LoopUnswitch.cpp revision b593898e114370ccabccc2d49889350d1680419a
1//===-- LoopUnswitch.cpp - Hoist loop-invariant conditionals in loop ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass transforms loops that contain branches on loop-invariant conditions
11// to have multiple loops.  For example, it turns the left into the right code:
12//
13//  for (...)                  if (lic)
14//    A                          for (...)
15//    if (lic)                     A; B; C
16//      B                      else
17//    C                          for (...)
18//                                 A; C
19//
20// This can increase the size of the code exponentially (doubling it every time
21// a loop is unswitched) so we only unswitch if the resultant code will be
22// smaller than a threshold.
23//
24// This pass expects LICM to be run before it to hoist invariant conditions out
25// of the loop, to make the unswitching opportunity obvious.
26//
27//===----------------------------------------------------------------------===//
28
29#define DEBUG_TYPE "loop-unswitch"
30#include "llvm/Transforms/Scalar.h"
31#include "llvm/Constants.h"
32#include "llvm/DerivedTypes.h"
33#include "llvm/Function.h"
34#include "llvm/Instructions.h"
35#include "llvm/Analysis/ConstantFolding.h"
36#include "llvm/Analysis/LoopInfo.h"
37#include "llvm/Analysis/LoopPass.h"
38#include "llvm/Analysis/Dominators.h"
39#include "llvm/Transforms/Utils/Cloning.h"
40#include "llvm/Transforms/Utils/Local.h"
41#include "llvm/Transforms/Utils/BasicBlockUtils.h"
42#include "llvm/ADT/Statistic.h"
43#include "llvm/ADT/SmallPtrSet.h"
44#include "llvm/Support/CommandLine.h"
45#include "llvm/Support/Compiler.h"
46#include "llvm/Support/Debug.h"
47#include <algorithm>
48#include <set>
49using namespace llvm;
50
51STATISTIC(NumBranches, "Number of branches unswitched");
52STATISTIC(NumSwitches, "Number of switches unswitched");
53STATISTIC(NumSelects , "Number of selects unswitched");
54STATISTIC(NumTrivial , "Number of unswitches that are trivial");
55STATISTIC(NumSimplify, "Number of simplifications of unswitched code");
56
57namespace {
58  cl::opt<unsigned>
59  Threshold("loop-unswitch-threshold", cl::desc("Max loop size to unswitch"),
60            cl::init(10), cl::Hidden);
61
62  class VISIBILITY_HIDDEN LoopUnswitch : public LoopPass {
63    LoopInfo *LI;  // Loop information
64    LPPassManager *LPM;
65
66    // LoopProcessWorklist - Used to check if second loop needs processing
67    // after RewriteLoopBodyWithConditionConstant rewrites first loop.
68    std::vector<Loop*> LoopProcessWorklist;
69    SmallPtrSet<Value *,8> UnswitchedVals;
70
71    bool OptimizeForSize;
72    bool redoLoop;
73
74    DominanceFrontier *DF;
75    DominatorTree *DT;
76
77    /// LoopDF - Loop's dominance frontier. This set is a collection of
78    /// loop exiting blocks' DF member blocks. However this does set does not
79    /// includes basic blocks that are inside loop.
80    SmallPtrSet<BasicBlock *, 8> LoopDF;
81
82    /// OrigLoopExitMap - This is used to map loop exiting block with
83    /// corresponding loop exit block, before updating CFG.
84    DenseMap<BasicBlock *, BasicBlock *> OrigLoopExitMap;
85  public:
86    static char ID; // Pass ID, replacement for typeid
87    explicit LoopUnswitch(bool Os = false) :
88      LoopPass((intptr_t)&ID), OptimizeForSize(Os), redoLoop(false) {}
89
90    bool runOnLoop(Loop *L, LPPassManager &LPM);
91    bool processLoop(Loop *L);
92
93    /// This transformation requires natural loop information & requires that
94    /// loop preheaders be inserted into the CFG...
95    ///
96    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
97      AU.addRequiredID(LoopSimplifyID);
98      AU.addPreservedID(LoopSimplifyID);
99      AU.addRequired<LoopInfo>();
100      AU.addPreserved<LoopInfo>();
101      AU.addRequiredID(LCSSAID);
102      AU.addPreservedID(LCSSAID);
103      AU.addPreserved<DominatorTree>();
104      AU.addPreserved<DominanceFrontier>();
105    }
106
107  private:
108
109    /// RemoveLoopFromWorklist - If the specified loop is on the loop worklist,
110    /// remove it.
111    void RemoveLoopFromWorklist(Loop *L) {
112      std::vector<Loop*>::iterator I = std::find(LoopProcessWorklist.begin(),
113                                                 LoopProcessWorklist.end(), L);
114      if (I != LoopProcessWorklist.end())
115        LoopProcessWorklist.erase(I);
116    }
117
118    /// Split all of the edges from inside the loop to their exit blocks.  Update
119    /// the appropriate Phi nodes as we do so.
120    void SplitExitEdges(Loop *L, const SmallVector<BasicBlock *, 8> &ExitBlocks,
121                        SmallVector<BasicBlock *, 8> &MiddleBlocks);
122
123    /// If BB's dominance frontier  has a member that is not part of loop L then
124    /// remove it. Add NewDFMember in BB's dominance frontier.
125    void ReplaceLoopExternalDFMember(Loop *L, BasicBlock *BB,
126                                     BasicBlock *NewDFMember);
127
128    bool UnswitchIfProfitable(Value *LoopCond, Constant *Val,Loop *L);
129    unsigned getLoopUnswitchCost(Loop *L, Value *LIC);
130    void UnswitchTrivialCondition(Loop *L, Value *Cond, Constant *Val,
131                                  BasicBlock *ExitBlock);
132    void UnswitchNontrivialCondition(Value *LIC, Constant *OnVal, Loop *L);
133
134    void RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC,
135                                              Constant *Val, bool isEqual);
136
137    void EmitPreheaderBranchOnCondition(Value *LIC, Constant *Val,
138                                        BasicBlock *TrueDest,
139                                        BasicBlock *FalseDest,
140                                        Instruction *InsertPt);
141
142    void SimplifyCode(std::vector<Instruction*> &Worklist, Loop *L);
143    void RemoveBlockIfDead(BasicBlock *BB,
144                           std::vector<Instruction*> &Worklist, Loop *l);
145    void RemoveLoopFromHierarchy(Loop *L);
146  };
147  char LoopUnswitch::ID = 0;
148  RegisterPass<LoopUnswitch> X("loop-unswitch", "Unswitch loops");
149}
150
151LoopPass *llvm::createLoopUnswitchPass(bool Os) {
152  return new LoopUnswitch(Os);
153}
154
155/// FindLIVLoopCondition - Cond is a condition that occurs in L.  If it is
156/// invariant in the loop, or has an invariant piece, return the invariant.
157/// Otherwise, return null.
158static Value *FindLIVLoopCondition(Value *Cond, Loop *L, bool &Changed) {
159  // Constants should be folded, not unswitched on!
160  if (isa<Constant>(Cond)) return false;
161
162  // TODO: Handle: br (VARIANT|INVARIANT).
163  // TODO: Hoist simple expressions out of loops.
164  if (L->isLoopInvariant(Cond)) return Cond;
165
166  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Cond))
167    if (BO->getOpcode() == Instruction::And ||
168        BO->getOpcode() == Instruction::Or) {
169      // If either the left or right side is invariant, we can unswitch on this,
170      // which will cause the branch to go away in one loop and the condition to
171      // simplify in the other one.
172      if (Value *LHS = FindLIVLoopCondition(BO->getOperand(0), L, Changed))
173        return LHS;
174      if (Value *RHS = FindLIVLoopCondition(BO->getOperand(1), L, Changed))
175        return RHS;
176    }
177
178  return 0;
179}
180
181bool LoopUnswitch::runOnLoop(Loop *L, LPPassManager &LPM_Ref) {
182  LI = &getAnalysis<LoopInfo>();
183  LPM = &LPM_Ref;
184  DF = getAnalysisToUpdate<DominanceFrontier>();
185  DT = getAnalysisToUpdate<DominatorTree>();
186
187  bool Changed = false;
188
189  do {
190    redoLoop = false;
191    Changed |= processLoop(L);
192  } while(redoLoop);
193
194  return Changed;
195}
196
197/// processLoop - Do actual work and unswitch loop if possible and profitable.
198bool LoopUnswitch::processLoop(Loop *L) {
199  assert(L->isLCSSAForm());
200  bool Changed = false;
201
202  // Loop over all of the basic blocks in the loop.  If we find an interior
203  // block that is branching on a loop-invariant condition, we can unswitch this
204  // loop.
205  for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
206       I != E; ++I) {
207    TerminatorInst *TI = (*I)->getTerminator();
208    if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
209      // If this isn't branching on an invariant condition, we can't unswitch
210      // it.
211      if (BI->isConditional()) {
212        // See if this, or some part of it, is loop invariant.  If so, we can
213        // unswitch on it if we desire.
214        Value *LoopCond = FindLIVLoopCondition(BI->getCondition(), L, Changed);
215        if (LoopCond && UnswitchIfProfitable(LoopCond, ConstantInt::getTrue(),
216                                             L)) {
217          ++NumBranches;
218          return true;
219        }
220      }
221    } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
222      Value *LoopCond = FindLIVLoopCondition(SI->getCondition(), L, Changed);
223      if (LoopCond && SI->getNumCases() > 1) {
224        // Find a value to unswitch on:
225        // FIXME: this should chose the most expensive case!
226        Constant *UnswitchVal = SI->getCaseValue(1);
227        // Do not process same value again and again.
228        if (!UnswitchedVals.insert(UnswitchVal))
229          continue;
230
231        if (UnswitchIfProfitable(LoopCond, UnswitchVal, L)) {
232          ++NumSwitches;
233          return true;
234        }
235      }
236    }
237
238    // Scan the instructions to check for unswitchable values.
239    for (BasicBlock::iterator BBI = (*I)->begin(), E = (*I)->end();
240         BBI != E; ++BBI)
241      if (SelectInst *SI = dyn_cast<SelectInst>(BBI)) {
242        Value *LoopCond = FindLIVLoopCondition(SI->getCondition(), L, Changed);
243        if (LoopCond && UnswitchIfProfitable(LoopCond, ConstantInt::getTrue(),
244                                             L)) {
245          ++NumSelects;
246          return true;
247        }
248      }
249  }
250
251  assert(L->isLCSSAForm());
252
253  return Changed;
254}
255
256/// isTrivialLoopExitBlock - Check to see if all paths from BB either:
257///   1. Exit the loop with no side effects.
258///   2. Branch to the latch block with no side-effects.
259///
260/// If these conditions are true, we return true and set ExitBB to the block we
261/// exit through.
262///
263static bool isTrivialLoopExitBlockHelper(Loop *L, BasicBlock *BB,
264                                         BasicBlock *&ExitBB,
265                                         std::set<BasicBlock*> &Visited) {
266  if (!Visited.insert(BB).second) {
267    // Already visited and Ok, end of recursion.
268    return true;
269  } else if (!L->contains(BB)) {
270    // Otherwise, this is a loop exit, this is fine so long as this is the
271    // first exit.
272    if (ExitBB != 0) return false;
273    ExitBB = BB;
274    return true;
275  }
276
277  // Otherwise, this is an unvisited intra-loop node.  Check all successors.
278  for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI) {
279    // Check to see if the successor is a trivial loop exit.
280    if (!isTrivialLoopExitBlockHelper(L, *SI, ExitBB, Visited))
281      return false;
282  }
283
284  // Okay, everything after this looks good, check to make sure that this block
285  // doesn't include any side effects.
286  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
287    if (I->mayWriteToMemory())
288      return false;
289
290  return true;
291}
292
293/// isTrivialLoopExitBlock - Return true if the specified block unconditionally
294/// leads to an exit from the specified loop, and has no side-effects in the
295/// process.  If so, return the block that is exited to, otherwise return null.
296static BasicBlock *isTrivialLoopExitBlock(Loop *L, BasicBlock *BB) {
297  std::set<BasicBlock*> Visited;
298  Visited.insert(L->getHeader());  // Branches to header are ok.
299  BasicBlock *ExitBB = 0;
300  if (isTrivialLoopExitBlockHelper(L, BB, ExitBB, Visited))
301    return ExitBB;
302  return 0;
303}
304
305/// IsTrivialUnswitchCondition - Check to see if this unswitch condition is
306/// trivial: that is, that the condition controls whether or not the loop does
307/// anything at all.  If this is a trivial condition, unswitching produces no
308/// code duplications (equivalently, it produces a simpler loop and a new empty
309/// loop, which gets deleted).
310///
311/// If this is a trivial condition, return true, otherwise return false.  When
312/// returning true, this sets Cond and Val to the condition that controls the
313/// trivial condition: when Cond dynamically equals Val, the loop is known to
314/// exit.  Finally, this sets LoopExit to the BB that the loop exits to when
315/// Cond == Val.
316///
317static bool IsTrivialUnswitchCondition(Loop *L, Value *Cond, Constant **Val = 0,
318                                       BasicBlock **LoopExit = 0) {
319  BasicBlock *Header = L->getHeader();
320  TerminatorInst *HeaderTerm = Header->getTerminator();
321
322  BasicBlock *LoopExitBB = 0;
323  if (BranchInst *BI = dyn_cast<BranchInst>(HeaderTerm)) {
324    // If the header block doesn't end with a conditional branch on Cond, we
325    // can't handle it.
326    if (!BI->isConditional() || BI->getCondition() != Cond)
327      return false;
328
329    // Check to see if a successor of the branch is guaranteed to go to the
330    // latch block or exit through a one exit block without having any
331    // side-effects.  If so, determine the value of Cond that causes it to do
332    // this.
333    if ((LoopExitBB = isTrivialLoopExitBlock(L, BI->getSuccessor(0)))) {
334      if (Val) *Val = ConstantInt::getTrue();
335    } else if ((LoopExitBB = isTrivialLoopExitBlock(L, BI->getSuccessor(1)))) {
336      if (Val) *Val = ConstantInt::getFalse();
337    }
338  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(HeaderTerm)) {
339    // If this isn't a switch on Cond, we can't handle it.
340    if (SI->getCondition() != Cond) return false;
341
342    // Check to see if a successor of the switch is guaranteed to go to the
343    // latch block or exit through a one exit block without having any
344    // side-effects.  If so, determine the value of Cond that causes it to do
345    // this.  Note that we can't trivially unswitch on the default case.
346    for (unsigned i = 1, e = SI->getNumSuccessors(); i != e; ++i)
347      if ((LoopExitBB = isTrivialLoopExitBlock(L, SI->getSuccessor(i)))) {
348        // Okay, we found a trivial case, remember the value that is trivial.
349        if (Val) *Val = SI->getCaseValue(i);
350        break;
351      }
352  }
353
354  // If we didn't find a single unique LoopExit block, or if the loop exit block
355  // contains phi nodes, this isn't trivial.
356  if (!LoopExitBB || isa<PHINode>(LoopExitBB->begin()))
357    return false;   // Can't handle this.
358
359  if (LoopExit) *LoopExit = LoopExitBB;
360
361  // We already know that nothing uses any scalar values defined inside of this
362  // loop.  As such, we just have to check to see if this loop will execute any
363  // side-effecting instructions (e.g. stores, calls, volatile loads) in the
364  // part of the loop that the code *would* execute.  We already checked the
365  // tail, check the header now.
366  for (BasicBlock::iterator I = Header->begin(), E = Header->end(); I != E; ++I)
367    if (I->mayWriteToMemory())
368      return false;
369  return true;
370}
371
372/// getLoopUnswitchCost - Return the cost (code size growth) that will happen if
373/// we choose to unswitch the specified loop on the specified value.
374///
375unsigned LoopUnswitch::getLoopUnswitchCost(Loop *L, Value *LIC) {
376  // If the condition is trivial, always unswitch.  There is no code growth for
377  // this case.
378  if (IsTrivialUnswitchCondition(L, LIC))
379    return 0;
380
381  // FIXME: This is really overly conservative.  However, more liberal
382  // estimations have thus far resulted in excessive unswitching, which is bad
383  // both in compile time and in code size.  This should be replaced once
384  // someone figures out how a good estimation.
385  return L->getBlocks().size();
386
387  unsigned Cost = 0;
388  // FIXME: this is brain dead.  It should take into consideration code
389  // shrinkage.
390  for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
391       I != E; ++I) {
392    BasicBlock *BB = *I;
393    // Do not include empty blocks in the cost calculation.  This happen due to
394    // loop canonicalization and will be removed.
395    if (BB->begin() == BasicBlock::iterator(BB->getTerminator()))
396      continue;
397
398    // Count basic blocks.
399    ++Cost;
400  }
401
402  return Cost;
403}
404
405/// UnswitchIfProfitable - We have found that we can unswitch L when
406/// LoopCond == Val to simplify the loop.  If we decide that this is profitable,
407/// unswitch the loop, reprocess the pieces, then return true.
408bool LoopUnswitch::UnswitchIfProfitable(Value *LoopCond, Constant *Val,Loop *L){
409  // Check to see if it would be profitable to unswitch this loop.
410  unsigned Cost = getLoopUnswitchCost(L, LoopCond);
411
412  // Do not do non-trivial unswitch while optimizing for size.
413  if (Cost && OptimizeForSize)
414    return false;
415
416  if (Cost > Threshold) {
417    // FIXME: this should estimate growth by the amount of code shared by the
418    // resultant unswitched loops.
419    //
420    DOUT << "NOT unswitching loop %"
421         << L->getHeader()->getName() << ", cost too high: "
422         << L->getBlocks().size() << "\n";
423    return false;
424  }
425
426  // If this is a trivial condition to unswitch (which results in no code
427  // duplication), do it now.
428  Constant *CondVal;
429  BasicBlock *ExitBlock;
430  if (IsTrivialUnswitchCondition(L, LoopCond, &CondVal, &ExitBlock)) {
431    UnswitchTrivialCondition(L, LoopCond, CondVal, ExitBlock);
432  } else {
433    UnswitchNontrivialCondition(LoopCond, Val, L);
434  }
435
436  return true;
437}
438
439// RemapInstruction - Convert the instruction operands from referencing the
440// current values into those specified by ValueMap.
441//
442static inline void RemapInstruction(Instruction *I,
443                                    DenseMap<const Value *, Value*> &ValueMap) {
444  for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) {
445    Value *Op = I->getOperand(op);
446    DenseMap<const Value *, Value*>::iterator It = ValueMap.find(Op);
447    if (It != ValueMap.end()) Op = It->second;
448    I->setOperand(op, Op);
449  }
450}
451
452// CloneDomInfo - NewBB is cloned from Orig basic block. Now clone Dominator
453// Info.
454//
455// If Orig block's immediate dominator is mapped in VM then use corresponding
456// immediate dominator from the map. Otherwise Orig block's dominator is also
457// NewBB's dominator.
458//
459// OrigPreheader is loop pre-header before this pass started
460// updating CFG. NewPrehader is loops new pre-header. However, after CFG
461// manipulation, loop L may not exist. So rely on input parameter NewPreheader.
462void CloneDomInfo(BasicBlock *NewBB, BasicBlock *Orig,
463                  BasicBlock *NewPreheader, BasicBlock *OrigPreheader,
464                  BasicBlock *OrigHeader,
465                  DominatorTree *DT, DominanceFrontier *DF,
466                  DenseMap<const Value*, Value*> &VM) {
467
468  // If NewBB alreay has found its place in domiantor tree then no need to do
469  // anything.
470  if (DT->getNode(NewBB))
471    return;
472
473  // If Orig does not have any immediate domiantor then its clone, NewBB, does
474  // not need any immediate dominator.
475  DomTreeNode *OrigNode = DT->getNode(Orig);
476  if (!OrigNode)
477    return;
478  DomTreeNode *OrigIDomNode = OrigNode->getIDom();
479  if (!OrigIDomNode)
480    return;
481
482  BasicBlock *OrigIDom = NULL;
483
484  // If Orig is original loop header then its immediate dominator is
485  // NewPreheader.
486  if (Orig == OrigHeader)
487    OrigIDom = NewPreheader;
488
489  // If Orig is new pre-header then its immediate dominator is
490  // original pre-header.
491  else if (Orig == NewPreheader)
492    OrigIDom = OrigPreheader;
493
494  // Other as DT to find Orig's immediate dominator.
495  else
496     OrigIDom = OrigIDomNode->getBlock();
497
498  // Initially use Orig's immediate dominator as NewBB's immediate dominator.
499  BasicBlock *NewIDom = OrigIDom;
500  DenseMap<const Value*, Value*>::iterator I = VM.find(OrigIDom);
501  if (I != VM.end()) {
502    NewIDom = cast<BasicBlock>(I->second);
503
504    // If NewIDom does not have corresponding dominatore tree node then
505    // get one.
506    if (!DT->getNode(NewIDom))
507      CloneDomInfo(NewIDom, OrigIDom, NewPreheader, OrigPreheader,
508                   OrigHeader, DT, DF, VM);
509  }
510
511  DT->addNewBlock(NewBB, NewIDom);
512
513  // Copy cloned dominance frontiner set
514  DominanceFrontier::DomSetType NewDFSet;
515  if (DF) {
516    DominanceFrontier::iterator DFI = DF->find(Orig);
517    if ( DFI != DF->end()) {
518      DominanceFrontier::DomSetType S = DFI->second;
519      for (DominanceFrontier::DomSetType::iterator I = S.begin(), E = S.end();
520           I != E; ++I) {
521        BasicBlock *BB = *I;
522        DenseMap<const Value*, Value*>::iterator IDM = VM.find(BB);
523        if (IDM != VM.end())
524          NewDFSet.insert(cast<BasicBlock>(IDM->second));
525        else
526          NewDFSet.insert(BB);
527      }
528    }
529    DF->addBasicBlock(NewBB, NewDFSet);
530  }
531}
532
533/// CloneLoop - Recursively clone the specified loop and all of its children,
534/// mapping the blocks with the specified map.
535static Loop *CloneLoop(Loop *L, Loop *PL, DenseMap<const Value*, Value*> &VM,
536                       LoopInfo *LI, LPPassManager *LPM) {
537  Loop *New = new Loop();
538
539  LPM->insertLoop(New, PL);
540
541  // Add all of the blocks in L to the new loop.
542  for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
543       I != E; ++I)
544    if (LI->getLoopFor(*I) == L)
545      New->addBasicBlockToLoop(cast<BasicBlock>(VM[*I]), *LI);
546
547  // Add all of the subloops to the new loop.
548  for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
549    CloneLoop(*I, New, VM, LI, LPM);
550
551  return New;
552}
553
554/// EmitPreheaderBranchOnCondition - Emit a conditional branch on two values
555/// if LIC == Val, branch to TrueDst, otherwise branch to FalseDest.  Insert the
556/// code immediately before InsertPt.
557void LoopUnswitch::EmitPreheaderBranchOnCondition(Value *LIC, Constant *Val,
558                                                  BasicBlock *TrueDest,
559                                                  BasicBlock *FalseDest,
560                                                  Instruction *InsertPt) {
561  // Insert a conditional branch on LIC to the two preheaders.  The original
562  // code is the true version and the new code is the false version.
563  Value *BranchVal = LIC;
564  if (!isa<ConstantInt>(Val) || Val->getType() != Type::Int1Ty)
565    BranchVal = new ICmpInst(ICmpInst::ICMP_EQ, LIC, Val, "tmp", InsertPt);
566  else if (Val != ConstantInt::getTrue())
567    // We want to enter the new loop when the condition is true.
568    std::swap(TrueDest, FalseDest);
569
570  // Insert the new branch.
571  new BranchInst(TrueDest, FalseDest, BranchVal, InsertPt);
572
573}
574
575
576/// UnswitchTrivialCondition - Given a loop that has a trivial unswitchable
577/// condition in it (a cond branch from its header block to its latch block,
578/// where the path through the loop that doesn't execute its body has no
579/// side-effects), unswitch it.  This doesn't involve any code duplication, just
580/// moving the conditional branch outside of the loop and updating loop info.
581void LoopUnswitch::UnswitchTrivialCondition(Loop *L, Value *Cond,
582                                            Constant *Val,
583                                            BasicBlock *ExitBlock) {
584  DOUT << "loop-unswitch: Trivial-Unswitch loop %"
585       << L->getHeader()->getName() << " [" << L->getBlocks().size()
586       << " blocks] in Function " << L->getHeader()->getParent()->getName()
587       << " on cond: " << *Val << " == " << *Cond << "\n";
588
589  // First step, split the preheader, so that we know that there is a safe place
590  // to insert the conditional branch.  We will change 'OrigPH' to have a
591  // conditional branch on Cond.
592  BasicBlock *OrigPH = L->getLoopPreheader();
593  BasicBlock *NewPH = SplitEdge(OrigPH, L->getHeader(), this);
594
595  // Now that we have a place to insert the conditional branch, create a place
596  // to branch to: this is the exit block out of the loop that we should
597  // short-circuit to.
598
599  // Split this block now, so that the loop maintains its exit block, and so
600  // that the jump from the preheader can execute the contents of the exit block
601  // without actually branching to it (the exit block should be dominated by the
602  // loop header, not the preheader).
603  assert(!L->contains(ExitBlock) && "Exit block is in the loop?");
604  BasicBlock *NewExit = SplitBlock(ExitBlock, ExitBlock->begin(), this);
605
606  // Okay, now we have a position to branch from and a position to branch to,
607  // insert the new conditional branch.
608  EmitPreheaderBranchOnCondition(Cond, Val, NewExit, NewPH,
609                                 OrigPH->getTerminator());
610  LPM->deleteSimpleAnalysisValue(OrigPH->getTerminator(), L);
611  OrigPH->getTerminator()->eraseFromParent();
612
613  // We need to reprocess this loop, it could be unswitched again.
614  redoLoop = true;
615
616  // Now that we know that the loop is never entered when this condition is a
617  // particular value, rewrite the loop with this info.  We know that this will
618  // at least eliminate the old branch.
619  RewriteLoopBodyWithConditionConstant(L, Cond, Val, false);
620  ++NumTrivial;
621}
622
623/// ReplaceLoopExternalDFMember -
624/// If BB's dominance frontier  has a member that is not part of loop L then
625/// remove it. Add NewDFMember in BB's dominance frontier.
626void LoopUnswitch::ReplaceLoopExternalDFMember(Loop *L, BasicBlock *BB,
627                                               BasicBlock *NewDFMember) {
628
629  DominanceFrontier::iterator DFI = DF->find(BB);
630  if (DFI == DF->end())
631    return;
632
633  DominanceFrontier::DomSetType &DFSet = DFI->second;
634  for (DominanceFrontier::DomSetType::iterator DI = DFSet.begin(),
635         DE = DFSet.end(); DI != DE;) {
636    BasicBlock *B = *DI++;
637    if (L->contains(B))
638      continue;
639
640    DF->removeFromFrontier(DFI, B);
641    LoopDF.insert(B);
642  }
643
644  DF->addToFrontier(DFI, NewDFMember);
645}
646
647/// SplitExitEdges -
648/// Split all of the edges from inside the loop to their exit blocks.  Update
649/// the appropriate Phi nodes as we do so.
650void LoopUnswitch::SplitExitEdges(Loop *L, const SmallVector<BasicBlock *, 8> &ExitBlocks,
651                                  SmallVector<BasicBlock *, 8> &MiddleBlocks) {
652
653  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
654    BasicBlock *ExitBlock = ExitBlocks[i];
655    std::vector<BasicBlock*> Preds(pred_begin(ExitBlock), pred_end(ExitBlock));
656
657    for (unsigned j = 0, e = Preds.size(); j != e; ++j) {
658      BasicBlock* MiddleBlock = SplitEdge(Preds[j], ExitBlock, this);
659      MiddleBlocks.push_back(MiddleBlock);
660      BasicBlock* StartBlock = Preds[j];
661      BasicBlock* EndBlock;
662      if (MiddleBlock->getSinglePredecessor() == ExitBlock) {
663        EndBlock = MiddleBlock;
664        MiddleBlock = EndBlock->getSinglePredecessor();;
665      } else {
666        EndBlock = ExitBlock;
667      }
668
669      OrigLoopExitMap[StartBlock] = EndBlock;
670
671      std::set<PHINode*> InsertedPHIs;
672      PHINode* OldLCSSA = 0;
673      for (BasicBlock::iterator I = EndBlock->begin();
674           (OldLCSSA = dyn_cast<PHINode>(I)); ++I) {
675        Value* OldValue = OldLCSSA->getIncomingValueForBlock(MiddleBlock);
676        PHINode* NewLCSSA = new PHINode(OldLCSSA->getType(),
677                                        OldLCSSA->getName() + ".us-lcssa",
678                                        MiddleBlock->getTerminator());
679        NewLCSSA->addIncoming(OldValue, StartBlock);
680        OldLCSSA->setIncomingValue(OldLCSSA->getBasicBlockIndex(MiddleBlock),
681                                   NewLCSSA);
682        InsertedPHIs.insert(NewLCSSA);
683      }
684
685      BasicBlock::iterator InsertPt = EndBlock->begin();
686      while (dyn_cast<PHINode>(InsertPt)) ++InsertPt;
687      for (BasicBlock::iterator I = MiddleBlock->begin();
688         (OldLCSSA = dyn_cast<PHINode>(I)) && InsertedPHIs.count(OldLCSSA) == 0;
689         ++I) {
690        PHINode *NewLCSSA = new PHINode(OldLCSSA->getType(),
691                                        OldLCSSA->getName() + ".us-lcssa",
692                                        InsertPt);
693        OldLCSSA->replaceAllUsesWith(NewLCSSA);
694        NewLCSSA->addIncoming(OldLCSSA, MiddleBlock);
695      }
696
697      if (DF && DT) {
698        // StartBlock -- > MiddleBlock -- > EndBlock
699        // StartBlock is loop exiting block. EndBlock will become merge point
700        // of two loop exits after loop unswitch.
701
702        // If StartBlock's DF member includes a block that is not loop member
703        // then replace that DF member with EndBlock.
704
705        // If MiddleBlock's DF member includes a block that is not loop member
706        // tnen replace that DF member with EndBlock.
707
708        ReplaceLoopExternalDFMember(L, StartBlock, EndBlock);
709        ReplaceLoopExternalDFMember(L, MiddleBlock, EndBlock);
710      }
711    }
712  }
713
714}
715
716/// UnswitchNontrivialCondition - We determined that the loop is profitable
717/// to unswitch when LIC equal Val.  Split it into loop versions and test the
718/// condition outside of either loop.  Return the loops created as Out1/Out2.
719void LoopUnswitch::UnswitchNontrivialCondition(Value *LIC, Constant *Val,
720                                               Loop *L) {
721  Function *F = L->getHeader()->getParent();
722  DOUT << "loop-unswitch: Unswitching loop %"
723       << L->getHeader()->getName() << " [" << L->getBlocks().size()
724       << " blocks] in Function " << F->getName()
725       << " when '" << *Val << "' == " << *LIC << "\n";
726
727  // LoopBlocks contains all of the basic blocks of the loop, including the
728  // preheader of the loop, the body of the loop, and the exit blocks of the
729  // loop, in that order.
730  std::vector<BasicBlock*> LoopBlocks;
731
732  // First step, split the preheader and exit blocks, and add these blocks to
733  // the LoopBlocks list.
734  BasicBlock *OrigHeader = L->getHeader();
735  BasicBlock *OrigPreheader = L->getLoopPreheader();
736  BasicBlock *NewPreheader = SplitEdge(OrigPreheader, L->getHeader(), this);
737  LoopBlocks.push_back(NewPreheader);
738
739  // We want the loop to come after the preheader, but before the exit blocks.
740  LoopBlocks.insert(LoopBlocks.end(), L->block_begin(), L->block_end());
741
742  SmallVector<BasicBlock*, 8> ExitBlocks;
743  L->getUniqueExitBlocks(ExitBlocks);
744
745  // Split all of the edges from inside the loop to their exit blocks.  Update
746  // the appropriate Phi nodes as we do so.
747  SmallVector<BasicBlock *,8> MiddleBlocks;
748  SplitExitEdges(L, ExitBlocks, MiddleBlocks);
749
750  // The exit blocks may have been changed due to edge splitting, recompute.
751  ExitBlocks.clear();
752  L->getUniqueExitBlocks(ExitBlocks);
753
754  // Add exit blocks to the loop blocks.
755  LoopBlocks.insert(LoopBlocks.end(), ExitBlocks.begin(), ExitBlocks.end());
756
757  // Next step, clone all of the basic blocks that make up the loop (including
758  // the loop preheader and exit blocks), keeping track of the mapping between
759  // the instructions and blocks.
760  std::vector<BasicBlock*> NewBlocks;
761  NewBlocks.reserve(LoopBlocks.size());
762  DenseMap<const Value*, Value*> ValueMap;
763  for (unsigned i = 0, e = LoopBlocks.size(); i != e; ++i) {
764    BasicBlock *New = CloneBasicBlock(LoopBlocks[i], ValueMap, ".us", F);
765    NewBlocks.push_back(New);
766    ValueMap[LoopBlocks[i]] = New;  // Keep the BB mapping.
767    LPM->cloneBasicBlockSimpleAnalysis(LoopBlocks[i], New, L);
768  }
769
770  // OutSiders are basic block that are dominated by original header and
771  // at the same time they are not part of loop.
772  SmallPtrSet<BasicBlock *, 8> OutSiders;
773  if (DT) {
774    DomTreeNode *OrigHeaderNode = DT->getNode(OrigHeader);
775    for(std::vector<DomTreeNode*>::iterator DI = OrigHeaderNode->begin(),
776          DE = OrigHeaderNode->end();  DI != DE; ++DI) {
777      BasicBlock *B = (*DI)->getBlock();
778
779      DenseMap<const Value*, Value*>::iterator VI = ValueMap.find(B);
780      if (VI == ValueMap.end())
781        OutSiders.insert(B);
782    }
783  }
784
785  // Splice the newly inserted blocks into the function right before the
786  // original preheader.
787  F->getBasicBlockList().splice(LoopBlocks[0], F->getBasicBlockList(),
788                                NewBlocks[0], F->end());
789
790  // Now we create the new Loop object for the versioned loop.
791  Loop *NewLoop = CloneLoop(L, L->getParentLoop(), ValueMap, LI, LPM);
792  Loop *ParentLoop = L->getParentLoop();
793  if (ParentLoop) {
794    // Make sure to add the cloned preheader and exit blocks to the parent loop
795    // as well.
796    ParentLoop->addBasicBlockToLoop(NewBlocks[0], *LI);
797  }
798
799  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
800    BasicBlock *NewExit = cast<BasicBlock>(ValueMap[ExitBlocks[i]]);
801    // The new exit block should be in the same loop as the old one.
802    if (Loop *ExitBBLoop = LI->getLoopFor(ExitBlocks[i]))
803      ExitBBLoop->addBasicBlockToLoop(NewExit, *LI);
804
805    assert(NewExit->getTerminator()->getNumSuccessors() == 1 &&
806           "Exit block should have been split to have one successor!");
807    BasicBlock *ExitSucc = NewExit->getTerminator()->getSuccessor(0);
808
809    // If the successor of the exit block had PHI nodes, add an entry for
810    // NewExit.
811    PHINode *PN;
812    for (BasicBlock::iterator I = ExitSucc->begin();
813         (PN = dyn_cast<PHINode>(I)); ++I) {
814      Value *V = PN->getIncomingValueForBlock(ExitBlocks[i]);
815      DenseMap<const Value *, Value*>::iterator It = ValueMap.find(V);
816      if (It != ValueMap.end()) V = It->second;
817      PN->addIncoming(V, NewExit);
818    }
819  }
820
821  // Rewrite the code to refer to itself.
822  for (unsigned i = 0, e = NewBlocks.size(); i != e; ++i)
823    for (BasicBlock::iterator I = NewBlocks[i]->begin(),
824           E = NewBlocks[i]->end(); I != E; ++I)
825      RemapInstruction(I, ValueMap);
826
827  // Rewrite the original preheader to select between versions of the loop.
828  BranchInst *OldBR = cast<BranchInst>(OrigPreheader->getTerminator());
829  assert(OldBR->isUnconditional() && OldBR->getSuccessor(0) == LoopBlocks[0] &&
830         "Preheader splitting did not work correctly!");
831
832  // Emit the new branch that selects between the two versions of this loop.
833  EmitPreheaderBranchOnCondition(LIC, Val, NewBlocks[0], LoopBlocks[0], OldBR);
834  LPM->deleteSimpleAnalysisValue(OldBR, L);
835  OldBR->eraseFromParent();
836
837  // Update dominator info
838  if (DF && DT) {
839
840    SmallVector<BasicBlock *,4> ExitingBlocks;
841    L->getExitingBlocks(ExitingBlocks);
842
843    // Clone dominator info for all cloned basic block.
844    for (unsigned i = 0, e = LoopBlocks.size(); i != e; ++i) {
845      BasicBlock *LBB = LoopBlocks[i];
846      BasicBlock *NBB = NewBlocks[i];
847      CloneDomInfo(NBB, LBB, NewPreheader, OrigPreheader,
848                   OrigHeader, DT, DF, ValueMap);
849
850      //   If LBB's dominance frontier includes DFMember
851      //      such that DFMember is also a member of LoopDF then
852      //         - Remove DFMember from LBB's dominance frontier
853      //         - Copy loop exiting blocks', that are dominated by BB, dominance frontier
854      //           member in BB's dominance frontier
855
856      DominanceFrontier::iterator LBBI = DF->find(LBB);
857      DominanceFrontier::iterator NBBI = DF->find(NBB);
858      if (LBBI == DF->end())
859        continue;
860
861      DominanceFrontier::DomSetType &LBSet = LBBI->second;
862      for (DominanceFrontier::DomSetType::iterator LI = LBSet.begin(),
863             LE = LBSet.end(); LI != LE; /* NULL */) {
864        BasicBlock *B = *LI++;
865        if (B == LBB && B == L->getHeader())
866          continue;
867        bool removeB = false;
868        if (!LoopDF.count(B))
869          continue;
870
871        // If LBB dominates loop exits then insert loop exit block's DF
872        // into B's DF.
873        for(SmallVector<BasicBlock *, 4>::iterator LExitI = ExitingBlocks.begin(),
874              LExitE = ExitingBlocks.end(); LExitI != LExitE; ++LExitI) {
875          BasicBlock *E = *LExitI;
876
877          if (!DT->dominates(LBB,E))
878            continue;
879
880          DenseMap<BasicBlock *, BasicBlock *>::iterator DFBI =
881            OrigLoopExitMap.find(E);
882          if (DFBI == OrigLoopExitMap.end())
883            continue;
884
885          BasicBlock *DFB = DFBI->second;
886          DF->addToFrontier(LBBI, DFB);
887          DF->addToFrontier(NBBI, DFB);
888          removeB = true;
889        }
890
891        // If B's replacement is inserted in DF then now is the time to remove B.
892        if (removeB) {
893          DF->removeFromFrontier(LBBI, B);
894          if (L->contains(B))
895            DF->removeFromFrontier(NBBI, cast<BasicBlock>(ValueMap[B]));
896          else
897            DF->removeFromFrontier(NBBI, B);
898        }
899      }
900
901    }
902
903    // MiddleBlocks are dominated by original pre header. SplitEdge updated
904    // MiddleBlocks' dominance frontier appropriately.
905    for (unsigned i = 0, e = MiddleBlocks.size(); i != e; ++i) {
906      BasicBlock *MBB = MiddleBlocks[i];
907      if (!MBB->getSinglePredecessor())
908        DT->changeImmediateDominator(MBB, OrigPreheader);
909    }
910
911    // All Outsiders are now dominated by original pre header.
912    for (SmallPtrSet<BasicBlock *, 8>::iterator OI = OutSiders.begin(),
913           OE = OutSiders.end(); OI != OE; ++OI) {
914      BasicBlock *OB = *OI;
915      DT->changeImmediateDominator(OB, OrigPreheader);
916    }
917
918    // New loop headers are dominated by original preheader
919    DT->changeImmediateDominator(NewBlocks[0], OrigPreheader);
920    DT->changeImmediateDominator(LoopBlocks[0], OrigPreheader);
921  }
922
923  LoopProcessWorklist.push_back(NewLoop);
924  redoLoop = true;
925
926  // Now we rewrite the original code to know that the condition is true and the
927  // new code to know that the condition is false.
928  RewriteLoopBodyWithConditionConstant(L      , LIC, Val, false);
929
930  // It's possible that simplifying one loop could cause the other to be
931  // deleted.  If so, don't simplify it.
932  if (!LoopProcessWorklist.empty() && LoopProcessWorklist.back() == NewLoop)
933    RewriteLoopBodyWithConditionConstant(NewLoop, LIC, Val, true);
934}
935
936/// RemoveFromWorklist - Remove all instances of I from the worklist vector
937/// specified.
938static void RemoveFromWorklist(Instruction *I,
939                               std::vector<Instruction*> &Worklist) {
940  std::vector<Instruction*>::iterator WI = std::find(Worklist.begin(),
941                                                     Worklist.end(), I);
942  while (WI != Worklist.end()) {
943    unsigned Offset = WI-Worklist.begin();
944    Worklist.erase(WI);
945    WI = std::find(Worklist.begin()+Offset, Worklist.end(), I);
946  }
947}
948
949/// ReplaceUsesOfWith - When we find that I really equals V, remove I from the
950/// program, replacing all uses with V and update the worklist.
951static void ReplaceUsesOfWith(Instruction *I, Value *V,
952                              std::vector<Instruction*> &Worklist,
953                              Loop *L, LPPassManager *LPM) {
954  DOUT << "Replace with '" << *V << "': " << *I;
955
956  // Add uses to the worklist, which may be dead now.
957  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
958    if (Instruction *Use = dyn_cast<Instruction>(I->getOperand(i)))
959      Worklist.push_back(Use);
960
961  // Add users to the worklist which may be simplified now.
962  for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
963       UI != E; ++UI)
964    Worklist.push_back(cast<Instruction>(*UI));
965  LPM->deleteSimpleAnalysisValue(I, L);
966  RemoveFromWorklist(I, Worklist);
967  I->replaceAllUsesWith(V);
968  I->eraseFromParent();
969  ++NumSimplify;
970}
971
972/// RemoveBlockIfDead - If the specified block is dead, remove it, update loop
973/// information, and remove any dead successors it has.
974///
975void LoopUnswitch::RemoveBlockIfDead(BasicBlock *BB,
976                                     std::vector<Instruction*> &Worklist,
977                                     Loop *L) {
978  if (pred_begin(BB) != pred_end(BB)) {
979    // This block isn't dead, since an edge to BB was just removed, see if there
980    // are any easy simplifications we can do now.
981    if (BasicBlock *Pred = BB->getSinglePredecessor()) {
982      // If it has one pred, fold phi nodes in BB.
983      while (isa<PHINode>(BB->begin()))
984        ReplaceUsesOfWith(BB->begin(),
985                          cast<PHINode>(BB->begin())->getIncomingValue(0),
986                          Worklist, L, LPM);
987
988      // If this is the header of a loop and the only pred is the latch, we now
989      // have an unreachable loop.
990      if (Loop *L = LI->getLoopFor(BB))
991        if (L->getHeader() == BB && L->contains(Pred)) {
992          // Remove the branch from the latch to the header block, this makes
993          // the header dead, which will make the latch dead (because the header
994          // dominates the latch).
995          LPM->deleteSimpleAnalysisValue(Pred->getTerminator(), L);
996          Pred->getTerminator()->eraseFromParent();
997          new UnreachableInst(Pred);
998
999          // The loop is now broken, remove it from LI.
1000          RemoveLoopFromHierarchy(L);
1001
1002          // Reprocess the header, which now IS dead.
1003          RemoveBlockIfDead(BB, Worklist, L);
1004          return;
1005        }
1006
1007      // If pred ends in a uncond branch, add uncond branch to worklist so that
1008      // the two blocks will get merged.
1009      if (BranchInst *BI = dyn_cast<BranchInst>(Pred->getTerminator()))
1010        if (BI->isUnconditional())
1011          Worklist.push_back(BI);
1012    }
1013    return;
1014  }
1015
1016  DOUT << "Nuking dead block: " << *BB;
1017
1018  // Remove the instructions in the basic block from the worklist.
1019  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
1020    RemoveFromWorklist(I, Worklist);
1021
1022    // Anything that uses the instructions in this basic block should have their
1023    // uses replaced with undefs.
1024    if (!I->use_empty())
1025      I->replaceAllUsesWith(UndefValue::get(I->getType()));
1026  }
1027
1028  // If this is the edge to the header block for a loop, remove the loop and
1029  // promote all subloops.
1030  if (Loop *BBLoop = LI->getLoopFor(BB)) {
1031    if (BBLoop->getLoopLatch() == BB)
1032      RemoveLoopFromHierarchy(BBLoop);
1033  }
1034
1035  // Remove the block from the loop info, which removes it from any loops it
1036  // was in.
1037  LI->removeBlock(BB);
1038
1039
1040  // Remove phi node entries in successors for this block.
1041  TerminatorInst *TI = BB->getTerminator();
1042  std::vector<BasicBlock*> Succs;
1043  for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
1044    Succs.push_back(TI->getSuccessor(i));
1045    TI->getSuccessor(i)->removePredecessor(BB);
1046  }
1047
1048  // Unique the successors, remove anything with multiple uses.
1049  std::sort(Succs.begin(), Succs.end());
1050  Succs.erase(std::unique(Succs.begin(), Succs.end()), Succs.end());
1051
1052  // Remove the basic block, including all of the instructions contained in it.
1053  LPM->deleteSimpleAnalysisValue(BB, L);
1054  BB->eraseFromParent();
1055  // Remove successor blocks here that are not dead, so that we know we only
1056  // have dead blocks in this list.  Nondead blocks have a way of becoming dead,
1057  // then getting removed before we revisit them, which is badness.
1058  //
1059  for (unsigned i = 0; i != Succs.size(); ++i)
1060    if (pred_begin(Succs[i]) != pred_end(Succs[i])) {
1061      // One exception is loop headers.  If this block was the preheader for a
1062      // loop, then we DO want to visit the loop so the loop gets deleted.
1063      // We know that if the successor is a loop header, that this loop had to
1064      // be the preheader: the case where this was the latch block was handled
1065      // above and headers can only have two predecessors.
1066      if (!LI->isLoopHeader(Succs[i])) {
1067        Succs.erase(Succs.begin()+i);
1068        --i;
1069      }
1070    }
1071
1072  for (unsigned i = 0, e = Succs.size(); i != e; ++i)
1073    RemoveBlockIfDead(Succs[i], Worklist, L);
1074}
1075
1076/// RemoveLoopFromHierarchy - We have discovered that the specified loop has
1077/// become unwrapped, either because the backedge was deleted, or because the
1078/// edge into the header was removed.  If the edge into the header from the
1079/// latch block was removed, the loop is unwrapped but subloops are still alive,
1080/// so they just reparent loops.  If the loops are actually dead, they will be
1081/// removed later.
1082void LoopUnswitch::RemoveLoopFromHierarchy(Loop *L) {
1083  LPM->deleteLoopFromQueue(L);
1084  RemoveLoopFromWorklist(L);
1085}
1086
1087
1088
1089// RewriteLoopBodyWithConditionConstant - We know either that the value LIC has
1090// the value specified by Val in the specified loop, or we know it does NOT have
1091// that value.  Rewrite any uses of LIC or of properties correlated to it.
1092void LoopUnswitch::RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC,
1093                                                        Constant *Val,
1094                                                        bool IsEqual) {
1095  assert(!isa<Constant>(LIC) && "Why are we unswitching on a constant?");
1096
1097  // FIXME: Support correlated properties, like:
1098  //  for (...)
1099  //    if (li1 < li2)
1100  //      ...
1101  //    if (li1 > li2)
1102  //      ...
1103
1104  // FOLD boolean conditions (X|LIC), (X&LIC).  Fold conditional branches,
1105  // selects, switches.
1106  std::vector<User*> Users(LIC->use_begin(), LIC->use_end());
1107  std::vector<Instruction*> Worklist;
1108
1109  // If we know that LIC == Val, or that LIC == NotVal, just replace uses of LIC
1110  // in the loop with the appropriate one directly.
1111  if (IsEqual || (isa<ConstantInt>(Val) && Val->getType() == Type::Int1Ty)) {
1112    Value *Replacement;
1113    if (IsEqual)
1114      Replacement = Val;
1115    else
1116      Replacement = ConstantInt::get(Type::Int1Ty,
1117                                     !cast<ConstantInt>(Val)->getZExtValue());
1118
1119    for (unsigned i = 0, e = Users.size(); i != e; ++i)
1120      if (Instruction *U = cast<Instruction>(Users[i])) {
1121        if (!L->contains(U->getParent()))
1122          continue;
1123        U->replaceUsesOfWith(LIC, Replacement);
1124        Worklist.push_back(U);
1125      }
1126  } else {
1127    // Otherwise, we don't know the precise value of LIC, but we do know that it
1128    // is certainly NOT "Val".  As such, simplify any uses in the loop that we
1129    // can.  This case occurs when we unswitch switch statements.
1130    for (unsigned i = 0, e = Users.size(); i != e; ++i)
1131      if (Instruction *U = cast<Instruction>(Users[i])) {
1132        if (!L->contains(U->getParent()))
1133          continue;
1134
1135        Worklist.push_back(U);
1136
1137        // If we know that LIC is not Val, use this info to simplify code.
1138        if (SwitchInst *SI = dyn_cast<SwitchInst>(U)) {
1139          for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i) {
1140            if (SI->getCaseValue(i) == Val) {
1141              // Found a dead case value.  Don't remove PHI nodes in the
1142              // successor if they become single-entry, those PHI nodes may
1143              // be in the Users list.
1144
1145              // FIXME: This is a hack.  We need to keep the successor around
1146              // and hooked up so as to preserve the loop structure, because
1147              // trying to update it is complicated.  So instead we preserve the
1148              // loop structure and put the block on an dead code path.
1149
1150              BasicBlock* Old = SI->getParent();
1151              BasicBlock* Split = SplitBlock(Old, SI, this);
1152
1153              Instruction* OldTerm = Old->getTerminator();
1154              new BranchInst(Split, SI->getSuccessor(i),
1155                             ConstantInt::getTrue(), OldTerm);
1156
1157              LPM->deleteSimpleAnalysisValue(Old->getTerminator(), L);
1158              Old->getTerminator()->eraseFromParent();
1159
1160              PHINode *PN;
1161              for (BasicBlock::iterator II = SI->getSuccessor(i)->begin();
1162                   (PN = dyn_cast<PHINode>(II)); ++II) {
1163                Value *InVal = PN->removeIncomingValue(Split, false);
1164                PN->addIncoming(InVal, Old);
1165              }
1166
1167              SI->removeCase(i);
1168              break;
1169            }
1170          }
1171        }
1172
1173        // TODO: We could do other simplifications, for example, turning
1174        // LIC == Val -> false.
1175      }
1176  }
1177
1178  SimplifyCode(Worklist, L);
1179}
1180
1181/// SimplifyCode - Okay, now that we have simplified some instructions in the
1182/// loop, walk over it and constant prop, dce, and fold control flow where
1183/// possible.  Note that this is effectively a very simple loop-structure-aware
1184/// optimizer.  During processing of this loop, L could very well be deleted, so
1185/// it must not be used.
1186///
1187/// FIXME: When the loop optimizer is more mature, separate this out to a new
1188/// pass.
1189///
1190void LoopUnswitch::SimplifyCode(std::vector<Instruction*> &Worklist, Loop *L) {
1191  while (!Worklist.empty()) {
1192    Instruction *I = Worklist.back();
1193    Worklist.pop_back();
1194
1195    // Simple constant folding.
1196    if (Constant *C = ConstantFoldInstruction(I)) {
1197      ReplaceUsesOfWith(I, C, Worklist, L, LPM);
1198      continue;
1199    }
1200
1201    // Simple DCE.
1202    if (isInstructionTriviallyDead(I)) {
1203      DOUT << "Remove dead instruction '" << *I;
1204
1205      // Add uses to the worklist, which may be dead now.
1206      for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
1207        if (Instruction *Use = dyn_cast<Instruction>(I->getOperand(i)))
1208          Worklist.push_back(Use);
1209      LPM->deleteSimpleAnalysisValue(I, L);
1210      RemoveFromWorklist(I, Worklist);
1211      I->eraseFromParent();
1212      ++NumSimplify;
1213      continue;
1214    }
1215
1216    // Special case hacks that appear commonly in unswitched code.
1217    switch (I->getOpcode()) {
1218    case Instruction::Select:
1219      if (ConstantInt *CB = dyn_cast<ConstantInt>(I->getOperand(0))) {
1220        ReplaceUsesOfWith(I, I->getOperand(!CB->getZExtValue()+1), Worklist, L,
1221                          LPM);
1222        continue;
1223      }
1224      break;
1225    case Instruction::And:
1226      if (isa<ConstantInt>(I->getOperand(0)) &&
1227          I->getOperand(0)->getType() == Type::Int1Ty)   // constant -> RHS
1228        cast<BinaryOperator>(I)->swapOperands();
1229      if (ConstantInt *CB = dyn_cast<ConstantInt>(I->getOperand(1)))
1230        if (CB->getType() == Type::Int1Ty) {
1231          if (CB->isOne())      // X & 1 -> X
1232            ReplaceUsesOfWith(I, I->getOperand(0), Worklist, L, LPM);
1233          else                  // X & 0 -> 0
1234            ReplaceUsesOfWith(I, I->getOperand(1), Worklist, L, LPM);
1235          continue;
1236        }
1237      break;
1238    case Instruction::Or:
1239      if (isa<ConstantInt>(I->getOperand(0)) &&
1240          I->getOperand(0)->getType() == Type::Int1Ty)   // constant -> RHS
1241        cast<BinaryOperator>(I)->swapOperands();
1242      if (ConstantInt *CB = dyn_cast<ConstantInt>(I->getOperand(1)))
1243        if (CB->getType() == Type::Int1Ty) {
1244          if (CB->isOne())   // X | 1 -> 1
1245            ReplaceUsesOfWith(I, I->getOperand(1), Worklist, L, LPM);
1246          else                  // X | 0 -> X
1247            ReplaceUsesOfWith(I, I->getOperand(0), Worklist, L, LPM);
1248          continue;
1249        }
1250      break;
1251    case Instruction::Br: {
1252      BranchInst *BI = cast<BranchInst>(I);
1253      if (BI->isUnconditional()) {
1254        // If BI's parent is the only pred of the successor, fold the two blocks
1255        // together.
1256        BasicBlock *Pred = BI->getParent();
1257        BasicBlock *Succ = BI->getSuccessor(0);
1258        BasicBlock *SinglePred = Succ->getSinglePredecessor();
1259        if (!SinglePred) continue;  // Nothing to do.
1260        assert(SinglePred == Pred && "CFG broken");
1261
1262        DOUT << "Merging blocks: " << Pred->getName() << " <- "
1263             << Succ->getName() << "\n";
1264
1265        // Resolve any single entry PHI nodes in Succ.
1266        while (PHINode *PN = dyn_cast<PHINode>(Succ->begin()))
1267          ReplaceUsesOfWith(PN, PN->getIncomingValue(0), Worklist, L, LPM);
1268
1269        // Move all of the successor contents from Succ to Pred.
1270        Pred->getInstList().splice(BI, Succ->getInstList(), Succ->begin(),
1271                                   Succ->end());
1272        LPM->deleteSimpleAnalysisValue(BI, L);
1273        BI->eraseFromParent();
1274        RemoveFromWorklist(BI, Worklist);
1275
1276        // If Succ has any successors with PHI nodes, update them to have
1277        // entries coming from Pred instead of Succ.
1278        Succ->replaceAllUsesWith(Pred);
1279
1280        // Remove Succ from the loop tree.
1281        LI->removeBlock(Succ);
1282        LPM->deleteSimpleAnalysisValue(Succ, L);
1283        Succ->eraseFromParent();
1284        ++NumSimplify;
1285      } else if (ConstantInt *CB = dyn_cast<ConstantInt>(BI->getCondition())){
1286        // Conditional branch.  Turn it into an unconditional branch, then
1287        // remove dead blocks.
1288        break;  // FIXME: Enable.
1289
1290        DOUT << "Folded branch: " << *BI;
1291        BasicBlock *DeadSucc = BI->getSuccessor(CB->getZExtValue());
1292        BasicBlock *LiveSucc = BI->getSuccessor(!CB->getZExtValue());
1293        DeadSucc->removePredecessor(BI->getParent(), true);
1294        Worklist.push_back(new BranchInst(LiveSucc, BI));
1295        LPM->deleteSimpleAnalysisValue(BI, L);
1296        BI->eraseFromParent();
1297        RemoveFromWorklist(BI, Worklist);
1298        ++NumSimplify;
1299
1300        RemoveBlockIfDead(DeadSucc, Worklist, L);
1301      }
1302      break;
1303    }
1304    }
1305  }
1306}
1307