LoopUnswitch.cpp revision 743f7e8839dc02f2e808e977803368c431279189
1//===-- LoopUnswitch.cpp - Hoist loop-invariant conditionals in loop ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass transforms loops that contain branches on loop-invariant conditions
11// to have multiple loops.  For example, it turns the left into the right code:
12//
13//  for (...)                  if (lic)
14//    A                          for (...)
15//    if (lic)                     A; B; C
16//      B                      else
17//    C                          for (...)
18//                                 A; C
19//
20// This can increase the size of the code exponentially (doubling it every time
21// a loop is unswitched) so we only unswitch if the resultant code will be
22// smaller than a threshold.
23//
24// This pass expects LICM to be run before it to hoist invariant conditions out
25// of the loop, to make the unswitching opportunity obvious.
26//
27//===----------------------------------------------------------------------===//
28
29#define DEBUG_TYPE "loop-unswitch"
30#include "llvm/Transforms/Scalar.h"
31#include "llvm/Constants.h"
32#include "llvm/DerivedTypes.h"
33#include "llvm/Function.h"
34#include "llvm/Instructions.h"
35#include "llvm/Analysis/ConstantFolding.h"
36#include "llvm/Analysis/LoopInfo.h"
37#include "llvm/Analysis/LoopPass.h"
38#include "llvm/Transforms/Utils/Cloning.h"
39#include "llvm/Transforms/Utils/Local.h"
40#include "llvm/Transforms/Utils/BasicBlockUtils.h"
41#include "llvm/ADT/Statistic.h"
42#include "llvm/ADT/SmallPtrSet.h"
43#include "llvm/ADT/PostOrderIterator.h"
44#include "llvm/Support/CommandLine.h"
45#include "llvm/Support/Compiler.h"
46#include "llvm/Support/Debug.h"
47#include <algorithm>
48#include <set>
49using namespace llvm;
50
51STATISTIC(NumBranches, "Number of branches unswitched");
52STATISTIC(NumSwitches, "Number of switches unswitched");
53STATISTIC(NumSelects , "Number of selects unswitched");
54STATISTIC(NumTrivial , "Number of unswitches that are trivial");
55STATISTIC(NumSimplify, "Number of simplifications of unswitched code");
56
57namespace {
58  cl::opt<unsigned>
59  Threshold("loop-unswitch-threshold", cl::desc("Max loop size to unswitch"),
60            cl::init(10), cl::Hidden);
61
62  class VISIBILITY_HIDDEN LoopUnswitch : public LoopPass {
63    LoopInfo *LI;  // Loop information
64    LPPassManager *LPM;
65
66    // LoopProcessWorklist - Used to check if second loop needs processing
67    // after RewriteLoopBodyWithConditionConstant rewrites first loop.
68    std::vector<Loop*> LoopProcessWorklist;
69    SmallPtrSet<Value *,8> UnswitchedVals;
70
71    bool OptimizeForSize;
72  public:
73    static char ID; // Pass ID, replacement for typeid
74    LoopUnswitch(bool Os = false) :
75      LoopPass((intptr_t)&ID), OptimizeForSize(Os) {}
76
77    bool runOnLoop(Loop *L, LPPassManager &LPM);
78
79    /// This transformation requires natural loop information & requires that
80    /// loop preheaders be inserted into the CFG...
81    ///
82    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
83      AU.addRequiredID(LoopSimplifyID);
84      AU.addPreservedID(LoopSimplifyID);
85      AU.addRequired<LoopInfo>();
86      AU.addPreserved<LoopInfo>();
87      AU.addRequiredID(LCSSAID);
88      AU.addPreservedID(LCSSAID);
89    }
90
91  private:
92    /// RemoveLoopFromWorklist - If the specified loop is on the loop worklist,
93    /// remove it.
94    void RemoveLoopFromWorklist(Loop *L) {
95      std::vector<Loop*>::iterator I = std::find(LoopProcessWorklist.begin(),
96                                                 LoopProcessWorklist.end(), L);
97      if (I != LoopProcessWorklist.end())
98        LoopProcessWorklist.erase(I);
99    }
100
101    bool UnswitchIfProfitable(Value *LoopCond, Constant *Val,Loop *L);
102    unsigned getLoopUnswitchCost(Loop *L, Value *LIC);
103    void UnswitchTrivialCondition(Loop *L, Value *Cond, Constant *Val,
104                                  BasicBlock *ExitBlock);
105    void UnswitchNontrivialCondition(Value *LIC, Constant *OnVal, Loop *L);
106    BasicBlock *SplitEdge(BasicBlock *From, BasicBlock *To);
107    BasicBlock *SplitBlock(BasicBlock *Old, Instruction *SplitPt);
108
109    void RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC,
110                                              Constant *Val, bool isEqual);
111
112    void SimplifyCode(std::vector<Instruction*> &Worklist);
113    void RemoveBlockIfDead(BasicBlock *BB,
114                           std::vector<Instruction*> &Worklist);
115    void RemoveLoopFromHierarchy(Loop *L);
116  };
117  char LoopUnswitch::ID = 0;
118  RegisterPass<LoopUnswitch> X("loop-unswitch", "Unswitch loops");
119}
120
121LoopPass *llvm::createLoopUnswitchPass(bool Os) {
122  return new LoopUnswitch(Os);
123}
124
125/// FindLIVLoopCondition - Cond is a condition that occurs in L.  If it is
126/// invariant in the loop, or has an invariant piece, return the invariant.
127/// Otherwise, return null.
128static Value *FindLIVLoopCondition(Value *Cond, Loop *L, bool &Changed) {
129  // Constants should be folded, not unswitched on!
130  if (isa<Constant>(Cond)) return false;
131
132  // TODO: Handle: br (VARIANT|INVARIANT).
133  // TODO: Hoist simple expressions out of loops.
134  if (L->isLoopInvariant(Cond)) return Cond;
135
136  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Cond))
137    if (BO->getOpcode() == Instruction::And ||
138        BO->getOpcode() == Instruction::Or) {
139      // If either the left or right side is invariant, we can unswitch on this,
140      // which will cause the branch to go away in one loop and the condition to
141      // simplify in the other one.
142      if (Value *LHS = FindLIVLoopCondition(BO->getOperand(0), L, Changed))
143        return LHS;
144      if (Value *RHS = FindLIVLoopCondition(BO->getOperand(1), L, Changed))
145        return RHS;
146    }
147
148      return 0;
149}
150
151bool LoopUnswitch::runOnLoop(Loop *L, LPPassManager &LPM_Ref) {
152  assert(L->isLCSSAForm());
153  LI = &getAnalysis<LoopInfo>();
154  LPM = &LPM_Ref;
155  bool Changed = false;
156
157  // Loop over all of the basic blocks in the loop.  If we find an interior
158  // block that is branching on a loop-invariant condition, we can unswitch this
159  // loop.
160  for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
161       I != E; ++I) {
162    TerminatorInst *TI = (*I)->getTerminator();
163    if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
164      // If this isn't branching on an invariant condition, we can't unswitch
165      // it.
166      if (BI->isConditional()) {
167        // See if this, or some part of it, is loop invariant.  If so, we can
168        // unswitch on it if we desire.
169        Value *LoopCond = FindLIVLoopCondition(BI->getCondition(), L, Changed);
170        if (LoopCond && UnswitchIfProfitable(LoopCond, ConstantInt::getTrue(),
171                                             L)) {
172          ++NumBranches;
173          return true;
174        }
175      }
176    } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
177      Value *LoopCond = FindLIVLoopCondition(SI->getCondition(), L, Changed);
178      if (LoopCond && SI->getNumCases() > 1) {
179        // Find a value to unswitch on:
180        // FIXME: this should chose the most expensive case!
181        Constant *UnswitchVal = SI->getCaseValue(1);
182        // Do not process same value again and again.
183        if (!UnswitchedVals.insert(UnswitchVal))
184          continue;
185
186        if (UnswitchIfProfitable(LoopCond, UnswitchVal, L)) {
187          ++NumSwitches;
188          return true;
189        }
190      }
191    }
192
193    // Scan the instructions to check for unswitchable values.
194    for (BasicBlock::iterator BBI = (*I)->begin(), E = (*I)->end();
195         BBI != E; ++BBI)
196      if (SelectInst *SI = dyn_cast<SelectInst>(BBI)) {
197        Value *LoopCond = FindLIVLoopCondition(SI->getCondition(), L, Changed);
198        if (LoopCond && UnswitchIfProfitable(LoopCond, ConstantInt::getTrue(),
199                                             L)) {
200          ++NumSelects;
201          return true;
202        }
203      }
204  }
205
206  assert(L->isLCSSAForm());
207
208  return Changed;
209}
210
211/// isTrivialLoopExitBlock - Check to see if all paths from BB either:
212///   1. Exit the loop with no side effects.
213///   2. Branch to the latch block with no side-effects.
214///
215/// If these conditions are true, we return true and set ExitBB to the block we
216/// exit through.
217///
218static bool isTrivialLoopExitBlockHelper(Loop *L, BasicBlock *BB,
219                                         BasicBlock *&ExitBB,
220                                         std::set<BasicBlock*> &Visited) {
221  if (!Visited.insert(BB).second) {
222    // Already visited and Ok, end of recursion.
223    return true;
224  } else if (!L->contains(BB)) {
225    // Otherwise, this is a loop exit, this is fine so long as this is the
226    // first exit.
227    if (ExitBB != 0) return false;
228    ExitBB = BB;
229    return true;
230  }
231
232  // Otherwise, this is an unvisited intra-loop node.  Check all successors.
233  for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI) {
234    // Check to see if the successor is a trivial loop exit.
235    if (!isTrivialLoopExitBlockHelper(L, *SI, ExitBB, Visited))
236      return false;
237  }
238
239  // Okay, everything after this looks good, check to make sure that this block
240  // doesn't include any side effects.
241  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
242    if (I->mayWriteToMemory())
243      return false;
244
245  return true;
246}
247
248/// isTrivialLoopExitBlock - Return true if the specified block unconditionally
249/// leads to an exit from the specified loop, and has no side-effects in the
250/// process.  If so, return the block that is exited to, otherwise return null.
251static BasicBlock *isTrivialLoopExitBlock(Loop *L, BasicBlock *BB) {
252  std::set<BasicBlock*> Visited;
253  Visited.insert(L->getHeader());  // Branches to header are ok.
254  BasicBlock *ExitBB = 0;
255  if (isTrivialLoopExitBlockHelper(L, BB, ExitBB, Visited))
256    return ExitBB;
257  return 0;
258}
259
260/// IsTrivialUnswitchCondition - Check to see if this unswitch condition is
261/// trivial: that is, that the condition controls whether or not the loop does
262/// anything at all.  If this is a trivial condition, unswitching produces no
263/// code duplications (equivalently, it produces a simpler loop and a new empty
264/// loop, which gets deleted).
265///
266/// If this is a trivial condition, return true, otherwise return false.  When
267/// returning true, this sets Cond and Val to the condition that controls the
268/// trivial condition: when Cond dynamically equals Val, the loop is known to
269/// exit.  Finally, this sets LoopExit to the BB that the loop exits to when
270/// Cond == Val.
271///
272static bool IsTrivialUnswitchCondition(Loop *L, Value *Cond, Constant **Val = 0,
273                                       BasicBlock **LoopExit = 0) {
274  BasicBlock *Header = L->getHeader();
275  TerminatorInst *HeaderTerm = Header->getTerminator();
276
277  BasicBlock *LoopExitBB = 0;
278  if (BranchInst *BI = dyn_cast<BranchInst>(HeaderTerm)) {
279    // If the header block doesn't end with a conditional branch on Cond, we
280    // can't handle it.
281    if (!BI->isConditional() || BI->getCondition() != Cond)
282      return false;
283
284    // Check to see if a successor of the branch is guaranteed to go to the
285    // latch block or exit through a one exit block without having any
286    // side-effects.  If so, determine the value of Cond that causes it to do
287    // this.
288    if ((LoopExitBB = isTrivialLoopExitBlock(L, BI->getSuccessor(0)))) {
289      if (Val) *Val = ConstantInt::getTrue();
290    } else if ((LoopExitBB = isTrivialLoopExitBlock(L, BI->getSuccessor(1)))) {
291      if (Val) *Val = ConstantInt::getFalse();
292    }
293  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(HeaderTerm)) {
294    // If this isn't a switch on Cond, we can't handle it.
295    if (SI->getCondition() != Cond) return false;
296
297    // Check to see if a successor of the switch is guaranteed to go to the
298    // latch block or exit through a one exit block without having any
299    // side-effects.  If so, determine the value of Cond that causes it to do
300    // this.  Note that we can't trivially unswitch on the default case.
301    for (unsigned i = 1, e = SI->getNumSuccessors(); i != e; ++i)
302      if ((LoopExitBB = isTrivialLoopExitBlock(L, SI->getSuccessor(i)))) {
303        // Okay, we found a trivial case, remember the value that is trivial.
304        if (Val) *Val = SI->getCaseValue(i);
305        break;
306      }
307  }
308
309  // If we didn't find a single unique LoopExit block, or if the loop exit block
310  // contains phi nodes, this isn't trivial.
311  if (!LoopExitBB || isa<PHINode>(LoopExitBB->begin()))
312    return false;   // Can't handle this.
313
314  if (LoopExit) *LoopExit = LoopExitBB;
315
316  // We already know that nothing uses any scalar values defined inside of this
317  // loop.  As such, we just have to check to see if this loop will execute any
318  // side-effecting instructions (e.g. stores, calls, volatile loads) in the
319  // part of the loop that the code *would* execute.  We already checked the
320  // tail, check the header now.
321  for (BasicBlock::iterator I = Header->begin(), E = Header->end(); I != E; ++I)
322    if (I->mayWriteToMemory())
323      return false;
324  return true;
325}
326
327/// getLoopUnswitchCost - Return the cost (code size growth) that will happen if
328/// we choose to unswitch the specified loop on the specified value.
329///
330unsigned LoopUnswitch::getLoopUnswitchCost(Loop *L, Value *LIC) {
331  // If the condition is trivial, always unswitch.  There is no code growth for
332  // this case.
333  if (IsTrivialUnswitchCondition(L, LIC))
334    return 0;
335
336  // FIXME: This is really overly conservative.  However, more liberal
337  // estimations have thus far resulted in excessive unswitching, which is bad
338  // both in compile time and in code size.  This should be replaced once
339  // someone figures out how a good estimation.
340  return L->getBlocks().size();
341
342  unsigned Cost = 0;
343  // FIXME: this is brain dead.  It should take into consideration code
344  // shrinkage.
345  for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
346       I != E; ++I) {
347    BasicBlock *BB = *I;
348    // Do not include empty blocks in the cost calculation.  This happen due to
349    // loop canonicalization and will be removed.
350    if (BB->begin() == BasicBlock::iterator(BB->getTerminator()))
351      continue;
352
353    // Count basic blocks.
354    ++Cost;
355  }
356
357  return Cost;
358}
359
360/// UnswitchIfProfitable - We have found that we can unswitch L when
361/// LoopCond == Val to simplify the loop.  If we decide that this is profitable,
362/// unswitch the loop, reprocess the pieces, then return true.
363bool LoopUnswitch::UnswitchIfProfitable(Value *LoopCond, Constant *Val,Loop *L){
364  // Check to see if it would be profitable to unswitch this loop.
365  unsigned Cost = getLoopUnswitchCost(L, LoopCond);
366
367  // Do not do non-trivial unswitch while optimizing for size.
368  if (Cost && OptimizeForSize)
369    return false;
370
371  if (Cost > Threshold) {
372    // FIXME: this should estimate growth by the amount of code shared by the
373    // resultant unswitched loops.
374    //
375    DOUT << "NOT unswitching loop %"
376         << L->getHeader()->getName() << ", cost too high: "
377         << L->getBlocks().size() << "\n";
378    return false;
379  }
380
381  // If this is a trivial condition to unswitch (which results in no code
382  // duplication), do it now.
383  Constant *CondVal;
384  BasicBlock *ExitBlock;
385  if (IsTrivialUnswitchCondition(L, LoopCond, &CondVal, &ExitBlock)) {
386    UnswitchTrivialCondition(L, LoopCond, CondVal, ExitBlock);
387  } else {
388    UnswitchNontrivialCondition(LoopCond, Val, L);
389  }
390
391  return true;
392}
393
394/// SplitBlock - Split the specified block at the specified instruction - every
395/// thing before SplitPt stays in Old and everything starting with SplitPt moves
396/// to a new block.  The two blocks are joined by an unconditional branch and
397/// the loop info is updated.
398///
399BasicBlock *LoopUnswitch::SplitBlock(BasicBlock *Old, Instruction *SplitPt) {
400  BasicBlock::iterator SplitIt = SplitPt;
401  while (isa<PHINode>(SplitIt))
402    ++SplitIt;
403  BasicBlock *New = Old->splitBasicBlock(SplitIt, Old->getName()+".split");
404
405  // The new block lives in whichever loop the old one did.
406  if (Loop *L = LI->getLoopFor(Old))
407    L->addBasicBlockToLoop(New, *LI);
408
409  return New;
410}
411
412
413BasicBlock *LoopUnswitch::SplitEdge(BasicBlock *BB, BasicBlock *Succ) {
414  TerminatorInst *LatchTerm = BB->getTerminator();
415  unsigned SuccNum = 0;
416  for (unsigned i = 0, e = LatchTerm->getNumSuccessors(); ; ++i) {
417    assert(i != e && "Didn't find edge?");
418    if (LatchTerm->getSuccessor(i) == Succ) {
419      SuccNum = i;
420      break;
421    }
422  }
423
424  // If this is a critical edge, let SplitCriticalEdge do it.
425  Loop *OrigDestBBL = LI->getLoopFor(BB->getTerminator()->getSuccessor(SuccNum));
426  if (SplitCriticalEdge(BB->getTerminator(), SuccNum)) {
427    BasicBlock *NewBB = LatchTerm->getSuccessor(SuccNum);
428
429    Loop *BBL = LI->getLoopFor(BB);
430    if (!BBL || !OrigDestBBL)
431      return NewBB;
432
433    // If edge is inside a loop then NewBB is part of same loop.
434    if (BBL == OrigDestBBL)
435      BBL->addBasicBlockToLoop(NewBB, *LI);
436    // If edge is entering loop then NewBB is part of outer loop.
437    else if (BBL->contains(OrigDestBBL->getHeader()))
438      BBL->addBasicBlockToLoop(NewBB, *LI);
439    // If edge is from an inner loop to outer loop then NewBB is part
440    // of outer loop.
441    else if (OrigDestBBL->contains(BBL->getHeader()))
442      OrigDestBBL->addBasicBlockToLoop(NewBB, *LI);
443    // Else edge is connecting two loops and NewBB is part of their parent loop
444    else if (Loop *PL = OrigDestBBL->getParentLoop())
445      PL->addBasicBlockToLoop(NewBB, *LI);
446
447    return NewBB;
448  }
449
450  // If the edge isn't critical, then BB has a single successor or Succ has a
451  // single pred.  Split the block.
452  BasicBlock::iterator SplitPoint;
453  if (BasicBlock *SP = Succ->getSinglePredecessor()) {
454    // If the successor only has a single pred, split the top of the successor
455    // block.
456    assert(SP == BB && "CFG broken");
457    return SplitBlock(Succ, Succ->begin());
458  } else {
459    // Otherwise, if BB has a single successor, split it at the bottom of the
460    // block.
461    assert(BB->getTerminator()->getNumSuccessors() == 1 &&
462           "Should have a single succ!");
463    return SplitBlock(BB, BB->getTerminator());
464  }
465}
466
467
468
469// RemapInstruction - Convert the instruction operands from referencing the
470// current values into those specified by ValueMap.
471//
472static inline void RemapInstruction(Instruction *I,
473                                    DenseMap<const Value *, Value*> &ValueMap) {
474  for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) {
475    Value *Op = I->getOperand(op);
476    DenseMap<const Value *, Value*>::iterator It = ValueMap.find(Op);
477    if (It != ValueMap.end()) Op = It->second;
478    I->setOperand(op, Op);
479  }
480}
481
482/// CloneLoop - Recursively clone the specified loop and all of its children,
483/// mapping the blocks with the specified map.
484static Loop *CloneLoop(Loop *L, Loop *PL, DenseMap<const Value*, Value*> &VM,
485                       LoopInfo *LI, LPPassManager *LPM) {
486  Loop *New = new Loop();
487
488  LPM->insertLoop(New, PL);
489
490  // Add all of the blocks in L to the new loop.
491  for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
492       I != E; ++I)
493    if (LI->getLoopFor(*I) == L)
494      New->addBasicBlockToLoop(cast<BasicBlock>(VM[*I]), *LI);
495
496  // Add all of the subloops to the new loop.
497  for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
498    CloneLoop(*I, New, VM, LI, LPM);
499
500  return New;
501}
502
503/// EmitPreheaderBranchOnCondition - Emit a conditional branch on two values
504/// if LIC == Val, branch to TrueDst, otherwise branch to FalseDest.  Insert the
505/// code immediately before InsertPt.
506static void EmitPreheaderBranchOnCondition(Value *LIC, Constant *Val,
507                                           BasicBlock *TrueDest,
508                                           BasicBlock *FalseDest,
509                                           Instruction *InsertPt) {
510  // Insert a conditional branch on LIC to the two preheaders.  The original
511  // code is the true version and the new code is the false version.
512  Value *BranchVal = LIC;
513  if (!isa<ConstantInt>(Val) || Val->getType() != Type::Int1Ty)
514    BranchVal = new ICmpInst(ICmpInst::ICMP_EQ, LIC, Val, "tmp", InsertPt);
515  else if (Val != ConstantInt::getTrue())
516    // We want to enter the new loop when the condition is true.
517    std::swap(TrueDest, FalseDest);
518
519  // Insert the new branch.
520  new BranchInst(TrueDest, FalseDest, BranchVal, InsertPt);
521}
522
523
524/// UnswitchTrivialCondition - Given a loop that has a trivial unswitchable
525/// condition in it (a cond branch from its header block to its latch block,
526/// where the path through the loop that doesn't execute its body has no
527/// side-effects), unswitch it.  This doesn't involve any code duplication, just
528/// moving the conditional branch outside of the loop and updating loop info.
529void LoopUnswitch::UnswitchTrivialCondition(Loop *L, Value *Cond,
530                                            Constant *Val,
531                                            BasicBlock *ExitBlock) {
532  DOUT << "loop-unswitch: Trivial-Unswitch loop %"
533       << L->getHeader()->getName() << " [" << L->getBlocks().size()
534       << " blocks] in Function " << L->getHeader()->getParent()->getName()
535       << " on cond: " << *Val << " == " << *Cond << "\n";
536
537  // First step, split the preheader, so that we know that there is a safe place
538  // to insert the conditional branch.  We will change 'OrigPH' to have a
539  // conditional branch on Cond.
540  BasicBlock *OrigPH = L->getLoopPreheader();
541  BasicBlock *NewPH = SplitEdge(OrigPH, L->getHeader());
542
543  // Now that we have a place to insert the conditional branch, create a place
544  // to branch to: this is the exit block out of the loop that we should
545  // short-circuit to.
546
547  // Split this block now, so that the loop maintains its exit block, and so
548  // that the jump from the preheader can execute the contents of the exit block
549  // without actually branching to it (the exit block should be dominated by the
550  // loop header, not the preheader).
551  assert(!L->contains(ExitBlock) && "Exit block is in the loop?");
552  BasicBlock *NewExit = SplitBlock(ExitBlock, ExitBlock->begin());
553
554  // Okay, now we have a position to branch from and a position to branch to,
555  // insert the new conditional branch.
556  EmitPreheaderBranchOnCondition(Cond, Val, NewExit, NewPH,
557                                 OrigPH->getTerminator());
558  OrigPH->getTerminator()->eraseFromParent();
559
560  // We need to reprocess this loop, it could be unswitched again.
561  LPM->redoLoop(L);
562
563  // Now that we know that the loop is never entered when this condition is a
564  // particular value, rewrite the loop with this info.  We know that this will
565  // at least eliminate the old branch.
566  RewriteLoopBodyWithConditionConstant(L, Cond, Val, false);
567  ++NumTrivial;
568}
569
570
571/// VersionLoop - We determined that the loop is profitable to unswitch when LIC
572/// equal Val.  Split it into loop versions and test the condition outside of
573/// either loop.  Return the loops created as Out1/Out2.
574void LoopUnswitch::UnswitchNontrivialCondition(Value *LIC, Constant *Val,
575                                               Loop *L) {
576  Function *F = L->getHeader()->getParent();
577  DOUT << "loop-unswitch: Unswitching loop %"
578       << L->getHeader()->getName() << " [" << L->getBlocks().size()
579       << " blocks] in Function " << F->getName()
580       << " when '" << *Val << "' == " << *LIC << "\n";
581
582  // LoopBlocks contains all of the basic blocks of the loop, including the
583  // preheader of the loop, the body of the loop, and the exit blocks of the
584  // loop, in that order.
585  std::vector<BasicBlock*> LoopBlocks;
586
587  // First step, split the preheader and exit blocks, and add these blocks to
588  // the LoopBlocks list.
589  BasicBlock *OrigPreheader = L->getLoopPreheader();
590  LoopBlocks.push_back(SplitEdge(OrigPreheader, L->getHeader()));
591
592  // We want the loop to come after the preheader, but before the exit blocks.
593  LoopBlocks.insert(LoopBlocks.end(), L->block_begin(), L->block_end());
594
595  std::vector<BasicBlock*> ExitBlocks;
596  L->getUniqueExitBlocks(ExitBlocks);
597
598  // Split all of the edges from inside the loop to their exit blocks.  Update
599  // the appropriate Phi nodes as we do so.
600  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
601    BasicBlock *ExitBlock = ExitBlocks[i];
602    std::vector<BasicBlock*> Preds(pred_begin(ExitBlock), pred_end(ExitBlock));
603
604    for (unsigned j = 0, e = Preds.size(); j != e; ++j) {
605      BasicBlock* MiddleBlock = SplitEdge(Preds[j], ExitBlock);
606      BasicBlock* StartBlock = Preds[j];
607      BasicBlock* EndBlock;
608      if (MiddleBlock->getSinglePredecessor() == ExitBlock) {
609        EndBlock = MiddleBlock;
610        MiddleBlock = EndBlock->getSinglePredecessor();;
611      } else {
612        EndBlock = ExitBlock;
613      }
614
615      std::set<PHINode*> InsertedPHIs;
616      PHINode* OldLCSSA = 0;
617      for (BasicBlock::iterator I = EndBlock->begin();
618           (OldLCSSA = dyn_cast<PHINode>(I)); ++I) {
619        Value* OldValue = OldLCSSA->getIncomingValueForBlock(MiddleBlock);
620        PHINode* NewLCSSA = new PHINode(OldLCSSA->getType(),
621                                        OldLCSSA->getName() + ".us-lcssa",
622                                        MiddleBlock->getTerminator());
623        NewLCSSA->addIncoming(OldValue, StartBlock);
624        OldLCSSA->setIncomingValue(OldLCSSA->getBasicBlockIndex(MiddleBlock),
625                                   NewLCSSA);
626        InsertedPHIs.insert(NewLCSSA);
627      }
628
629      BasicBlock::iterator InsertPt = EndBlock->begin();
630      while (dyn_cast<PHINode>(InsertPt)) ++InsertPt;
631      for (BasicBlock::iterator I = MiddleBlock->begin();
632         (OldLCSSA = dyn_cast<PHINode>(I)) && InsertedPHIs.count(OldLCSSA) == 0;
633         ++I) {
634        PHINode *NewLCSSA = new PHINode(OldLCSSA->getType(),
635                                        OldLCSSA->getName() + ".us-lcssa",
636                                        InsertPt);
637        OldLCSSA->replaceAllUsesWith(NewLCSSA);
638        NewLCSSA->addIncoming(OldLCSSA, MiddleBlock);
639      }
640    }
641  }
642
643  // The exit blocks may have been changed due to edge splitting, recompute.
644  ExitBlocks.clear();
645  L->getUniqueExitBlocks(ExitBlocks);
646
647  // Add exit blocks to the loop blocks.
648  LoopBlocks.insert(LoopBlocks.end(), ExitBlocks.begin(), ExitBlocks.end());
649
650  // Next step, clone all of the basic blocks that make up the loop (including
651  // the loop preheader and exit blocks), keeping track of the mapping between
652  // the instructions and blocks.
653  std::vector<BasicBlock*> NewBlocks;
654  NewBlocks.reserve(LoopBlocks.size());
655  DenseMap<const Value*, Value*> ValueMap;
656  for (unsigned i = 0, e = LoopBlocks.size(); i != e; ++i) {
657    BasicBlock *New = CloneBasicBlock(LoopBlocks[i], ValueMap, ".us", F);
658    NewBlocks.push_back(New);
659    ValueMap[LoopBlocks[i]] = New;  // Keep the BB mapping.
660  }
661
662  // Splice the newly inserted blocks into the function right before the
663  // original preheader.
664  F->getBasicBlockList().splice(LoopBlocks[0], F->getBasicBlockList(),
665                                NewBlocks[0], F->end());
666
667  // Now we create the new Loop object for the versioned loop.
668  Loop *NewLoop = CloneLoop(L, L->getParentLoop(), ValueMap, LI, LPM);
669  Loop *ParentLoop = L->getParentLoop();
670  if (ParentLoop) {
671    // Make sure to add the cloned preheader and exit blocks to the parent loop
672    // as well.
673    ParentLoop->addBasicBlockToLoop(NewBlocks[0], *LI);
674  }
675
676  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
677    BasicBlock *NewExit = cast<BasicBlock>(ValueMap[ExitBlocks[i]]);
678    // The new exit block should be in the same loop as the old one.
679    if (Loop *ExitBBLoop = LI->getLoopFor(ExitBlocks[i]))
680      ExitBBLoop->addBasicBlockToLoop(NewExit, *LI);
681
682    assert(NewExit->getTerminator()->getNumSuccessors() == 1 &&
683           "Exit block should have been split to have one successor!");
684    BasicBlock *ExitSucc = NewExit->getTerminator()->getSuccessor(0);
685
686    // If the successor of the exit block had PHI nodes, add an entry for
687    // NewExit.
688    PHINode *PN;
689    for (BasicBlock::iterator I = ExitSucc->begin();
690         (PN = dyn_cast<PHINode>(I)); ++I) {
691      Value *V = PN->getIncomingValueForBlock(ExitBlocks[i]);
692      DenseMap<const Value *, Value*>::iterator It = ValueMap.find(V);
693      if (It != ValueMap.end()) V = It->second;
694      PN->addIncoming(V, NewExit);
695    }
696  }
697
698  // Rewrite the code to refer to itself.
699  for (unsigned i = 0, e = NewBlocks.size(); i != e; ++i)
700    for (BasicBlock::iterator I = NewBlocks[i]->begin(),
701           E = NewBlocks[i]->end(); I != E; ++I)
702      RemapInstruction(I, ValueMap);
703
704  // Rewrite the original preheader to select between versions of the loop.
705  BranchInst *OldBR = cast<BranchInst>(OrigPreheader->getTerminator());
706  assert(OldBR->isUnconditional() && OldBR->getSuccessor(0) == LoopBlocks[0] &&
707         "Preheader splitting did not work correctly!");
708
709  // Emit the new branch that selects between the two versions of this loop.
710  EmitPreheaderBranchOnCondition(LIC, Val, NewBlocks[0], LoopBlocks[0], OldBR);
711  OldBR->eraseFromParent();
712
713  LoopProcessWorklist.push_back(NewLoop);
714  LPM->redoLoop(L);
715
716  // Now we rewrite the original code to know that the condition is true and the
717  // new code to know that the condition is false.
718  RewriteLoopBodyWithConditionConstant(L      , LIC, Val, false);
719
720  // It's possible that simplifying one loop could cause the other to be
721  // deleted.  If so, don't simplify it.
722  if (!LoopProcessWorklist.empty() && LoopProcessWorklist.back() == NewLoop)
723    RewriteLoopBodyWithConditionConstant(NewLoop, LIC, Val, true);
724}
725
726/// RemoveFromWorklist - Remove all instances of I from the worklist vector
727/// specified.
728static void RemoveFromWorklist(Instruction *I,
729                               std::vector<Instruction*> &Worklist) {
730  std::vector<Instruction*>::iterator WI = std::find(Worklist.begin(),
731                                                     Worklist.end(), I);
732  while (WI != Worklist.end()) {
733    unsigned Offset = WI-Worklist.begin();
734    Worklist.erase(WI);
735    WI = std::find(Worklist.begin()+Offset, Worklist.end(), I);
736  }
737}
738
739/// ReplaceUsesOfWith - When we find that I really equals V, remove I from the
740/// program, replacing all uses with V and update the worklist.
741static void ReplaceUsesOfWith(Instruction *I, Value *V,
742                              std::vector<Instruction*> &Worklist) {
743  DOUT << "Replace with '" << *V << "': " << *I;
744
745  // Add uses to the worklist, which may be dead now.
746  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
747    if (Instruction *Use = dyn_cast<Instruction>(I->getOperand(i)))
748      Worklist.push_back(Use);
749
750  // Add users to the worklist which may be simplified now.
751  for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
752       UI != E; ++UI)
753    Worklist.push_back(cast<Instruction>(*UI));
754  I->replaceAllUsesWith(V);
755  I->eraseFromParent();
756  RemoveFromWorklist(I, Worklist);
757  ++NumSimplify;
758}
759
760/// RemoveBlockIfDead - If the specified block is dead, remove it, update loop
761/// information, and remove any dead successors it has.
762///
763void LoopUnswitch::RemoveBlockIfDead(BasicBlock *BB,
764                                     std::vector<Instruction*> &Worklist) {
765  if (pred_begin(BB) != pred_end(BB)) {
766    // This block isn't dead, since an edge to BB was just removed, see if there
767    // are any easy simplifications we can do now.
768    if (BasicBlock *Pred = BB->getSinglePredecessor()) {
769      // If it has one pred, fold phi nodes in BB.
770      while (isa<PHINode>(BB->begin()))
771        ReplaceUsesOfWith(BB->begin(),
772                          cast<PHINode>(BB->begin())->getIncomingValue(0),
773                          Worklist);
774
775      // If this is the header of a loop and the only pred is the latch, we now
776      // have an unreachable loop.
777      if (Loop *L = LI->getLoopFor(BB))
778        if (L->getHeader() == BB && L->contains(Pred)) {
779          // Remove the branch from the latch to the header block, this makes
780          // the header dead, which will make the latch dead (because the header
781          // dominates the latch).
782          Pred->getTerminator()->eraseFromParent();
783          new UnreachableInst(Pred);
784
785          // The loop is now broken, remove it from LI.
786          RemoveLoopFromHierarchy(L);
787
788          // Reprocess the header, which now IS dead.
789          RemoveBlockIfDead(BB, Worklist);
790          return;
791        }
792
793      // If pred ends in a uncond branch, add uncond branch to worklist so that
794      // the two blocks will get merged.
795      if (BranchInst *BI = dyn_cast<BranchInst>(Pred->getTerminator()))
796        if (BI->isUnconditional())
797          Worklist.push_back(BI);
798    }
799    return;
800  }
801
802  DOUT << "Nuking dead block: " << *BB;
803
804  // Remove the instructions in the basic block from the worklist.
805  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
806    RemoveFromWorklist(I, Worklist);
807
808    // Anything that uses the instructions in this basic block should have their
809    // uses replaced with undefs.
810    if (!I->use_empty())
811      I->replaceAllUsesWith(UndefValue::get(I->getType()));
812  }
813
814  // If this is the edge to the header block for a loop, remove the loop and
815  // promote all subloops.
816  if (Loop *BBLoop = LI->getLoopFor(BB)) {
817    if (BBLoop->getLoopLatch() == BB)
818      RemoveLoopFromHierarchy(BBLoop);
819  }
820
821  // Remove the block from the loop info, which removes it from any loops it
822  // was in.
823  LI->removeBlock(BB);
824
825
826  // Remove phi node entries in successors for this block.
827  TerminatorInst *TI = BB->getTerminator();
828  std::vector<BasicBlock*> Succs;
829  for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
830    Succs.push_back(TI->getSuccessor(i));
831    TI->getSuccessor(i)->removePredecessor(BB);
832  }
833
834  // Unique the successors, remove anything with multiple uses.
835  std::sort(Succs.begin(), Succs.end());
836  Succs.erase(std::unique(Succs.begin(), Succs.end()), Succs.end());
837
838  // Remove the basic block, including all of the instructions contained in it.
839  BB->eraseFromParent();
840
841  // Remove successor blocks here that are not dead, so that we know we only
842  // have dead blocks in this list.  Nondead blocks have a way of becoming dead,
843  // then getting removed before we revisit them, which is badness.
844  //
845  for (unsigned i = 0; i != Succs.size(); ++i)
846    if (pred_begin(Succs[i]) != pred_end(Succs[i])) {
847      // One exception is loop headers.  If this block was the preheader for a
848      // loop, then we DO want to visit the loop so the loop gets deleted.
849      // We know that if the successor is a loop header, that this loop had to
850      // be the preheader: the case where this was the latch block was handled
851      // above and headers can only have two predecessors.
852      if (!LI->isLoopHeader(Succs[i])) {
853        Succs.erase(Succs.begin()+i);
854        --i;
855      }
856    }
857
858  for (unsigned i = 0, e = Succs.size(); i != e; ++i)
859    RemoveBlockIfDead(Succs[i], Worklist);
860}
861
862/// RemoveLoopFromHierarchy - We have discovered that the specified loop has
863/// become unwrapped, either because the backedge was deleted, or because the
864/// edge into the header was removed.  If the edge into the header from the
865/// latch block was removed, the loop is unwrapped but subloops are still alive,
866/// so they just reparent loops.  If the loops are actually dead, they will be
867/// removed later.
868void LoopUnswitch::RemoveLoopFromHierarchy(Loop *L) {
869  LPM->deleteLoopFromQueue(L);
870  RemoveLoopFromWorklist(L);
871}
872
873
874
875// RewriteLoopBodyWithConditionConstant - We know either that the value LIC has
876// the value specified by Val in the specified loop, or we know it does NOT have
877// that value.  Rewrite any uses of LIC or of properties correlated to it.
878void LoopUnswitch::RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC,
879                                                        Constant *Val,
880                                                        bool IsEqual) {
881  assert(!isa<Constant>(LIC) && "Why are we unswitching on a constant?");
882
883  // FIXME: Support correlated properties, like:
884  //  for (...)
885  //    if (li1 < li2)
886  //      ...
887  //    if (li1 > li2)
888  //      ...
889
890  // FOLD boolean conditions (X|LIC), (X&LIC).  Fold conditional branches,
891  // selects, switches.
892  std::vector<User*> Users(LIC->use_begin(), LIC->use_end());
893  std::vector<Instruction*> Worklist;
894
895  // If we know that LIC == Val, or that LIC == NotVal, just replace uses of LIC
896  // in the loop with the appropriate one directly.
897  if (IsEqual || (isa<ConstantInt>(Val) && Val->getType() == Type::Int1Ty)) {
898    Value *Replacement;
899    if (IsEqual)
900      Replacement = Val;
901    else
902      Replacement = ConstantInt::get(Type::Int1Ty,
903                                     !cast<ConstantInt>(Val)->getZExtValue());
904
905    for (unsigned i = 0, e = Users.size(); i != e; ++i)
906      if (Instruction *U = cast<Instruction>(Users[i])) {
907        if (!L->contains(U->getParent()))
908          continue;
909        U->replaceUsesOfWith(LIC, Replacement);
910        Worklist.push_back(U);
911      }
912  } else {
913    // Otherwise, we don't know the precise value of LIC, but we do know that it
914    // is certainly NOT "Val".  As such, simplify any uses in the loop that we
915    // can.  This case occurs when we unswitch switch statements.
916    for (unsigned i = 0, e = Users.size(); i != e; ++i)
917      if (Instruction *U = cast<Instruction>(Users[i])) {
918        if (!L->contains(U->getParent()))
919          continue;
920
921        Worklist.push_back(U);
922
923        // If we know that LIC is not Val, use this info to simplify code.
924        if (SwitchInst *SI = dyn_cast<SwitchInst>(U)) {
925          for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i) {
926            if (SI->getCaseValue(i) == Val) {
927              // Found a dead case value.  Don't remove PHI nodes in the
928              // successor if they become single-entry, those PHI nodes may
929              // be in the Users list.
930
931              // FIXME: This is a hack.  We need to keep the successor around
932              // and hooked up so as to preserve the loop structure, because
933              // trying to update it is complicated.  So instead we preserve the
934              // loop structure and put the block on an dead code path.
935
936              BasicBlock* Old = SI->getParent();
937              BasicBlock* Split = SplitBlock(Old, SI);
938
939              Instruction* OldTerm = Old->getTerminator();
940              new BranchInst(Split, SI->getSuccessor(i),
941                             ConstantInt::getTrue(), OldTerm);
942
943              Old->getTerminator()->eraseFromParent();
944
945
946              PHINode *PN;
947              for (BasicBlock::iterator II = SI->getSuccessor(i)->begin();
948                   (PN = dyn_cast<PHINode>(II)); ++II) {
949                Value *InVal = PN->removeIncomingValue(Split, false);
950                PN->addIncoming(InVal, Old);
951              }
952
953              SI->removeCase(i);
954              break;
955            }
956          }
957        }
958
959        // TODO: We could do other simplifications, for example, turning
960        // LIC == Val -> false.
961      }
962  }
963
964  SimplifyCode(Worklist);
965}
966
967/// SimplifyCode - Okay, now that we have simplified some instructions in the
968/// loop, walk over it and constant prop, dce, and fold control flow where
969/// possible.  Note that this is effectively a very simple loop-structure-aware
970/// optimizer.  During processing of this loop, L could very well be deleted, so
971/// it must not be used.
972///
973/// FIXME: When the loop optimizer is more mature, separate this out to a new
974/// pass.
975///
976void LoopUnswitch::SimplifyCode(std::vector<Instruction*> &Worklist) {
977  while (!Worklist.empty()) {
978    Instruction *I = Worklist.back();
979    Worklist.pop_back();
980
981    // Simple constant folding.
982    if (Constant *C = ConstantFoldInstruction(I)) {
983      ReplaceUsesOfWith(I, C, Worklist);
984      continue;
985    }
986
987    // Simple DCE.
988    if (isInstructionTriviallyDead(I)) {
989      DOUT << "Remove dead instruction '" << *I;
990
991      // Add uses to the worklist, which may be dead now.
992      for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
993        if (Instruction *Use = dyn_cast<Instruction>(I->getOperand(i)))
994          Worklist.push_back(Use);
995      I->eraseFromParent();
996      RemoveFromWorklist(I, Worklist);
997      ++NumSimplify;
998      continue;
999    }
1000
1001    // Special case hacks that appear commonly in unswitched code.
1002    switch (I->getOpcode()) {
1003    case Instruction::Select:
1004      if (ConstantInt *CB = dyn_cast<ConstantInt>(I->getOperand(0))) {
1005        ReplaceUsesOfWith(I, I->getOperand(!CB->getZExtValue()+1), Worklist);
1006        continue;
1007      }
1008      break;
1009    case Instruction::And:
1010      if (isa<ConstantInt>(I->getOperand(0)) &&
1011          I->getOperand(0)->getType() == Type::Int1Ty)   // constant -> RHS
1012        cast<BinaryOperator>(I)->swapOperands();
1013      if (ConstantInt *CB = dyn_cast<ConstantInt>(I->getOperand(1)))
1014        if (CB->getType() == Type::Int1Ty) {
1015          if (CB->isOne())      // X & 1 -> X
1016            ReplaceUsesOfWith(I, I->getOperand(0), Worklist);
1017          else                  // X & 0 -> 0
1018            ReplaceUsesOfWith(I, I->getOperand(1), Worklist);
1019          continue;
1020        }
1021      break;
1022    case Instruction::Or:
1023      if (isa<ConstantInt>(I->getOperand(0)) &&
1024          I->getOperand(0)->getType() == Type::Int1Ty)   // constant -> RHS
1025        cast<BinaryOperator>(I)->swapOperands();
1026      if (ConstantInt *CB = dyn_cast<ConstantInt>(I->getOperand(1)))
1027        if (CB->getType() == Type::Int1Ty) {
1028          if (CB->isOne())   // X | 1 -> 1
1029            ReplaceUsesOfWith(I, I->getOperand(1), Worklist);
1030          else                  // X | 0 -> X
1031            ReplaceUsesOfWith(I, I->getOperand(0), Worklist);
1032          continue;
1033        }
1034      break;
1035    case Instruction::Br: {
1036      BranchInst *BI = cast<BranchInst>(I);
1037      if (BI->isUnconditional()) {
1038        // If BI's parent is the only pred of the successor, fold the two blocks
1039        // together.
1040        BasicBlock *Pred = BI->getParent();
1041        BasicBlock *Succ = BI->getSuccessor(0);
1042        BasicBlock *SinglePred = Succ->getSinglePredecessor();
1043        if (!SinglePred) continue;  // Nothing to do.
1044        assert(SinglePred == Pred && "CFG broken");
1045
1046        DOUT << "Merging blocks: " << Pred->getName() << " <- "
1047             << Succ->getName() << "\n";
1048
1049        // Resolve any single entry PHI nodes in Succ.
1050        while (PHINode *PN = dyn_cast<PHINode>(Succ->begin()))
1051          ReplaceUsesOfWith(PN, PN->getIncomingValue(0), Worklist);
1052
1053        // Move all of the successor contents from Succ to Pred.
1054        Pred->getInstList().splice(BI, Succ->getInstList(), Succ->begin(),
1055                                   Succ->end());
1056        BI->eraseFromParent();
1057        RemoveFromWorklist(BI, Worklist);
1058
1059        // If Succ has any successors with PHI nodes, update them to have
1060        // entries coming from Pred instead of Succ.
1061        Succ->replaceAllUsesWith(Pred);
1062
1063        // Remove Succ from the loop tree.
1064        LI->removeBlock(Succ);
1065        Succ->eraseFromParent();
1066        ++NumSimplify;
1067      } else if (ConstantInt *CB = dyn_cast<ConstantInt>(BI->getCondition())){
1068        // Conditional branch.  Turn it into an unconditional branch, then
1069        // remove dead blocks.
1070        break;  // FIXME: Enable.
1071
1072        DOUT << "Folded branch: " << *BI;
1073        BasicBlock *DeadSucc = BI->getSuccessor(CB->getZExtValue());
1074        BasicBlock *LiveSucc = BI->getSuccessor(!CB->getZExtValue());
1075        DeadSucc->removePredecessor(BI->getParent(), true);
1076        Worklist.push_back(new BranchInst(LiveSucc, BI));
1077        BI->eraseFromParent();
1078        RemoveFromWorklist(BI, Worklist);
1079        ++NumSimplify;
1080
1081        RemoveBlockIfDead(DeadSucc, Worklist);
1082      }
1083      break;
1084    }
1085    }
1086  }
1087}
1088