LoopUnswitch.cpp revision 3e8b6631e67e01e4960a7ba4668a50c596607473
1//===-- LoopUnswitch.cpp - Hoist loop-invariant conditionals in loop ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass transforms loops that contain branches on loop-invariant conditions
11// to have multiple loops.  For example, it turns the left into the right code:
12//
13//  for (...)                  if (lic)
14//    A                          for (...)
15//    if (lic)                     A; B; C
16//      B                      else
17//    C                          for (...)
18//                                 A; C
19//
20// This can increase the size of the code exponentially (doubling it every time
21// a loop is unswitched) so we only unswitch if the resultant code will be
22// smaller than a threshold.
23//
24// This pass expects LICM to be run before it to hoist invariant conditions out
25// of the loop, to make the unswitching opportunity obvious.
26//
27//===----------------------------------------------------------------------===//
28
29#define DEBUG_TYPE "loop-unswitch"
30#include "llvm/Transforms/Scalar.h"
31#include "llvm/Constants.h"
32#include "llvm/DerivedTypes.h"
33#include "llvm/Function.h"
34#include "llvm/Instructions.h"
35#include "llvm/LLVMContext.h"
36#include "llvm/Analysis/ConstantFolding.h"
37#include "llvm/Analysis/LoopInfo.h"
38#include "llvm/Analysis/LoopPass.h"
39#include "llvm/Analysis/Dominators.h"
40#include "llvm/Transforms/Utils/Cloning.h"
41#include "llvm/Transforms/Utils/Local.h"
42#include "llvm/Transforms/Utils/BasicBlockUtils.h"
43#include "llvm/ADT/Statistic.h"
44#include "llvm/ADT/SmallPtrSet.h"
45#include "llvm/ADT/STLExtras.h"
46#include "llvm/Support/CommandLine.h"
47#include "llvm/Support/Debug.h"
48#include "llvm/Support/raw_ostream.h"
49#include <algorithm>
50#include <set>
51using namespace llvm;
52
53STATISTIC(NumBranches, "Number of branches unswitched");
54STATISTIC(NumSwitches, "Number of switches unswitched");
55STATISTIC(NumSelects , "Number of selects unswitched");
56STATISTIC(NumTrivial , "Number of unswitches that are trivial");
57STATISTIC(NumSimplify, "Number of simplifications of unswitched code");
58
59static cl::opt<unsigned>
60Threshold("loop-unswitch-threshold", cl::desc("Max loop size to unswitch"),
61          cl::init(10), cl::Hidden);
62
63namespace {
64  class LoopUnswitch : public LoopPass {
65    LoopInfo *LI;  // Loop information
66    LPPassManager *LPM;
67
68    // LoopProcessWorklist - Used to check if second loop needs processing
69    // after RewriteLoopBodyWithConditionConstant rewrites first loop.
70    std::vector<Loop*> LoopProcessWorklist;
71    SmallPtrSet<Value *,8> UnswitchedVals;
72
73    bool OptimizeForSize;
74    bool redoLoop;
75
76    Loop *currentLoop;
77    DominanceFrontier *DF;
78    DominatorTree *DT;
79    BasicBlock *loopHeader;
80    BasicBlock *loopPreheader;
81
82    // LoopBlocks contains all of the basic blocks of the loop, including the
83    // preheader of the loop, the body of the loop, and the exit blocks of the
84    // loop, in that order.
85    std::vector<BasicBlock*> LoopBlocks;
86    // NewBlocks contained cloned copy of basic blocks from LoopBlocks.
87    std::vector<BasicBlock*> NewBlocks;
88
89  public:
90    static char ID; // Pass ID, replacement for typeid
91    explicit LoopUnswitch(bool Os = false) :
92      LoopPass(&ID), OptimizeForSize(Os), redoLoop(false),
93      currentLoop(NULL), DF(NULL), DT(NULL), loopHeader(NULL),
94      loopPreheader(NULL) {}
95
96    bool runOnLoop(Loop *L, LPPassManager &LPM);
97    bool processCurrentLoop();
98
99    /// This transformation requires natural loop information & requires that
100    /// loop preheaders be inserted into the CFG...
101    ///
102    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
103      AU.addRequiredID(LoopSimplifyID);
104      AU.addPreservedID(LoopSimplifyID);
105      AU.addRequired<LoopInfo>();
106      AU.addPreserved<LoopInfo>();
107      AU.addRequiredID(LCSSAID);
108      AU.addPreservedID(LCSSAID);
109      AU.addPreserved<DominatorTree>();
110      AU.addPreserved<DominanceFrontier>();
111    }
112
113  private:
114
115    /// RemoveLoopFromWorklist - If the specified loop is on the loop worklist,
116    /// remove it.
117    void RemoveLoopFromWorklist(Loop *L) {
118      std::vector<Loop*>::iterator I = std::find(LoopProcessWorklist.begin(),
119                                                 LoopProcessWorklist.end(), L);
120      if (I != LoopProcessWorklist.end())
121        LoopProcessWorklist.erase(I);
122    }
123
124    void initLoopData() {
125      loopHeader = currentLoop->getHeader();
126      loopPreheader = currentLoop->getLoopPreheader();
127    }
128
129    /// Split all of the edges from inside the loop to their exit blocks.
130    /// Update the appropriate Phi nodes as we do so.
131    void SplitExitEdges(Loop *L, const SmallVector<BasicBlock *, 8> &ExitBlocks);
132
133    bool UnswitchIfProfitable(Value *LoopCond, Constant *Val);
134    unsigned getLoopUnswitchCost(Value *LIC);
135    void UnswitchTrivialCondition(Loop *L, Value *Cond, Constant *Val,
136                                  BasicBlock *ExitBlock);
137    void UnswitchNontrivialCondition(Value *LIC, Constant *OnVal, Loop *L);
138
139    void RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC,
140                                              Constant *Val, bool isEqual);
141
142    void EmitPreheaderBranchOnCondition(Value *LIC, Constant *Val,
143                                        BasicBlock *TrueDest,
144                                        BasicBlock *FalseDest,
145                                        Instruction *InsertPt);
146
147    void SimplifyCode(std::vector<Instruction*> &Worklist, Loop *L);
148    void RemoveBlockIfDead(BasicBlock *BB,
149                           std::vector<Instruction*> &Worklist, Loop *l);
150    void RemoveLoopFromHierarchy(Loop *L);
151    bool IsTrivialUnswitchCondition(Value *Cond, Constant **Val = 0,
152                                    BasicBlock **LoopExit = 0);
153
154  };
155}
156char LoopUnswitch::ID = 0;
157static RegisterPass<LoopUnswitch> X("loop-unswitch", "Unswitch loops");
158
159Pass *llvm::createLoopUnswitchPass(bool Os) {
160  return new LoopUnswitch(Os);
161}
162
163/// FindLIVLoopCondition - Cond is a condition that occurs in L.  If it is
164/// invariant in the loop, or has an invariant piece, return the invariant.
165/// Otherwise, return null.
166static Value *FindLIVLoopCondition(Value *Cond, Loop *L, bool &Changed) {
167  // Constants should be folded, not unswitched on!
168  if (isa<Constant>(Cond)) return 0;
169
170  // TODO: Handle: br (VARIANT|INVARIANT).
171
172  // Hoist simple values out.
173  if (L->makeLoopInvariant(Cond, Changed))
174    return Cond;
175
176  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Cond))
177    if (BO->getOpcode() == Instruction::And ||
178        BO->getOpcode() == Instruction::Or) {
179      // If either the left or right side is invariant, we can unswitch on this,
180      // which will cause the branch to go away in one loop and the condition to
181      // simplify in the other one.
182      if (Value *LHS = FindLIVLoopCondition(BO->getOperand(0), L, Changed))
183        return LHS;
184      if (Value *RHS = FindLIVLoopCondition(BO->getOperand(1), L, Changed))
185        return RHS;
186    }
187
188  return 0;
189}
190
191bool LoopUnswitch::runOnLoop(Loop *L, LPPassManager &LPM_Ref) {
192  LI = &getAnalysis<LoopInfo>();
193  LPM = &LPM_Ref;
194  DF = getAnalysisIfAvailable<DominanceFrontier>();
195  DT = getAnalysisIfAvailable<DominatorTree>();
196  currentLoop = L;
197  Function *F = currentLoop->getHeader()->getParent();
198  bool Changed = false;
199  do {
200    assert(currentLoop->isLCSSAForm());
201    redoLoop = false;
202    Changed |= processCurrentLoop();
203  } while(redoLoop);
204
205  if (Changed) {
206    // FIXME: Reconstruct dom info, because it is not preserved properly.
207    if (DT)
208      DT->runOnFunction(*F);
209    if (DF)
210      DF->runOnFunction(*F);
211  }
212  return Changed;
213}
214
215/// processCurrentLoop - Do actual work and unswitch loop if possible
216/// and profitable.
217bool LoopUnswitch::processCurrentLoop() {
218  bool Changed = false;
219  LLVMContext &Context = currentLoop->getHeader()->getContext();
220
221  // Loop over all of the basic blocks in the loop.  If we find an interior
222  // block that is branching on a loop-invariant condition, we can unswitch this
223  // loop.
224  for (Loop::block_iterator I = currentLoop->block_begin(),
225         E = currentLoop->block_end();
226       I != E; ++I) {
227    TerminatorInst *TI = (*I)->getTerminator();
228    if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
229      // If this isn't branching on an invariant condition, we can't unswitch
230      // it.
231      if (BI->isConditional()) {
232        // See if this, or some part of it, is loop invariant.  If so, we can
233        // unswitch on it if we desire.
234        Value *LoopCond = FindLIVLoopCondition(BI->getCondition(),
235                                               currentLoop, Changed);
236        if (LoopCond && UnswitchIfProfitable(LoopCond,
237                                             ConstantInt::getTrue(Context))) {
238          ++NumBranches;
239          return true;
240        }
241      }
242    } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
243      Value *LoopCond = FindLIVLoopCondition(SI->getCondition(),
244                                             currentLoop, Changed);
245      if (LoopCond && SI->getNumCases() > 1) {
246        // Find a value to unswitch on:
247        // FIXME: this should chose the most expensive case!
248        Constant *UnswitchVal = SI->getCaseValue(1);
249        // Do not process same value again and again.
250        if (!UnswitchedVals.insert(UnswitchVal))
251          continue;
252
253        if (UnswitchIfProfitable(LoopCond, UnswitchVal)) {
254          ++NumSwitches;
255          return true;
256        }
257      }
258    }
259
260    // Scan the instructions to check for unswitchable values.
261    for (BasicBlock::iterator BBI = (*I)->begin(), E = (*I)->end();
262         BBI != E; ++BBI)
263      if (SelectInst *SI = dyn_cast<SelectInst>(BBI)) {
264        Value *LoopCond = FindLIVLoopCondition(SI->getCondition(),
265                                               currentLoop, Changed);
266        if (LoopCond && UnswitchIfProfitable(LoopCond,
267                                             ConstantInt::getTrue(Context))) {
268          ++NumSelects;
269          return true;
270        }
271      }
272  }
273  return Changed;
274}
275
276/// isTrivialLoopExitBlock - Check to see if all paths from BB either:
277///   1. Exit the loop with no side effects.
278///   2. Branch to the latch block with no side-effects.
279///
280/// If these conditions are true, we return true and set ExitBB to the block we
281/// exit through.
282///
283static bool isTrivialLoopExitBlockHelper(Loop *L, BasicBlock *BB,
284                                         BasicBlock *&ExitBB,
285                                         std::set<BasicBlock*> &Visited) {
286  if (!Visited.insert(BB).second) {
287    // Already visited and Ok, end of recursion.
288    return true;
289  } else if (!L->contains(BB)) {
290    // Otherwise, this is a loop exit, this is fine so long as this is the
291    // first exit.
292    if (ExitBB != 0) return false;
293    ExitBB = BB;
294    return true;
295  }
296
297  // Otherwise, this is an unvisited intra-loop node.  Check all successors.
298  for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI) {
299    // Check to see if the successor is a trivial loop exit.
300    if (!isTrivialLoopExitBlockHelper(L, *SI, ExitBB, Visited))
301      return false;
302  }
303
304  // Okay, everything after this looks good, check to make sure that this block
305  // doesn't include any side effects.
306  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
307    if (I->mayHaveSideEffects())
308      return false;
309
310  return true;
311}
312
313/// isTrivialLoopExitBlock - Return true if the specified block unconditionally
314/// leads to an exit from the specified loop, and has no side-effects in the
315/// process.  If so, return the block that is exited to, otherwise return null.
316static BasicBlock *isTrivialLoopExitBlock(Loop *L, BasicBlock *BB) {
317  std::set<BasicBlock*> Visited;
318  Visited.insert(L->getHeader());  // Branches to header are ok.
319  BasicBlock *ExitBB = 0;
320  if (isTrivialLoopExitBlockHelper(L, BB, ExitBB, Visited))
321    return ExitBB;
322  return 0;
323}
324
325/// IsTrivialUnswitchCondition - Check to see if this unswitch condition is
326/// trivial: that is, that the condition controls whether or not the loop does
327/// anything at all.  If this is a trivial condition, unswitching produces no
328/// code duplications (equivalently, it produces a simpler loop and a new empty
329/// loop, which gets deleted).
330///
331/// If this is a trivial condition, return true, otherwise return false.  When
332/// returning true, this sets Cond and Val to the condition that controls the
333/// trivial condition: when Cond dynamically equals Val, the loop is known to
334/// exit.  Finally, this sets LoopExit to the BB that the loop exits to when
335/// Cond == Val.
336///
337bool LoopUnswitch::IsTrivialUnswitchCondition(Value *Cond, Constant **Val,
338                                       BasicBlock **LoopExit) {
339  BasicBlock *Header = currentLoop->getHeader();
340  TerminatorInst *HeaderTerm = Header->getTerminator();
341  LLVMContext &Context = Header->getContext();
342
343  BasicBlock *LoopExitBB = 0;
344  if (BranchInst *BI = dyn_cast<BranchInst>(HeaderTerm)) {
345    // If the header block doesn't end with a conditional branch on Cond, we
346    // can't handle it.
347    if (!BI->isConditional() || BI->getCondition() != Cond)
348      return false;
349
350    // Check to see if a successor of the branch is guaranteed to go to the
351    // latch block or exit through a one exit block without having any
352    // side-effects.  If so, determine the value of Cond that causes it to do
353    // this.
354    if ((LoopExitBB = isTrivialLoopExitBlock(currentLoop,
355                                             BI->getSuccessor(0)))) {
356      if (Val) *Val = ConstantInt::getTrue(Context);
357    } else if ((LoopExitBB = isTrivialLoopExitBlock(currentLoop,
358                                                    BI->getSuccessor(1)))) {
359      if (Val) *Val = ConstantInt::getFalse(Context);
360    }
361  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(HeaderTerm)) {
362    // If this isn't a switch on Cond, we can't handle it.
363    if (SI->getCondition() != Cond) return false;
364
365    // Check to see if a successor of the switch is guaranteed to go to the
366    // latch block or exit through a one exit block without having any
367    // side-effects.  If so, determine the value of Cond that causes it to do
368    // this.  Note that we can't trivially unswitch on the default case.
369    for (unsigned i = 1, e = SI->getNumSuccessors(); i != e; ++i)
370      if ((LoopExitBB = isTrivialLoopExitBlock(currentLoop,
371                                               SI->getSuccessor(i)))) {
372        // Okay, we found a trivial case, remember the value that is trivial.
373        if (Val) *Val = SI->getCaseValue(i);
374        break;
375      }
376  }
377
378  // If we didn't find a single unique LoopExit block, or if the loop exit block
379  // contains phi nodes, this isn't trivial.
380  if (!LoopExitBB || isa<PHINode>(LoopExitBB->begin()))
381    return false;   // Can't handle this.
382
383  if (LoopExit) *LoopExit = LoopExitBB;
384
385  // We already know that nothing uses any scalar values defined inside of this
386  // loop.  As such, we just have to check to see if this loop will execute any
387  // side-effecting instructions (e.g. stores, calls, volatile loads) in the
388  // part of the loop that the code *would* execute.  We already checked the
389  // tail, check the header now.
390  for (BasicBlock::iterator I = Header->begin(), E = Header->end(); I != E; ++I)
391    if (I->mayHaveSideEffects())
392      return false;
393  return true;
394}
395
396/// getLoopUnswitchCost - Return the cost (code size growth) that will happen if
397/// we choose to unswitch current loop on the specified value.
398///
399unsigned LoopUnswitch::getLoopUnswitchCost(Value *LIC) {
400  // If the condition is trivial, always unswitch.  There is no code growth for
401  // this case.
402  if (IsTrivialUnswitchCondition(LIC))
403    return 0;
404
405  // FIXME: This is really overly conservative.  However, more liberal
406  // estimations have thus far resulted in excessive unswitching, which is bad
407  // both in compile time and in code size.  This should be replaced once
408  // someone figures out how a good estimation.
409  return currentLoop->getBlocks().size();
410
411  unsigned Cost = 0;
412  // FIXME: this is brain dead.  It should take into consideration code
413  // shrinkage.
414  for (Loop::block_iterator I = currentLoop->block_begin(),
415         E = currentLoop->block_end();
416       I != E; ++I) {
417    BasicBlock *BB = *I;
418    // Do not include empty blocks in the cost calculation.  This happen due to
419    // loop canonicalization and will be removed.
420    if (BB->begin() == BasicBlock::iterator(BB->getTerminator()))
421      continue;
422
423    // Count basic blocks.
424    ++Cost;
425  }
426
427  return Cost;
428}
429
430/// UnswitchIfProfitable - We have found that we can unswitch currentLoop when
431/// LoopCond == Val to simplify the loop.  If we decide that this is profitable,
432/// unswitch the loop, reprocess the pieces, then return true.
433bool LoopUnswitch::UnswitchIfProfitable(Value *LoopCond, Constant *Val){
434
435  initLoopData();
436  Function *F = loopHeader->getParent();
437
438
439  // Check to see if it would be profitable to unswitch current loop.
440  unsigned Cost = getLoopUnswitchCost(LoopCond);
441
442  // Do not do non-trivial unswitch while optimizing for size.
443  if (Cost && OptimizeForSize)
444    return false;
445  if (Cost && !F->isDeclaration() && F->hasFnAttr(Attribute::OptimizeForSize))
446    return false;
447
448  if (Cost > Threshold) {
449    // FIXME: this should estimate growth by the amount of code shared by the
450    // resultant unswitched loops.
451    //
452    DEBUG(errs() << "NOT unswitching loop %"
453          << currentLoop->getHeader()->getName() << ", cost too high: "
454          << currentLoop->getBlocks().size() << "\n");
455    return false;
456  }
457
458  Constant *CondVal;
459  BasicBlock *ExitBlock;
460  if (IsTrivialUnswitchCondition(LoopCond, &CondVal, &ExitBlock)) {
461    UnswitchTrivialCondition(currentLoop, LoopCond, CondVal, ExitBlock);
462  } else {
463    UnswitchNontrivialCondition(LoopCond, Val, currentLoop);
464  }
465
466  return true;
467}
468
469// RemapInstruction - Convert the instruction operands from referencing the
470// current values into those specified by ValueMap.
471//
472static inline void RemapInstruction(Instruction *I,
473                                    DenseMap<const Value *, Value*> &ValueMap) {
474  for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) {
475    Value *Op = I->getOperand(op);
476    DenseMap<const Value *, Value*>::iterator It = ValueMap.find(Op);
477    if (It != ValueMap.end()) Op = It->second;
478    I->setOperand(op, Op);
479  }
480}
481
482/// CloneLoop - Recursively clone the specified loop and all of its children,
483/// mapping the blocks with the specified map.
484static Loop *CloneLoop(Loop *L, Loop *PL, DenseMap<const Value*, Value*> &VM,
485                       LoopInfo *LI, LPPassManager *LPM) {
486  Loop *New = new Loop();
487
488  LPM->insertLoop(New, PL);
489
490  // Add all of the blocks in L to the new loop.
491  for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
492       I != E; ++I)
493    if (LI->getLoopFor(*I) == L)
494      New->addBasicBlockToLoop(cast<BasicBlock>(VM[*I]), LI->getBase());
495
496  // Add all of the subloops to the new loop.
497  for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
498    CloneLoop(*I, New, VM, LI, LPM);
499
500  return New;
501}
502
503/// EmitPreheaderBranchOnCondition - Emit a conditional branch on two values
504/// if LIC == Val, branch to TrueDst, otherwise branch to FalseDest.  Insert the
505/// code immediately before InsertPt.
506void LoopUnswitch::EmitPreheaderBranchOnCondition(Value *LIC, Constant *Val,
507                                                  BasicBlock *TrueDest,
508                                                  BasicBlock *FalseDest,
509                                                  Instruction *InsertPt) {
510  // Insert a conditional branch on LIC to the two preheaders.  The original
511  // code is the true version and the new code is the false version.
512  Value *BranchVal = LIC;
513  if (!isa<ConstantInt>(Val) ||
514      Val->getType() != Type::getInt1Ty(LIC->getContext()))
515    BranchVal = new ICmpInst(InsertPt, ICmpInst::ICMP_EQ, LIC, Val, "tmp");
516  else if (Val != ConstantInt::getTrue(Val->getContext()))
517    // We want to enter the new loop when the condition is true.
518    std::swap(TrueDest, FalseDest);
519
520  // Insert the new branch.
521  BranchInst::Create(TrueDest, FalseDest, BranchVal, InsertPt);
522}
523
524/// UnswitchTrivialCondition - Given a loop that has a trivial unswitchable
525/// condition in it (a cond branch from its header block to its latch block,
526/// where the path through the loop that doesn't execute its body has no
527/// side-effects), unswitch it.  This doesn't involve any code duplication, just
528/// moving the conditional branch outside of the loop and updating loop info.
529void LoopUnswitch::UnswitchTrivialCondition(Loop *L, Value *Cond,
530                                            Constant *Val,
531                                            BasicBlock *ExitBlock) {
532  DEBUG(errs() << "loop-unswitch: Trivial-Unswitch loop %"
533        << loopHeader->getName() << " [" << L->getBlocks().size()
534        << " blocks] in Function " << L->getHeader()->getParent()->getName()
535        << " on cond: " << *Val << " == " << *Cond << "\n");
536
537  // First step, split the preheader, so that we know that there is a safe place
538  // to insert the conditional branch.  We will change loopPreheader to have a
539  // conditional branch on Cond.
540  BasicBlock *NewPH = SplitEdge(loopPreheader, loopHeader, this);
541
542  // Now that we have a place to insert the conditional branch, create a place
543  // to branch to: this is the exit block out of the loop that we should
544  // short-circuit to.
545
546  // Split this block now, so that the loop maintains its exit block, and so
547  // that the jump from the preheader can execute the contents of the exit block
548  // without actually branching to it (the exit block should be dominated by the
549  // loop header, not the preheader).
550  assert(!L->contains(ExitBlock) && "Exit block is in the loop?");
551  BasicBlock *NewExit = SplitBlock(ExitBlock, ExitBlock->begin(), this);
552
553  // Okay, now we have a position to branch from and a position to branch to,
554  // insert the new conditional branch.
555  EmitPreheaderBranchOnCondition(Cond, Val, NewExit, NewPH,
556                                 loopPreheader->getTerminator());
557  LPM->deleteSimpleAnalysisValue(loopPreheader->getTerminator(), L);
558  loopPreheader->getTerminator()->eraseFromParent();
559
560  // We need to reprocess this loop, it could be unswitched again.
561  redoLoop = true;
562
563  // Now that we know that the loop is never entered when this condition is a
564  // particular value, rewrite the loop with this info.  We know that this will
565  // at least eliminate the old branch.
566  RewriteLoopBodyWithConditionConstant(L, Cond, Val, false);
567  ++NumTrivial;
568}
569
570/// SplitExitEdges - Split all of the edges from inside the loop to their exit
571/// blocks.  Update the appropriate Phi nodes as we do so.
572void LoopUnswitch::SplitExitEdges(Loop *L,
573                                const SmallVector<BasicBlock *, 8> &ExitBlocks)
574{
575
576  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
577    BasicBlock *ExitBlock = ExitBlocks[i];
578    std::vector<BasicBlock*> Preds(pred_begin(ExitBlock), pred_end(ExitBlock));
579
580    for (unsigned j = 0, e = Preds.size(); j != e; ++j) {
581      BasicBlock* NewExitBlock = SplitEdge(Preds[j], ExitBlock, this);
582      BasicBlock* StartBlock = Preds[j];
583      BasicBlock* EndBlock;
584      if (NewExitBlock->getSinglePredecessor() == ExitBlock) {
585        EndBlock = NewExitBlock;
586        NewExitBlock = EndBlock->getSinglePredecessor();
587      } else {
588        EndBlock = ExitBlock;
589      }
590
591      std::set<PHINode*> InsertedPHIs;
592      PHINode* OldLCSSA = 0;
593      for (BasicBlock::iterator I = EndBlock->begin();
594           (OldLCSSA = dyn_cast<PHINode>(I)); ++I) {
595        Value* OldValue = OldLCSSA->getIncomingValueForBlock(NewExitBlock);
596        PHINode* NewLCSSA = PHINode::Create(OldLCSSA->getType(),
597                                            OldLCSSA->getName() + ".us-lcssa",
598                                            NewExitBlock->getTerminator());
599        NewLCSSA->addIncoming(OldValue, StartBlock);
600        OldLCSSA->setIncomingValue(OldLCSSA->getBasicBlockIndex(NewExitBlock),
601                                   NewLCSSA);
602        InsertedPHIs.insert(NewLCSSA);
603      }
604
605      BasicBlock::iterator InsertPt = EndBlock->getFirstNonPHI();
606      for (BasicBlock::iterator I = NewExitBlock->begin();
607         (OldLCSSA = dyn_cast<PHINode>(I)) && InsertedPHIs.count(OldLCSSA) == 0;
608         ++I) {
609        PHINode *NewLCSSA = PHINode::Create(OldLCSSA->getType(),
610                                            OldLCSSA->getName() + ".us-lcssa",
611                                            InsertPt);
612        OldLCSSA->replaceAllUsesWith(NewLCSSA);
613        NewLCSSA->addIncoming(OldLCSSA, NewExitBlock);
614      }
615
616    }
617  }
618
619}
620
621/// UnswitchNontrivialCondition - We determined that the loop is profitable
622/// to unswitch when LIC equal Val.  Split it into loop versions and test the
623/// condition outside of either loop.  Return the loops created as Out1/Out2.
624void LoopUnswitch::UnswitchNontrivialCondition(Value *LIC, Constant *Val,
625                                               Loop *L) {
626  Function *F = loopHeader->getParent();
627  DEBUG(errs() << "loop-unswitch: Unswitching loop %"
628        << loopHeader->getName() << " [" << L->getBlocks().size()
629        << " blocks] in Function " << F->getName()
630        << " when '" << *Val << "' == " << *LIC << "\n");
631
632  LoopBlocks.clear();
633  NewBlocks.clear();
634
635  // First step, split the preheader and exit blocks, and add these blocks to
636  // the LoopBlocks list.
637  BasicBlock *NewPreheader = SplitEdge(loopPreheader, loopHeader, this);
638  LoopBlocks.push_back(NewPreheader);
639
640  // We want the loop to come after the preheader, but before the exit blocks.
641  LoopBlocks.insert(LoopBlocks.end(), L->block_begin(), L->block_end());
642
643  SmallVector<BasicBlock*, 8> ExitBlocks;
644  L->getUniqueExitBlocks(ExitBlocks);
645
646  // Split all of the edges from inside the loop to their exit blocks.  Update
647  // the appropriate Phi nodes as we do so.
648  SplitExitEdges(L, ExitBlocks);
649
650  // The exit blocks may have been changed due to edge splitting, recompute.
651  ExitBlocks.clear();
652  L->getUniqueExitBlocks(ExitBlocks);
653
654  // Add exit blocks to the loop blocks.
655  LoopBlocks.insert(LoopBlocks.end(), ExitBlocks.begin(), ExitBlocks.end());
656
657  // Next step, clone all of the basic blocks that make up the loop (including
658  // the loop preheader and exit blocks), keeping track of the mapping between
659  // the instructions and blocks.
660  NewBlocks.reserve(LoopBlocks.size());
661  DenseMap<const Value*, Value*> ValueMap;
662  for (unsigned i = 0, e = LoopBlocks.size(); i != e; ++i) {
663    BasicBlock *New = CloneBasicBlock(LoopBlocks[i], ValueMap, ".us", F);
664    NewBlocks.push_back(New);
665    ValueMap[LoopBlocks[i]] = New;  // Keep the BB mapping.
666    LPM->cloneBasicBlockSimpleAnalysis(LoopBlocks[i], New, L);
667  }
668
669  // Splice the newly inserted blocks into the function right before the
670  // original preheader.
671  F->getBasicBlockList().splice(LoopBlocks[0], F->getBasicBlockList(),
672                                NewBlocks[0], F->end());
673
674  // Now we create the new Loop object for the versioned loop.
675  Loop *NewLoop = CloneLoop(L, L->getParentLoop(), ValueMap, LI, LPM);
676  Loop *ParentLoop = L->getParentLoop();
677  if (ParentLoop) {
678    // Make sure to add the cloned preheader and exit blocks to the parent loop
679    // as well.
680    ParentLoop->addBasicBlockToLoop(NewBlocks[0], LI->getBase());
681  }
682
683  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
684    BasicBlock *NewExit = cast<BasicBlock>(ValueMap[ExitBlocks[i]]);
685    // The new exit block should be in the same loop as the old one.
686    if (Loop *ExitBBLoop = LI->getLoopFor(ExitBlocks[i]))
687      ExitBBLoop->addBasicBlockToLoop(NewExit, LI->getBase());
688
689    assert(NewExit->getTerminator()->getNumSuccessors() == 1 &&
690           "Exit block should have been split to have one successor!");
691    BasicBlock *ExitSucc = NewExit->getTerminator()->getSuccessor(0);
692
693    // If the successor of the exit block had PHI nodes, add an entry for
694    // NewExit.
695    PHINode *PN;
696    for (BasicBlock::iterator I = ExitSucc->begin();
697         (PN = dyn_cast<PHINode>(I)); ++I) {
698      Value *V = PN->getIncomingValueForBlock(ExitBlocks[i]);
699      DenseMap<const Value *, Value*>::iterator It = ValueMap.find(V);
700      if (It != ValueMap.end()) V = It->second;
701      PN->addIncoming(V, NewExit);
702    }
703  }
704
705  // Rewrite the code to refer to itself.
706  for (unsigned i = 0, e = NewBlocks.size(); i != e; ++i)
707    for (BasicBlock::iterator I = NewBlocks[i]->begin(),
708           E = NewBlocks[i]->end(); I != E; ++I)
709      RemapInstruction(I, ValueMap);
710
711  // Rewrite the original preheader to select between versions of the loop.
712  BranchInst *OldBR = cast<BranchInst>(loopPreheader->getTerminator());
713  assert(OldBR->isUnconditional() && OldBR->getSuccessor(0) == LoopBlocks[0] &&
714         "Preheader splitting did not work correctly!");
715
716  // Emit the new branch that selects between the two versions of this loop.
717  EmitPreheaderBranchOnCondition(LIC, Val, NewBlocks[0], LoopBlocks[0], OldBR);
718  LPM->deleteSimpleAnalysisValue(OldBR, L);
719  OldBR->eraseFromParent();
720
721  LoopProcessWorklist.push_back(NewLoop);
722  redoLoop = true;
723
724  // Now we rewrite the original code to know that the condition is true and the
725  // new code to know that the condition is false.
726  RewriteLoopBodyWithConditionConstant(L      , LIC, Val, false);
727
728  // It's possible that simplifying one loop could cause the other to be
729  // deleted.  If so, don't simplify it.
730  if (!LoopProcessWorklist.empty() && LoopProcessWorklist.back() == NewLoop)
731    RewriteLoopBodyWithConditionConstant(NewLoop, LIC, Val, true);
732
733}
734
735/// RemoveFromWorklist - Remove all instances of I from the worklist vector
736/// specified.
737static void RemoveFromWorklist(Instruction *I,
738                               std::vector<Instruction*> &Worklist) {
739  std::vector<Instruction*>::iterator WI = std::find(Worklist.begin(),
740                                                     Worklist.end(), I);
741  while (WI != Worklist.end()) {
742    unsigned Offset = WI-Worklist.begin();
743    Worklist.erase(WI);
744    WI = std::find(Worklist.begin()+Offset, Worklist.end(), I);
745  }
746}
747
748/// ReplaceUsesOfWith - When we find that I really equals V, remove I from the
749/// program, replacing all uses with V and update the worklist.
750static void ReplaceUsesOfWith(Instruction *I, Value *V,
751                              std::vector<Instruction*> &Worklist,
752                              Loop *L, LPPassManager *LPM) {
753  DEBUG(errs() << "Replace with '" << *V << "': " << *I);
754
755  // Add uses to the worklist, which may be dead now.
756  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
757    if (Instruction *Use = dyn_cast<Instruction>(I->getOperand(i)))
758      Worklist.push_back(Use);
759
760  // Add users to the worklist which may be simplified now.
761  for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
762       UI != E; ++UI)
763    Worklist.push_back(cast<Instruction>(*UI));
764  LPM->deleteSimpleAnalysisValue(I, L);
765  RemoveFromWorklist(I, Worklist);
766  I->replaceAllUsesWith(V);
767  I->eraseFromParent();
768  ++NumSimplify;
769}
770
771/// RemoveBlockIfDead - If the specified block is dead, remove it, update loop
772/// information, and remove any dead successors it has.
773///
774void LoopUnswitch::RemoveBlockIfDead(BasicBlock *BB,
775                                     std::vector<Instruction*> &Worklist,
776                                     Loop *L) {
777  if (pred_begin(BB) != pred_end(BB)) {
778    // This block isn't dead, since an edge to BB was just removed, see if there
779    // are any easy simplifications we can do now.
780    if (BasicBlock *Pred = BB->getSinglePredecessor()) {
781      // If it has one pred, fold phi nodes in BB.
782      while (isa<PHINode>(BB->begin()))
783        ReplaceUsesOfWith(BB->begin(),
784                          cast<PHINode>(BB->begin())->getIncomingValue(0),
785                          Worklist, L, LPM);
786
787      // If this is the header of a loop and the only pred is the latch, we now
788      // have an unreachable loop.
789      if (Loop *L = LI->getLoopFor(BB))
790        if (loopHeader == BB && L->contains(Pred)) {
791          // Remove the branch from the latch to the header block, this makes
792          // the header dead, which will make the latch dead (because the header
793          // dominates the latch).
794          LPM->deleteSimpleAnalysisValue(Pred->getTerminator(), L);
795          Pred->getTerminator()->eraseFromParent();
796          new UnreachableInst(BB->getContext(), Pred);
797
798          // The loop is now broken, remove it from LI.
799          RemoveLoopFromHierarchy(L);
800
801          // Reprocess the header, which now IS dead.
802          RemoveBlockIfDead(BB, Worklist, L);
803          return;
804        }
805
806      // If pred ends in a uncond branch, add uncond branch to worklist so that
807      // the two blocks will get merged.
808      if (BranchInst *BI = dyn_cast<BranchInst>(Pred->getTerminator()))
809        if (BI->isUnconditional())
810          Worklist.push_back(BI);
811    }
812    return;
813  }
814
815  DEBUG(errs() << "Nuking dead block: " << *BB);
816
817  // Remove the instructions in the basic block from the worklist.
818  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
819    RemoveFromWorklist(I, Worklist);
820
821    // Anything that uses the instructions in this basic block should have their
822    // uses replaced with undefs.
823    if (!I->use_empty())
824      I->replaceAllUsesWith(UndefValue::get(I->getType()));
825  }
826
827  // If this is the edge to the header block for a loop, remove the loop and
828  // promote all subloops.
829  if (Loop *BBLoop = LI->getLoopFor(BB)) {
830    if (BBLoop->getLoopLatch() == BB)
831      RemoveLoopFromHierarchy(BBLoop);
832  }
833
834  // Remove the block from the loop info, which removes it from any loops it
835  // was in.
836  LI->removeBlock(BB);
837
838
839  // Remove phi node entries in successors for this block.
840  TerminatorInst *TI = BB->getTerminator();
841  SmallVector<BasicBlock*, 4> Succs;
842  for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
843    Succs.push_back(TI->getSuccessor(i));
844    TI->getSuccessor(i)->removePredecessor(BB);
845  }
846
847  // Unique the successors, remove anything with multiple uses.
848  array_pod_sort(Succs.begin(), Succs.end());
849  Succs.erase(std::unique(Succs.begin(), Succs.end()), Succs.end());
850
851  // Remove the basic block, including all of the instructions contained in it.
852  LPM->deleteSimpleAnalysisValue(BB, L);
853  BB->eraseFromParent();
854  // Remove successor blocks here that are not dead, so that we know we only
855  // have dead blocks in this list.  Nondead blocks have a way of becoming dead,
856  // then getting removed before we revisit them, which is badness.
857  //
858  for (unsigned i = 0; i != Succs.size(); ++i)
859    if (pred_begin(Succs[i]) != pred_end(Succs[i])) {
860      // One exception is loop headers.  If this block was the preheader for a
861      // loop, then we DO want to visit the loop so the loop gets deleted.
862      // We know that if the successor is a loop header, that this loop had to
863      // be the preheader: the case where this was the latch block was handled
864      // above and headers can only have two predecessors.
865      if (!LI->isLoopHeader(Succs[i])) {
866        Succs.erase(Succs.begin()+i);
867        --i;
868      }
869    }
870
871  for (unsigned i = 0, e = Succs.size(); i != e; ++i)
872    RemoveBlockIfDead(Succs[i], Worklist, L);
873}
874
875/// RemoveLoopFromHierarchy - We have discovered that the specified loop has
876/// become unwrapped, either because the backedge was deleted, or because the
877/// edge into the header was removed.  If the edge into the header from the
878/// latch block was removed, the loop is unwrapped but subloops are still alive,
879/// so they just reparent loops.  If the loops are actually dead, they will be
880/// removed later.
881void LoopUnswitch::RemoveLoopFromHierarchy(Loop *L) {
882  LPM->deleteLoopFromQueue(L);
883  RemoveLoopFromWorklist(L);
884}
885
886// RewriteLoopBodyWithConditionConstant - We know either that the value LIC has
887// the value specified by Val in the specified loop, or we know it does NOT have
888// that value.  Rewrite any uses of LIC or of properties correlated to it.
889void LoopUnswitch::RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC,
890                                                        Constant *Val,
891                                                        bool IsEqual) {
892  assert(!isa<Constant>(LIC) && "Why are we unswitching on a constant?");
893
894  // FIXME: Support correlated properties, like:
895  //  for (...)
896  //    if (li1 < li2)
897  //      ...
898  //    if (li1 > li2)
899  //      ...
900
901  // FOLD boolean conditions (X|LIC), (X&LIC).  Fold conditional branches,
902  // selects, switches.
903  std::vector<User*> Users(LIC->use_begin(), LIC->use_end());
904  std::vector<Instruction*> Worklist;
905  LLVMContext &Context = Val->getContext();
906
907
908  // If we know that LIC == Val, or that LIC == NotVal, just replace uses of LIC
909  // in the loop with the appropriate one directly.
910  if (IsEqual || (isa<ConstantInt>(Val) &&
911      Val->getType() == Type::getInt1Ty(Val->getContext()))) {
912    Value *Replacement;
913    if (IsEqual)
914      Replacement = Val;
915    else
916      Replacement = ConstantInt::get(Type::getInt1Ty(Val->getContext()),
917                                     !cast<ConstantInt>(Val)->getZExtValue());
918
919    for (unsigned i = 0, e = Users.size(); i != e; ++i)
920      if (Instruction *U = cast<Instruction>(Users[i])) {
921        if (!L->contains(U->getParent()))
922          continue;
923        U->replaceUsesOfWith(LIC, Replacement);
924        Worklist.push_back(U);
925      }
926  } else {
927    // Otherwise, we don't know the precise value of LIC, but we do know that it
928    // is certainly NOT "Val".  As such, simplify any uses in the loop that we
929    // can.  This case occurs when we unswitch switch statements.
930    for (unsigned i = 0, e = Users.size(); i != e; ++i)
931      if (Instruction *U = cast<Instruction>(Users[i])) {
932        if (!L->contains(U->getParent()))
933          continue;
934
935        Worklist.push_back(U);
936
937        // If we know that LIC is not Val, use this info to simplify code.
938        if (SwitchInst *SI = dyn_cast<SwitchInst>(U)) {
939          for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i) {
940            if (SI->getCaseValue(i) == Val) {
941              // Found a dead case value.  Don't remove PHI nodes in the
942              // successor if they become single-entry, those PHI nodes may
943              // be in the Users list.
944
945              // FIXME: This is a hack.  We need to keep the successor around
946              // and hooked up so as to preserve the loop structure, because
947              // trying to update it is complicated.  So instead we preserve the
948              // loop structure and put the block on an dead code path.
949
950              BasicBlock *SISucc = SI->getSuccessor(i);
951              BasicBlock* Old = SI->getParent();
952              BasicBlock* Split = SplitBlock(Old, SI, this);
953
954              Instruction* OldTerm = Old->getTerminator();
955              BranchInst::Create(Split, SISucc,
956                                 ConstantInt::getTrue(Context), OldTerm);
957
958              LPM->deleteSimpleAnalysisValue(Old->getTerminator(), L);
959              Old->getTerminator()->eraseFromParent();
960
961              PHINode *PN;
962              for (BasicBlock::iterator II = SISucc->begin();
963                   (PN = dyn_cast<PHINode>(II)); ++II) {
964                Value *InVal = PN->removeIncomingValue(Split, false);
965                PN->addIncoming(InVal, Old);
966              }
967
968              SI->removeCase(i);
969              break;
970            }
971          }
972        }
973
974        // TODO: We could do other simplifications, for example, turning
975        // LIC == Val -> false.
976      }
977  }
978
979  SimplifyCode(Worklist, L);
980}
981
982/// SimplifyCode - Okay, now that we have simplified some instructions in the
983/// loop, walk over it and constant prop, dce, and fold control flow where
984/// possible.  Note that this is effectively a very simple loop-structure-aware
985/// optimizer.  During processing of this loop, L could very well be deleted, so
986/// it must not be used.
987///
988/// FIXME: When the loop optimizer is more mature, separate this out to a new
989/// pass.
990///
991void LoopUnswitch::SimplifyCode(std::vector<Instruction*> &Worklist, Loop *L) {
992  while (!Worklist.empty()) {
993    Instruction *I = Worklist.back();
994    Worklist.pop_back();
995
996    // Simple constant folding.
997    if (Constant *C = ConstantFoldInstruction(I, I->getContext())) {
998      ReplaceUsesOfWith(I, C, Worklist, L, LPM);
999      continue;
1000    }
1001
1002    // Simple DCE.
1003    if (isInstructionTriviallyDead(I)) {
1004      DEBUG(errs() << "Remove dead instruction '" << *I);
1005
1006      // Add uses to the worklist, which may be dead now.
1007      for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
1008        if (Instruction *Use = dyn_cast<Instruction>(I->getOperand(i)))
1009          Worklist.push_back(Use);
1010      LPM->deleteSimpleAnalysisValue(I, L);
1011      RemoveFromWorklist(I, Worklist);
1012      I->eraseFromParent();
1013      ++NumSimplify;
1014      continue;
1015    }
1016
1017    // Special case hacks that appear commonly in unswitched code.
1018    switch (I->getOpcode()) {
1019    case Instruction::Select:
1020      if (ConstantInt *CB = dyn_cast<ConstantInt>(I->getOperand(0))) {
1021        ReplaceUsesOfWith(I, I->getOperand(!CB->getZExtValue()+1), Worklist, L,
1022                          LPM);
1023        continue;
1024      }
1025      break;
1026    case Instruction::And:
1027      if (isa<ConstantInt>(I->getOperand(0)) &&
1028          // constant -> RHS
1029          I->getOperand(0)->getType() == Type::getInt1Ty(I->getContext()))
1030        cast<BinaryOperator>(I)->swapOperands();
1031      if (ConstantInt *CB = dyn_cast<ConstantInt>(I->getOperand(1)))
1032        if (CB->getType() == Type::getInt1Ty(I->getContext())) {
1033          if (CB->isOne())      // X & 1 -> X
1034            ReplaceUsesOfWith(I, I->getOperand(0), Worklist, L, LPM);
1035          else                  // X & 0 -> 0
1036            ReplaceUsesOfWith(I, I->getOperand(1), Worklist, L, LPM);
1037          continue;
1038        }
1039      break;
1040    case Instruction::Or:
1041      if (isa<ConstantInt>(I->getOperand(0)) &&
1042          // constant -> RHS
1043          I->getOperand(0)->getType() == Type::getInt1Ty(I->getContext()))
1044        cast<BinaryOperator>(I)->swapOperands();
1045      if (ConstantInt *CB = dyn_cast<ConstantInt>(I->getOperand(1)))
1046        if (CB->getType() == Type::getInt1Ty(I->getContext())) {
1047          if (CB->isOne())   // X | 1 -> 1
1048            ReplaceUsesOfWith(I, I->getOperand(1), Worklist, L, LPM);
1049          else                  // X | 0 -> X
1050            ReplaceUsesOfWith(I, I->getOperand(0), Worklist, L, LPM);
1051          continue;
1052        }
1053      break;
1054    case Instruction::Br: {
1055      BranchInst *BI = cast<BranchInst>(I);
1056      if (BI->isUnconditional()) {
1057        // If BI's parent is the only pred of the successor, fold the two blocks
1058        // together.
1059        BasicBlock *Pred = BI->getParent();
1060        BasicBlock *Succ = BI->getSuccessor(0);
1061        BasicBlock *SinglePred = Succ->getSinglePredecessor();
1062        if (!SinglePred) continue;  // Nothing to do.
1063        assert(SinglePred == Pred && "CFG broken");
1064
1065        DEBUG(errs() << "Merging blocks: " << Pred->getName() << " <- "
1066              << Succ->getName() << "\n");
1067
1068        // Resolve any single entry PHI nodes in Succ.
1069        while (PHINode *PN = dyn_cast<PHINode>(Succ->begin()))
1070          ReplaceUsesOfWith(PN, PN->getIncomingValue(0), Worklist, L, LPM);
1071
1072        // Move all of the successor contents from Succ to Pred.
1073        Pred->getInstList().splice(BI, Succ->getInstList(), Succ->begin(),
1074                                   Succ->end());
1075        LPM->deleteSimpleAnalysisValue(BI, L);
1076        BI->eraseFromParent();
1077        RemoveFromWorklist(BI, Worklist);
1078
1079        // If Succ has any successors with PHI nodes, update them to have
1080        // entries coming from Pred instead of Succ.
1081        Succ->replaceAllUsesWith(Pred);
1082
1083        // Remove Succ from the loop tree.
1084        LI->removeBlock(Succ);
1085        LPM->deleteSimpleAnalysisValue(Succ, L);
1086        Succ->eraseFromParent();
1087        ++NumSimplify;
1088      } else if (ConstantInt *CB = dyn_cast<ConstantInt>(BI->getCondition())){
1089        // Conditional branch.  Turn it into an unconditional branch, then
1090        // remove dead blocks.
1091        break;  // FIXME: Enable.
1092
1093        DEBUG(errs() << "Folded branch: " << *BI);
1094        BasicBlock *DeadSucc = BI->getSuccessor(CB->getZExtValue());
1095        BasicBlock *LiveSucc = BI->getSuccessor(!CB->getZExtValue());
1096        DeadSucc->removePredecessor(BI->getParent(), true);
1097        Worklist.push_back(BranchInst::Create(LiveSucc, BI));
1098        LPM->deleteSimpleAnalysisValue(BI, L);
1099        BI->eraseFromParent();
1100        RemoveFromWorklist(BI, Worklist);
1101        ++NumSimplify;
1102
1103        RemoveBlockIfDead(DeadSucc, Worklist, L);
1104      }
1105      break;
1106    }
1107    }
1108  }
1109}
1110