1//===-- LoopUnswitch.cpp - Hoist loop-invariant conditionals in loop ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass transforms loops that contain branches on loop-invariant conditions
11// to have multiple loops.  For example, it turns the left into the right code:
12//
13//  for (...)                  if (lic)
14//    A                          for (...)
15//    if (lic)                     A; B; C
16//      B                      else
17//    C                          for (...)
18//                                 A; C
19//
20// This can increase the size of the code exponentially (doubling it every time
21// a loop is unswitched) so we only unswitch if the resultant code will be
22// smaller than a threshold.
23//
24// This pass expects LICM to be run before it to hoist invariant conditions out
25// of the loop, to make the unswitching opportunity obvious.
26//
27//===----------------------------------------------------------------------===//
28
29#define DEBUG_TYPE "loop-unswitch"
30#include "llvm/Transforms/Scalar.h"
31#include "llvm/ADT/STLExtras.h"
32#include "llvm/ADT/SmallPtrSet.h"
33#include "llvm/ADT/Statistic.h"
34#include "llvm/Analysis/CodeMetrics.h"
35#include "llvm/Analysis/Dominators.h"
36#include "llvm/Analysis/InstructionSimplify.h"
37#include "llvm/Analysis/LoopInfo.h"
38#include "llvm/Analysis/LoopPass.h"
39#include "llvm/Analysis/ScalarEvolution.h"
40#include "llvm/Analysis/TargetTransformInfo.h"
41#include "llvm/IR/Constants.h"
42#include "llvm/IR/DerivedTypes.h"
43#include "llvm/IR/Function.h"
44#include "llvm/IR/Instructions.h"
45#include "llvm/Support/CommandLine.h"
46#include "llvm/Support/Debug.h"
47#include "llvm/Support/raw_ostream.h"
48#include "llvm/Transforms/Utils/BasicBlockUtils.h"
49#include "llvm/Transforms/Utils/Cloning.h"
50#include "llvm/Transforms/Utils/Local.h"
51#include <algorithm>
52#include <map>
53#include <set>
54using namespace llvm;
55
56STATISTIC(NumBranches, "Number of branches unswitched");
57STATISTIC(NumSwitches, "Number of switches unswitched");
58STATISTIC(NumSelects , "Number of selects unswitched");
59STATISTIC(NumTrivial , "Number of unswitches that are trivial");
60STATISTIC(NumSimplify, "Number of simplifications of unswitched code");
61STATISTIC(TotalInsts,  "Total number of instructions analyzed");
62
63// The specific value of 100 here was chosen based only on intuition and a
64// few specific examples.
65static cl::opt<unsigned>
66Threshold("loop-unswitch-threshold", cl::desc("Max loop size to unswitch"),
67          cl::init(100), cl::Hidden);
68
69namespace {
70
71  class LUAnalysisCache {
72
73    typedef DenseMap<const SwitchInst*, SmallPtrSet<const Value *, 8> >
74      UnswitchedValsMap;
75
76    typedef UnswitchedValsMap::iterator UnswitchedValsIt;
77
78    struct LoopProperties {
79      unsigned CanBeUnswitchedCount;
80      unsigned SizeEstimation;
81      UnswitchedValsMap UnswitchedVals;
82    };
83
84    // Here we use std::map instead of DenseMap, since we need to keep valid
85    // LoopProperties pointer for current loop for better performance.
86    typedef std::map<const Loop*, LoopProperties> LoopPropsMap;
87    typedef LoopPropsMap::iterator LoopPropsMapIt;
88
89    LoopPropsMap LoopsProperties;
90    UnswitchedValsMap* CurLoopInstructions;
91    LoopProperties* CurrentLoopProperties;
92
93    // Max size of code we can produce on remained iterations.
94    unsigned MaxSize;
95
96    public:
97
98      LUAnalysisCache() :
99        CurLoopInstructions(NULL), CurrentLoopProperties(NULL),
100        MaxSize(Threshold)
101      {}
102
103      // Analyze loop. Check its size, calculate is it possible to unswitch
104      // it. Returns true if we can unswitch this loop.
105      bool countLoop(const Loop* L, const TargetTransformInfo &TTI);
106
107      // Clean all data related to given loop.
108      void forgetLoop(const Loop* L);
109
110      // Mark case value as unswitched.
111      // Since SI instruction can be partly unswitched, in order to avoid
112      // extra unswitching in cloned loops keep track all unswitched values.
113      void setUnswitched(const SwitchInst* SI, const Value* V);
114
115      // Check was this case value unswitched before or not.
116      bool isUnswitched(const SwitchInst* SI, const Value* V);
117
118      // Clone all loop-unswitch related loop properties.
119      // Redistribute unswitching quotas.
120      // Note, that new loop data is stored inside the VMap.
121      void cloneData(const Loop* NewLoop, const Loop* OldLoop,
122                     const ValueToValueMapTy& VMap);
123  };
124
125  class LoopUnswitch : public LoopPass {
126    LoopInfo *LI;  // Loop information
127    LPPassManager *LPM;
128
129    // LoopProcessWorklist - Used to check if second loop needs processing
130    // after RewriteLoopBodyWithConditionConstant rewrites first loop.
131    std::vector<Loop*> LoopProcessWorklist;
132
133    LUAnalysisCache BranchesInfo;
134
135    bool OptimizeForSize;
136    bool redoLoop;
137
138    Loop *currentLoop;
139    DominatorTree *DT;
140    BasicBlock *loopHeader;
141    BasicBlock *loopPreheader;
142
143    // LoopBlocks contains all of the basic blocks of the loop, including the
144    // preheader of the loop, the body of the loop, and the exit blocks of the
145    // loop, in that order.
146    std::vector<BasicBlock*> LoopBlocks;
147    // NewBlocks contained cloned copy of basic blocks from LoopBlocks.
148    std::vector<BasicBlock*> NewBlocks;
149
150  public:
151    static char ID; // Pass ID, replacement for typeid
152    explicit LoopUnswitch(bool Os = false) :
153      LoopPass(ID), OptimizeForSize(Os), redoLoop(false),
154      currentLoop(NULL), DT(NULL), loopHeader(NULL),
155      loopPreheader(NULL) {
156        initializeLoopUnswitchPass(*PassRegistry::getPassRegistry());
157      }
158
159    bool runOnLoop(Loop *L, LPPassManager &LPM);
160    bool processCurrentLoop();
161
162    /// This transformation requires natural loop information & requires that
163    /// loop preheaders be inserted into the CFG.
164    ///
165    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
166      AU.addRequiredID(LoopSimplifyID);
167      AU.addPreservedID(LoopSimplifyID);
168      AU.addRequired<LoopInfo>();
169      AU.addPreserved<LoopInfo>();
170      AU.addRequiredID(LCSSAID);
171      AU.addPreservedID(LCSSAID);
172      AU.addPreserved<DominatorTree>();
173      AU.addPreserved<ScalarEvolution>();
174      AU.addRequired<TargetTransformInfo>();
175    }
176
177  private:
178
179    virtual void releaseMemory() {
180      BranchesInfo.forgetLoop(currentLoop);
181    }
182
183    /// RemoveLoopFromWorklist - If the specified loop is on the loop worklist,
184    /// remove it.
185    void RemoveLoopFromWorklist(Loop *L) {
186      std::vector<Loop*>::iterator I = std::find(LoopProcessWorklist.begin(),
187                                                 LoopProcessWorklist.end(), L);
188      if (I != LoopProcessWorklist.end())
189        LoopProcessWorklist.erase(I);
190    }
191
192    void initLoopData() {
193      loopHeader = currentLoop->getHeader();
194      loopPreheader = currentLoop->getLoopPreheader();
195    }
196
197    /// Split all of the edges from inside the loop to their exit blocks.
198    /// Update the appropriate Phi nodes as we do so.
199    void SplitExitEdges(Loop *L, const SmallVector<BasicBlock *, 8> &ExitBlocks);
200
201    bool UnswitchIfProfitable(Value *LoopCond, Constant *Val);
202    void UnswitchTrivialCondition(Loop *L, Value *Cond, Constant *Val,
203                                  BasicBlock *ExitBlock);
204    void UnswitchNontrivialCondition(Value *LIC, Constant *OnVal, Loop *L);
205
206    void RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC,
207                                              Constant *Val, bool isEqual);
208
209    void EmitPreheaderBranchOnCondition(Value *LIC, Constant *Val,
210                                        BasicBlock *TrueDest,
211                                        BasicBlock *FalseDest,
212                                        Instruction *InsertPt);
213
214    void SimplifyCode(std::vector<Instruction*> &Worklist, Loop *L);
215    void RemoveBlockIfDead(BasicBlock *BB,
216                           std::vector<Instruction*> &Worklist, Loop *l);
217    void RemoveLoopFromHierarchy(Loop *L);
218    bool IsTrivialUnswitchCondition(Value *Cond, Constant **Val = 0,
219                                    BasicBlock **LoopExit = 0);
220
221  };
222}
223
224// Analyze loop. Check its size, calculate is it possible to unswitch
225// it. Returns true if we can unswitch this loop.
226bool LUAnalysisCache::countLoop(const Loop *L, const TargetTransformInfo &TTI) {
227
228  std::pair<LoopPropsMapIt, bool> InsertRes =
229      LoopsProperties.insert(std::make_pair(L, LoopProperties()));
230
231  LoopProperties& Props = InsertRes.first->second;
232
233  if (InsertRes.second) {
234    // New loop.
235
236    // Limit the number of instructions to avoid causing significant code
237    // expansion, and the number of basic blocks, to avoid loops with
238    // large numbers of branches which cause loop unswitching to go crazy.
239    // This is a very ad-hoc heuristic.
240
241    // FIXME: This is overly conservative because it does not take into
242    // consideration code simplification opportunities and code that can
243    // be shared by the resultant unswitched loops.
244    CodeMetrics Metrics;
245    for (Loop::block_iterator I = L->block_begin(),
246           E = L->block_end();
247         I != E; ++I)
248      Metrics.analyzeBasicBlock(*I, TTI);
249
250    Props.SizeEstimation = std::min(Metrics.NumInsts, Metrics.NumBlocks * 5);
251    Props.CanBeUnswitchedCount = MaxSize / (Props.SizeEstimation);
252    MaxSize -= Props.SizeEstimation * Props.CanBeUnswitchedCount;
253
254    if (Metrics.notDuplicatable) {
255      DEBUG(dbgs() << "NOT unswitching loop %"
256            << L->getHeader()->getName() << ", contents cannot be "
257            << "duplicated!\n");
258      return false;
259    }
260  }
261
262  if (!Props.CanBeUnswitchedCount) {
263    DEBUG(dbgs() << "NOT unswitching loop %"
264          << L->getHeader()->getName() << ", cost too high: "
265          << L->getBlocks().size() << "\n");
266
267    return false;
268  }
269
270  // Be careful. This links are good only before new loop addition.
271  CurrentLoopProperties = &Props;
272  CurLoopInstructions = &Props.UnswitchedVals;
273
274  return true;
275}
276
277// Clean all data related to given loop.
278void LUAnalysisCache::forgetLoop(const Loop* L) {
279
280  LoopPropsMapIt LIt = LoopsProperties.find(L);
281
282  if (LIt != LoopsProperties.end()) {
283    LoopProperties& Props = LIt->second;
284    MaxSize += Props.CanBeUnswitchedCount * Props.SizeEstimation;
285    LoopsProperties.erase(LIt);
286  }
287
288  CurrentLoopProperties = NULL;
289  CurLoopInstructions = NULL;
290}
291
292// Mark case value as unswitched.
293// Since SI instruction can be partly unswitched, in order to avoid
294// extra unswitching in cloned loops keep track all unswitched values.
295void LUAnalysisCache::setUnswitched(const SwitchInst* SI, const Value* V) {
296  (*CurLoopInstructions)[SI].insert(V);
297}
298
299// Check was this case value unswitched before or not.
300bool LUAnalysisCache::isUnswitched(const SwitchInst* SI, const Value* V) {
301  return (*CurLoopInstructions)[SI].count(V);
302}
303
304// Clone all loop-unswitch related loop properties.
305// Redistribute unswitching quotas.
306// Note, that new loop data is stored inside the VMap.
307void LUAnalysisCache::cloneData(const Loop* NewLoop, const Loop* OldLoop,
308                     const ValueToValueMapTy& VMap) {
309
310  LoopProperties& NewLoopProps = LoopsProperties[NewLoop];
311  LoopProperties& OldLoopProps = *CurrentLoopProperties;
312  UnswitchedValsMap& Insts = OldLoopProps.UnswitchedVals;
313
314  // Reallocate "can-be-unswitched quota"
315
316  --OldLoopProps.CanBeUnswitchedCount;
317  unsigned Quota = OldLoopProps.CanBeUnswitchedCount;
318  NewLoopProps.CanBeUnswitchedCount = Quota / 2;
319  OldLoopProps.CanBeUnswitchedCount = Quota - Quota / 2;
320
321  NewLoopProps.SizeEstimation = OldLoopProps.SizeEstimation;
322
323  // Clone unswitched values info:
324  // for new loop switches we clone info about values that was
325  // already unswitched and has redundant successors.
326  for (UnswitchedValsIt I = Insts.begin(); I != Insts.end(); ++I) {
327    const SwitchInst* OldInst = I->first;
328    Value* NewI = VMap.lookup(OldInst);
329    const SwitchInst* NewInst = cast_or_null<SwitchInst>(NewI);
330    assert(NewInst && "All instructions that are in SrcBB must be in VMap.");
331
332    NewLoopProps.UnswitchedVals[NewInst] = OldLoopProps.UnswitchedVals[OldInst];
333  }
334}
335
336char LoopUnswitch::ID = 0;
337INITIALIZE_PASS_BEGIN(LoopUnswitch, "loop-unswitch", "Unswitch loops",
338                      false, false)
339INITIALIZE_AG_DEPENDENCY(TargetTransformInfo)
340INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
341INITIALIZE_PASS_DEPENDENCY(LoopInfo)
342INITIALIZE_PASS_DEPENDENCY(LCSSA)
343INITIALIZE_PASS_END(LoopUnswitch, "loop-unswitch", "Unswitch loops",
344                      false, false)
345
346Pass *llvm::createLoopUnswitchPass(bool Os) {
347  return new LoopUnswitch(Os);
348}
349
350/// FindLIVLoopCondition - Cond is a condition that occurs in L.  If it is
351/// invariant in the loop, or has an invariant piece, return the invariant.
352/// Otherwise, return null.
353static Value *FindLIVLoopCondition(Value *Cond, Loop *L, bool &Changed) {
354
355  // We started analyze new instruction, increment scanned instructions counter.
356  ++TotalInsts;
357
358  // We can never unswitch on vector conditions.
359  if (Cond->getType()->isVectorTy())
360    return 0;
361
362  // Constants should be folded, not unswitched on!
363  if (isa<Constant>(Cond)) return 0;
364
365  // TODO: Handle: br (VARIANT|INVARIANT).
366
367  // Hoist simple values out.
368  if (L->makeLoopInvariant(Cond, Changed))
369    return Cond;
370
371  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Cond))
372    if (BO->getOpcode() == Instruction::And ||
373        BO->getOpcode() == Instruction::Or) {
374      // If either the left or right side is invariant, we can unswitch on this,
375      // which will cause the branch to go away in one loop and the condition to
376      // simplify in the other one.
377      if (Value *LHS = FindLIVLoopCondition(BO->getOperand(0), L, Changed))
378        return LHS;
379      if (Value *RHS = FindLIVLoopCondition(BO->getOperand(1), L, Changed))
380        return RHS;
381    }
382
383  return 0;
384}
385
386bool LoopUnswitch::runOnLoop(Loop *L, LPPassManager &LPM_Ref) {
387  LI = &getAnalysis<LoopInfo>();
388  LPM = &LPM_Ref;
389  DT = getAnalysisIfAvailable<DominatorTree>();
390  currentLoop = L;
391  Function *F = currentLoop->getHeader()->getParent();
392  bool Changed = false;
393  do {
394    assert(currentLoop->isLCSSAForm(*DT));
395    redoLoop = false;
396    Changed |= processCurrentLoop();
397  } while(redoLoop);
398
399  if (Changed) {
400    // FIXME: Reconstruct dom info, because it is not preserved properly.
401    if (DT)
402      DT->runOnFunction(*F);
403  }
404  return Changed;
405}
406
407/// processCurrentLoop - Do actual work and unswitch loop if possible
408/// and profitable.
409bool LoopUnswitch::processCurrentLoop() {
410  bool Changed = false;
411
412  initLoopData();
413
414  // If LoopSimplify was unable to form a preheader, don't do any unswitching.
415  if (!loopPreheader)
416    return false;
417
418  // Loops with indirectbr cannot be cloned.
419  if (!currentLoop->isSafeToClone())
420    return false;
421
422  // Without dedicated exits, splitting the exit edge may fail.
423  if (!currentLoop->hasDedicatedExits())
424    return false;
425
426  LLVMContext &Context = loopHeader->getContext();
427
428  // Probably we reach the quota of branches for this loop. If so
429  // stop unswitching.
430  if (!BranchesInfo.countLoop(currentLoop, getAnalysis<TargetTransformInfo>()))
431    return false;
432
433  // Loop over all of the basic blocks in the loop.  If we find an interior
434  // block that is branching on a loop-invariant condition, we can unswitch this
435  // loop.
436  for (Loop::block_iterator I = currentLoop->block_begin(),
437         E = currentLoop->block_end(); I != E; ++I) {
438    TerminatorInst *TI = (*I)->getTerminator();
439    if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
440      // If this isn't branching on an invariant condition, we can't unswitch
441      // it.
442      if (BI->isConditional()) {
443        // See if this, or some part of it, is loop invariant.  If so, we can
444        // unswitch on it if we desire.
445        Value *LoopCond = FindLIVLoopCondition(BI->getCondition(),
446                                               currentLoop, Changed);
447        if (LoopCond && UnswitchIfProfitable(LoopCond,
448                                             ConstantInt::getTrue(Context))) {
449          ++NumBranches;
450          return true;
451        }
452      }
453    } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
454      Value *LoopCond = FindLIVLoopCondition(SI->getCondition(),
455                                             currentLoop, Changed);
456      unsigned NumCases = SI->getNumCases();
457      if (LoopCond && NumCases) {
458        // Find a value to unswitch on:
459        // FIXME: this should chose the most expensive case!
460        // FIXME: scan for a case with a non-critical edge?
461        Constant *UnswitchVal = NULL;
462
463        // Do not process same value again and again.
464        // At this point we have some cases already unswitched and
465        // some not yet unswitched. Let's find the first not yet unswitched one.
466        for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
467             i != e; ++i) {
468          Constant* UnswitchValCandidate = i.getCaseValue();
469          if (!BranchesInfo.isUnswitched(SI, UnswitchValCandidate)) {
470            UnswitchVal = UnswitchValCandidate;
471            break;
472          }
473        }
474
475        if (!UnswitchVal)
476          continue;
477
478        if (UnswitchIfProfitable(LoopCond, UnswitchVal)) {
479          ++NumSwitches;
480          return true;
481        }
482      }
483    }
484
485    // Scan the instructions to check for unswitchable values.
486    for (BasicBlock::iterator BBI = (*I)->begin(), E = (*I)->end();
487         BBI != E; ++BBI)
488      if (SelectInst *SI = dyn_cast<SelectInst>(BBI)) {
489        Value *LoopCond = FindLIVLoopCondition(SI->getCondition(),
490                                               currentLoop, Changed);
491        if (LoopCond && UnswitchIfProfitable(LoopCond,
492                                             ConstantInt::getTrue(Context))) {
493          ++NumSelects;
494          return true;
495        }
496      }
497  }
498  return Changed;
499}
500
501/// isTrivialLoopExitBlock - Check to see if all paths from BB exit the
502/// loop with no side effects (including infinite loops).
503///
504/// If true, we return true and set ExitBB to the block we
505/// exit through.
506///
507static bool isTrivialLoopExitBlockHelper(Loop *L, BasicBlock *BB,
508                                         BasicBlock *&ExitBB,
509                                         std::set<BasicBlock*> &Visited) {
510  if (!Visited.insert(BB).second) {
511    // Already visited. Without more analysis, this could indicate an infinite
512    // loop.
513    return false;
514  } else if (!L->contains(BB)) {
515    // Otherwise, this is a loop exit, this is fine so long as this is the
516    // first exit.
517    if (ExitBB != 0) return false;
518    ExitBB = BB;
519    return true;
520  }
521
522  // Otherwise, this is an unvisited intra-loop node.  Check all successors.
523  for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI) {
524    // Check to see if the successor is a trivial loop exit.
525    if (!isTrivialLoopExitBlockHelper(L, *SI, ExitBB, Visited))
526      return false;
527  }
528
529  // Okay, everything after this looks good, check to make sure that this block
530  // doesn't include any side effects.
531  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
532    if (I->mayHaveSideEffects())
533      return false;
534
535  return true;
536}
537
538/// isTrivialLoopExitBlock - Return true if the specified block unconditionally
539/// leads to an exit from the specified loop, and has no side-effects in the
540/// process.  If so, return the block that is exited to, otherwise return null.
541static BasicBlock *isTrivialLoopExitBlock(Loop *L, BasicBlock *BB) {
542  std::set<BasicBlock*> Visited;
543  Visited.insert(L->getHeader());  // Branches to header make infinite loops.
544  BasicBlock *ExitBB = 0;
545  if (isTrivialLoopExitBlockHelper(L, BB, ExitBB, Visited))
546    return ExitBB;
547  return 0;
548}
549
550/// IsTrivialUnswitchCondition - Check to see if this unswitch condition is
551/// trivial: that is, that the condition controls whether or not the loop does
552/// anything at all.  If this is a trivial condition, unswitching produces no
553/// code duplications (equivalently, it produces a simpler loop and a new empty
554/// loop, which gets deleted).
555///
556/// If this is a trivial condition, return true, otherwise return false.  When
557/// returning true, this sets Cond and Val to the condition that controls the
558/// trivial condition: when Cond dynamically equals Val, the loop is known to
559/// exit.  Finally, this sets LoopExit to the BB that the loop exits to when
560/// Cond == Val.
561///
562bool LoopUnswitch::IsTrivialUnswitchCondition(Value *Cond, Constant **Val,
563                                       BasicBlock **LoopExit) {
564  BasicBlock *Header = currentLoop->getHeader();
565  TerminatorInst *HeaderTerm = Header->getTerminator();
566  LLVMContext &Context = Header->getContext();
567
568  BasicBlock *LoopExitBB = 0;
569  if (BranchInst *BI = dyn_cast<BranchInst>(HeaderTerm)) {
570    // If the header block doesn't end with a conditional branch on Cond, we
571    // can't handle it.
572    if (!BI->isConditional() || BI->getCondition() != Cond)
573      return false;
574
575    // Check to see if a successor of the branch is guaranteed to
576    // exit through a unique exit block without having any
577    // side-effects.  If so, determine the value of Cond that causes it to do
578    // this.
579    if ((LoopExitBB = isTrivialLoopExitBlock(currentLoop,
580                                             BI->getSuccessor(0)))) {
581      if (Val) *Val = ConstantInt::getTrue(Context);
582    } else if ((LoopExitBB = isTrivialLoopExitBlock(currentLoop,
583                                                    BI->getSuccessor(1)))) {
584      if (Val) *Val = ConstantInt::getFalse(Context);
585    }
586  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(HeaderTerm)) {
587    // If this isn't a switch on Cond, we can't handle it.
588    if (SI->getCondition() != Cond) return false;
589
590    // Check to see if a successor of the switch is guaranteed to go to the
591    // latch block or exit through a one exit block without having any
592    // side-effects.  If so, determine the value of Cond that causes it to do
593    // this.
594    // Note that we can't trivially unswitch on the default case or
595    // on already unswitched cases.
596    for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
597         i != e; ++i) {
598      BasicBlock* LoopExitCandidate;
599      if ((LoopExitCandidate = isTrivialLoopExitBlock(currentLoop,
600                                               i.getCaseSuccessor()))) {
601        // Okay, we found a trivial case, remember the value that is trivial.
602        ConstantInt* CaseVal = i.getCaseValue();
603
604        // Check that it was not unswitched before, since already unswitched
605        // trivial vals are looks trivial too.
606        if (BranchesInfo.isUnswitched(SI, CaseVal))
607          continue;
608        LoopExitBB = LoopExitCandidate;
609        if (Val) *Val = CaseVal;
610        break;
611      }
612    }
613  }
614
615  // If we didn't find a single unique LoopExit block, or if the loop exit block
616  // contains phi nodes, this isn't trivial.
617  if (!LoopExitBB || isa<PHINode>(LoopExitBB->begin()))
618    return false;   // Can't handle this.
619
620  if (LoopExit) *LoopExit = LoopExitBB;
621
622  // We already know that nothing uses any scalar values defined inside of this
623  // loop.  As such, we just have to check to see if this loop will execute any
624  // side-effecting instructions (e.g. stores, calls, volatile loads) in the
625  // part of the loop that the code *would* execute.  We already checked the
626  // tail, check the header now.
627  for (BasicBlock::iterator I = Header->begin(), E = Header->end(); I != E; ++I)
628    if (I->mayHaveSideEffects())
629      return false;
630  return true;
631}
632
633/// UnswitchIfProfitable - We have found that we can unswitch currentLoop when
634/// LoopCond == Val to simplify the loop.  If we decide that this is profitable,
635/// unswitch the loop, reprocess the pieces, then return true.
636bool LoopUnswitch::UnswitchIfProfitable(Value *LoopCond, Constant *Val) {
637  Function *F = loopHeader->getParent();
638  Constant *CondVal = 0;
639  BasicBlock *ExitBlock = 0;
640
641  if (IsTrivialUnswitchCondition(LoopCond, &CondVal, &ExitBlock)) {
642    // If the condition is trivial, always unswitch. There is no code growth
643    // for this case.
644    UnswitchTrivialCondition(currentLoop, LoopCond, CondVal, ExitBlock);
645    return true;
646  }
647
648  // Check to see if it would be profitable to unswitch current loop.
649
650  // Do not do non-trivial unswitch while optimizing for size.
651  if (OptimizeForSize ||
652      F->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
653                                      Attribute::OptimizeForSize))
654    return false;
655
656  UnswitchNontrivialCondition(LoopCond, Val, currentLoop);
657  return true;
658}
659
660/// CloneLoop - Recursively clone the specified loop and all of its children,
661/// mapping the blocks with the specified map.
662static Loop *CloneLoop(Loop *L, Loop *PL, ValueToValueMapTy &VM,
663                       LoopInfo *LI, LPPassManager *LPM) {
664  Loop *New = new Loop();
665  LPM->insertLoop(New, PL);
666
667  // Add all of the blocks in L to the new loop.
668  for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
669       I != E; ++I)
670    if (LI->getLoopFor(*I) == L)
671      New->addBasicBlockToLoop(cast<BasicBlock>(VM[*I]), LI->getBase());
672
673  // Add all of the subloops to the new loop.
674  for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
675    CloneLoop(*I, New, VM, LI, LPM);
676
677  return New;
678}
679
680/// EmitPreheaderBranchOnCondition - Emit a conditional branch on two values
681/// if LIC == Val, branch to TrueDst, otherwise branch to FalseDest.  Insert the
682/// code immediately before InsertPt.
683void LoopUnswitch::EmitPreheaderBranchOnCondition(Value *LIC, Constant *Val,
684                                                  BasicBlock *TrueDest,
685                                                  BasicBlock *FalseDest,
686                                                  Instruction *InsertPt) {
687  // Insert a conditional branch on LIC to the two preheaders.  The original
688  // code is the true version and the new code is the false version.
689  Value *BranchVal = LIC;
690  if (!isa<ConstantInt>(Val) ||
691      Val->getType() != Type::getInt1Ty(LIC->getContext()))
692    BranchVal = new ICmpInst(InsertPt, ICmpInst::ICMP_EQ, LIC, Val);
693  else if (Val != ConstantInt::getTrue(Val->getContext()))
694    // We want to enter the new loop when the condition is true.
695    std::swap(TrueDest, FalseDest);
696
697  // Insert the new branch.
698  BranchInst *BI = BranchInst::Create(TrueDest, FalseDest, BranchVal, InsertPt);
699
700  // If either edge is critical, split it. This helps preserve LoopSimplify
701  // form for enclosing loops.
702  SplitCriticalEdge(BI, 0, this, false, false, true);
703  SplitCriticalEdge(BI, 1, this, false, false, true);
704}
705
706/// UnswitchTrivialCondition - Given a loop that has a trivial unswitchable
707/// condition in it (a cond branch from its header block to its latch block,
708/// where the path through the loop that doesn't execute its body has no
709/// side-effects), unswitch it.  This doesn't involve any code duplication, just
710/// moving the conditional branch outside of the loop and updating loop info.
711void LoopUnswitch::UnswitchTrivialCondition(Loop *L, Value *Cond,
712                                            Constant *Val,
713                                            BasicBlock *ExitBlock) {
714  DEBUG(dbgs() << "loop-unswitch: Trivial-Unswitch loop %"
715        << loopHeader->getName() << " [" << L->getBlocks().size()
716        << " blocks] in Function " << L->getHeader()->getParent()->getName()
717        << " on cond: " << *Val << " == " << *Cond << "\n");
718
719  // First step, split the preheader, so that we know that there is a safe place
720  // to insert the conditional branch.  We will change loopPreheader to have a
721  // conditional branch on Cond.
722  BasicBlock *NewPH = SplitEdge(loopPreheader, loopHeader, this);
723
724  // Now that we have a place to insert the conditional branch, create a place
725  // to branch to: this is the exit block out of the loop that we should
726  // short-circuit to.
727
728  // Split this block now, so that the loop maintains its exit block, and so
729  // that the jump from the preheader can execute the contents of the exit block
730  // without actually branching to it (the exit block should be dominated by the
731  // loop header, not the preheader).
732  assert(!L->contains(ExitBlock) && "Exit block is in the loop?");
733  BasicBlock *NewExit = SplitBlock(ExitBlock, ExitBlock->begin(), this);
734
735  // Okay, now we have a position to branch from and a position to branch to,
736  // insert the new conditional branch.
737  EmitPreheaderBranchOnCondition(Cond, Val, NewExit, NewPH,
738                                 loopPreheader->getTerminator());
739  LPM->deleteSimpleAnalysisValue(loopPreheader->getTerminator(), L);
740  loopPreheader->getTerminator()->eraseFromParent();
741
742  // We need to reprocess this loop, it could be unswitched again.
743  redoLoop = true;
744
745  // Now that we know that the loop is never entered when this condition is a
746  // particular value, rewrite the loop with this info.  We know that this will
747  // at least eliminate the old branch.
748  RewriteLoopBodyWithConditionConstant(L, Cond, Val, false);
749  ++NumTrivial;
750}
751
752/// SplitExitEdges - Split all of the edges from inside the loop to their exit
753/// blocks.  Update the appropriate Phi nodes as we do so.
754void LoopUnswitch::SplitExitEdges(Loop *L,
755                                const SmallVector<BasicBlock *, 8> &ExitBlocks){
756
757  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
758    BasicBlock *ExitBlock = ExitBlocks[i];
759    SmallVector<BasicBlock *, 4> Preds(pred_begin(ExitBlock),
760                                       pred_end(ExitBlock));
761
762    // Although SplitBlockPredecessors doesn't preserve loop-simplify in
763    // general, if we call it on all predecessors of all exits then it does.
764    if (!ExitBlock->isLandingPad()) {
765      SplitBlockPredecessors(ExitBlock, Preds, ".us-lcssa", this);
766    } else {
767      SmallVector<BasicBlock*, 2> NewBBs;
768      SplitLandingPadPredecessors(ExitBlock, Preds, ".us-lcssa", ".us-lcssa",
769                                  this, NewBBs);
770    }
771  }
772}
773
774/// UnswitchNontrivialCondition - We determined that the loop is profitable
775/// to unswitch when LIC equal Val.  Split it into loop versions and test the
776/// condition outside of either loop.  Return the loops created as Out1/Out2.
777void LoopUnswitch::UnswitchNontrivialCondition(Value *LIC, Constant *Val,
778                                               Loop *L) {
779  Function *F = loopHeader->getParent();
780  DEBUG(dbgs() << "loop-unswitch: Unswitching loop %"
781        << loopHeader->getName() << " [" << L->getBlocks().size()
782        << " blocks] in Function " << F->getName()
783        << " when '" << *Val << "' == " << *LIC << "\n");
784
785  if (ScalarEvolution *SE = getAnalysisIfAvailable<ScalarEvolution>())
786    SE->forgetLoop(L);
787
788  LoopBlocks.clear();
789  NewBlocks.clear();
790
791  // First step, split the preheader and exit blocks, and add these blocks to
792  // the LoopBlocks list.
793  BasicBlock *NewPreheader = SplitEdge(loopPreheader, loopHeader, this);
794  LoopBlocks.push_back(NewPreheader);
795
796  // We want the loop to come after the preheader, but before the exit blocks.
797  LoopBlocks.insert(LoopBlocks.end(), L->block_begin(), L->block_end());
798
799  SmallVector<BasicBlock*, 8> ExitBlocks;
800  L->getUniqueExitBlocks(ExitBlocks);
801
802  // Split all of the edges from inside the loop to their exit blocks.  Update
803  // the appropriate Phi nodes as we do so.
804  SplitExitEdges(L, ExitBlocks);
805
806  // The exit blocks may have been changed due to edge splitting, recompute.
807  ExitBlocks.clear();
808  L->getUniqueExitBlocks(ExitBlocks);
809
810  // Add exit blocks to the loop blocks.
811  LoopBlocks.insert(LoopBlocks.end(), ExitBlocks.begin(), ExitBlocks.end());
812
813  // Next step, clone all of the basic blocks that make up the loop (including
814  // the loop preheader and exit blocks), keeping track of the mapping between
815  // the instructions and blocks.
816  NewBlocks.reserve(LoopBlocks.size());
817  ValueToValueMapTy VMap;
818  for (unsigned i = 0, e = LoopBlocks.size(); i != e; ++i) {
819    BasicBlock *NewBB = CloneBasicBlock(LoopBlocks[i], VMap, ".us", F);
820
821    NewBlocks.push_back(NewBB);
822    VMap[LoopBlocks[i]] = NewBB;  // Keep the BB mapping.
823    LPM->cloneBasicBlockSimpleAnalysis(LoopBlocks[i], NewBB, L);
824  }
825
826  // Splice the newly inserted blocks into the function right before the
827  // original preheader.
828  F->getBasicBlockList().splice(NewPreheader, F->getBasicBlockList(),
829                                NewBlocks[0], F->end());
830
831  // Now we create the new Loop object for the versioned loop.
832  Loop *NewLoop = CloneLoop(L, L->getParentLoop(), VMap, LI, LPM);
833
834  // Recalculate unswitching quota, inherit simplified switches info for NewBB,
835  // Probably clone more loop-unswitch related loop properties.
836  BranchesInfo.cloneData(NewLoop, L, VMap);
837
838  Loop *ParentLoop = L->getParentLoop();
839  if (ParentLoop) {
840    // Make sure to add the cloned preheader and exit blocks to the parent loop
841    // as well.
842    ParentLoop->addBasicBlockToLoop(NewBlocks[0], LI->getBase());
843  }
844
845  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
846    BasicBlock *NewExit = cast<BasicBlock>(VMap[ExitBlocks[i]]);
847    // The new exit block should be in the same loop as the old one.
848    if (Loop *ExitBBLoop = LI->getLoopFor(ExitBlocks[i]))
849      ExitBBLoop->addBasicBlockToLoop(NewExit, LI->getBase());
850
851    assert(NewExit->getTerminator()->getNumSuccessors() == 1 &&
852           "Exit block should have been split to have one successor!");
853    BasicBlock *ExitSucc = NewExit->getTerminator()->getSuccessor(0);
854
855    // If the successor of the exit block had PHI nodes, add an entry for
856    // NewExit.
857    PHINode *PN;
858    for (BasicBlock::iterator I = ExitSucc->begin(); isa<PHINode>(I); ++I) {
859      PN = cast<PHINode>(I);
860      Value *V = PN->getIncomingValueForBlock(ExitBlocks[i]);
861      ValueToValueMapTy::iterator It = VMap.find(V);
862      if (It != VMap.end()) V = It->second;
863      PN->addIncoming(V, NewExit);
864    }
865
866    if (LandingPadInst *LPad = NewExit->getLandingPadInst()) {
867      PN = PHINode::Create(LPad->getType(), 0, "",
868                           ExitSucc->getFirstInsertionPt());
869
870      for (pred_iterator I = pred_begin(ExitSucc), E = pred_end(ExitSucc);
871           I != E; ++I) {
872        BasicBlock *BB = *I;
873        LandingPadInst *LPI = BB->getLandingPadInst();
874        LPI->replaceAllUsesWith(PN);
875        PN->addIncoming(LPI, BB);
876      }
877    }
878  }
879
880  // Rewrite the code to refer to itself.
881  for (unsigned i = 0, e = NewBlocks.size(); i != e; ++i)
882    for (BasicBlock::iterator I = NewBlocks[i]->begin(),
883           E = NewBlocks[i]->end(); I != E; ++I)
884      RemapInstruction(I, VMap,RF_NoModuleLevelChanges|RF_IgnoreMissingEntries);
885
886  // Rewrite the original preheader to select between versions of the loop.
887  BranchInst *OldBR = cast<BranchInst>(loopPreheader->getTerminator());
888  assert(OldBR->isUnconditional() && OldBR->getSuccessor(0) == LoopBlocks[0] &&
889         "Preheader splitting did not work correctly!");
890
891  // Emit the new branch that selects between the two versions of this loop.
892  EmitPreheaderBranchOnCondition(LIC, Val, NewBlocks[0], LoopBlocks[0], OldBR);
893  LPM->deleteSimpleAnalysisValue(OldBR, L);
894  OldBR->eraseFromParent();
895
896  LoopProcessWorklist.push_back(NewLoop);
897  redoLoop = true;
898
899  // Keep a WeakVH holding onto LIC.  If the first call to RewriteLoopBody
900  // deletes the instruction (for example by simplifying a PHI that feeds into
901  // the condition that we're unswitching on), we don't rewrite the second
902  // iteration.
903  WeakVH LICHandle(LIC);
904
905  // Now we rewrite the original code to know that the condition is true and the
906  // new code to know that the condition is false.
907  RewriteLoopBodyWithConditionConstant(L, LIC, Val, false);
908
909  // It's possible that simplifying one loop could cause the other to be
910  // changed to another value or a constant.  If its a constant, don't simplify
911  // it.
912  if (!LoopProcessWorklist.empty() && LoopProcessWorklist.back() == NewLoop &&
913      LICHandle && !isa<Constant>(LICHandle))
914    RewriteLoopBodyWithConditionConstant(NewLoop, LICHandle, Val, true);
915}
916
917/// RemoveFromWorklist - Remove all instances of I from the worklist vector
918/// specified.
919static void RemoveFromWorklist(Instruction *I,
920                               std::vector<Instruction*> &Worklist) {
921
922  Worklist.erase(std::remove(Worklist.begin(), Worklist.end(), I),
923                 Worklist.end());
924}
925
926/// ReplaceUsesOfWith - When we find that I really equals V, remove I from the
927/// program, replacing all uses with V and update the worklist.
928static void ReplaceUsesOfWith(Instruction *I, Value *V,
929                              std::vector<Instruction*> &Worklist,
930                              Loop *L, LPPassManager *LPM) {
931  DEBUG(dbgs() << "Replace with '" << *V << "': " << *I);
932
933  // Add uses to the worklist, which may be dead now.
934  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
935    if (Instruction *Use = dyn_cast<Instruction>(I->getOperand(i)))
936      Worklist.push_back(Use);
937
938  // Add users to the worklist which may be simplified now.
939  for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
940       UI != E; ++UI)
941    Worklist.push_back(cast<Instruction>(*UI));
942  LPM->deleteSimpleAnalysisValue(I, L);
943  RemoveFromWorklist(I, Worklist);
944  I->replaceAllUsesWith(V);
945  I->eraseFromParent();
946  ++NumSimplify;
947}
948
949/// RemoveBlockIfDead - If the specified block is dead, remove it, update loop
950/// information, and remove any dead successors it has.
951///
952void LoopUnswitch::RemoveBlockIfDead(BasicBlock *BB,
953                                     std::vector<Instruction*> &Worklist,
954                                     Loop *L) {
955  if (pred_begin(BB) != pred_end(BB)) {
956    // This block isn't dead, since an edge to BB was just removed, see if there
957    // are any easy simplifications we can do now.
958    if (BasicBlock *Pred = BB->getSinglePredecessor()) {
959      // If it has one pred, fold phi nodes in BB.
960      while (isa<PHINode>(BB->begin()))
961        ReplaceUsesOfWith(BB->begin(),
962                          cast<PHINode>(BB->begin())->getIncomingValue(0),
963                          Worklist, L, LPM);
964
965      // If this is the header of a loop and the only pred is the latch, we now
966      // have an unreachable loop.
967      if (Loop *L = LI->getLoopFor(BB))
968        if (loopHeader == BB && L->contains(Pred)) {
969          // Remove the branch from the latch to the header block, this makes
970          // the header dead, which will make the latch dead (because the header
971          // dominates the latch).
972          LPM->deleteSimpleAnalysisValue(Pred->getTerminator(), L);
973          Pred->getTerminator()->eraseFromParent();
974          new UnreachableInst(BB->getContext(), Pred);
975
976          // The loop is now broken, remove it from LI.
977          RemoveLoopFromHierarchy(L);
978
979          // Reprocess the header, which now IS dead.
980          RemoveBlockIfDead(BB, Worklist, L);
981          return;
982        }
983
984      // If pred ends in a uncond branch, add uncond branch to worklist so that
985      // the two blocks will get merged.
986      if (BranchInst *BI = dyn_cast<BranchInst>(Pred->getTerminator()))
987        if (BI->isUnconditional())
988          Worklist.push_back(BI);
989    }
990    return;
991  }
992
993  DEBUG(dbgs() << "Nuking dead block: " << *BB);
994
995  // Remove the instructions in the basic block from the worklist.
996  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
997    RemoveFromWorklist(I, Worklist);
998
999    // Anything that uses the instructions in this basic block should have their
1000    // uses replaced with undefs.
1001    // If I is not void type then replaceAllUsesWith undef.
1002    // This allows ValueHandlers and custom metadata to adjust itself.
1003    if (!I->getType()->isVoidTy())
1004      I->replaceAllUsesWith(UndefValue::get(I->getType()));
1005  }
1006
1007  // If this is the edge to the header block for a loop, remove the loop and
1008  // promote all subloops.
1009  if (Loop *BBLoop = LI->getLoopFor(BB)) {
1010    if (BBLoop->getLoopLatch() == BB) {
1011      RemoveLoopFromHierarchy(BBLoop);
1012      if (currentLoop == BBLoop) {
1013        currentLoop = 0;
1014        redoLoop = false;
1015      }
1016    }
1017  }
1018
1019  // Remove the block from the loop info, which removes it from any loops it
1020  // was in.
1021  LI->removeBlock(BB);
1022
1023
1024  // Remove phi node entries in successors for this block.
1025  TerminatorInst *TI = BB->getTerminator();
1026  SmallVector<BasicBlock*, 4> Succs;
1027  for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
1028    Succs.push_back(TI->getSuccessor(i));
1029    TI->getSuccessor(i)->removePredecessor(BB);
1030  }
1031
1032  // Unique the successors, remove anything with multiple uses.
1033  array_pod_sort(Succs.begin(), Succs.end());
1034  Succs.erase(std::unique(Succs.begin(), Succs.end()), Succs.end());
1035
1036  // Remove the basic block, including all of the instructions contained in it.
1037  LPM->deleteSimpleAnalysisValue(BB, L);
1038  BB->eraseFromParent();
1039  // Remove successor blocks here that are not dead, so that we know we only
1040  // have dead blocks in this list.  Nondead blocks have a way of becoming dead,
1041  // then getting removed before we revisit them, which is badness.
1042  //
1043  for (unsigned i = 0; i != Succs.size(); ++i)
1044    if (pred_begin(Succs[i]) != pred_end(Succs[i])) {
1045      // One exception is loop headers.  If this block was the preheader for a
1046      // loop, then we DO want to visit the loop so the loop gets deleted.
1047      // We know that if the successor is a loop header, that this loop had to
1048      // be the preheader: the case where this was the latch block was handled
1049      // above and headers can only have two predecessors.
1050      if (!LI->isLoopHeader(Succs[i])) {
1051        Succs.erase(Succs.begin()+i);
1052        --i;
1053      }
1054    }
1055
1056  for (unsigned i = 0, e = Succs.size(); i != e; ++i)
1057    RemoveBlockIfDead(Succs[i], Worklist, L);
1058}
1059
1060/// RemoveLoopFromHierarchy - We have discovered that the specified loop has
1061/// become unwrapped, either because the backedge was deleted, or because the
1062/// edge into the header was removed.  If the edge into the header from the
1063/// latch block was removed, the loop is unwrapped but subloops are still alive,
1064/// so they just reparent loops.  If the loops are actually dead, they will be
1065/// removed later.
1066void LoopUnswitch::RemoveLoopFromHierarchy(Loop *L) {
1067  LPM->deleteLoopFromQueue(L);
1068  RemoveLoopFromWorklist(L);
1069}
1070
1071// RewriteLoopBodyWithConditionConstant - We know either that the value LIC has
1072// the value specified by Val in the specified loop, or we know it does NOT have
1073// that value.  Rewrite any uses of LIC or of properties correlated to it.
1074void LoopUnswitch::RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC,
1075                                                        Constant *Val,
1076                                                        bool IsEqual) {
1077  assert(!isa<Constant>(LIC) && "Why are we unswitching on a constant?");
1078
1079  // FIXME: Support correlated properties, like:
1080  //  for (...)
1081  //    if (li1 < li2)
1082  //      ...
1083  //    if (li1 > li2)
1084  //      ...
1085
1086  // FOLD boolean conditions (X|LIC), (X&LIC).  Fold conditional branches,
1087  // selects, switches.
1088  std::vector<Instruction*> Worklist;
1089  LLVMContext &Context = Val->getContext();
1090
1091
1092  // If we know that LIC == Val, or that LIC == NotVal, just replace uses of LIC
1093  // in the loop with the appropriate one directly.
1094  if (IsEqual || (isa<ConstantInt>(Val) &&
1095      Val->getType()->isIntegerTy(1))) {
1096    Value *Replacement;
1097    if (IsEqual)
1098      Replacement = Val;
1099    else
1100      Replacement = ConstantInt::get(Type::getInt1Ty(Val->getContext()),
1101                                     !cast<ConstantInt>(Val)->getZExtValue());
1102
1103    for (Value::use_iterator UI = LIC->use_begin(), E = LIC->use_end();
1104         UI != E; ++UI) {
1105      Instruction *U = dyn_cast<Instruction>(*UI);
1106      if (!U || !L->contains(U))
1107        continue;
1108      Worklist.push_back(U);
1109    }
1110
1111    for (std::vector<Instruction*>::iterator UI = Worklist.begin();
1112         UI != Worklist.end(); ++UI)
1113      (*UI)->replaceUsesOfWith(LIC, Replacement);
1114
1115    SimplifyCode(Worklist, L);
1116    return;
1117  }
1118
1119  // Otherwise, we don't know the precise value of LIC, but we do know that it
1120  // is certainly NOT "Val".  As such, simplify any uses in the loop that we
1121  // can.  This case occurs when we unswitch switch statements.
1122  for (Value::use_iterator UI = LIC->use_begin(), E = LIC->use_end();
1123       UI != E; ++UI) {
1124    Instruction *U = dyn_cast<Instruction>(*UI);
1125    if (!U || !L->contains(U))
1126      continue;
1127
1128    Worklist.push_back(U);
1129
1130    // TODO: We could do other simplifications, for example, turning
1131    // 'icmp eq LIC, Val' -> false.
1132
1133    // If we know that LIC is not Val, use this info to simplify code.
1134    SwitchInst *SI = dyn_cast<SwitchInst>(U);
1135    if (SI == 0 || !isa<ConstantInt>(Val)) continue;
1136
1137    SwitchInst::CaseIt DeadCase = SI->findCaseValue(cast<ConstantInt>(Val));
1138    // Default case is live for multiple values.
1139    if (DeadCase == SI->case_default()) continue;
1140
1141    // Found a dead case value.  Don't remove PHI nodes in the
1142    // successor if they become single-entry, those PHI nodes may
1143    // be in the Users list.
1144
1145    BasicBlock *Switch = SI->getParent();
1146    BasicBlock *SISucc = DeadCase.getCaseSuccessor();
1147    BasicBlock *Latch = L->getLoopLatch();
1148
1149    BranchesInfo.setUnswitched(SI, Val);
1150
1151    if (!SI->findCaseDest(SISucc)) continue;  // Edge is critical.
1152    // If the DeadCase successor dominates the loop latch, then the
1153    // transformation isn't safe since it will delete the sole predecessor edge
1154    // to the latch.
1155    if (Latch && DT->dominates(SISucc, Latch))
1156      continue;
1157
1158    // FIXME: This is a hack.  We need to keep the successor around
1159    // and hooked up so as to preserve the loop structure, because
1160    // trying to update it is complicated.  So instead we preserve the
1161    // loop structure and put the block on a dead code path.
1162    SplitEdge(Switch, SISucc, this);
1163    // Compute the successors instead of relying on the return value
1164    // of SplitEdge, since it may have split the switch successor
1165    // after PHI nodes.
1166    BasicBlock *NewSISucc = DeadCase.getCaseSuccessor();
1167    BasicBlock *OldSISucc = *succ_begin(NewSISucc);
1168    // Create an "unreachable" destination.
1169    BasicBlock *Abort = BasicBlock::Create(Context, "us-unreachable",
1170                                           Switch->getParent(),
1171                                           OldSISucc);
1172    new UnreachableInst(Context, Abort);
1173    // Force the new case destination to branch to the "unreachable"
1174    // block while maintaining a (dead) CFG edge to the old block.
1175    NewSISucc->getTerminator()->eraseFromParent();
1176    BranchInst::Create(Abort, OldSISucc,
1177                       ConstantInt::getTrue(Context), NewSISucc);
1178    // Release the PHI operands for this edge.
1179    for (BasicBlock::iterator II = NewSISucc->begin();
1180         PHINode *PN = dyn_cast<PHINode>(II); ++II)
1181      PN->setIncomingValue(PN->getBasicBlockIndex(Switch),
1182                           UndefValue::get(PN->getType()));
1183    // Tell the domtree about the new block. We don't fully update the
1184    // domtree here -- instead we force it to do a full recomputation
1185    // after the pass is complete -- but we do need to inform it of
1186    // new blocks.
1187    if (DT)
1188      DT->addNewBlock(Abort, NewSISucc);
1189  }
1190
1191  SimplifyCode(Worklist, L);
1192}
1193
1194/// SimplifyCode - Okay, now that we have simplified some instructions in the
1195/// loop, walk over it and constant prop, dce, and fold control flow where
1196/// possible.  Note that this is effectively a very simple loop-structure-aware
1197/// optimizer.  During processing of this loop, L could very well be deleted, so
1198/// it must not be used.
1199///
1200/// FIXME: When the loop optimizer is more mature, separate this out to a new
1201/// pass.
1202///
1203void LoopUnswitch::SimplifyCode(std::vector<Instruction*> &Worklist, Loop *L) {
1204  while (!Worklist.empty()) {
1205    Instruction *I = Worklist.back();
1206    Worklist.pop_back();
1207
1208    // Simple DCE.
1209    if (isInstructionTriviallyDead(I)) {
1210      DEBUG(dbgs() << "Remove dead instruction '" << *I);
1211
1212      // Add uses to the worklist, which may be dead now.
1213      for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
1214        if (Instruction *Use = dyn_cast<Instruction>(I->getOperand(i)))
1215          Worklist.push_back(Use);
1216      LPM->deleteSimpleAnalysisValue(I, L);
1217      RemoveFromWorklist(I, Worklist);
1218      I->eraseFromParent();
1219      ++NumSimplify;
1220      continue;
1221    }
1222
1223    // See if instruction simplification can hack this up.  This is common for
1224    // things like "select false, X, Y" after unswitching made the condition be
1225    // 'false'.  TODO: update the domtree properly so we can pass it here.
1226    if (Value *V = SimplifyInstruction(I))
1227      if (LI->replacementPreservesLCSSAForm(I, V)) {
1228        ReplaceUsesOfWith(I, V, Worklist, L, LPM);
1229        continue;
1230      }
1231
1232    // Special case hacks that appear commonly in unswitched code.
1233    if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
1234      if (BI->isUnconditional()) {
1235        // If BI's parent is the only pred of the successor, fold the two blocks
1236        // together.
1237        BasicBlock *Pred = BI->getParent();
1238        BasicBlock *Succ = BI->getSuccessor(0);
1239        BasicBlock *SinglePred = Succ->getSinglePredecessor();
1240        if (!SinglePred) continue;  // Nothing to do.
1241        assert(SinglePred == Pred && "CFG broken");
1242
1243        DEBUG(dbgs() << "Merging blocks: " << Pred->getName() << " <- "
1244              << Succ->getName() << "\n");
1245
1246        // Resolve any single entry PHI nodes in Succ.
1247        while (PHINode *PN = dyn_cast<PHINode>(Succ->begin()))
1248          ReplaceUsesOfWith(PN, PN->getIncomingValue(0), Worklist, L, LPM);
1249
1250        // If Succ has any successors with PHI nodes, update them to have
1251        // entries coming from Pred instead of Succ.
1252        Succ->replaceAllUsesWith(Pred);
1253
1254        // Move all of the successor contents from Succ to Pred.
1255        Pred->getInstList().splice(BI, Succ->getInstList(), Succ->begin(),
1256                                   Succ->end());
1257        LPM->deleteSimpleAnalysisValue(BI, L);
1258        BI->eraseFromParent();
1259        RemoveFromWorklist(BI, Worklist);
1260
1261        // Remove Succ from the loop tree.
1262        LI->removeBlock(Succ);
1263        LPM->deleteSimpleAnalysisValue(Succ, L);
1264        Succ->eraseFromParent();
1265        ++NumSimplify;
1266        continue;
1267      }
1268
1269      if (ConstantInt *CB = dyn_cast<ConstantInt>(BI->getCondition())){
1270        // Conditional branch.  Turn it into an unconditional branch, then
1271        // remove dead blocks.
1272        continue;  // FIXME: Enable.
1273
1274        DEBUG(dbgs() << "Folded branch: " << *BI);
1275        BasicBlock *DeadSucc = BI->getSuccessor(CB->getZExtValue());
1276        BasicBlock *LiveSucc = BI->getSuccessor(!CB->getZExtValue());
1277        DeadSucc->removePredecessor(BI->getParent(), true);
1278        Worklist.push_back(BranchInst::Create(LiveSucc, BI));
1279        LPM->deleteSimpleAnalysisValue(BI, L);
1280        BI->eraseFromParent();
1281        RemoveFromWorklist(BI, Worklist);
1282        ++NumSimplify;
1283
1284        RemoveBlockIfDead(DeadSucc, Worklist, L);
1285      }
1286      continue;
1287    }
1288  }
1289}
1290