned version of division/modulo
1010        // operation after making sure Scale doesn't have the sign bit set.
1011        if (ArrayEltSize && Scale && Scale->getSExtValue() >= 0LL &&
1012            Scale->getZExtValue() % ArrayEltSize == 0) {
1013          Scale = ConstantInt::get(Scale->getType(),
1014                                   Scale->getZExtValue() / ArrayEltSize);
1015          if (Scale->getZExtValue() != 1) {
1016            Constant *C = ConstantExpr::getIntegerCast(Scale, NewIdx->getType(),
1017                                                       false /*ZExt*/);
1018            NewIdx = Builder->CreateMul(NewIdx, C, "idxscale");
1019          }
1020
1021          // Insert the new GEP instruction.
1022          Value *Idx[2];
1023          Idx[0] = Constant::getNullValue(Type::getInt32Ty(GEP.getContext()));
1024          Idx[1] = NewIdx;
1025          Value *NewGEP = GEP.isInBounds() ?
1026            Builder->CreateInBoundsGEP(StrippedPtr, Idx, GEP.getName()):
1027            Builder->CreateGEP(StrippedPtr, Idx, GEP.getName());
1028          // The NewGEP must be pointer typed, so must the old one -> BitCast
1029          return new BitCastInst(NewGEP, GEP.getType());
1030        }
1031      }
1032    }
1033  }
1034
1035  /// See if we can simplify:
1036  ///   X = bitcast A* to B*
1037  ///   Y = gep X, <...constant indices...>
1038  /// into a gep of the original struct.  This is important for SROA and alias
1039  /// analysis of unions.  If "A" is also a bitcast, wait for A/X to be merged.
1040  if (BitCastInst *BCI = dyn_cast<BitCastInst>(PtrOp)) {
1041    if (TD &&
1042        !isa<BitCastInst>(BCI->getOperand(0)) && GEP.hasAllConstantIndices() &&
1043        StrippedPtrTy->getAddressSpace() == GEP.getPointerAddressSpace()) {
1044
1045      // Determine how much the GEP moves the pointer.  We are guaranteed to get
1046      // a constant back from EmitGEPOffset.
1047      ConstantInt *OffsetV = cast<ConstantInt>(EmitGEPOffset(&GEP));
1048      int64_t Offset = OffsetV->getSExtValue();
1049
1050      // If this GEP instruction doesn't move the pointer, just replace the GEP
1051      // with a bitcast of the real input to the dest type.
1052      if (Offset == 0) {
1053        // If the bitcast is of an allocation, and the allocation will be
1054        // converted to match the type of the cast, don't touch this.
1055        if (isa<AllocaInst>(BCI->getOperand(0)) ||
1056            isMalloc(BCI->getOperand(0))) {
1057          // See if the bitcast simplifies, if so, don't nuke this GEP yet.
1058          if (Instruction *I = visitBitCast(*BCI)) {
1059            if (I != BCI) {
1060              I->takeName(BCI);
1061              BCI->getParent()->getInstList().insert(BCI, I);
1062              ReplaceInstUsesWith(*BCI, I);
1063            }
1064            return &GEP;
1065          }
1066        }
1067        return new BitCastInst(BCI->getOperand(0), GEP.getType());
1068      }
1069
1070      // Otherwise, if the offset is non-zero, we need to find out if there is a
1071      // field at Offset in 'A's type.  If so, we can pull the cast through the
1072      // GEP.
1073      SmallVector<Value*, 8> NewIndices;
1074      Type *InTy =
1075        cast<PointerType>(BCI->getOperand(0)->getType())->getElementType();
1076      if (FindElementAtOffset(InTy, Offset, NewIndices)) {
1077        Value *NGEP = GEP.isInBounds() ?
1078          Builder->CreateInBoundsGEP(BCI->getOperand(0), NewIndices) :
1079          Builder->CreateGEP(BCI->getOperand(0), NewIndices);
1080
1081        if (NGEP->getType() == GEP.getType())
1082          return ReplaceInstUsesWith(GEP, NGEP);
1083        NGEP->takeName(&GEP);
1084        return new BitCastInst(NGEP, GEP.getType());
1085      }
1086    }
1087  }
1088
1089  return 0;
1090}
1091
1092
1093
1094static bool IsOnlyNullComparedAndFreed(Value *V, SmallVectorImpl<WeakVH> &Users,
1095                                       int Depth = 0) {
1096  if (Depth == 8)
1097    return false;
1098
1099  for (Value::use_iterator UI = V->use_begin(), UE = V->use_end();
1100       UI != UE; ++UI) {
1101    User *U = *UI;
1102    if (isFreeCall(U)) {
1103      Users.push_back(U);
1104      continue;
1105    }
1106    if (ICmpInst *ICI = dyn_cast<ICmpInst>(U)) {
1107      if (ICI->isEquality() && isa<ConstantPointerNull>(ICI->getOperand(1))) {
1108        Users.push_back(ICI);
1109        continue;
1110      }
1111    }
1112    if (BitCastInst *BCI = dyn_cast<BitCastInst>(U)) {
1113      if (IsOnlyNullComparedAndFreed(BCI, Users, Depth+1)) {
1114        Users.push_back(BCI);
1115        continue;
1116      }
1117    }
1118    if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
1119      if (IsOnlyNullComparedAndFreed(GEPI, Users, Depth+1)) {
1120        Users.push_back(GEPI);
1121        continue;
1122      }
1123    }
1124    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) {
1125      if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
1126          II->getIntrinsicID() == Intrinsic::lifetime_end) {
1127        Users.push_back(II);
1128        continue;
1129      }
1130    }
1131    return false;
1132  }
1133  return true;
1134}
1135
1136Instruction *InstCombiner::visitMalloc(Instruction &MI) {
1137  // If we have a malloc call which is only used in any amount of comparisons
1138  // to null and free calls, delete the calls and replace the comparisons with
1139  // true or false as appropriate.
1140  SmallVector<WeakVH, 64> Users;
1141  if (IsOnlyNullComparedAndFreed(&MI, Users)) {
1142    for (unsigned i = 0, e = Users.size(); i != e; ++i) {
1143      Instruction *I = cast_or_null<Instruction>(&*Users[i]);
1144      if (!I) continue;
1145
1146      if (ICmpInst *C = dyn_cast<ICmpInst>(I)) {
1147        ReplaceInstUsesWith(*C,
1148                            ConstantInt::get(Type::getInt1Ty(C->getContext()),
1149                                             C->isFalseWhenEqual()));
1150      } else if (isa<BitCastInst>(I) || isa<GetElementPtrInst>(I)) {
1151        ReplaceInstUsesWith(*I, UndefValue::get(I->getType()));
1152      }
1153      EraseInstFromFunction(*I);
1154    }
1155    return EraseInstFromFunction(MI);
1156  }
1157  return 0;
1158}
1159
1160
1161
1162Instruction *InstCombiner::visitFree(CallInst &FI) {
1163  Value *Op = FI.getArgOperand(0);
1164
1165  // free undef -> unreachable.
1166  if (isa<UndefValue>(Op)) {
1167    // Insert a new store to null because we cannot modify the CFG here.
1168    Builder->CreateStore(ConstantInt::getTrue(FI.getContext()),
1169                         UndefValue::get(Type::getInt1PtrTy(FI.getContext())));
1170    return EraseInstFromFunction(FI);
1171  }
1172
1173  // If we have 'free null' delete the instruction.  This can happen in stl code
1174  // when lots of inlining happens.
1175  if (isa<ConstantPointerNull>(Op))
1176    return EraseInstFromFunction(FI);
1177
1178  return 0;
1179}
1180
1181
1182
1183Instruction *InstCombiner::visitBranchInst(BranchInst &BI) {
1184  // Change br (not X), label True, label False to: br X, label False, True
1185  Value *X = 0;
1186  BasicBlock *TrueDest;
1187  BasicBlock *FalseDest;
1188  if (match(&BI, m_Br(m_Not(m_Value(X)), TrueDest, FalseDest)) &&
1189      !isa<Constant>(X)) {
1190    // Swap Destinations and condition...
1191    BI.setCondition(X);
1192    BI.setSuccessor(0, FalseDest);
1193    BI.setSuccessor(1, TrueDest);
1194    return &BI;
1195  }
1196
1197  // Cannonicalize fcmp_one -> fcmp_oeq
1198  FCmpInst::Predicate FPred; Value *Y;
1199  if (match(&BI, m_Br(m_FCmp(FPred, m_Value(X), m_Value(Y)),
1200                             TrueDest, FalseDest)) &&
1201      BI.getCondition()->hasOneUse())
1202    if (FPred == FCmpInst::FCMP_ONE || FPred == FCmpInst::FCMP_OLE ||
1203        FPred == FCmpInst::FCMP_OGE) {
1204      FCmpInst *Cond = cast<FCmpInst>(BI.getCondition());
1205      Cond->setPredicate(FCmpInst::getInversePredicate(FPred));
1206
1207      // Swap Destinations and condition.
1208      BI.setSuccessor(0, FalseDest);
1209      BI.setSuccessor(1, TrueDest);
1210      Worklist.Add(Cond);
1211      return &BI;
1212    }
1213
1214  // Cannonicalize icmp_ne -> icmp_eq
1215  ICmpInst::Predicate IPred;
1216  if (match(&BI, m_Br(m_ICmp(IPred, m_Value(X), m_Value(Y)),
1217                      TrueDest, FalseDest)) &&
1218      BI.getCondition()->hasOneUse())
1219    if (IPred == ICmpInst::ICMP_NE  || IPred == ICmpInst::ICMP_ULE ||
1220        IPred == ICmpInst::ICMP_SLE || IPred == ICmpInst::ICMP_UGE ||
1221        IPred == ICmpInst::ICMP_SGE) {
1222      ICmpInst *Cond = cast<ICmpInst>(BI.getCondition());
1223      Cond->setPredicate(ICmpInst::getInversePredicate(IPred));
1224      // Swap Destinations and condition.
1225      BI.setSuccessor(0, FalseDest);
1226      BI.setSuccessor(1, TrueDest);
1227      Worklist.Add(Cond);
1228      return &BI;
1229    }
1230
1231  return 0;
1232}
1233
1234Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) {
1235  Value *Cond = SI.getCondition();
1236  if (Instruction *I = dyn_cast<Instruction>(Cond)) {
1237    if (I->getOpcode() == Instruction::Add)
1238      if (ConstantInt *AddRHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
1239        // change 'switch (X+4) case 1:' into 'switch (X) case -3'
1240        for (unsigned i = 2, e = SI.getNumOperands(); i != e; i += 2)
1241          SI.setOperand(i,
1242                   ConstantExpr::getSub(cast<Constant>(SI.getOperand(i)),
1243                                                AddRHS));
1244        SI.setOperand(0, I->getOperand(0));
1245        Worklist.Add(I);
1246        return &SI;
1247      }
1248  }
1249  return 0;
1250}
1251
1252Instruction *InstCombiner::visitExtractValueInst(ExtractValueInst &EV) {
1253  Value *Agg = EV.getAggregateOperand();
1254
1255  if (!EV.hasIndices())
1256    return ReplaceInstUsesWith(EV, Agg);
1257
1258  if (Constant *C = dyn_cast<Constant>(Agg)) {
1259    if (isa<UndefValue>(C))
1260      return ReplaceInstUsesWith(EV, UndefValue::get(EV.getType()));
1261
1262    if (isa<ConstantAggregateZero>(C))
1263      return ReplaceInstUsesWith(EV, Constant::getNullValue(EV.getType()));
1264
1265    if (isa<ConstantArray>(C) || isa<ConstantStruct>(C)) {
1266      // Extract the element indexed by the first index out of the constant
1267      Value *V = C->getOperand(*EV.idx_begin());
1268      if (EV.getNumIndices() > 1)
1269        // Extract the remaining indices out of the constant indexed by the
1270        // first index
1271        return ExtractValueInst::Create(V, EV.getIndices().slice(1));
1272      else
1273        return ReplaceInstUsesWith(EV, V);
1274    }
1275    return 0; // Can't handle other constants
1276  }
1277  if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) {
1278    // We're extracting from an insertvalue instruction, compare the indices
1279    const unsigned *exti, *exte, *insi, *inse;
1280    for (exti = EV.idx_begin(), insi = IV->idx_begin(),
1281         exte = EV.idx_end(), inse = IV->idx_end();
1282         exti != exte && insi != inse;
1283         ++exti, ++insi) {
1284      if (*insi != *exti)
1285        // The insert and extract both reference distinctly different elements.
1286        // This means the extract is not influenced by the insert, and we can
1287        // replace the aggregate operand of the extract with the aggregate
1288        // operand of the insert. i.e., replace
1289        // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
1290        // %E = extractvalue { i32, { i32 } } %I, 0
1291        // with
1292        // %E = extractvalue { i32, { i32 } } %A, 0
1293        return ExtractValueInst::Create(IV->getAggregateOperand(),
1294                                        EV.getIndices());
1295    }
1296    if (exti == exte && insi == inse)
1297      // Both iterators are at the end: Index lists are identical. Replace
1298      // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
1299      // %C = extractvalue { i32, { i32 } } %B, 1, 0
1300      // with "i32 42"
1301      return ReplaceInstUsesWith(EV, IV->getInsertedValueOperand());
1302    if (exti == exte) {
1303      // The extract list is a prefix of the insert list. i.e. replace
1304      // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
1305      // %E = extractvalue { i32, { i32 } } %I, 1
1306      // with
1307      // %X = extractvalue { i32, { i32 } } %A, 1
1308      // %E = insertvalue { i32 } %X, i32 42, 0
1309      // by switching the order of the insert and extract (though the
1310      // insertvalue should be left in, since it may have other uses).
1311      Value *NewEV = Builder->CreateExtractValue(IV->getAggregateOperand(),
1312                                                 EV.getIndices());
1313      return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(),
1314                                     makeArrayRef(insi, inse));
1315    }
1316    if (insi == inse)
1317      // The insert list is a prefix of the extract list
1318      // We can simply remove the common indices from the extract and make it
1319      // operate on the inserted value instead of the insertvalue result.
1320      // i.e., replace
1321      // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
1322      // %E = extractvalue { i32, { i32 } } %I, 1, 0
1323      // with
1324      // %E extractvalue { i32 } { i32 42 }, 0
1325      return ExtractValueInst::Create(IV->getInsertedValueOperand(),
1326                                      makeArrayRef(exti, exte));
1327  }
1328  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Agg)) {
1329    // We're extracting from an intrinsic, see if we're the only user, which
1330    // allows us to simplify multiple result intrinsics to simpler things that
1331    // just get one value.
1332    if (II->hasOneUse()) {
1333      // Check if we're grabbing the overflow bit or the result of a 'with
1334      // overflow' intrinsic.  If it's the latter we can remove the intrinsic
1335      // and replace it with a traditional binary instruction.
1336      switch (II->getIntrinsicID()) {
1337      case Intrinsic::uadd_with_overflow:
1338      case Intrinsic::sadd_with_overflow:
1339        if (*EV.idx_begin() == 0) {  // Normal result.
1340          Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
1341          ReplaceInstUsesWith(*II, UndefValue::get(II->getType()));
1342          EraseInstFromFunction(*II);
1343          return BinaryOperator::CreateAdd(LHS, RHS);
1344        }
1345
1346        // If the normal result of the add is dead, and the RHS is a constant,
1347        // we can transform this into a range comparison.
1348        // overflow = uadd a, -4  -->  overflow = icmp ugt a, 3
1349        if (II->getIntrinsicID() == Intrinsic::uadd_with_overflow)
1350          if (ConstantInt *CI = dyn_cast<ConstantInt>(II->getArgOperand(1)))
1351            return new ICmpInst(ICmpInst::ICMP_UGT, II->getArgOperand(0),
1352                                ConstantExpr::getNot(CI));
1353        break;
1354      case Intrinsic::usub_with_overflow:
1355      case Intrinsic::ssub_with_overflow:
1356        if (*EV.idx_begin() == 0) {  // Normal result.
1357          Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
1358          ReplaceInstUsesWith(*II, UndefValue::get(II->getType()));
1359          EraseInstFromFunction(*II);
1360          return BinaryOperator::CreateSub(LHS, RHS);
1361        }
1362        break;
1363      case Intrinsic::umul_with_overflow:
1364      case Intrinsic::smul_with_overflow:
1365        if (*EV.idx_begin() == 0) {  // Normal result.
1366          Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
1367          ReplaceInstUsesWith(*II, UndefValue::get(II->getType()));
1368          EraseInstFromFunction(*II);
1369          return BinaryOperator::CreateMul(LHS, RHS);
1370        }
1371        break;
1372      default:
1373        break;
1374      }
1375    }
1376  }
1377  if (LoadInst *L = dyn_cast<LoadInst>(Agg))
1378    // If the (non-volatile) load only has one use, we can rewrite this to a
1379    // load from a GEP. This reduces the size of the load.
1380    // FIXME: If a load is used only by extractvalue instructions then this
1381    //        could be done regardless of having multiple uses.
1382    if (L->isSimple() && L->hasOneUse()) {
1383      // extractvalue has integer indices, getelementptr has Value*s. Convert.
1384      SmallVector<Value*, 4> Indices;
1385      // Prefix an i32 0 since we need the first element.
1386      Indices.push_back(Builder->getInt32(0));
1387      for (ExtractValueInst::idx_iterator I = EV.idx_begin(), E = EV.idx_end();
1388            I != E; ++I)
1389        Indices.push_back(Builder->getInt32(*I));
1390
1391      // We need to insert these at the location of the old load, not at that of
1392      // the extractvalue.
1393      Builder->SetInsertPoint(L->getParent(), L);
1394      Value *GEP = Builder->CreateInBoundsGEP(L->getPointerOperand(), Indices);
1395      // Returning the load directly will cause the main loop to insert it in
1396      // the wrong spot, so use ReplaceInstUsesWith().
1397      return ReplaceInstUsesWith(EV, Builder->CreateLoad(GEP));
1398    }
1399  // We could simplify extracts from other values. Note that nested extracts may
1400  // already be simplified implicitly by the above: extract (extract (insert) )
1401  // will be translated into extract ( insert ( extract ) ) first and then just
1402  // the value inserted, if appropriate. Similarly for extracts from single-use
1403  // loads: extract (extract (load)) will be translated to extract (load (gep))
1404  // and if again single-use then via load (gep (gep)) to load (gep).
1405  // However, double extracts from e.g. function arguments or return values
1406  // aren't handled yet.
1407  return 0;
1408}
1409
1410
1411
1412
1413/// TryToSinkInstruction - Try to move the specified instruction from its
1414/// current block into the beginning of DestBlock, which can only happen if it's
1415/// safe to move the instruction past all of the instructions between it and the
1416/// end of its block.
1417static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) {
1418  assert(I->hasOneUse() && "Invariants didn't hold!");
1419
1420  // Cannot move control-flow-involving, volatile loads, vaarg, etc.
1421  if (isa<PHINode>(I) || isa<LandingPadInst>(I) || I->mayHaveSideEffects() ||
1422      isa<TerminatorInst>(I))
1423    return false;
1424
1425  // Do not sink alloca instructions out of the entry block.
1426  if (isa<AllocaInst>(I) && I->getParent() ==
1427        &DestBlock->getParent()->getEntryBlock())
1428    return false;
1429
1430  // We can only sink load instructions if there is nothing between the load and
1431  // the end of block that could change the value.
1432  if (I->mayReadFromMemory()) {
1433    for (BasicBlock::iterator Scan = I, E = I->getParent()->end();
1434         Scan != E; ++Scan)
1435      if (Scan->mayWriteToMemory())
1436        return false;
1437  }
1438
1439  BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt();
1440  I->moveBefore(InsertPos);
1441  ++NumSunkInst;
1442  return true;
1443}
1444
1445
1446/// AddReachableCodeToWorklist - Walk the function in depth-first order, adding
1447/// all reachable code to the worklist.
1448///
1449/// This has a couple of tricks to make the code faster and more powerful.  In
1450/// particular, we constant fold and DCE instructions as we go, to avoid adding
1451/// them to the worklist (this significantly speeds up instcombine on code where
1452/// many instructions are dead or constant).  Additionally, if we find a branch
1453/// whose condition is a known constant, we only visit the reachable successors.
1454///
1455static bool AddReachableCodeToWorklist(BasicBlock *BB,
1456                                       SmallPtrSet<BasicBlock*, 64> &Visited,
1457                                       InstCombiner &IC,
1458                                       const TargetData *TD) {
1459  bool MadeIRChange = false;
1460  SmallVector<BasicBlock*, 256> Worklist;
1461  Worklist.push_back(BB);
1462
1463  SmallVector<Instruction*, 128> InstrsForInstCombineWorklist;
1464  DenseMap<ConstantExpr*, Constant*> FoldedConstants;
1465
1466  do {
1467    BB = Worklist.pop_back_val();
1468
1469    // We have now visited this block!  If we've already been here, ignore it.
1470    if (!Visited.insert(BB)) continue;
1471
1472    for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
1473      Instruction *Inst = BBI++;
1474
1475      // DCE instruction if trivially dead.
1476      if (isInstructionTriviallyDead(Inst)) {
1477        ++NumDeadInst;
1478        DEBUG(errs() << "IC: DCE: " << *Inst << '\n');
1479        Inst->eraseFromParent();
1480        continue;
1481      }
1482
1483      // ConstantProp instruction if trivially constant.
1484      if (!Inst->use_empty() && isa<Constant>(Inst->getOperand(0)))
1485        if (Constant *C = ConstantFoldInstruction(Inst, TD)) {
1486          DEBUG(errs() << "IC: ConstFold to: " << *C << " from: "
1487                       << *Inst << '\n');
1488          Inst->replaceAllUsesWith(C);
1489          ++NumConstProp;
1490          Inst->eraseFromParent();
1491          continue;
1492        }
1493
1494      if (TD) {
1495        // See if we can constant fold its operands.
1496        for (User::op_iterator i = Inst->op_begin(), e = Inst->op_end();
1497             i != e; ++i) {
1498          ConstantExpr *CE = dyn_cast<ConstantExpr>(i);
1499          if (CE == 0) continue;
1500
1501          Constant*& FoldRes = FoldedConstants[CE];
1502          if (!FoldRes)
1503            FoldRes = ConstantFoldConstantExpression(CE, TD);
1504          if (!FoldRes)
1505            FoldRes = CE;
1506
1507          if (FoldRes != CE) {
1508            *i = FoldRes;
1509            MadeIRChange = true;
1510          }
1511        }
1512      }
1513
1514      InstrsForInstCombineWorklist.push_back(Inst);
1515    }
1516
1517    // Recursively visit successors.  If this is a branch or switch on a
1518    // constant, only visit the reachable successor.
1519    TerminatorInst *TI = BB->getTerminator();
1520    if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
1521      if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) {
1522        bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue();
1523        BasicBlock *ReachableBB = BI->getSuccessor(!CondVal);
1524        Worklist.push_back(ReachableBB);
1525        continue;
1526      }
1527    } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
1528      if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) {
1529        // See if this is an explicit destination.
1530        for (unsigned i = 1, e = SI->getNumSuccessors(); i != e; ++i)
1531          if (SI->getCaseValue(i) == Cond) {
1532            BasicBlock *ReachableBB = SI->getSuccessor(i);
1533            Worklist.push_back(ReachableBB);
1534            continue;
1535          }
1536
1537        // Otherwise it is the default destination.
1538        Worklist.push_back(SI->getSuccessor(0));
1539        continue;
1540      }
1541    }
1542
1543    for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
1544      Worklist.push_back(TI->getSuccessor(i));
1545  } while (!Worklist.empty());
1546
1547  // Once we've found all of the instructions to add to instcombine's worklist,
1548  // add them in reverse order.  This way instcombine will visit from the top
1549  // of the function down.  This jives well with the way that it adds all uses
1550  // of instructions to the worklist after doing a transformation, thus avoiding
1551  // some N^2 behavior in pathological cases.
1552  IC.Worklist.AddInitialGroup(&InstrsForInstCombineWorklist[0],
1553                              InstrsForInstCombineWorklist.size());
1554
1555  return MadeIRChange;
1556}
1557
1558bool InstCombiner::DoOneIteration(Function &F, unsigned Iteration) {
1559  MadeIRChange = false;
1560
1561  DEBUG(errs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on "
1562        << F.getNameStr() << "\n");
1563
1564  {
1565    // Do a depth-first traversal of the function, populate the worklist with
1566    // the reachable instructions.  Ignore blocks that are not reachable.  Keep
1567    // track of which blocks we visit.
1568    SmallPtrSet<BasicBlock*, 64> Visited;
1569    MadeIRChange |= AddReachableCodeToWorklist(F.begin(), Visited, *this, TD);
1570
1571    // Do a quick scan over the function.  If we find any blocks that are
1572    // unreachable, remove any instructions inside of them.  This prevents
1573    // the instcombine code from having to deal with some bad special cases.
1574    for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
1575      if (!Visited.count(BB)) {
1576        Instruction *Term = BB->getTerminator();
1577
1578        if (isa<TerminatorInst>(BB->begin()))
1579          continue;
1580
1581        // Delete the instructions backwards, as it has a reduced likelihood of
1582        // having to update as many def-use and use-def chains.
1583        std::vector<Instruction*> WorkList;
1584        WorkList.reserve(BB->size());
1585        BasicBlock::iterator I = Term; --I;
1586
1587        while (true) {
1588          if (!I->getType()->isVoidTy())
1589            I->replaceAllUsesWith(UndefValue::get(I->getType()));
1590          WorkList.push_back(I);
1591          if (I == BB->begin())
1592            break;
1593          --I;
1594        }
1595
1596        for (std::vector<Instruction*>::iterator
1597               II = WorkList.begin(), IE = WorkList.end(); II != IE; ++II) {
1598          Instruction *Inst = *II;
1599          // Don't remove the landing pad. It should be removed only when its
1600          // invokes are removed.
1601          if (isa<LandingPadInst>(Inst))
1602            continue;
1603
1604          // A debug intrinsic shouldn't force another iteration if we weren't
1605          // going to do one without it.
1606          if (!isa<DbgInfoIntrinsic>(Inst)) {
1607            ++NumDeadInst;
1608            MadeIRChange = true;
1609          }
1610
1611          Inst->eraseFromParent();
1612        }
1613      }
1614  }
1615
1616  while (!Worklist.isEmpty()) {
1617    Instruction *I = Worklist.RemoveOne();
1618    if (I == 0) continue;  // skip null values.
1619
1620    // Check to see if we can DCE the instruction.
1621    if (isInstructionTriviallyDead(I)) {
1622      DEBUG(errs() << "IC: DCE: " << *I << '\n');
1623      EraseInstFromFunction(*I);
1624      ++NumDeadInst;
1625      MadeIRChange = true;
1626      continue;
1627    }
1628
1629    // Instruction isn't dead, see if we can constant propagate it.
1630    if (!I->use_empty() && isa<Constant>(I->getOperand(0)))
1631      if (Constant *C = ConstantFoldInstruction(I, TD)) {
1632        DEBUG(errs() << "IC: ConstFold to: " << *C << " from: " << *I << '\n');
1633
1634        // Add operands to the worklist.
1635        ReplaceInstUsesWith(*I, C);
1636        ++NumConstProp;
1637        EraseInstFromFunction(*I);
1638        MadeIRChange = true;
1639        continue;
1640      }
1641
1642    // See if we can trivially sink this instruction to a successor basic block.
1643    if (I->hasOneUse()) {
1644      BasicBlock *BB = I->getParent();
1645      Instruction *UserInst = cast<Instruction>(I->use_back());
1646      BasicBlock *UserParent;
1647
1648      // Get the block the use occurs in.
1649      if (PHINode *PN = dyn_cast<PHINode>(UserInst))
1650        UserParent = PN->getIncomingBlock(I->use_begin().getUse());
1651      else
1652        UserParent = UserInst->getParent();
1653
1654      if (UserParent != BB) {
1655        bool UserIsSuccessor = false;
1656        // See if the user is one of our successors.
1657        for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI)
1658          if (*SI == UserParent) {
1659            UserIsSuccessor = true;
1660            break;
1661          }
1662
1663        // If the user is one of our immediate successors, and if that successor
1664        // only has us as a predecessors (we'd have to split the critical edge
1665        // otherwise), we can keep going.
1666        if (UserIsSuccessor && UserParent->getSinglePredecessor())
1667          // Okay, the CFG is simple enough, try to sink this instruction.
1668          MadeIRChange |= TryToSinkInstruction(I, UserParent);
1669      }
1670    }
1671
1672    // Now that we have an instruction, try combining it to simplify it.
1673    Builder->SetInsertPoint(I->getParent(), I);
1674    Builder->SetCurrentDebugLocation(I->getDebugLoc());
1675
1676#ifndef NDEBUG
1677    std::string OrigI;
1678#endif
1679    DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str(););
1680    DEBUG(errs() << "IC: Visiting: " << OrigI << '\n');
1681
1682    if (Instruction *Result = visit(*I)) {
1683      ++NumCombined;
1684      // Should we replace the old instruction with a new one?
1685      if (Result != I) {
1686        DEBUG(errs() << "IC: Old = " << *I << '\n'
1687                     << "    New = " << *Result << '\n');
1688
1689        if (!I->getDebugLoc().isUnknown())
1690          Result->setDebugLoc(I->getDebugLoc());
1691        // Everything uses the new instruction now.
1692        I->replaceAllUsesWith(Result);
1693
1694        // Push the new instruction and any users onto the worklist.
1695        Worklist.Add(Result);
1696        Worklist.AddUsersToWorkList(*Result);
1697
1698        // Move the name to the new instruction first.
1699        Result->takeName(I);
1700
1701        // Insert the new instruction into the basic block...
1702        BasicBlock *InstParent = I->getParent();
1703        BasicBlock::iterator InsertPos = I;
1704
1705        if (!isa<PHINode>(Result))        // If combining a PHI, don't insert
1706          while (isa<PHINode>(InsertPos)) // middle of a block of PHIs.
1707            ++InsertPos;
1708
1709        InstParent->getInstList().insert(InsertPos, Result);
1710
1711        EraseInstFromFunction(*I);
1712      } else {
1713#ifndef NDEBUG
1714        DEBUG(errs() << "IC: Mod = " << OrigI << '\n'
1715                     << "    New = " << *I << '\n');
1716#endif
1717
1718        // If the instruction was modified, it's possible that it is now dead.
1719        // if so, remove it.
1720        if (isInstructionTriviallyDead(I)) {
1721          EraseInstFromFunction(*I);
1722        } else {
1723          Worklist.Add(I);
1724          Worklist.AddUsersToWorkList(*I);
1725        }
1726      }
1727      MadeIRChange = true;
1728    }
1729  }
1730
1731  Worklist.Zap();
1732  return MadeIRChange;
1733}
1734
1735
1736bool InstCombiner::runOnFunction(Function &F) {
1737  TD = getAnalysisIfAvailable<TargetData>();
1738
1739
1740  /// Builder - This is an IRBuilder that automatically inserts new
1741  /// instructions into the worklist when they are created.
1742  IRBuilder<true, TargetFolder, InstCombineIRInserter>
1743    TheBuilder(F.getContext(), TargetFolder(TD),
1744               InstCombineIRInserter(Worklist));
1745  Builder = &TheBuilder;
1746
1747  bool EverMadeChange = false;
1748
1749  // Lower dbg.declare intrinsics otherwise their value may be clobbered
1750  // by instcombiner.
1751  EverMadeChange = LowerDbgDeclare(F);
1752
1753  // Iterate while there is work to do.
1754  unsigned Iteration = 0;
1755  while (DoOneIteration(F, Iteration++))
1756    EverMadeChange = true;
1757
1758  Builder = 0;
1759  return EverMadeChange;
1760}
1761
1762FunctionPass *llvm::createInstructionCombiningPass() {
1763  return new InstCombiner();
1764}
1765