LoopUnswitch.cpp revision 205942a4a55d568e93480fc22d25cc7dac525fb7
1//===-- LoopUnswitch.cpp - Hoist loop-invariant conditionals in loop ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass transforms loops that contain branches on loop-invariant conditions
11// to have multiple loops.  For example, it turns the left into the right code:
12//
13//  for (...)                  if (lic)
14//    A                          for (...)
15//    if (lic)                     A; B; C
16//      B                      else
17//    C                          for (...)
18//                                 A; C
19//
20// This can increase the size of the code exponentially (doubling it every time
21// a loop is unswitched) so we only unswitch if the resultant code will be
22// smaller than a threshold.
23//
24// This pass expects LICM to be run before it to hoist invariant conditions out
25// of the loop, to make the unswitching opportunity obvious.
26//
27//===----------------------------------------------------------------------===//
28
29#define DEBUG_TYPE "loop-unswitch"
30#include "llvm/Transforms/Scalar.h"
31#include "llvm/Constants.h"
32#include "llvm/DerivedTypes.h"
33#include "llvm/Function.h"
34#include "llvm/Instructions.h"
35#include "llvm/Analysis/ConstantFolding.h"
36#include "llvm/Analysis/InlineCost.h"
37#include "llvm/Analysis/InstructionSimplify.h"
38#include "llvm/Analysis/LoopInfo.h"
39#include "llvm/Analysis/LoopPass.h"
40#include "llvm/Analysis/Dominators.h"
41#include "llvm/Transforms/Utils/Cloning.h"
42#include "llvm/Transforms/Utils/Local.h"
43#include "llvm/Transforms/Utils/BasicBlockUtils.h"
44#include "llvm/ADT/Statistic.h"
45#include "llvm/ADT/SmallPtrSet.h"
46#include "llvm/ADT/STLExtras.h"
47#include "llvm/Support/CommandLine.h"
48#include "llvm/Support/Debug.h"
49#include "llvm/Support/raw_ostream.h"
50#include <algorithm>
51#include <set>
52using namespace llvm;
53
54STATISTIC(NumBranches, "Number of branches unswitched");
55STATISTIC(NumSwitches, "Number of switches unswitched");
56STATISTIC(NumSelects , "Number of selects unswitched");
57STATISTIC(NumTrivial , "Number of unswitches that are trivial");
58STATISTIC(NumSimplify, "Number of simplifications of unswitched code");
59
60// The specific value of 50 here was chosen based only on intuition and a
61// few specific examples.
62static cl::opt<unsigned>
63Threshold("loop-unswitch-threshold", cl::desc("Max loop size to unswitch"),
64          cl::init(50), cl::Hidden);
65
66namespace {
67  class LoopUnswitch : public LoopPass {
68    LoopInfo *LI;  // Loop information
69    LPPassManager *LPM;
70
71    // LoopProcessWorklist - Used to check if second loop needs processing
72    // after RewriteLoopBodyWithConditionConstant rewrites first loop.
73    std::vector<Loop*> LoopProcessWorklist;
74    SmallPtrSet<Value *,8> UnswitchedVals;
75
76    bool OptimizeForSize;
77    bool redoLoop;
78
79    Loop *currentLoop;
80    DominatorTree *DT;
81    BasicBlock *loopHeader;
82    BasicBlock *loopPreheader;
83
84    // LoopBlocks contains all of the basic blocks of the loop, including the
85    // preheader of the loop, the body of the loop, and the exit blocks of the
86    // loop, in that order.
87    std::vector<BasicBlock*> LoopBlocks;
88    // NewBlocks contained cloned copy of basic blocks from LoopBlocks.
89    std::vector<BasicBlock*> NewBlocks;
90
91  public:
92    static char ID; // Pass ID, replacement for typeid
93    explicit LoopUnswitch(bool Os = false) :
94      LoopPass(ID), OptimizeForSize(Os), redoLoop(false),
95      currentLoop(NULL), DT(NULL), loopHeader(NULL),
96      loopPreheader(NULL) {
97        initializeLoopUnswitchPass(*PassRegistry::getPassRegistry());
98      }
99
100    bool runOnLoop(Loop *L, LPPassManager &LPM);
101    bool processCurrentLoop();
102
103    /// This transformation requires natural loop information & requires that
104    /// loop preheaders be inserted into the CFG.
105    ///
106    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
107      AU.addRequiredID(LoopSimplifyID);
108      AU.addPreservedID(LoopSimplifyID);
109      AU.addRequired<LoopInfo>();
110      AU.addPreserved<LoopInfo>();
111      AU.addRequiredID(LCSSAID);
112      AU.addPreservedID(LCSSAID);
113      AU.addPreserved<DominatorTree>();
114    }
115
116  private:
117
118    virtual void releaseMemory() {
119      UnswitchedVals.clear();
120    }
121
122    /// RemoveLoopFromWorklist - If the specified loop is on the loop worklist,
123    /// remove it.
124    void RemoveLoopFromWorklist(Loop *L) {
125      std::vector<Loop*>::iterator I = std::find(LoopProcessWorklist.begin(),
126                                                 LoopProcessWorklist.end(), L);
127      if (I != LoopProcessWorklist.end())
128        LoopProcessWorklist.erase(I);
129    }
130
131    void initLoopData() {
132      loopHeader = currentLoop->getHeader();
133      loopPreheader = currentLoop->getLoopPreheader();
134    }
135
136    /// Split all of the edges from inside the loop to their exit blocks.
137    /// Update the appropriate Phi nodes as we do so.
138    void SplitExitEdges(Loop *L, const SmallVector<BasicBlock *, 8> &ExitBlocks);
139
140    bool UnswitchIfProfitable(Value *LoopCond, Constant *Val);
141    void UnswitchTrivialCondition(Loop *L, Value *Cond, Constant *Val,
142                                  BasicBlock *ExitBlock);
143    void UnswitchNontrivialCondition(Value *LIC, Constant *OnVal, Loop *L);
144
145    void RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC,
146                                              Constant *Val, bool isEqual);
147
148    void EmitPreheaderBranchOnCondition(Value *LIC, Constant *Val,
149                                        BasicBlock *TrueDest,
150                                        BasicBlock *FalseDest,
151                                        Instruction *InsertPt);
152
153    void SimplifyCode(std::vector<Instruction*> &Worklist, Loop *L);
154    void RemoveBlockIfDead(BasicBlock *BB,
155                           std::vector<Instruction*> &Worklist, Loop *l);
156    void RemoveLoopFromHierarchy(Loop *L);
157    bool IsTrivialUnswitchCondition(Value *Cond, Constant **Val = 0,
158                                    BasicBlock **LoopExit = 0);
159
160  };
161}
162char LoopUnswitch::ID = 0;
163INITIALIZE_PASS_BEGIN(LoopUnswitch, "loop-unswitch", "Unswitch loops",
164                      false, false)
165INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
166INITIALIZE_PASS_DEPENDENCY(LoopInfo)
167INITIALIZE_PASS_DEPENDENCY(LCSSA)
168INITIALIZE_PASS_END(LoopUnswitch, "loop-unswitch", "Unswitch loops",
169                      false, false)
170
171Pass *llvm::createLoopUnswitchPass(bool Os) {
172  return new LoopUnswitch(Os);
173}
174
175/// FindLIVLoopCondition - Cond is a condition that occurs in L.  If it is
176/// invariant in the loop, or has an invariant piece, return the invariant.
177/// Otherwise, return null.
178static Value *FindLIVLoopCondition(Value *Cond, Loop *L, bool &Changed) {
179  // We can never unswitch on vector conditions.
180  if (Cond->getType()->isVectorTy())
181    return 0;
182
183  // Constants should be folded, not unswitched on!
184  if (isa<Constant>(Cond)) return 0;
185
186  // TODO: Handle: br (VARIANT|INVARIANT).
187
188  // Hoist simple values out.
189  if (L->makeLoopInvariant(Cond, Changed))
190    return Cond;
191
192  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Cond))
193    if (BO->getOpcode() == Instruction::And ||
194        BO->getOpcode() == Instruction::Or) {
195      // If either the left or right side is invariant, we can unswitch on this,
196      // which will cause the branch to go away in one loop and the condition to
197      // simplify in the other one.
198      if (Value *LHS = FindLIVLoopCondition(BO->getOperand(0), L, Changed))
199        return LHS;
200      if (Value *RHS = FindLIVLoopCondition(BO->getOperand(1), L, Changed))
201        return RHS;
202    }
203
204  return 0;
205}
206
207bool LoopUnswitch::runOnLoop(Loop *L, LPPassManager &LPM_Ref) {
208  LI = &getAnalysis<LoopInfo>();
209  LPM = &LPM_Ref;
210  DT = getAnalysisIfAvailable<DominatorTree>();
211  currentLoop = L;
212  Function *F = currentLoop->getHeader()->getParent();
213  bool Changed = false;
214  do {
215    assert(currentLoop->isLCSSAForm(*DT));
216    redoLoop = false;
217    Changed |= processCurrentLoop();
218  } while(redoLoop);
219
220  if (Changed) {
221    // FIXME: Reconstruct dom info, because it is not preserved properly.
222    if (DT)
223      DT->runOnFunction(*F);
224  }
225  return Changed;
226}
227
228/// processCurrentLoop - Do actual work and unswitch loop if possible
229/// and profitable.
230bool LoopUnswitch::processCurrentLoop() {
231  bool Changed = false;
232  LLVMContext &Context = currentLoop->getHeader()->getContext();
233
234  // Loop over all of the basic blocks in the loop.  If we find an interior
235  // block that is branching on a loop-invariant condition, we can unswitch this
236  // loop.
237  for (Loop::block_iterator I = currentLoop->block_begin(),
238         E = currentLoop->block_end(); I != E; ++I) {
239    TerminatorInst *TI = (*I)->getTerminator();
240    if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
241      // If this isn't branching on an invariant condition, we can't unswitch
242      // it.
243      if (BI->isConditional()) {
244        // See if this, or some part of it, is loop invariant.  If so, we can
245        // unswitch on it if we desire.
246        Value *LoopCond = FindLIVLoopCondition(BI->getCondition(),
247                                               currentLoop, Changed);
248        if (LoopCond && UnswitchIfProfitable(LoopCond,
249                                             ConstantInt::getTrue(Context))) {
250          ++NumBranches;
251          return true;
252        }
253      }
254    } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
255      Value *LoopCond = FindLIVLoopCondition(SI->getCondition(),
256                                             currentLoop, Changed);
257      if (LoopCond && SI->getNumCases() > 1) {
258        // Find a value to unswitch on:
259        // FIXME: this should chose the most expensive case!
260        Constant *UnswitchVal = SI->getCaseValue(1);
261        // Do not process same value again and again.
262        if (!UnswitchedVals.insert(UnswitchVal))
263          continue;
264
265        if (UnswitchIfProfitable(LoopCond, UnswitchVal)) {
266          ++NumSwitches;
267          return true;
268        }
269      }
270    }
271
272    // Scan the instructions to check for unswitchable values.
273    for (BasicBlock::iterator BBI = (*I)->begin(), E = (*I)->end();
274         BBI != E; ++BBI)
275      if (SelectInst *SI = dyn_cast<SelectInst>(BBI)) {
276        Value *LoopCond = FindLIVLoopCondition(SI->getCondition(),
277                                               currentLoop, Changed);
278        if (LoopCond && UnswitchIfProfitable(LoopCond,
279                                             ConstantInt::getTrue(Context))) {
280          ++NumSelects;
281          return true;
282        }
283      }
284  }
285  return Changed;
286}
287
288/// isTrivialLoopExitBlock - Check to see if all paths from BB exit the
289/// loop with no side effects (including infinite loops).
290///
291/// If true, we return true and set ExitBB to the block we
292/// exit through.
293///
294static bool isTrivialLoopExitBlockHelper(Loop *L, BasicBlock *BB,
295                                         BasicBlock *&ExitBB,
296                                         std::set<BasicBlock*> &Visited) {
297  if (!Visited.insert(BB).second) {
298    // Already visited. Without more analysis, this could indicate an infinte loop.
299    return false;
300  } else if (!L->contains(BB)) {
301    // Otherwise, this is a loop exit, this is fine so long as this is the
302    // first exit.
303    if (ExitBB != 0) return false;
304    ExitBB = BB;
305    return true;
306  }
307
308  // Otherwise, this is an unvisited intra-loop node.  Check all successors.
309  for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI) {
310    // Check to see if the successor is a trivial loop exit.
311    if (!isTrivialLoopExitBlockHelper(L, *SI, ExitBB, Visited))
312      return false;
313  }
314
315  // Okay, everything after this looks good, check to make sure that this block
316  // doesn't include any side effects.
317  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
318    if (I->mayHaveSideEffects())
319      return false;
320
321  return true;
322}
323
324/// isTrivialLoopExitBlock - Return true if the specified block unconditionally
325/// leads to an exit from the specified loop, and has no side-effects in the
326/// process.  If so, return the block that is exited to, otherwise return null.
327static BasicBlock *isTrivialLoopExitBlock(Loop *L, BasicBlock *BB) {
328  std::set<BasicBlock*> Visited;
329  Visited.insert(L->getHeader());  // Branches to header make infinite loops.
330  BasicBlock *ExitBB = 0;
331  if (isTrivialLoopExitBlockHelper(L, BB, ExitBB, Visited))
332    return ExitBB;
333  return 0;
334}
335
336/// IsTrivialUnswitchCondition - Check to see if this unswitch condition is
337/// trivial: that is, that the condition controls whether or not the loop does
338/// anything at all.  If this is a trivial condition, unswitching produces no
339/// code duplications (equivalently, it produces a simpler loop and a new empty
340/// loop, which gets deleted).
341///
342/// If this is a trivial condition, return true, otherwise return false.  When
343/// returning true, this sets Cond and Val to the condition that controls the
344/// trivial condition: when Cond dynamically equals Val, the loop is known to
345/// exit.  Finally, this sets LoopExit to the BB that the loop exits to when
346/// Cond == Val.
347///
348bool LoopUnswitch::IsTrivialUnswitchCondition(Value *Cond, Constant **Val,
349                                       BasicBlock **LoopExit) {
350  BasicBlock *Header = currentLoop->getHeader();
351  TerminatorInst *HeaderTerm = Header->getTerminator();
352  LLVMContext &Context = Header->getContext();
353
354  BasicBlock *LoopExitBB = 0;
355  if (BranchInst *BI = dyn_cast<BranchInst>(HeaderTerm)) {
356    // If the header block doesn't end with a conditional branch on Cond, we
357    // can't handle it.
358    if (!BI->isConditional() || BI->getCondition() != Cond)
359      return false;
360
361    // Check to see if a successor of the branch is guaranteed to
362    // exit through a unique exit block without having any
363    // side-effects.  If so, determine the value of Cond that causes it to do
364    // this.
365    if ((LoopExitBB = isTrivialLoopExitBlock(currentLoop,
366                                             BI->getSuccessor(0)))) {
367      if (Val) *Val = ConstantInt::getTrue(Context);
368    } else if ((LoopExitBB = isTrivialLoopExitBlock(currentLoop,
369                                                    BI->getSuccessor(1)))) {
370      if (Val) *Val = ConstantInt::getFalse(Context);
371    }
372  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(HeaderTerm)) {
373    // If this isn't a switch on Cond, we can't handle it.
374    if (SI->getCondition() != Cond) return false;
375
376    // Check to see if a successor of the switch is guaranteed to go to the
377    // latch block or exit through a one exit block without having any
378    // side-effects.  If so, determine the value of Cond that causes it to do
379    // this.  Note that we can't trivially unswitch on the default case.
380    for (unsigned i = 1, e = SI->getNumSuccessors(); i != e; ++i)
381      if ((LoopExitBB = isTrivialLoopExitBlock(currentLoop,
382                                               SI->getSuccessor(i)))) {
383        // Okay, we found a trivial case, remember the value that is trivial.
384        if (Val) *Val = SI->getCaseValue(i);
385        break;
386      }
387  }
388
389  // If we didn't find a single unique LoopExit block, or if the loop exit block
390  // contains phi nodes, this isn't trivial.
391  if (!LoopExitBB || isa<PHINode>(LoopExitBB->begin()))
392    return false;   // Can't handle this.
393
394  if (LoopExit) *LoopExit = LoopExitBB;
395
396  // We already know that nothing uses any scalar values defined inside of this
397  // loop.  As such, we just have to check to see if this loop will execute any
398  // side-effecting instructions (e.g. stores, calls, volatile loads) in the
399  // part of the loop that the code *would* execute.  We already checked the
400  // tail, check the header now.
401  for (BasicBlock::iterator I = Header->begin(), E = Header->end(); I != E; ++I)
402    if (I->mayHaveSideEffects())
403      return false;
404  return true;
405}
406
407/// UnswitchIfProfitable - We have found that we can unswitch currentLoop when
408/// LoopCond == Val to simplify the loop.  If we decide that this is profitable,
409/// unswitch the loop, reprocess the pieces, then return true.
410bool LoopUnswitch::UnswitchIfProfitable(Value *LoopCond, Constant *Val) {
411
412  initLoopData();
413
414  // If LoopSimplify was unable to form a preheader, don't do any unswitching.
415  if (!loopPreheader)
416    return false;
417
418  Function *F = loopHeader->getParent();
419
420  Constant *CondVal = 0;
421  BasicBlock *ExitBlock = 0;
422  if (IsTrivialUnswitchCondition(LoopCond, &CondVal, &ExitBlock)) {
423    // If the condition is trivial, always unswitch. There is no code growth
424    // for this case.
425    UnswitchTrivialCondition(currentLoop, LoopCond, CondVal, ExitBlock);
426    return true;
427  }
428
429  // Check to see if it would be profitable to unswitch current loop.
430
431  // Do not do non-trivial unswitch while optimizing for size.
432  if (OptimizeForSize || F->hasFnAttr(Attribute::OptimizeForSize))
433    return false;
434
435  // FIXME: This is overly conservative because it does not take into
436  // consideration code simplification opportunities and code that can
437  // be shared by the resultant unswitched loops.
438  CodeMetrics Metrics;
439  for (Loop::block_iterator I = currentLoop->block_begin(),
440         E = currentLoop->block_end();
441       I != E; ++I)
442    Metrics.analyzeBasicBlock(*I);
443
444  // Limit the number of instructions to avoid causing significant code
445  // expansion, and the number of basic blocks, to avoid loops with
446  // large numbers of branches which cause loop unswitching to go crazy.
447  // This is a very ad-hoc heuristic.
448  if (Metrics.NumInsts > Threshold ||
449      Metrics.NumBlocks * 5 > Threshold ||
450      Metrics.containsIndirectBr || Metrics.isRecursive) {
451    DEBUG(dbgs() << "NOT unswitching loop %"
452          << currentLoop->getHeader()->getName() << ", cost too high: "
453          << currentLoop->getBlocks().size() << "\n");
454    return false;
455  }
456
457  UnswitchNontrivialCondition(LoopCond, Val, currentLoop);
458  return true;
459}
460
461// RemapInstruction - Convert the instruction operands from referencing the
462// current values into those specified by VMap.
463//
464static inline void RemapInstruction(Instruction *I,
465                                    ValueToValueMapTy &VMap) {
466  for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) {
467    Value *Op = I->getOperand(op);
468    ValueToValueMapTy::iterator It = VMap.find(Op);
469    if (It != VMap.end()) Op = It->second;
470    I->setOperand(op, Op);
471  }
472}
473
474/// CloneLoop - Recursively clone the specified loop and all of its children,
475/// mapping the blocks with the specified map.
476static Loop *CloneLoop(Loop *L, Loop *PL, ValueToValueMapTy &VM,
477                       LoopInfo *LI, LPPassManager *LPM) {
478  Loop *New = new Loop();
479  LPM->insertLoop(New, PL);
480
481  // Add all of the blocks in L to the new loop.
482  for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
483       I != E; ++I)
484    if (LI->getLoopFor(*I) == L)
485      New->addBasicBlockToLoop(cast<BasicBlock>(VM[*I]), LI->getBase());
486
487  // Add all of the subloops to the new loop.
488  for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
489    CloneLoop(*I, New, VM, LI, LPM);
490
491  return New;
492}
493
494/// EmitPreheaderBranchOnCondition - Emit a conditional branch on two values
495/// if LIC == Val, branch to TrueDst, otherwise branch to FalseDest.  Insert the
496/// code immediately before InsertPt.
497void LoopUnswitch::EmitPreheaderBranchOnCondition(Value *LIC, Constant *Val,
498                                                  BasicBlock *TrueDest,
499                                                  BasicBlock *FalseDest,
500                                                  Instruction *InsertPt) {
501  // Insert a conditional branch on LIC to the two preheaders.  The original
502  // code is the true version and the new code is the false version.
503  Value *BranchVal = LIC;
504  if (!isa<ConstantInt>(Val) ||
505      Val->getType() != Type::getInt1Ty(LIC->getContext()))
506    BranchVal = new ICmpInst(InsertPt, ICmpInst::ICMP_EQ, LIC, Val, "tmp");
507  else if (Val != ConstantInt::getTrue(Val->getContext()))
508    // We want to enter the new loop when the condition is true.
509    std::swap(TrueDest, FalseDest);
510
511  // Insert the new branch.
512  BranchInst *BI = BranchInst::Create(TrueDest, FalseDest, BranchVal, InsertPt);
513
514  // If either edge is critical, split it. This helps preserve LoopSimplify
515  // form for enclosing loops.
516  SplitCriticalEdge(BI, 0, this);
517  SplitCriticalEdge(BI, 1, this);
518}
519
520/// UnswitchTrivialCondition - Given a loop that has a trivial unswitchable
521/// condition in it (a cond branch from its header block to its latch block,
522/// where the path through the loop that doesn't execute its body has no
523/// side-effects), unswitch it.  This doesn't involve any code duplication, just
524/// moving the conditional branch outside of the loop and updating loop info.
525void LoopUnswitch::UnswitchTrivialCondition(Loop *L, Value *Cond,
526                                            Constant *Val,
527                                            BasicBlock *ExitBlock) {
528  DEBUG(dbgs() << "loop-unswitch: Trivial-Unswitch loop %"
529        << loopHeader->getName() << " [" << L->getBlocks().size()
530        << " blocks] in Function " << L->getHeader()->getParent()->getName()
531        << " on cond: " << *Val << " == " << *Cond << "\n");
532
533  // First step, split the preheader, so that we know that there is a safe place
534  // to insert the conditional branch.  We will change loopPreheader to have a
535  // conditional branch on Cond.
536  BasicBlock *NewPH = SplitEdge(loopPreheader, loopHeader, this);
537
538  // Now that we have a place to insert the conditional branch, create a place
539  // to branch to: this is the exit block out of the loop that we should
540  // short-circuit to.
541
542  // Split this block now, so that the loop maintains its exit block, and so
543  // that the jump from the preheader can execute the contents of the exit block
544  // without actually branching to it (the exit block should be dominated by the
545  // loop header, not the preheader).
546  assert(!L->contains(ExitBlock) && "Exit block is in the loop?");
547  BasicBlock *NewExit = SplitBlock(ExitBlock, ExitBlock->begin(), this);
548
549  // Okay, now we have a position to branch from and a position to branch to,
550  // insert the new conditional branch.
551  EmitPreheaderBranchOnCondition(Cond, Val, NewExit, NewPH,
552                                 loopPreheader->getTerminator());
553  LPM->deleteSimpleAnalysisValue(loopPreheader->getTerminator(), L);
554  loopPreheader->getTerminator()->eraseFromParent();
555
556  // We need to reprocess this loop, it could be unswitched again.
557  redoLoop = true;
558
559  // Now that we know that the loop is never entered when this condition is a
560  // particular value, rewrite the loop with this info.  We know that this will
561  // at least eliminate the old branch.
562  RewriteLoopBodyWithConditionConstant(L, Cond, Val, false);
563  ++NumTrivial;
564}
565
566/// SplitExitEdges - Split all of the edges from inside the loop to their exit
567/// blocks.  Update the appropriate Phi nodes as we do so.
568void LoopUnswitch::SplitExitEdges(Loop *L,
569                                const SmallVector<BasicBlock *, 8> &ExitBlocks){
570
571  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
572    BasicBlock *ExitBlock = ExitBlocks[i];
573    SmallVector<BasicBlock *, 4> Preds(pred_begin(ExitBlock),
574                                       pred_end(ExitBlock));
575    SplitBlockPredecessors(ExitBlock, Preds.data(), Preds.size(),
576                           ".us-lcssa", this);
577  }
578}
579
580/// UnswitchNontrivialCondition - We determined that the loop is profitable
581/// to unswitch when LIC equal Val.  Split it into loop versions and test the
582/// condition outside of either loop.  Return the loops created as Out1/Out2.
583void LoopUnswitch::UnswitchNontrivialCondition(Value *LIC, Constant *Val,
584                                               Loop *L) {
585  Function *F = loopHeader->getParent();
586  DEBUG(dbgs() << "loop-unswitch: Unswitching loop %"
587        << loopHeader->getName() << " [" << L->getBlocks().size()
588        << " blocks] in Function " << F->getName()
589        << " when '" << *Val << "' == " << *LIC << "\n");
590
591  LoopBlocks.clear();
592  NewBlocks.clear();
593
594  // First step, split the preheader and exit blocks, and add these blocks to
595  // the LoopBlocks list.
596  BasicBlock *NewPreheader = SplitEdge(loopPreheader, loopHeader, this);
597  LoopBlocks.push_back(NewPreheader);
598
599  // We want the loop to come after the preheader, but before the exit blocks.
600  LoopBlocks.insert(LoopBlocks.end(), L->block_begin(), L->block_end());
601
602  SmallVector<BasicBlock*, 8> ExitBlocks;
603  L->getUniqueExitBlocks(ExitBlocks);
604
605  // Split all of the edges from inside the loop to their exit blocks.  Update
606  // the appropriate Phi nodes as we do so.
607  SplitExitEdges(L, ExitBlocks);
608
609  // The exit blocks may have been changed due to edge splitting, recompute.
610  ExitBlocks.clear();
611  L->getUniqueExitBlocks(ExitBlocks);
612
613  // Add exit blocks to the loop blocks.
614  LoopBlocks.insert(LoopBlocks.end(), ExitBlocks.begin(), ExitBlocks.end());
615
616  // Next step, clone all of the basic blocks that make up the loop (including
617  // the loop preheader and exit blocks), keeping track of the mapping between
618  // the instructions and blocks.
619  NewBlocks.reserve(LoopBlocks.size());
620  ValueToValueMapTy VMap;
621  for (unsigned i = 0, e = LoopBlocks.size(); i != e; ++i) {
622    BasicBlock *NewBB = CloneBasicBlock(LoopBlocks[i], VMap, ".us", F);
623    NewBlocks.push_back(NewBB);
624    VMap[LoopBlocks[i]] = NewBB;  // Keep the BB mapping.
625    LPM->cloneBasicBlockSimpleAnalysis(LoopBlocks[i], NewBB, L);
626  }
627
628  // Splice the newly inserted blocks into the function right before the
629  // original preheader.
630  F->getBasicBlockList().splice(NewPreheader, F->getBasicBlockList(),
631                                NewBlocks[0], F->end());
632
633  // Now we create the new Loop object for the versioned loop.
634  Loop *NewLoop = CloneLoop(L, L->getParentLoop(), VMap, LI, LPM);
635  Loop *ParentLoop = L->getParentLoop();
636  if (ParentLoop) {
637    // Make sure to add the cloned preheader and exit blocks to the parent loop
638    // as well.
639    ParentLoop->addBasicBlockToLoop(NewBlocks[0], LI->getBase());
640  }
641
642  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
643    BasicBlock *NewExit = cast<BasicBlock>(VMap[ExitBlocks[i]]);
644    // The new exit block should be in the same loop as the old one.
645    if (Loop *ExitBBLoop = LI->getLoopFor(ExitBlocks[i]))
646      ExitBBLoop->addBasicBlockToLoop(NewExit, LI->getBase());
647
648    assert(NewExit->getTerminator()->getNumSuccessors() == 1 &&
649           "Exit block should have been split to have one successor!");
650    BasicBlock *ExitSucc = NewExit->getTerminator()->getSuccessor(0);
651
652    // If the successor of the exit block had PHI nodes, add an entry for
653    // NewExit.
654    PHINode *PN;
655    for (BasicBlock::iterator I = ExitSucc->begin(); isa<PHINode>(I); ++I) {
656      PN = cast<PHINode>(I);
657      Value *V = PN->getIncomingValueForBlock(ExitBlocks[i]);
658      ValueToValueMapTy::iterator It = VMap.find(V);
659      if (It != VMap.end()) V = It->second;
660      PN->addIncoming(V, NewExit);
661    }
662  }
663
664  // Rewrite the code to refer to itself.
665  for (unsigned i = 0, e = NewBlocks.size(); i != e; ++i)
666    for (BasicBlock::iterator I = NewBlocks[i]->begin(),
667           E = NewBlocks[i]->end(); I != E; ++I)
668      RemapInstruction(I, VMap);
669
670  // Rewrite the original preheader to select between versions of the loop.
671  BranchInst *OldBR = cast<BranchInst>(loopPreheader->getTerminator());
672  assert(OldBR->isUnconditional() && OldBR->getSuccessor(0) == LoopBlocks[0] &&
673         "Preheader splitting did not work correctly!");
674
675  // Emit the new branch that selects between the two versions of this loop.
676  EmitPreheaderBranchOnCondition(LIC, Val, NewBlocks[0], LoopBlocks[0], OldBR);
677  LPM->deleteSimpleAnalysisValue(OldBR, L);
678  OldBR->eraseFromParent();
679
680  LoopProcessWorklist.push_back(NewLoop);
681  redoLoop = true;
682
683  // Keep a WeakVH holding onto LIC.  If the first call to RewriteLoopBody
684  // deletes the instruction (for example by simplifying a PHI that feeds into
685  // the condition that we're unswitching on), we don't rewrite the second
686  // iteration.
687  WeakVH LICHandle(LIC);
688
689  // Now we rewrite the original code to know that the condition is true and the
690  // new code to know that the condition is false.
691  RewriteLoopBodyWithConditionConstant(L, LIC, Val, false);
692
693  // It's possible that simplifying one loop could cause the other to be
694  // changed to another value or a constant.  If its a constant, don't simplify
695  // it.
696  if (!LoopProcessWorklist.empty() && LoopProcessWorklist.back() == NewLoop &&
697      LICHandle && !isa<Constant>(LICHandle))
698    RewriteLoopBodyWithConditionConstant(NewLoop, LICHandle, Val, true);
699}
700
701/// RemoveFromWorklist - Remove all instances of I from the worklist vector
702/// specified.
703static void RemoveFromWorklist(Instruction *I,
704                               std::vector<Instruction*> &Worklist) {
705  std::vector<Instruction*>::iterator WI = std::find(Worklist.begin(),
706                                                     Worklist.end(), I);
707  while (WI != Worklist.end()) {
708    unsigned Offset = WI-Worklist.begin();
709    Worklist.erase(WI);
710    WI = std::find(Worklist.begin()+Offset, Worklist.end(), I);
711  }
712}
713
714/// ReplaceUsesOfWith - When we find that I really equals V, remove I from the
715/// program, replacing all uses with V and update the worklist.
716static void ReplaceUsesOfWith(Instruction *I, Value *V,
717                              std::vector<Instruction*> &Worklist,
718                              Loop *L, LPPassManager *LPM) {
719  DEBUG(dbgs() << "Replace with '" << *V << "': " << *I);
720
721  // Add uses to the worklist, which may be dead now.
722  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
723    if (Instruction *Use = dyn_cast<Instruction>(I->getOperand(i)))
724      Worklist.push_back(Use);
725
726  // Add users to the worklist which may be simplified now.
727  for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
728       UI != E; ++UI)
729    Worklist.push_back(cast<Instruction>(*UI));
730  LPM->deleteSimpleAnalysisValue(I, L);
731  RemoveFromWorklist(I, Worklist);
732  I->replaceAllUsesWith(V);
733  I->eraseFromParent();
734  ++NumSimplify;
735}
736
737/// RemoveBlockIfDead - If the specified block is dead, remove it, update loop
738/// information, and remove any dead successors it has.
739///
740void LoopUnswitch::RemoveBlockIfDead(BasicBlock *BB,
741                                     std::vector<Instruction*> &Worklist,
742                                     Loop *L) {
743  if (pred_begin(BB) != pred_end(BB)) {
744    // This block isn't dead, since an edge to BB was just removed, see if there
745    // are any easy simplifications we can do now.
746    if (BasicBlock *Pred = BB->getSinglePredecessor()) {
747      // If it has one pred, fold phi nodes in BB.
748      while (isa<PHINode>(BB->begin()))
749        ReplaceUsesOfWith(BB->begin(),
750                          cast<PHINode>(BB->begin())->getIncomingValue(0),
751                          Worklist, L, LPM);
752
753      // If this is the header of a loop and the only pred is the latch, we now
754      // have an unreachable loop.
755      if (Loop *L = LI->getLoopFor(BB))
756        if (loopHeader == BB && L->contains(Pred)) {
757          // Remove the branch from the latch to the header block, this makes
758          // the header dead, which will make the latch dead (because the header
759          // dominates the latch).
760          LPM->deleteSimpleAnalysisValue(Pred->getTerminator(), L);
761          Pred->getTerminator()->eraseFromParent();
762          new UnreachableInst(BB->getContext(), Pred);
763
764          // The loop is now broken, remove it from LI.
765          RemoveLoopFromHierarchy(L);
766
767          // Reprocess the header, which now IS dead.
768          RemoveBlockIfDead(BB, Worklist, L);
769          return;
770        }
771
772      // If pred ends in a uncond branch, add uncond branch to worklist so that
773      // the two blocks will get merged.
774      if (BranchInst *BI = dyn_cast<BranchInst>(Pred->getTerminator()))
775        if (BI->isUnconditional())
776          Worklist.push_back(BI);
777    }
778    return;
779  }
780
781  DEBUG(dbgs() << "Nuking dead block: " << *BB);
782
783  // Remove the instructions in the basic block from the worklist.
784  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
785    RemoveFromWorklist(I, Worklist);
786
787    // Anything that uses the instructions in this basic block should have their
788    // uses replaced with undefs.
789    // If I is not void type then replaceAllUsesWith undef.
790    // This allows ValueHandlers and custom metadata to adjust itself.
791    if (!I->getType()->isVoidTy())
792      I->replaceAllUsesWith(UndefValue::get(I->getType()));
793  }
794
795  // If this is the edge to the header block for a loop, remove the loop and
796  // promote all subloops.
797  if (Loop *BBLoop = LI->getLoopFor(BB)) {
798    if (BBLoop->getLoopLatch() == BB)
799      RemoveLoopFromHierarchy(BBLoop);
800  }
801
802  // Remove the block from the loop info, which removes it from any loops it
803  // was in.
804  LI->removeBlock(BB);
805
806
807  // Remove phi node entries in successors for this block.
808  TerminatorInst *TI = BB->getTerminator();
809  SmallVector<BasicBlock*, 4> Succs;
810  for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
811    Succs.push_back(TI->getSuccessor(i));
812    TI->getSuccessor(i)->removePredecessor(BB);
813  }
814
815  // Unique the successors, remove anything with multiple uses.
816  array_pod_sort(Succs.begin(), Succs.end());
817  Succs.erase(std::unique(Succs.begin(), Succs.end()), Succs.end());
818
819  // Remove the basic block, including all of the instructions contained in it.
820  LPM->deleteSimpleAnalysisValue(BB, L);
821  BB->eraseFromParent();
822  // Remove successor blocks here that are not dead, so that we know we only
823  // have dead blocks in this list.  Nondead blocks have a way of becoming dead,
824  // then getting removed before we revisit them, which is badness.
825  //
826  for (unsigned i = 0; i != Succs.size(); ++i)
827    if (pred_begin(Succs[i]) != pred_end(Succs[i])) {
828      // One exception is loop headers.  If this block was the preheader for a
829      // loop, then we DO want to visit the loop so the loop gets deleted.
830      // We know that if the successor is a loop header, that this loop had to
831      // be the preheader: the case where this was the latch block was handled
832      // above and headers can only have two predecessors.
833      if (!LI->isLoopHeader(Succs[i])) {
834        Succs.erase(Succs.begin()+i);
835        --i;
836      }
837    }
838
839  for (unsigned i = 0, e = Succs.size(); i != e; ++i)
840    RemoveBlockIfDead(Succs[i], Worklist, L);
841}
842
843/// RemoveLoopFromHierarchy - We have discovered that the specified loop has
844/// become unwrapped, either because the backedge was deleted, or because the
845/// edge into the header was removed.  If the edge into the header from the
846/// latch block was removed, the loop is unwrapped but subloops are still alive,
847/// so they just reparent loops.  If the loops are actually dead, they will be
848/// removed later.
849void LoopUnswitch::RemoveLoopFromHierarchy(Loop *L) {
850  LPM->deleteLoopFromQueue(L);
851  RemoveLoopFromWorklist(L);
852}
853
854// RewriteLoopBodyWithConditionConstant - We know either that the value LIC has
855// the value specified by Val in the specified loop, or we know it does NOT have
856// that value.  Rewrite any uses of LIC or of properties correlated to it.
857void LoopUnswitch::RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC,
858                                                        Constant *Val,
859                                                        bool IsEqual) {
860  assert(!isa<Constant>(LIC) && "Why are we unswitching on a constant?");
861
862  // FIXME: Support correlated properties, like:
863  //  for (...)
864  //    if (li1 < li2)
865  //      ...
866  //    if (li1 > li2)
867  //      ...
868
869  // FOLD boolean conditions (X|LIC), (X&LIC).  Fold conditional branches,
870  // selects, switches.
871  std::vector<User*> Users(LIC->use_begin(), LIC->use_end());
872  std::vector<Instruction*> Worklist;
873  LLVMContext &Context = Val->getContext();
874
875
876  // If we know that LIC == Val, or that LIC == NotVal, just replace uses of LIC
877  // in the loop with the appropriate one directly.
878  if (IsEqual || (isa<ConstantInt>(Val) &&
879      Val->getType()->isIntegerTy(1))) {
880    Value *Replacement;
881    if (IsEqual)
882      Replacement = Val;
883    else
884      Replacement = ConstantInt::get(Type::getInt1Ty(Val->getContext()),
885                                     !cast<ConstantInt>(Val)->getZExtValue());
886
887    for (unsigned i = 0, e = Users.size(); i != e; ++i)
888      if (Instruction *U = cast<Instruction>(Users[i])) {
889        if (!L->contains(U))
890          continue;
891        U->replaceUsesOfWith(LIC, Replacement);
892        Worklist.push_back(U);
893      }
894    SimplifyCode(Worklist, L);
895    return;
896  }
897
898  // Otherwise, we don't know the precise value of LIC, but we do know that it
899  // is certainly NOT "Val".  As such, simplify any uses in the loop that we
900  // can.  This case occurs when we unswitch switch statements.
901  for (unsigned i = 0, e = Users.size(); i != e; ++i) {
902    Instruction *U = cast<Instruction>(Users[i]);
903    if (!L->contains(U))
904      continue;
905
906    Worklist.push_back(U);
907
908    // TODO: We could do other simplifications, for example, turning
909    // 'icmp eq LIC, Val' -> false.
910
911    // If we know that LIC is not Val, use this info to simplify code.
912    SwitchInst *SI = dyn_cast<SwitchInst>(U);
913    if (SI == 0 || !isa<ConstantInt>(Val)) continue;
914
915    unsigned DeadCase = SI->findCaseValue(cast<ConstantInt>(Val));
916    if (DeadCase == 0) continue;  // Default case is live for multiple values.
917
918    // Found a dead case value.  Don't remove PHI nodes in the
919    // successor if they become single-entry, those PHI nodes may
920    // be in the Users list.
921
922    // FIXME: This is a hack.  We need to keep the successor around
923    // and hooked up so as to preserve the loop structure, because
924    // trying to update it is complicated.  So instead we preserve the
925    // loop structure and put the block on a dead code path.
926    BasicBlock *Switch = SI->getParent();
927    SplitEdge(Switch, SI->getSuccessor(DeadCase), this);
928    // Compute the successors instead of relying on the return value
929    // of SplitEdge, since it may have split the switch successor
930    // after PHI nodes.
931    BasicBlock *NewSISucc = SI->getSuccessor(DeadCase);
932    BasicBlock *OldSISucc = *succ_begin(NewSISucc);
933    // Create an "unreachable" destination.
934    BasicBlock *Abort = BasicBlock::Create(Context, "us-unreachable",
935                                           Switch->getParent(),
936                                           OldSISucc);
937    new UnreachableInst(Context, Abort);
938    // Force the new case destination to branch to the "unreachable"
939    // block while maintaining a (dead) CFG edge to the old block.
940    NewSISucc->getTerminator()->eraseFromParent();
941    BranchInst::Create(Abort, OldSISucc,
942                       ConstantInt::getTrue(Context), NewSISucc);
943    // Release the PHI operands for this edge.
944    for (BasicBlock::iterator II = NewSISucc->begin();
945         PHINode *PN = dyn_cast<PHINode>(II); ++II)
946      PN->setIncomingValue(PN->getBasicBlockIndex(Switch),
947                           UndefValue::get(PN->getType()));
948    // Tell the domtree about the new block. We don't fully update the
949    // domtree here -- instead we force it to do a full recomputation
950    // after the pass is complete -- but we do need to inform it of
951    // new blocks.
952    if (DT)
953      DT->addNewBlock(Abort, NewSISucc);
954  }
955
956  SimplifyCode(Worklist, L);
957}
958
959/// SimplifyCode - Okay, now that we have simplified some instructions in the
960/// loop, walk over it and constant prop, dce, and fold control flow where
961/// possible.  Note that this is effectively a very simple loop-structure-aware
962/// optimizer.  During processing of this loop, L could very well be deleted, so
963/// it must not be used.
964///
965/// FIXME: When the loop optimizer is more mature, separate this out to a new
966/// pass.
967///
968void LoopUnswitch::SimplifyCode(std::vector<Instruction*> &Worklist, Loop *L) {
969  while (!Worklist.empty()) {
970    Instruction *I = Worklist.back();
971    Worklist.pop_back();
972
973    // Simple constant folding.
974    if (Constant *C = ConstantFoldInstruction(I)) {
975      ReplaceUsesOfWith(I, C, Worklist, L, LPM);
976      continue;
977    }
978
979    // Simple DCE.
980    if (isInstructionTriviallyDead(I)) {
981      DEBUG(dbgs() << "Remove dead instruction '" << *I);
982
983      // Add uses to the worklist, which may be dead now.
984      for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
985        if (Instruction *Use = dyn_cast<Instruction>(I->getOperand(i)))
986          Worklist.push_back(Use);
987      LPM->deleteSimpleAnalysisValue(I, L);
988      RemoveFromWorklist(I, Worklist);
989      I->eraseFromParent();
990      ++NumSimplify;
991      continue;
992    }
993
994    // See if instruction simplification can hack this up.  This is common for
995    // things like "select false, X, Y" after unswitching made the condition be
996    // 'false'.
997    if (Value *V = SimplifyInstruction(I)) {
998      ReplaceUsesOfWith(I, V, Worklist, L, LPM);
999      continue;
1000    }
1001
1002    // Special case hacks that appear commonly in unswitched code.
1003    if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
1004      if (BI->isUnconditional()) {
1005        // If BI's parent is the only pred of the successor, fold the two blocks
1006        // together.
1007        BasicBlock *Pred = BI->getParent();
1008        BasicBlock *Succ = BI->getSuccessor(0);
1009        BasicBlock *SinglePred = Succ->getSinglePredecessor();
1010        if (!SinglePred) continue;  // Nothing to do.
1011        assert(SinglePred == Pred && "CFG broken");
1012
1013        DEBUG(dbgs() << "Merging blocks: " << Pred->getName() << " <- "
1014              << Succ->getName() << "\n");
1015
1016        // Resolve any single entry PHI nodes in Succ.
1017        while (PHINode *PN = dyn_cast<PHINode>(Succ->begin()))
1018          ReplaceUsesOfWith(PN, PN->getIncomingValue(0), Worklist, L, LPM);
1019
1020        // Move all of the successor contents from Succ to Pred.
1021        Pred->getInstList().splice(BI, Succ->getInstList(), Succ->begin(),
1022                                   Succ->end());
1023        LPM->deleteSimpleAnalysisValue(BI, L);
1024        BI->eraseFromParent();
1025        RemoveFromWorklist(BI, Worklist);
1026
1027        // If Succ has any successors with PHI nodes, update them to have
1028        // entries coming from Pred instead of Succ.
1029        Succ->replaceAllUsesWith(Pred);
1030
1031        // Remove Succ from the loop tree.
1032        LI->removeBlock(Succ);
1033        LPM->deleteSimpleAnalysisValue(Succ, L);
1034        Succ->eraseFromParent();
1035        ++NumSimplify;
1036        continue;
1037      }
1038
1039      if (ConstantInt *CB = dyn_cast<ConstantInt>(BI->getCondition())){
1040        // Conditional branch.  Turn it into an unconditional branch, then
1041        // remove dead blocks.
1042        continue;  // FIXME: Enable.
1043
1044        DEBUG(dbgs() << "Folded branch: " << *BI);
1045        BasicBlock *DeadSucc = BI->getSuccessor(CB->getZExtValue());
1046        BasicBlock *LiveSucc = BI->getSuccessor(!CB->getZExtValue());
1047        DeadSucc->removePredecessor(BI->getParent(), true);
1048        Worklist.push_back(BranchInst::Create(LiveSucc, BI));
1049        LPM->deleteSimpleAnalysisValue(BI, L);
1050        BI->eraseFromParent();
1051        RemoveFromWorklist(BI, Worklist);
1052        ++NumSimplify;
1053
1054        RemoveBlockIfDead(DeadSucc, Worklist, L);
1055      }
1056      continue;
1057    }
1058  }
1059}
1060