LoopUnswitch.cpp revision 1ed219a9d2279ce5a5bbcf16d9b7ccc05cce638c
1//===-- LoopUnswitch.cpp - Hoist loop-invariant conditionals in loop ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass transforms loops that contain branches on loop-invariant conditions
11// to have multiple loops.  For example, it turns the left into the right code:
12//
13//  for (...)                  if (lic)
14//    A                          for (...)
15//    if (lic)                     A; B; C
16//      B                      else
17//    C                          for (...)
18//                                 A; C
19//
20// This can increase the size of the code exponentially (doubling it every time
21// a loop is unswitched) so we only unswitch if the resultant code will be
22// smaller than a threshold.
23//
24// This pass expects LICM to be run before it to hoist invariant conditions out
25// of the loop, to make the unswitching opportunity obvious.
26//
27//===----------------------------------------------------------------------===//
28
29#define DEBUG_TYPE "loop-unswitch"
30#include "llvm/Transforms/Scalar.h"
31#include "llvm/Constants.h"
32#include "llvm/DerivedTypes.h"
33#include "llvm/Function.h"
34#include "llvm/Instructions.h"
35#include "llvm/Analysis/ConstantFolding.h"
36#include "llvm/Analysis/InlineCost.h"
37#include "llvm/Analysis/InstructionSimplify.h"
38#include "llvm/Analysis/LoopInfo.h"
39#include "llvm/Analysis/LoopPass.h"
40#include "llvm/Analysis/Dominators.h"
41#include "llvm/Transforms/Utils/Cloning.h"
42#include "llvm/Transforms/Utils/Local.h"
43#include "llvm/Transforms/Utils/BasicBlockUtils.h"
44#include "llvm/ADT/Statistic.h"
45#include "llvm/ADT/SmallPtrSet.h"
46#include "llvm/ADT/STLExtras.h"
47#include "llvm/Support/CommandLine.h"
48#include "llvm/Support/Debug.h"
49#include "llvm/Support/raw_ostream.h"
50#include <algorithm>
51#include <set>
52using namespace llvm;
53
54STATISTIC(NumBranches, "Number of branches unswitched");
55STATISTIC(NumSwitches, "Number of switches unswitched");
56STATISTIC(NumSelects , "Number of selects unswitched");
57STATISTIC(NumTrivial , "Number of unswitches that are trivial");
58STATISTIC(NumSimplify, "Number of simplifications of unswitched code");
59
60// The specific value of 50 here was chosen based only on intuition and a
61// few specific examples.
62static cl::opt<unsigned>
63Threshold("loop-unswitch-threshold", cl::desc("Max loop size to unswitch"),
64          cl::init(50), cl::Hidden);
65
66namespace {
67  class LoopUnswitch : public LoopPass {
68    LoopInfo *LI;  // Loop information
69    LPPassManager *LPM;
70
71    // LoopProcessWorklist - Used to check if second loop needs processing
72    // after RewriteLoopBodyWithConditionConstant rewrites first loop.
73    std::vector<Loop*> LoopProcessWorklist;
74    SmallPtrSet<Value *,8> UnswitchedVals;
75
76    bool OptimizeForSize;
77    bool redoLoop;
78
79    Loop *currentLoop;
80    DominatorTree *DT;
81    BasicBlock *loopHeader;
82    BasicBlock *loopPreheader;
83
84    // LoopBlocks contains all of the basic blocks of the loop, including the
85    // preheader of the loop, the body of the loop, and the exit blocks of the
86    // loop, in that order.
87    std::vector<BasicBlock*> LoopBlocks;
88    // NewBlocks contained cloned copy of basic blocks from LoopBlocks.
89    std::vector<BasicBlock*> NewBlocks;
90
91  public:
92    static char ID; // Pass ID, replacement for typeid
93    explicit LoopUnswitch(bool Os = false) :
94      LoopPass(ID), OptimizeForSize(Os), redoLoop(false),
95      currentLoop(NULL), DT(NULL), loopHeader(NULL),
96      loopPreheader(NULL) {}
97
98    bool runOnLoop(Loop *L, LPPassManager &LPM);
99    bool processCurrentLoop();
100
101    /// This transformation requires natural loop information & requires that
102    /// loop preheaders be inserted into the CFG.
103    ///
104    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
105      AU.addRequiredID(LoopSimplifyID);
106      AU.addPreservedID(LoopSimplifyID);
107      AU.addRequired<LoopInfo>();
108      AU.addPreserved<LoopInfo>();
109      AU.addRequiredID(LCSSAID);
110      AU.addPreservedID(LCSSAID);
111      AU.addPreserved<DominatorTree>();
112    }
113
114  private:
115
116    virtual void releaseMemory() {
117      UnswitchedVals.clear();
118    }
119
120    /// RemoveLoopFromWorklist - If the specified loop is on the loop worklist,
121    /// remove it.
122    void RemoveLoopFromWorklist(Loop *L) {
123      std::vector<Loop*>::iterator I = std::find(LoopProcessWorklist.begin(),
124                                                 LoopProcessWorklist.end(), L);
125      if (I != LoopProcessWorklist.end())
126        LoopProcessWorklist.erase(I);
127    }
128
129    void initLoopData() {
130      loopHeader = currentLoop->getHeader();
131      loopPreheader = currentLoop->getLoopPreheader();
132    }
133
134    /// Split all of the edges from inside the loop to their exit blocks.
135    /// Update the appropriate Phi nodes as we do so.
136    void SplitExitEdges(Loop *L, const SmallVector<BasicBlock *, 8> &ExitBlocks);
137
138    bool UnswitchIfProfitable(Value *LoopCond, Constant *Val);
139    void UnswitchTrivialCondition(Loop *L, Value *Cond, Constant *Val,
140                                  BasicBlock *ExitBlock);
141    void UnswitchNontrivialCondition(Value *LIC, Constant *OnVal, Loop *L);
142
143    void RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC,
144                                              Constant *Val, bool isEqual);
145
146    void EmitPreheaderBranchOnCondition(Value *LIC, Constant *Val,
147                                        BasicBlock *TrueDest,
148                                        BasicBlock *FalseDest,
149                                        Instruction *InsertPt);
150
151    void SimplifyCode(std::vector<Instruction*> &Worklist, Loop *L);
152    void RemoveBlockIfDead(BasicBlock *BB,
153                           std::vector<Instruction*> &Worklist, Loop *l);
154    void RemoveLoopFromHierarchy(Loop *L);
155    bool IsTrivialUnswitchCondition(Value *Cond, Constant **Val = 0,
156                                    BasicBlock **LoopExit = 0);
157
158  };
159}
160char LoopUnswitch::ID = 0;
161INITIALIZE_PASS_BEGIN(LoopUnswitch, "loop-unswitch", "Unswitch loops",
162                      false, false)
163INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
164INITIALIZE_PASS_DEPENDENCY(LoopInfo)
165INITIALIZE_PASS_DEPENDENCY(LCSSA)
166INITIALIZE_PASS_DEPENDENCY(DominatorTree)
167INITIALIZE_PASS_END(LoopUnswitch, "loop-unswitch", "Unswitch loops",
168                      false, false)
169
170Pass *llvm::createLoopUnswitchPass(bool Os) {
171  return new LoopUnswitch(Os);
172}
173
174/// FindLIVLoopCondition - Cond is a condition that occurs in L.  If it is
175/// invariant in the loop, or has an invariant piece, return the invariant.
176/// Otherwise, return null.
177static Value *FindLIVLoopCondition(Value *Cond, Loop *L, bool &Changed) {
178  // We can never unswitch on vector conditions.
179  if (Cond->getType()->isVectorTy())
180    return 0;
181
182  // Constants should be folded, not unswitched on!
183  if (isa<Constant>(Cond)) return 0;
184
185  // TODO: Handle: br (VARIANT|INVARIANT).
186
187  // Hoist simple values out.
188  if (L->makeLoopInvariant(Cond, Changed))
189    return Cond;
190
191  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Cond))
192    if (BO->getOpcode() == Instruction::And ||
193        BO->getOpcode() == Instruction::Or) {
194      // If either the left or right side is invariant, we can unswitch on this,
195      // which will cause the branch to go away in one loop and the condition to
196      // simplify in the other one.
197      if (Value *LHS = FindLIVLoopCondition(BO->getOperand(0), L, Changed))
198        return LHS;
199      if (Value *RHS = FindLIVLoopCondition(BO->getOperand(1), L, Changed))
200        return RHS;
201    }
202
203  return 0;
204}
205
206bool LoopUnswitch::runOnLoop(Loop *L, LPPassManager &LPM_Ref) {
207  LI = &getAnalysis<LoopInfo>();
208  LPM = &LPM_Ref;
209  DT = getAnalysisIfAvailable<DominatorTree>();
210  currentLoop = L;
211  Function *F = currentLoop->getHeader()->getParent();
212  bool Changed = false;
213  do {
214    assert(currentLoop->isLCSSAForm(*DT));
215    redoLoop = false;
216    Changed |= processCurrentLoop();
217  } while(redoLoop);
218
219  if (Changed) {
220    // FIXME: Reconstruct dom info, because it is not preserved properly.
221    if (DT)
222      DT->runOnFunction(*F);
223  }
224  return Changed;
225}
226
227/// processCurrentLoop - Do actual work and unswitch loop if possible
228/// and profitable.
229bool LoopUnswitch::processCurrentLoop() {
230  bool Changed = false;
231  LLVMContext &Context = currentLoop->getHeader()->getContext();
232
233  // Loop over all of the basic blocks in the loop.  If we find an interior
234  // block that is branching on a loop-invariant condition, we can unswitch this
235  // loop.
236  for (Loop::block_iterator I = currentLoop->block_begin(),
237         E = currentLoop->block_end(); I != E; ++I) {
238    TerminatorInst *TI = (*I)->getTerminator();
239    if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
240      // If this isn't branching on an invariant condition, we can't unswitch
241      // it.
242      if (BI->isConditional()) {
243        // See if this, or some part of it, is loop invariant.  If so, we can
244        // unswitch on it if we desire.
245        Value *LoopCond = FindLIVLoopCondition(BI->getCondition(),
246                                               currentLoop, Changed);
247        if (LoopCond && UnswitchIfProfitable(LoopCond,
248                                             ConstantInt::getTrue(Context))) {
249          ++NumBranches;
250          return true;
251        }
252      }
253    } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
254      Value *LoopCond = FindLIVLoopCondition(SI->getCondition(),
255                                             currentLoop, Changed);
256      if (LoopCond && SI->getNumCases() > 1) {
257        // Find a value to unswitch on:
258        // FIXME: this should chose the most expensive case!
259        Constant *UnswitchVal = SI->getCaseValue(1);
260        // Do not process same value again and again.
261        if (!UnswitchedVals.insert(UnswitchVal))
262          continue;
263
264        if (UnswitchIfProfitable(LoopCond, UnswitchVal)) {
265          ++NumSwitches;
266          return true;
267        }
268      }
269    }
270
271    // Scan the instructions to check for unswitchable values.
272    for (BasicBlock::iterator BBI = (*I)->begin(), E = (*I)->end();
273         BBI != E; ++BBI)
274      if (SelectInst *SI = dyn_cast<SelectInst>(BBI)) {
275        Value *LoopCond = FindLIVLoopCondition(SI->getCondition(),
276                                               currentLoop, Changed);
277        if (LoopCond && UnswitchIfProfitable(LoopCond,
278                                             ConstantInt::getTrue(Context))) {
279          ++NumSelects;
280          return true;
281        }
282      }
283  }
284  return Changed;
285}
286
287/// isTrivialLoopExitBlock - Check to see if all paths from BB exit the
288/// loop with no side effects (including infinite loops).
289///
290/// If true, we return true and set ExitBB to the block we
291/// exit through.
292///
293static bool isTrivialLoopExitBlockHelper(Loop *L, BasicBlock *BB,
294                                         BasicBlock *&ExitBB,
295                                         std::set<BasicBlock*> &Visited) {
296  if (!Visited.insert(BB).second) {
297    // Already visited. Without more analysis, this could indicate an infinte loop.
298    return false;
299  } else if (!L->contains(BB)) {
300    // Otherwise, this is a loop exit, this is fine so long as this is the
301    // first exit.
302    if (ExitBB != 0) return false;
303    ExitBB = BB;
304    return true;
305  }
306
307  // Otherwise, this is an unvisited intra-loop node.  Check all successors.
308  for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI) {
309    // Check to see if the successor is a trivial loop exit.
310    if (!isTrivialLoopExitBlockHelper(L, *SI, ExitBB, Visited))
311      return false;
312  }
313
314  // Okay, everything after this looks good, check to make sure that this block
315  // doesn't include any side effects.
316  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
317    if (I->mayHaveSideEffects())
318      return false;
319
320  return true;
321}
322
323/// isTrivialLoopExitBlock - Return true if the specified block unconditionally
324/// leads to an exit from the specified loop, and has no side-effects in the
325/// process.  If so, return the block that is exited to, otherwise return null.
326static BasicBlock *isTrivialLoopExitBlock(Loop *L, BasicBlock *BB) {
327  std::set<BasicBlock*> Visited;
328  Visited.insert(L->getHeader());  // Branches to header make infinite loops.
329  BasicBlock *ExitBB = 0;
330  if (isTrivialLoopExitBlockHelper(L, BB, ExitBB, Visited))
331    return ExitBB;
332  return 0;
333}
334
335/// IsTrivialUnswitchCondition - Check to see if this unswitch condition is
336/// trivial: that is, that the condition controls whether or not the loop does
337/// anything at all.  If this is a trivial condition, unswitching produces no
338/// code duplications (equivalently, it produces a simpler loop and a new empty
339/// loop, which gets deleted).
340///
341/// If this is a trivial condition, return true, otherwise return false.  When
342/// returning true, this sets Cond and Val to the condition that controls the
343/// trivial condition: when Cond dynamically equals Val, the loop is known to
344/// exit.  Finally, this sets LoopExit to the BB that the loop exits to when
345/// Cond == Val.
346///
347bool LoopUnswitch::IsTrivialUnswitchCondition(Value *Cond, Constant **Val,
348                                       BasicBlock **LoopExit) {
349  BasicBlock *Header = currentLoop->getHeader();
350  TerminatorInst *HeaderTerm = Header->getTerminator();
351  LLVMContext &Context = Header->getContext();
352
353  BasicBlock *LoopExitBB = 0;
354  if (BranchInst *BI = dyn_cast<BranchInst>(HeaderTerm)) {
355    // If the header block doesn't end with a conditional branch on Cond, we
356    // can't handle it.
357    if (!BI->isConditional() || BI->getCondition() != Cond)
358      return false;
359
360    // Check to see if a successor of the branch is guaranteed to
361    // exit through a unique exit block without having any
362    // side-effects.  If so, determine the value of Cond that causes it to do
363    // this.
364    if ((LoopExitBB = isTrivialLoopExitBlock(currentLoop,
365                                             BI->getSuccessor(0)))) {
366      if (Val) *Val = ConstantInt::getTrue(Context);
367    } else if ((LoopExitBB = isTrivialLoopExitBlock(currentLoop,
368                                                    BI->getSuccessor(1)))) {
369      if (Val) *Val = ConstantInt::getFalse(Context);
370    }
371  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(HeaderTerm)) {
372    // If this isn't a switch on Cond, we can't handle it.
373    if (SI->getCondition() != Cond) return false;
374
375    // Check to see if a successor of the switch is guaranteed to go to the
376    // latch block or exit through a one exit block without having any
377    // side-effects.  If so, determine the value of Cond that causes it to do
378    // this.  Note that we can't trivially unswitch on the default case.
379    for (unsigned i = 1, e = SI->getNumSuccessors(); i != e; ++i)
380      if ((LoopExitBB = isTrivialLoopExitBlock(currentLoop,
381                                               SI->getSuccessor(i)))) {
382        // Okay, we found a trivial case, remember the value that is trivial.
383        if (Val) *Val = SI->getCaseValue(i);
384        break;
385      }
386  }
387
388  // If we didn't find a single unique LoopExit block, or if the loop exit block
389  // contains phi nodes, this isn't trivial.
390  if (!LoopExitBB || isa<PHINode>(LoopExitBB->begin()))
391    return false;   // Can't handle this.
392
393  if (LoopExit) *LoopExit = LoopExitBB;
394
395  // We already know that nothing uses any scalar values defined inside of this
396  // loop.  As such, we just have to check to see if this loop will execute any
397  // side-effecting instructions (e.g. stores, calls, volatile loads) in the
398  // part of the loop that the code *would* execute.  We already checked the
399  // tail, check the header now.
400  for (BasicBlock::iterator I = Header->begin(), E = Header->end(); I != E; ++I)
401    if (I->mayHaveSideEffects())
402      return false;
403  return true;
404}
405
406/// UnswitchIfProfitable - We have found that we can unswitch currentLoop when
407/// LoopCond == Val to simplify the loop.  If we decide that this is profitable,
408/// unswitch the loop, reprocess the pieces, then return true.
409bool LoopUnswitch::UnswitchIfProfitable(Value *LoopCond, Constant *Val) {
410
411  initLoopData();
412
413  // If LoopSimplify was unable to form a preheader, don't do any unswitching.
414  if (!loopPreheader)
415    return false;
416
417  Function *F = loopHeader->getParent();
418
419  Constant *CondVal = 0;
420  BasicBlock *ExitBlock = 0;
421  if (IsTrivialUnswitchCondition(LoopCond, &CondVal, &ExitBlock)) {
422    // If the condition is trivial, always unswitch. There is no code growth
423    // for this case.
424    UnswitchTrivialCondition(currentLoop, LoopCond, CondVal, ExitBlock);
425    return true;
426  }
427
428  // Check to see if it would be profitable to unswitch current loop.
429
430  // Do not do non-trivial unswitch while optimizing for size.
431  if (OptimizeForSize || F->hasFnAttr(Attribute::OptimizeForSize))
432    return false;
433
434  // FIXME: This is overly conservative because it does not take into
435  // consideration code simplification opportunities and code that can
436  // be shared by the resultant unswitched loops.
437  CodeMetrics Metrics;
438  for (Loop::block_iterator I = currentLoop->block_begin(),
439         E = currentLoop->block_end();
440       I != E; ++I)
441    Metrics.analyzeBasicBlock(*I);
442
443  // Limit the number of instructions to avoid causing significant code
444  // expansion, and the number of basic blocks, to avoid loops with
445  // large numbers of branches which cause loop unswitching to go crazy.
446  // This is a very ad-hoc heuristic.
447  if (Metrics.NumInsts > Threshold ||
448      Metrics.NumBlocks * 5 > Threshold ||
449      Metrics.containsIndirectBr || Metrics.isRecursive) {
450    DEBUG(dbgs() << "NOT unswitching loop %"
451          << currentLoop->getHeader()->getName() << ", cost too high: "
452          << currentLoop->getBlocks().size() << "\n");
453    return false;
454  }
455
456  UnswitchNontrivialCondition(LoopCond, Val, currentLoop);
457  return true;
458}
459
460// RemapInstruction - Convert the instruction operands from referencing the
461// current values into those specified by VMap.
462//
463static inline void RemapInstruction(Instruction *I,
464                                    ValueToValueMapTy &VMap) {
465  for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) {
466    Value *Op = I->getOperand(op);
467    ValueToValueMapTy::iterator It = VMap.find(Op);
468    if (It != VMap.end()) Op = It->second;
469    I->setOperand(op, Op);
470  }
471}
472
473/// CloneLoop - Recursively clone the specified loop and all of its children,
474/// mapping the blocks with the specified map.
475static Loop *CloneLoop(Loop *L, Loop *PL, ValueToValueMapTy &VM,
476                       LoopInfo *LI, LPPassManager *LPM) {
477  Loop *New = new Loop();
478  LPM->insertLoop(New, PL);
479
480  // Add all of the blocks in L to the new loop.
481  for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
482       I != E; ++I)
483    if (LI->getLoopFor(*I) == L)
484      New->addBasicBlockToLoop(cast<BasicBlock>(VM[*I]), LI->getBase());
485
486  // Add all of the subloops to the new loop.
487  for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
488    CloneLoop(*I, New, VM, LI, LPM);
489
490  return New;
491}
492
493/// EmitPreheaderBranchOnCondition - Emit a conditional branch on two values
494/// if LIC == Val, branch to TrueDst, otherwise branch to FalseDest.  Insert the
495/// code immediately before InsertPt.
496void LoopUnswitch::EmitPreheaderBranchOnCondition(Value *LIC, Constant *Val,
497                                                  BasicBlock *TrueDest,
498                                                  BasicBlock *FalseDest,
499                                                  Instruction *InsertPt) {
500  // Insert a conditional branch on LIC to the two preheaders.  The original
501  // code is the true version and the new code is the false version.
502  Value *BranchVal = LIC;
503  if (!isa<ConstantInt>(Val) ||
504      Val->getType() != Type::getInt1Ty(LIC->getContext()))
505    BranchVal = new ICmpInst(InsertPt, ICmpInst::ICMP_EQ, LIC, Val, "tmp");
506  else if (Val != ConstantInt::getTrue(Val->getContext()))
507    // We want to enter the new loop when the condition is true.
508    std::swap(TrueDest, FalseDest);
509
510  // Insert the new branch.
511  BranchInst *BI = BranchInst::Create(TrueDest, FalseDest, BranchVal, InsertPt);
512
513  // If either edge is critical, split it. This helps preserve LoopSimplify
514  // form for enclosing loops.
515  SplitCriticalEdge(BI, 0, this);
516  SplitCriticalEdge(BI, 1, this);
517}
518
519/// UnswitchTrivialCondition - Given a loop that has a trivial unswitchable
520/// condition in it (a cond branch from its header block to its latch block,
521/// where the path through the loop that doesn't execute its body has no
522/// side-effects), unswitch it.  This doesn't involve any code duplication, just
523/// moving the conditional branch outside of the loop and updating loop info.
524void LoopUnswitch::UnswitchTrivialCondition(Loop *L, Value *Cond,
525                                            Constant *Val,
526                                            BasicBlock *ExitBlock) {
527  DEBUG(dbgs() << "loop-unswitch: Trivial-Unswitch loop %"
528        << loopHeader->getName() << " [" << L->getBlocks().size()
529        << " blocks] in Function " << L->getHeader()->getParent()->getName()
530        << " on cond: " << *Val << " == " << *Cond << "\n");
531
532  // First step, split the preheader, so that we know that there is a safe place
533  // to insert the conditional branch.  We will change loopPreheader to have a
534  // conditional branch on Cond.
535  BasicBlock *NewPH = SplitEdge(loopPreheader, loopHeader, this);
536
537  // Now that we have a place to insert the conditional branch, create a place
538  // to branch to: this is the exit block out of the loop that we should
539  // short-circuit to.
540
541  // Split this block now, so that the loop maintains its exit block, and so
542  // that the jump from the preheader can execute the contents of the exit block
543  // without actually branching to it (the exit block should be dominated by the
544  // loop header, not the preheader).
545  assert(!L->contains(ExitBlock) && "Exit block is in the loop?");
546  BasicBlock *NewExit = SplitBlock(ExitBlock, ExitBlock->begin(), this);
547
548  // Okay, now we have a position to branch from and a position to branch to,
549  // insert the new conditional branch.
550  EmitPreheaderBranchOnCondition(Cond, Val, NewExit, NewPH,
551                                 loopPreheader->getTerminator());
552  LPM->deleteSimpleAnalysisValue(loopPreheader->getTerminator(), L);
553  loopPreheader->getTerminator()->eraseFromParent();
554
555  // We need to reprocess this loop, it could be unswitched again.
556  redoLoop = true;
557
558  // Now that we know that the loop is never entered when this condition is a
559  // particular value, rewrite the loop with this info.  We know that this will
560  // at least eliminate the old branch.
561  RewriteLoopBodyWithConditionConstant(L, Cond, Val, false);
562  ++NumTrivial;
563}
564
565/// SplitExitEdges - Split all of the edges from inside the loop to their exit
566/// blocks.  Update the appropriate Phi nodes as we do so.
567void LoopUnswitch::SplitExitEdges(Loop *L,
568                                const SmallVector<BasicBlock *, 8> &ExitBlocks){
569
570  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
571    BasicBlock *ExitBlock = ExitBlocks[i];
572    SmallVector<BasicBlock *, 4> Preds(pred_begin(ExitBlock),
573                                       pred_end(ExitBlock));
574    SplitBlockPredecessors(ExitBlock, Preds.data(), Preds.size(),
575                           ".us-lcssa", this);
576  }
577}
578
579/// UnswitchNontrivialCondition - We determined that the loop is profitable
580/// to unswitch when LIC equal Val.  Split it into loop versions and test the
581/// condition outside of either loop.  Return the loops created as Out1/Out2.
582void LoopUnswitch::UnswitchNontrivialCondition(Value *LIC, Constant *Val,
583                                               Loop *L) {
584  Function *F = loopHeader->getParent();
585  DEBUG(dbgs() << "loop-unswitch: Unswitching loop %"
586        << loopHeader->getName() << " [" << L->getBlocks().size()
587        << " blocks] in Function " << F->getName()
588        << " when '" << *Val << "' == " << *LIC << "\n");
589
590  LoopBlocks.clear();
591  NewBlocks.clear();
592
593  // First step, split the preheader and exit blocks, and add these blocks to
594  // the LoopBlocks list.
595  BasicBlock *NewPreheader = SplitEdge(loopPreheader, loopHeader, this);
596  LoopBlocks.push_back(NewPreheader);
597
598  // We want the loop to come after the preheader, but before the exit blocks.
599  LoopBlocks.insert(LoopBlocks.end(), L->block_begin(), L->block_end());
600
601  SmallVector<BasicBlock*, 8> ExitBlocks;
602  L->getUniqueExitBlocks(ExitBlocks);
603
604  // Split all of the edges from inside the loop to their exit blocks.  Update
605  // the appropriate Phi nodes as we do so.
606  SplitExitEdges(L, ExitBlocks);
607
608  // The exit blocks may have been changed due to edge splitting, recompute.
609  ExitBlocks.clear();
610  L->getUniqueExitBlocks(ExitBlocks);
611
612  // Add exit blocks to the loop blocks.
613  LoopBlocks.insert(LoopBlocks.end(), ExitBlocks.begin(), ExitBlocks.end());
614
615  // Next step, clone all of the basic blocks that make up the loop (including
616  // the loop preheader and exit blocks), keeping track of the mapping between
617  // the instructions and blocks.
618  NewBlocks.reserve(LoopBlocks.size());
619  ValueToValueMapTy VMap;
620  for (unsigned i = 0, e = LoopBlocks.size(); i != e; ++i) {
621    BasicBlock *NewBB = CloneBasicBlock(LoopBlocks[i], VMap, ".us", F);
622    NewBlocks.push_back(NewBB);
623    VMap[LoopBlocks[i]] = NewBB;  // Keep the BB mapping.
624    LPM->cloneBasicBlockSimpleAnalysis(LoopBlocks[i], NewBB, L);
625  }
626
627  // Splice the newly inserted blocks into the function right before the
628  // original preheader.
629  F->getBasicBlockList().splice(NewPreheader, F->getBasicBlockList(),
630                                NewBlocks[0], F->end());
631
632  // Now we create the new Loop object for the versioned loop.
633  Loop *NewLoop = CloneLoop(L, L->getParentLoop(), VMap, LI, LPM);
634  Loop *ParentLoop = L->getParentLoop();
635  if (ParentLoop) {
636    // Make sure to add the cloned preheader and exit blocks to the parent loop
637    // as well.
638    ParentLoop->addBasicBlockToLoop(NewBlocks[0], LI->getBase());
639  }
640
641  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
642    BasicBlock *NewExit = cast<BasicBlock>(VMap[ExitBlocks[i]]);
643    // The new exit block should be in the same loop as the old one.
644    if (Loop *ExitBBLoop = LI->getLoopFor(ExitBlocks[i]))
645      ExitBBLoop->addBasicBlockToLoop(NewExit, LI->getBase());
646
647    assert(NewExit->getTerminator()->getNumSuccessors() == 1 &&
648           "Exit block should have been split to have one successor!");
649    BasicBlock *ExitSucc = NewExit->getTerminator()->getSuccessor(0);
650
651    // If the successor of the exit block had PHI nodes, add an entry for
652    // NewExit.
653    PHINode *PN;
654    for (BasicBlock::iterator I = ExitSucc->begin(); isa<PHINode>(I); ++I) {
655      PN = cast<PHINode>(I);
656      Value *V = PN->getIncomingValueForBlock(ExitBlocks[i]);
657      ValueToValueMapTy::iterator It = VMap.find(V);
658      if (It != VMap.end()) V = It->second;
659      PN->addIncoming(V, NewExit);
660    }
661  }
662
663  // Rewrite the code to refer to itself.
664  for (unsigned i = 0, e = NewBlocks.size(); i != e; ++i)
665    for (BasicBlock::iterator I = NewBlocks[i]->begin(),
666           E = NewBlocks[i]->end(); I != E; ++I)
667      RemapInstruction(I, VMap);
668
669  // Rewrite the original preheader to select between versions of the loop.
670  BranchInst *OldBR = cast<BranchInst>(loopPreheader->getTerminator());
671  assert(OldBR->isUnconditional() && OldBR->getSuccessor(0) == LoopBlocks[0] &&
672         "Preheader splitting did not work correctly!");
673
674  // Emit the new branch that selects between the two versions of this loop.
675  EmitPreheaderBranchOnCondition(LIC, Val, NewBlocks[0], LoopBlocks[0], OldBR);
676  LPM->deleteSimpleAnalysisValue(OldBR, L);
677  OldBR->eraseFromParent();
678
679  LoopProcessWorklist.push_back(NewLoop);
680  redoLoop = true;
681
682  // Keep a WeakVH holding onto LIC.  If the first call to RewriteLoopBody
683  // deletes the instruction (for example by simplifying a PHI that feeds into
684  // the condition that we're unswitching on), we don't rewrite the second
685  // iteration.
686  WeakVH LICHandle(LIC);
687
688  // Now we rewrite the original code to know that the condition is true and the
689  // new code to know that the condition is false.
690  RewriteLoopBodyWithConditionConstant(L, LIC, Val, false);
691
692  // It's possible that simplifying one loop could cause the other to be
693  // changed to another value or a constant.  If its a constant, don't simplify
694  // it.
695  if (!LoopProcessWorklist.empty() && LoopProcessWorklist.back() == NewLoop &&
696      LICHandle && !isa<Constant>(LICHandle))
697    RewriteLoopBodyWithConditionConstant(NewLoop, LICHandle, Val, true);
698}
699
700/// RemoveFromWorklist - Remove all instances of I from the worklist vector
701/// specified.
702static void RemoveFromWorklist(Instruction *I,
703                               std::vector<Instruction*> &Worklist) {
704  std::vector<Instruction*>::iterator WI = std::find(Worklist.begin(),
705                                                     Worklist.end(), I);
706  while (WI != Worklist.end()) {
707    unsigned Offset = WI-Worklist.begin();
708    Worklist.erase(WI);
709    WI = std::find(Worklist.begin()+Offset, Worklist.end(), I);
710  }
711}
712
713/// ReplaceUsesOfWith - When we find that I really equals V, remove I from the
714/// program, replacing all uses with V and update the worklist.
715static void ReplaceUsesOfWith(Instruction *I, Value *V,
716                              std::vector<Instruction*> &Worklist,
717                              Loop *L, LPPassManager *LPM) {
718  DEBUG(dbgs() << "Replace with '" << *V << "': " << *I);
719
720  // Add uses to the worklist, which may be dead now.
721  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
722    if (Instruction *Use = dyn_cast<Instruction>(I->getOperand(i)))
723      Worklist.push_back(Use);
724
725  // Add users to the worklist which may be simplified now.
726  for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
727       UI != E; ++UI)
728    Worklist.push_back(cast<Instruction>(*UI));
729  LPM->deleteSimpleAnalysisValue(I, L);
730  RemoveFromWorklist(I, Worklist);
731  I->replaceAllUsesWith(V);
732  I->eraseFromParent();
733  ++NumSimplify;
734}
735
736/// RemoveBlockIfDead - If the specified block is dead, remove it, update loop
737/// information, and remove any dead successors it has.
738///
739void LoopUnswitch::RemoveBlockIfDead(BasicBlock *BB,
740                                     std::vector<Instruction*> &Worklist,
741                                     Loop *L) {
742  if (pred_begin(BB) != pred_end(BB)) {
743    // This block isn't dead, since an edge to BB was just removed, see if there
744    // are any easy simplifications we can do now.
745    if (BasicBlock *Pred = BB->getSinglePredecessor()) {
746      // If it has one pred, fold phi nodes in BB.
747      while (isa<PHINode>(BB->begin()))
748        ReplaceUsesOfWith(BB->begin(),
749                          cast<PHINode>(BB->begin())->getIncomingValue(0),
750                          Worklist, L, LPM);
751
752      // If this is the header of a loop and the only pred is the latch, we now
753      // have an unreachable loop.
754      if (Loop *L = LI->getLoopFor(BB))
755        if (loopHeader == BB && L->contains(Pred)) {
756          // Remove the branch from the latch to the header block, this makes
757          // the header dead, which will make the latch dead (because the header
758          // dominates the latch).
759          LPM->deleteSimpleAnalysisValue(Pred->getTerminator(), L);
760          Pred->getTerminator()->eraseFromParent();
761          new UnreachableInst(BB->getContext(), Pred);
762
763          // The loop is now broken, remove it from LI.
764          RemoveLoopFromHierarchy(L);
765
766          // Reprocess the header, which now IS dead.
767          RemoveBlockIfDead(BB, Worklist, L);
768          return;
769        }
770
771      // If pred ends in a uncond branch, add uncond branch to worklist so that
772      // the two blocks will get merged.
773      if (BranchInst *BI = dyn_cast<BranchInst>(Pred->getTerminator()))
774        if (BI->isUnconditional())
775          Worklist.push_back(BI);
776    }
777    return;
778  }
779
780  DEBUG(dbgs() << "Nuking dead block: " << *BB);
781
782  // Remove the instructions in the basic block from the worklist.
783  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
784    RemoveFromWorklist(I, Worklist);
785
786    // Anything that uses the instructions in this basic block should have their
787    // uses replaced with undefs.
788    // If I is not void type then replaceAllUsesWith undef.
789    // This allows ValueHandlers and custom metadata to adjust itself.
790    if (!I->getType()->isVoidTy())
791      I->replaceAllUsesWith(UndefValue::get(I->getType()));
792  }
793
794  // If this is the edge to the header block for a loop, remove the loop and
795  // promote all subloops.
796  if (Loop *BBLoop = LI->getLoopFor(BB)) {
797    if (BBLoop->getLoopLatch() == BB)
798      RemoveLoopFromHierarchy(BBLoop);
799  }
800
801  // Remove the block from the loop info, which removes it from any loops it
802  // was in.
803  LI->removeBlock(BB);
804
805
806  // Remove phi node entries in successors for this block.
807  TerminatorInst *TI = BB->getTerminator();
808  SmallVector<BasicBlock*, 4> Succs;
809  for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
810    Succs.push_back(TI->getSuccessor(i));
811    TI->getSuccessor(i)->removePredecessor(BB);
812  }
813
814  // Unique the successors, remove anything with multiple uses.
815  array_pod_sort(Succs.begin(), Succs.end());
816  Succs.erase(std::unique(Succs.begin(), Succs.end()), Succs.end());
817
818  // Remove the basic block, including all of the instructions contained in it.
819  LPM->deleteSimpleAnalysisValue(BB, L);
820  BB->eraseFromParent();
821  // Remove successor blocks here that are not dead, so that we know we only
822  // have dead blocks in this list.  Nondead blocks have a way of becoming dead,
823  // then getting removed before we revisit them, which is badness.
824  //
825  for (unsigned i = 0; i != Succs.size(); ++i)
826    if (pred_begin(Succs[i]) != pred_end(Succs[i])) {
827      // One exception is loop headers.  If this block was the preheader for a
828      // loop, then we DO want to visit the loop so the loop gets deleted.
829      // We know that if the successor is a loop header, that this loop had to
830      // be the preheader: the case where this was the latch block was handled
831      // above and headers can only have two predecessors.
832      if (!LI->isLoopHeader(Succs[i])) {
833        Succs.erase(Succs.begin()+i);
834        --i;
835      }
836    }
837
838  for (unsigned i = 0, e = Succs.size(); i != e; ++i)
839    RemoveBlockIfDead(Succs[i], Worklist, L);
840}
841
842/// RemoveLoopFromHierarchy - We have discovered that the specified loop has
843/// become unwrapped, either because the backedge was deleted, or because the
844/// edge into the header was removed.  If the edge into the header from the
845/// latch block was removed, the loop is unwrapped but subloops are still alive,
846/// so they just reparent loops.  If the loops are actually dead, they will be
847/// removed later.
848void LoopUnswitch::RemoveLoopFromHierarchy(Loop *L) {
849  LPM->deleteLoopFromQueue(L);
850  RemoveLoopFromWorklist(L);
851}
852
853// RewriteLoopBodyWithConditionConstant - We know either that the value LIC has
854// the value specified by Val in the specified loop, or we know it does NOT have
855// that value.  Rewrite any uses of LIC or of properties correlated to it.
856void LoopUnswitch::RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC,
857                                                        Constant *Val,
858                                                        bool IsEqual) {
859  assert(!isa<Constant>(LIC) && "Why are we unswitching on a constant?");
860
861  // FIXME: Support correlated properties, like:
862  //  for (...)
863  //    if (li1 < li2)
864  //      ...
865  //    if (li1 > li2)
866  //      ...
867
868  // FOLD boolean conditions (X|LIC), (X&LIC).  Fold conditional branches,
869  // selects, switches.
870  std::vector<User*> Users(LIC->use_begin(), LIC->use_end());
871  std::vector<Instruction*> Worklist;
872  LLVMContext &Context = Val->getContext();
873
874
875  // If we know that LIC == Val, or that LIC == NotVal, just replace uses of LIC
876  // in the loop with the appropriate one directly.
877  if (IsEqual || (isa<ConstantInt>(Val) &&
878      Val->getType()->isIntegerTy(1))) {
879    Value *Replacement;
880    if (IsEqual)
881      Replacement = Val;
882    else
883      Replacement = ConstantInt::get(Type::getInt1Ty(Val->getContext()),
884                                     !cast<ConstantInt>(Val)->getZExtValue());
885
886    for (unsigned i = 0, e = Users.size(); i != e; ++i)
887      if (Instruction *U = cast<Instruction>(Users[i])) {
888        if (!L->contains(U))
889          continue;
890        U->replaceUsesOfWith(LIC, Replacement);
891        Worklist.push_back(U);
892      }
893    SimplifyCode(Worklist, L);
894    return;
895  }
896
897  // Otherwise, we don't know the precise value of LIC, but we do know that it
898  // is certainly NOT "Val".  As such, simplify any uses in the loop that we
899  // can.  This case occurs when we unswitch switch statements.
900  for (unsigned i = 0, e = Users.size(); i != e; ++i) {
901    Instruction *U = cast<Instruction>(Users[i]);
902    if (!L->contains(U))
903      continue;
904
905    Worklist.push_back(U);
906
907    // TODO: We could do other simplifications, for example, turning
908    // 'icmp eq LIC, Val' -> false.
909
910    // If we know that LIC is not Val, use this info to simplify code.
911    SwitchInst *SI = dyn_cast<SwitchInst>(U);
912    if (SI == 0 || !isa<ConstantInt>(Val)) continue;
913
914    unsigned DeadCase = SI->findCaseValue(cast<ConstantInt>(Val));
915    if (DeadCase == 0) continue;  // Default case is live for multiple values.
916
917    // Found a dead case value.  Don't remove PHI nodes in the
918    // successor if they become single-entry, those PHI nodes may
919    // be in the Users list.
920
921    // FIXME: This is a hack.  We need to keep the successor around
922    // and hooked up so as to preserve the loop structure, because
923    // trying to update it is complicated.  So instead we preserve the
924    // loop structure and put the block on a dead code path.
925    BasicBlock *Switch = SI->getParent();
926    SplitEdge(Switch, SI->getSuccessor(DeadCase), this);
927    // Compute the successors instead of relying on the return value
928    // of SplitEdge, since it may have split the switch successor
929    // after PHI nodes.
930    BasicBlock *NewSISucc = SI->getSuccessor(DeadCase);
931    BasicBlock *OldSISucc = *succ_begin(NewSISucc);
932    // Create an "unreachable" destination.
933    BasicBlock *Abort = BasicBlock::Create(Context, "us-unreachable",
934                                           Switch->getParent(),
935                                           OldSISucc);
936    new UnreachableInst(Context, Abort);
937    // Force the new case destination to branch to the "unreachable"
938    // block while maintaining a (dead) CFG edge to the old block.
939    NewSISucc->getTerminator()->eraseFromParent();
940    BranchInst::Create(Abort, OldSISucc,
941                       ConstantInt::getTrue(Context), NewSISucc);
942    // Release the PHI operands for this edge.
943    for (BasicBlock::iterator II = NewSISucc->begin();
944         PHINode *PN = dyn_cast<PHINode>(II); ++II)
945      PN->setIncomingValue(PN->getBasicBlockIndex(Switch),
946                           UndefValue::get(PN->getType()));
947    // Tell the domtree about the new block. We don't fully update the
948    // domtree here -- instead we force it to do a full recomputation
949    // after the pass is complete -- but we do need to inform it of
950    // new blocks.
951    if (DT)
952      DT->addNewBlock(Abort, NewSISucc);
953  }
954
955  SimplifyCode(Worklist, L);
956}
957
958/// SimplifyCode - Okay, now that we have simplified some instructions in the
959/// loop, walk over it and constant prop, dce, and fold control flow where
960/// possible.  Note that this is effectively a very simple loop-structure-aware
961/// optimizer.  During processing of this loop, L could very well be deleted, so
962/// it must not be used.
963///
964/// FIXME: When the loop optimizer is more mature, separate this out to a new
965/// pass.
966///
967void LoopUnswitch::SimplifyCode(std::vector<Instruction*> &Worklist, Loop *L) {
968  while (!Worklist.empty()) {
969    Instruction *I = Worklist.back();
970    Worklist.pop_back();
971
972    // Simple constant folding.
973    if (Constant *C = ConstantFoldInstruction(I)) {
974      ReplaceUsesOfWith(I, C, Worklist, L, LPM);
975      continue;
976    }
977
978    // Simple DCE.
979    if (isInstructionTriviallyDead(I)) {
980      DEBUG(dbgs() << "Remove dead instruction '" << *I);
981
982      // Add uses to the worklist, which may be dead now.
983      for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
984        if (Instruction *Use = dyn_cast<Instruction>(I->getOperand(i)))
985          Worklist.push_back(Use);
986      LPM->deleteSimpleAnalysisValue(I, L);
987      RemoveFromWorklist(I, Worklist);
988      I->eraseFromParent();
989      ++NumSimplify;
990      continue;
991    }
992
993    // See if instruction simplification can hack this up.  This is common for
994    // things like "select false, X, Y" after unswitching made the condition be
995    // 'false'.
996    if (Value *V = SimplifyInstruction(I)) {
997      ReplaceUsesOfWith(I, V, Worklist, L, LPM);
998      continue;
999    }
1000
1001    // Special case hacks that appear commonly in unswitched code.
1002    if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
1003      if (BI->isUnconditional()) {
1004        // If BI's parent is the only pred of the successor, fold the two blocks
1005        // together.
1006        BasicBlock *Pred = BI->getParent();
1007        BasicBlock *Succ = BI->getSuccessor(0);
1008        BasicBlock *SinglePred = Succ->getSinglePredecessor();
1009        if (!SinglePred) continue;  // Nothing to do.
1010        assert(SinglePred == Pred && "CFG broken");
1011
1012        DEBUG(dbgs() << "Merging blocks: " << Pred->getName() << " <- "
1013              << Succ->getName() << "\n");
1014
1015        // Resolve any single entry PHI nodes in Succ.
1016        while (PHINode *PN = dyn_cast<PHINode>(Succ->begin()))
1017          ReplaceUsesOfWith(PN, PN->getIncomingValue(0), Worklist, L, LPM);
1018
1019        // Move all of the successor contents from Succ to Pred.
1020        Pred->getInstList().splice(BI, Succ->getInstList(), Succ->begin(),
1021                                   Succ->end());
1022        LPM->deleteSimpleAnalysisValue(BI, L);
1023        BI->eraseFromParent();
1024        RemoveFromWorklist(BI, Worklist);
1025
1026        // If Succ has any successors with PHI nodes, update them to have
1027        // entries coming from Pred instead of Succ.
1028        Succ->replaceAllUsesWith(Pred);
1029
1030        // Remove Succ from the loop tree.
1031        LI->removeBlock(Succ);
1032        LPM->deleteSimpleAnalysisValue(Succ, L);
1033        Succ->eraseFromParent();
1034        ++NumSimplify;
1035        continue;
1036      }
1037
1038      if (ConstantInt *CB = dyn_cast<ConstantInt>(BI->getCondition())){
1039        // Conditional branch.  Turn it into an unconditional branch, then
1040        // remove dead blocks.
1041        continue;  // FIXME: Enable.
1042
1043        DEBUG(dbgs() << "Folded branch: " << *BI);
1044        BasicBlock *DeadSucc = BI->getSuccessor(CB->getZExtValue());
1045        BasicBlock *LiveSucc = BI->getSuccessor(!CB->getZExtValue());
1046        DeadSucc->removePredecessor(BI->getParent(), true);
1047        Worklist.push_back(BranchInst::Create(LiveSucc, BI));
1048        LPM->deleteSimpleAnalysisValue(BI, L);
1049        BI->eraseFromParent();
1050        RemoveFromWorklist(BI, Worklist);
1051        ++NumSimplify;
1052
1053        RemoveBlockIfDead(DeadSucc, Worklist, L);
1054      }
1055      continue;
1056    }
1057  }
1058}
1059