LoopUnswitch.cpp revision c08b56f6a085f822e21bf3aa18a0554ed9ecd479
1//===-- LoopUnswitch.cpp - Hoist loop-invariant conditionals in loop ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass transforms loops that contain branches on loop-invariant conditions
11// to have multiple loops.  For example, it turns the left into the right code:
12//
13//  for (...)                  if (lic)
14//    A                          for (...)
15//    if (lic)                     A; B; C
16//      B                      else
17//    C                          for (...)
18//                                 A; C
19//
20// This can increase the size of the code exponentially (doubling it every time
21// a loop is unswitched) so we only unswitch if the resultant code will be
22// smaller than a threshold.
23//
24// This pass expects LICM to be run before it to hoist invariant conditions out
25// of the loop, to make the unswitching opportunity obvious.
26//
27//===----------------------------------------------------------------------===//
28
29#define DEBUG_TYPE "loop-unswitch"
30#include "llvm/Transforms/Scalar.h"
31#include "llvm/Constants.h"
32#include "llvm/Function.h"
33#include "llvm/Instructions.h"
34#include "llvm/Analysis/LoopInfo.h"
35#include "llvm/Transforms/Utils/Cloning.h"
36#include "llvm/Transforms/Utils/Local.h"
37#include "llvm/Transforms/Utils/BasicBlockUtils.h"
38#include "llvm/ADT/Statistic.h"
39#include "llvm/ADT/PostOrderIterator.h"
40#include "llvm/Support/Debug.h"
41#include "llvm/Support/CommandLine.h"
42#include <algorithm>
43#include <set>
44using namespace llvm;
45
46STATISTIC(NumBranches, "Number of branches unswitched");
47STATISTIC(NumSwitches, "Number of switches unswitched");
48STATISTIC(NumSelects , "Number of selects unswitched");
49STATISTIC(NumTrivial , "Number of unswitches that are trivial");
50STATISTIC(NumSimplify, "Number of simplifications of unswitched code");
51
52namespace {
53  cl::opt<unsigned>
54  Threshold("loop-unswitch-threshold", cl::desc("Max loop size to unswitch"),
55            cl::init(10), cl::Hidden);
56
57  class LoopUnswitch : public FunctionPass {
58    LoopInfo *LI;  // Loop information
59
60    // LoopProcessWorklist - List of loops we need to process.
61    std::vector<Loop*> LoopProcessWorklist;
62  public:
63    virtual bool runOnFunction(Function &F);
64    bool visitLoop(Loop *L);
65
66    /// This transformation requires natural loop information & requires that
67    /// loop preheaders be inserted into the CFG...
68    ///
69    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
70      AU.addRequiredID(LoopSimplifyID);
71      AU.addPreservedID(LoopSimplifyID);
72      AU.addRequired<LoopInfo>();
73      AU.addPreserved<LoopInfo>();
74      AU.addRequiredID(LCSSAID);
75      AU.addPreservedID(LCSSAID);
76    }
77
78  private:
79    /// RemoveLoopFromWorklist - If the specified loop is on the loop worklist,
80    /// remove it.
81    void RemoveLoopFromWorklist(Loop *L) {
82      std::vector<Loop*>::iterator I = std::find(LoopProcessWorklist.begin(),
83                                                 LoopProcessWorklist.end(), L);
84      if (I != LoopProcessWorklist.end())
85        LoopProcessWorklist.erase(I);
86    }
87
88    bool UnswitchIfProfitable(Value *LoopCond, Constant *Val,Loop *L);
89    unsigned getLoopUnswitchCost(Loop *L, Value *LIC);
90    void UnswitchTrivialCondition(Loop *L, Value *Cond, Constant *Val,
91                                  BasicBlock *ExitBlock);
92    void UnswitchNontrivialCondition(Value *LIC, Constant *OnVal, Loop *L);
93    BasicBlock *SplitEdge(BasicBlock *From, BasicBlock *To);
94    BasicBlock *SplitBlock(BasicBlock *Old, Instruction *SplitPt);
95
96    void RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC,
97                                              Constant *Val, bool isEqual);
98
99    void SimplifyCode(std::vector<Instruction*> &Worklist);
100    void RemoveBlockIfDead(BasicBlock *BB,
101                           std::vector<Instruction*> &Worklist);
102    void RemoveLoopFromHierarchy(Loop *L);
103  };
104  RegisterPass<LoopUnswitch> X("loop-unswitch", "Unswitch loops");
105}
106
107FunctionPass *llvm::createLoopUnswitchPass() { return new LoopUnswitch(); }
108
109bool LoopUnswitch::runOnFunction(Function &F) {
110  bool Changed = false;
111  LI = &getAnalysis<LoopInfo>();
112
113  // Populate the worklist of loops to process in post-order.
114  for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
115    for (po_iterator<Loop*> LI = po_begin(*I), E = po_end(*I); LI != E; ++LI)
116      LoopProcessWorklist.push_back(*LI);
117
118  // Process the loops in worklist order, this is a post-order visitation of
119  // the loops.  We use a worklist of loops so that loops can be removed at any
120  // time if they are deleted (e.g. the backedge of a loop is removed).
121  while (!LoopProcessWorklist.empty()) {
122    Loop *L = LoopProcessWorklist.back();
123    LoopProcessWorklist.pop_back();
124    Changed |= visitLoop(L);
125  }
126
127  return Changed;
128}
129
130/// FindLIVLoopCondition - Cond is a condition that occurs in L.  If it is
131/// invariant in the loop, or has an invariant piece, return the invariant.
132/// Otherwise, return null.
133static Value *FindLIVLoopCondition(Value *Cond, Loop *L, bool &Changed) {
134  // Constants should be folded, not unswitched on!
135  if (isa<Constant>(Cond)) return false;
136
137  // TODO: Handle: br (VARIANT|INVARIANT).
138  // TODO: Hoist simple expressions out of loops.
139  if (L->isLoopInvariant(Cond)) return Cond;
140
141  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Cond))
142    if (BO->getOpcode() == Instruction::And ||
143        BO->getOpcode() == Instruction::Or) {
144      // If either the left or right side is invariant, we can unswitch on this,
145      // which will cause the branch to go away in one loop and the condition to
146      // simplify in the other one.
147      if (Value *LHS = FindLIVLoopCondition(BO->getOperand(0), L, Changed))
148        return LHS;
149      if (Value *RHS = FindLIVLoopCondition(BO->getOperand(1), L, Changed))
150        return RHS;
151    }
152
153      return 0;
154}
155
156bool LoopUnswitch::visitLoop(Loop *L) {
157  assert(L->isLCSSAForm());
158
159  bool Changed = false;
160
161  // Loop over all of the basic blocks in the loop.  If we find an interior
162  // block that is branching on a loop-invariant condition, we can unswitch this
163  // loop.
164  for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
165       I != E; ++I) {
166    TerminatorInst *TI = (*I)->getTerminator();
167    if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
168      // If this isn't branching on an invariant condition, we can't unswitch
169      // it.
170      if (BI->isConditional()) {
171        // See if this, or some part of it, is loop invariant.  If so, we can
172        // unswitch on it if we desire.
173        Value *LoopCond = FindLIVLoopCondition(BI->getCondition(), L, Changed);
174        if (LoopCond && UnswitchIfProfitable(LoopCond, ConstantInt::getTrue(),
175                                             L)) {
176          ++NumBranches;
177          return true;
178        }
179      }
180    } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
181      Value *LoopCond = FindLIVLoopCondition(SI->getCondition(), L, Changed);
182      if (LoopCond && SI->getNumCases() > 1) {
183        // Find a value to unswitch on:
184        // FIXME: this should chose the most expensive case!
185        Constant *UnswitchVal = SI->getCaseValue(1);
186        if (UnswitchIfProfitable(LoopCond, UnswitchVal, L)) {
187          ++NumSwitches;
188          return true;
189        }
190      }
191    }
192
193    // Scan the instructions to check for unswitchable values.
194    for (BasicBlock::iterator BBI = (*I)->begin(), E = (*I)->end();
195         BBI != E; ++BBI)
196      if (SelectInst *SI = dyn_cast<SelectInst>(BBI)) {
197        Value *LoopCond = FindLIVLoopCondition(SI->getCondition(), L, Changed);
198        if (LoopCond && UnswitchIfProfitable(LoopCond, ConstantInt::getTrue(),
199                                             L)) {
200          ++NumSelects;
201          return true;
202        }
203      }
204  }
205
206  assert(L->isLCSSAForm());
207
208  return Changed;
209}
210
211/// isTrivialLoopExitBlock - Check to see if all paths from BB either:
212///   1. Exit the loop with no side effects.
213///   2. Branch to the latch block with no side-effects.
214///
215/// If these conditions are true, we return true and set ExitBB to the block we
216/// exit through.
217///
218static bool isTrivialLoopExitBlockHelper(Loop *L, BasicBlock *BB,
219                                         BasicBlock *&ExitBB,
220                                         std::set<BasicBlock*> &Visited) {
221  if (!Visited.insert(BB).second) {
222    // Already visited and Ok, end of recursion.
223    return true;
224  } else if (!L->contains(BB)) {
225    // Otherwise, this is a loop exit, this is fine so long as this is the
226    // first exit.
227    if (ExitBB != 0) return false;
228    ExitBB = BB;
229    return true;
230  }
231
232  // Otherwise, this is an unvisited intra-loop node.  Check all successors.
233  for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI) {
234    // Check to see if the successor is a trivial loop exit.
235    if (!isTrivialLoopExitBlockHelper(L, *SI, ExitBB, Visited))
236      return false;
237  }
238
239  // Okay, everything after this looks good, check to make sure that this block
240  // doesn't include any side effects.
241  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
242    if (I->mayWriteToMemory())
243      return false;
244
245  return true;
246}
247
248/// isTrivialLoopExitBlock - Return true if the specified block unconditionally
249/// leads to an exit from the specified loop, and has no side-effects in the
250/// process.  If so, return the block that is exited to, otherwise return null.
251static BasicBlock *isTrivialLoopExitBlock(Loop *L, BasicBlock *BB) {
252  std::set<BasicBlock*> Visited;
253  Visited.insert(L->getHeader());  // Branches to header are ok.
254  BasicBlock *ExitBB = 0;
255  if (isTrivialLoopExitBlockHelper(L, BB, ExitBB, Visited))
256    return ExitBB;
257  return 0;
258}
259
260/// IsTrivialUnswitchCondition - Check to see if this unswitch condition is
261/// trivial: that is, that the condition controls whether or not the loop does
262/// anything at all.  If this is a trivial condition, unswitching produces no
263/// code duplications (equivalently, it produces a simpler loop and a new empty
264/// loop, which gets deleted).
265///
266/// If this is a trivial condition, return true, otherwise return false.  When
267/// returning true, this sets Cond and Val to the condition that controls the
268/// trivial condition: when Cond dynamically equals Val, the loop is known to
269/// exit.  Finally, this sets LoopExit to the BB that the loop exits to when
270/// Cond == Val.
271///
272static bool IsTrivialUnswitchCondition(Loop *L, Value *Cond, Constant **Val = 0,
273                                       BasicBlock **LoopExit = 0) {
274  BasicBlock *Header = L->getHeader();
275  TerminatorInst *HeaderTerm = Header->getTerminator();
276
277  BasicBlock *LoopExitBB = 0;
278  if (BranchInst *BI = dyn_cast<BranchInst>(HeaderTerm)) {
279    // If the header block doesn't end with a conditional branch on Cond, we
280    // can't handle it.
281    if (!BI->isConditional() || BI->getCondition() != Cond)
282      return false;
283
284    // Check to see if a successor of the branch is guaranteed to go to the
285    // latch block or exit through a one exit block without having any
286    // side-effects.  If so, determine the value of Cond that causes it to do
287    // this.
288    if ((LoopExitBB = isTrivialLoopExitBlock(L, BI->getSuccessor(0)))) {
289      if (Val) *Val = ConstantInt::getTrue();
290    } else if ((LoopExitBB = isTrivialLoopExitBlock(L, BI->getSuccessor(1)))) {
291      if (Val) *Val = ConstantInt::getFalse();
292    }
293  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(HeaderTerm)) {
294    // If this isn't a switch on Cond, we can't handle it.
295    if (SI->getCondition() != Cond) return false;
296
297    // Check to see if a successor of the switch is guaranteed to go to the
298    // latch block or exit through a one exit block without having any
299    // side-effects.  If so, determine the value of Cond that causes it to do
300    // this.  Note that we can't trivially unswitch on the default case.
301    for (unsigned i = 1, e = SI->getNumSuccessors(); i != e; ++i)
302      if ((LoopExitBB = isTrivialLoopExitBlock(L, SI->getSuccessor(i)))) {
303        // Okay, we found a trivial case, remember the value that is trivial.
304        if (Val) *Val = SI->getCaseValue(i);
305        break;
306      }
307  }
308
309  // If we didn't find a single unique LoopExit block, or if the loop exit block
310  // contains phi nodes, this isn't trivial.
311  if (!LoopExitBB || isa<PHINode>(LoopExitBB->begin()))
312    return false;   // Can't handle this.
313
314  if (LoopExit) *LoopExit = LoopExitBB;
315
316  // We already know that nothing uses any scalar values defined inside of this
317  // loop.  As such, we just have to check to see if this loop will execute any
318  // side-effecting instructions (e.g. stores, calls, volatile loads) in the
319  // part of the loop that the code *would* execute.  We already checked the
320  // tail, check the header now.
321  for (BasicBlock::iterator I = Header->begin(), E = Header->end(); I != E; ++I)
322    if (I->mayWriteToMemory())
323      return false;
324  return true;
325}
326
327/// getLoopUnswitchCost - Return the cost (code size growth) that will happen if
328/// we choose to unswitch the specified loop on the specified value.
329///
330unsigned LoopUnswitch::getLoopUnswitchCost(Loop *L, Value *LIC) {
331  // If the condition is trivial, always unswitch.  There is no code growth for
332  // this case.
333  if (IsTrivialUnswitchCondition(L, LIC))
334    return 0;
335
336  // FIXME: This is really overly conservative.  However, more liberal
337  // estimations have thus far resulted in excessive unswitching, which is bad
338  // both in compile time and in code size.  This should be replaced once
339  // someone figures out how a good estimation.
340  return L->getBlocks().size();
341
342  unsigned Cost = 0;
343  // FIXME: this is brain dead.  It should take into consideration code
344  // shrinkage.
345  for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
346       I != E; ++I) {
347    BasicBlock *BB = *I;
348    // Do not include empty blocks in the cost calculation.  This happen due to
349    // loop canonicalization and will be removed.
350    if (BB->begin() == BasicBlock::iterator(BB->getTerminator()))
351      continue;
352
353    // Count basic blocks.
354    ++Cost;
355  }
356
357  return Cost;
358}
359
360/// UnswitchIfProfitable - We have found that we can unswitch L when
361/// LoopCond == Val to simplify the loop.  If we decide that this is profitable,
362/// unswitch the loop, reprocess the pieces, then return true.
363bool LoopUnswitch::UnswitchIfProfitable(Value *LoopCond, Constant *Val,Loop *L){
364  // Check to see if it would be profitable to unswitch this loop.
365  unsigned Cost = getLoopUnswitchCost(L, LoopCond);
366  if (Cost > Threshold) {
367    // FIXME: this should estimate growth by the amount of code shared by the
368    // resultant unswitched loops.
369    //
370    DOUT << "NOT unswitching loop %"
371         << L->getHeader()->getName() << ", cost too high: "
372         << L->getBlocks().size() << "\n";
373    return false;
374  }
375
376  // If this is a trivial condition to unswitch (which results in no code
377  // duplication), do it now.
378  Constant *CondVal;
379  BasicBlock *ExitBlock;
380  if (IsTrivialUnswitchCondition(L, LoopCond, &CondVal, &ExitBlock)) {
381    UnswitchTrivialCondition(L, LoopCond, CondVal, ExitBlock);
382  } else {
383    UnswitchNontrivialCondition(LoopCond, Val, L);
384  }
385
386  return true;
387}
388
389/// SplitBlock - Split the specified block at the specified instruction - every
390/// thing before SplitPt stays in Old and everything starting with SplitPt moves
391/// to a new block.  The two blocks are joined by an unconditional branch and
392/// the loop info is updated.
393///
394BasicBlock *LoopUnswitch::SplitBlock(BasicBlock *Old, Instruction *SplitPt) {
395  BasicBlock::iterator SplitIt = SplitPt;
396  while (isa<PHINode>(SplitIt))
397    ++SplitIt;
398  BasicBlock *New = Old->splitBasicBlock(SplitIt, Old->getName()+".split");
399
400  // The new block lives in whichever loop the old one did.
401  if (Loop *L = LI->getLoopFor(Old))
402    L->addBasicBlockToLoop(New, *LI);
403
404  return New;
405}
406
407
408BasicBlock *LoopUnswitch::SplitEdge(BasicBlock *BB, BasicBlock *Succ) {
409  TerminatorInst *LatchTerm = BB->getTerminator();
410  unsigned SuccNum = 0;
411  for (unsigned i = 0, e = LatchTerm->getNumSuccessors(); ; ++i) {
412    assert(i != e && "Didn't find edge?");
413    if (LatchTerm->getSuccessor(i) == Succ) {
414      SuccNum = i;
415      break;
416    }
417  }
418
419  // If this is a critical edge, let SplitCriticalEdge do it.
420  if (SplitCriticalEdge(BB->getTerminator(), SuccNum, this))
421    return LatchTerm->getSuccessor(SuccNum);
422
423  // If the edge isn't critical, then BB has a single successor or Succ has a
424  // single pred.  Split the block.
425  BasicBlock::iterator SplitPoint;
426  if (BasicBlock *SP = Succ->getSinglePredecessor()) {
427    // If the successor only has a single pred, split the top of the successor
428    // block.
429    assert(SP == BB && "CFG broken");
430    return SplitBlock(Succ, Succ->begin());
431  } else {
432    // Otherwise, if BB has a single successor, split it at the bottom of the
433    // block.
434    assert(BB->getTerminator()->getNumSuccessors() == 1 &&
435           "Should have a single succ!");
436    return SplitBlock(BB, BB->getTerminator());
437  }
438}
439
440
441
442// RemapInstruction - Convert the instruction operands from referencing the
443// current values into those specified by ValueMap.
444//
445static inline void RemapInstruction(Instruction *I,
446                                    std::map<const Value *, Value*> &ValueMap) {
447  for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) {
448    Value *Op = I->getOperand(op);
449    std::map<const Value *, Value*>::iterator It = ValueMap.find(Op);
450    if (It != ValueMap.end()) Op = It->second;
451    I->setOperand(op, Op);
452  }
453}
454
455/// CloneLoop - Recursively clone the specified loop and all of its children,
456/// mapping the blocks with the specified map.
457static Loop *CloneLoop(Loop *L, Loop *PL, std::map<const Value*, Value*> &VM,
458                       LoopInfo *LI) {
459  Loop *New = new Loop();
460
461  if (PL)
462    PL->addChildLoop(New);
463  else
464    LI->addTopLevelLoop(New);
465
466  // Add all of the blocks in L to the new loop.
467  for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
468       I != E; ++I)
469    if (LI->getLoopFor(*I) == L)
470      New->addBasicBlockToLoop(cast<BasicBlock>(VM[*I]), *LI);
471
472  // Add all of the subloops to the new loop.
473  for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
474    CloneLoop(*I, New, VM, LI);
475
476  return New;
477}
478
479/// EmitPreheaderBranchOnCondition - Emit a conditional branch on two values
480/// if LIC == Val, branch to TrueDst, otherwise branch to FalseDest.  Insert the
481/// code immediately before InsertPt.
482static void EmitPreheaderBranchOnCondition(Value *LIC, Constant *Val,
483                                           BasicBlock *TrueDest,
484                                           BasicBlock *FalseDest,
485                                           Instruction *InsertPt) {
486  // Insert a conditional branch on LIC to the two preheaders.  The original
487  // code is the true version and the new code is the false version.
488  Value *BranchVal = LIC;
489  if (Val->getType() != Type::Int1Ty || !isa<ConstantInt>(Val))
490    BranchVal = new ICmpInst(ICmpInst::ICMP_EQ, LIC, Val, "tmp", InsertPt);
491  else if (Val != ConstantInt::getTrue())
492    // We want to enter the new loop when the condition is true.
493    std::swap(TrueDest, FalseDest);
494
495  // Insert the new branch.
496  new BranchInst(TrueDest, FalseDest, BranchVal, InsertPt);
497}
498
499
500/// UnswitchTrivialCondition - Given a loop that has a trivial unswitchable
501/// condition in it (a cond branch from its header block to its latch block,
502/// where the path through the loop that doesn't execute its body has no
503/// side-effects), unswitch it.  This doesn't involve any code duplication, just
504/// moving the conditional branch outside of the loop and updating loop info.
505void LoopUnswitch::UnswitchTrivialCondition(Loop *L, Value *Cond,
506                                            Constant *Val,
507                                            BasicBlock *ExitBlock) {
508  DOUT << "loop-unswitch: Trivial-Unswitch loop %"
509       << L->getHeader()->getName() << " [" << L->getBlocks().size()
510       << " blocks] in Function " << L->getHeader()->getParent()->getName()
511       << " on cond: " << *Val << " == " << *Cond << "\n";
512
513  // First step, split the preheader, so that we know that there is a safe place
514  // to insert the conditional branch.  We will change 'OrigPH' to have a
515  // conditional branch on Cond.
516  BasicBlock *OrigPH = L->getLoopPreheader();
517  BasicBlock *NewPH = SplitEdge(OrigPH, L->getHeader());
518
519  // Now that we have a place to insert the conditional branch, create a place
520  // to branch to: this is the exit block out of the loop that we should
521  // short-circuit to.
522
523  // Split this block now, so that the loop maintains its exit block, and so
524  // that the jump from the preheader can execute the contents of the exit block
525  // without actually branching to it (the exit block should be dominated by the
526  // loop header, not the preheader).
527  assert(!L->contains(ExitBlock) && "Exit block is in the loop?");
528  BasicBlock *NewExit = SplitBlock(ExitBlock, ExitBlock->begin());
529
530  // Okay, now we have a position to branch from and a position to branch to,
531  // insert the new conditional branch.
532  EmitPreheaderBranchOnCondition(Cond, Val, NewExit, NewPH,
533                                 OrigPH->getTerminator());
534  OrigPH->getTerminator()->eraseFromParent();
535
536  // We need to reprocess this loop, it could be unswitched again.
537  LoopProcessWorklist.push_back(L);
538
539  // Now that we know that the loop is never entered when this condition is a
540  // particular value, rewrite the loop with this info.  We know that this will
541  // at least eliminate the old branch.
542  RewriteLoopBodyWithConditionConstant(L, Cond, Val, false);
543  ++NumTrivial;
544}
545
546
547/// VersionLoop - We determined that the loop is profitable to unswitch when LIC
548/// equal Val.  Split it into loop versions and test the condition outside of
549/// either loop.  Return the loops created as Out1/Out2.
550void LoopUnswitch::UnswitchNontrivialCondition(Value *LIC, Constant *Val,
551                                               Loop *L) {
552  Function *F = L->getHeader()->getParent();
553  DOUT << "loop-unswitch: Unswitching loop %"
554       << L->getHeader()->getName() << " [" << L->getBlocks().size()
555       << " blocks] in Function " << F->getName()
556       << " when '" << *Val << "' == " << *LIC << "\n";
557
558  // LoopBlocks contains all of the basic blocks of the loop, including the
559  // preheader of the loop, the body of the loop, and the exit blocks of the
560  // loop, in that order.
561  std::vector<BasicBlock*> LoopBlocks;
562
563  // First step, split the preheader and exit blocks, and add these blocks to
564  // the LoopBlocks list.
565  BasicBlock *OrigPreheader = L->getLoopPreheader();
566  LoopBlocks.push_back(SplitEdge(OrigPreheader, L->getHeader()));
567
568  // We want the loop to come after the preheader, but before the exit blocks.
569  LoopBlocks.insert(LoopBlocks.end(), L->block_begin(), L->block_end());
570
571  std::vector<BasicBlock*> ExitBlocks;
572  L->getUniqueExitBlocks(ExitBlocks);
573
574  // Split all of the edges from inside the loop to their exit blocks.  Update
575  // the appropriate Phi nodes as we do so.
576  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
577    BasicBlock *ExitBlock = ExitBlocks[i];
578    std::vector<BasicBlock*> Preds(pred_begin(ExitBlock), pred_end(ExitBlock));
579
580    for (unsigned j = 0, e = Preds.size(); j != e; ++j) {
581      assert(L->contains(Preds[j]) &&
582             "All preds of loop exit blocks must be the same loop!");
583      BasicBlock* MiddleBlock = SplitEdge(Preds[j], ExitBlock);
584      BasicBlock* StartBlock = Preds[j];
585      BasicBlock* EndBlock;
586      if (MiddleBlock->getSinglePredecessor() == ExitBlock) {
587        EndBlock = MiddleBlock;
588        MiddleBlock = EndBlock->getSinglePredecessor();;
589      } else {
590        EndBlock = ExitBlock;
591      }
592
593      std::set<PHINode*> InsertedPHIs;
594      PHINode* OldLCSSA = 0;
595      for (BasicBlock::iterator I = EndBlock->begin();
596           (OldLCSSA = dyn_cast<PHINode>(I)); ++I) {
597        Value* OldValue = OldLCSSA->getIncomingValueForBlock(MiddleBlock);
598        PHINode* NewLCSSA = new PHINode(OldLCSSA->getType(),
599                                        OldLCSSA->getName() + ".us-lcssa",
600                                        MiddleBlock->getTerminator());
601        NewLCSSA->addIncoming(OldValue, StartBlock);
602        OldLCSSA->setIncomingValue(OldLCSSA->getBasicBlockIndex(MiddleBlock),
603                                   NewLCSSA);
604        InsertedPHIs.insert(NewLCSSA);
605      }
606
607      BasicBlock::iterator InsertPt = EndBlock->begin();
608      while (dyn_cast<PHINode>(InsertPt)) ++InsertPt;
609      for (BasicBlock::iterator I = MiddleBlock->begin();
610         (OldLCSSA = dyn_cast<PHINode>(I)) && InsertedPHIs.count(OldLCSSA) == 0;
611         ++I) {
612        PHINode *NewLCSSA = new PHINode(OldLCSSA->getType(),
613                                        OldLCSSA->getName() + ".us-lcssa",
614                                        InsertPt);
615        OldLCSSA->replaceAllUsesWith(NewLCSSA);
616        NewLCSSA->addIncoming(OldLCSSA, MiddleBlock);
617      }
618    }
619  }
620
621  // The exit blocks may have been changed due to edge splitting, recompute.
622  ExitBlocks.clear();
623  L->getUniqueExitBlocks(ExitBlocks);
624
625  // Add exit blocks to the loop blocks.
626  LoopBlocks.insert(LoopBlocks.end(), ExitBlocks.begin(), ExitBlocks.end());
627
628  // Next step, clone all of the basic blocks that make up the loop (including
629  // the loop preheader and exit blocks), keeping track of the mapping between
630  // the instructions and blocks.
631  std::vector<BasicBlock*> NewBlocks;
632  NewBlocks.reserve(LoopBlocks.size());
633  std::map<const Value*, Value*> ValueMap;
634  for (unsigned i = 0, e = LoopBlocks.size(); i != e; ++i) {
635    BasicBlock *New = CloneBasicBlock(LoopBlocks[i], ValueMap, ".us", F);
636    NewBlocks.push_back(New);
637    ValueMap[LoopBlocks[i]] = New;  // Keep the BB mapping.
638  }
639
640  // Splice the newly inserted blocks into the function right before the
641  // original preheader.
642  F->getBasicBlockList().splice(LoopBlocks[0], F->getBasicBlockList(),
643                                NewBlocks[0], F->end());
644
645  // Now we create the new Loop object for the versioned loop.
646  Loop *NewLoop = CloneLoop(L, L->getParentLoop(), ValueMap, LI);
647  Loop *ParentLoop = L->getParentLoop();
648  if (ParentLoop) {
649    // Make sure to add the cloned preheader and exit blocks to the parent loop
650    // as well.
651    ParentLoop->addBasicBlockToLoop(NewBlocks[0], *LI);
652  }
653
654  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
655    BasicBlock *NewExit = cast<BasicBlock>(ValueMap[ExitBlocks[i]]);
656    // The new exit block should be in the same loop as the old one.
657    if (Loop *ExitBBLoop = LI->getLoopFor(ExitBlocks[i]))
658      ExitBBLoop->addBasicBlockToLoop(NewExit, *LI);
659
660    assert(NewExit->getTerminator()->getNumSuccessors() == 1 &&
661           "Exit block should have been split to have one successor!");
662    BasicBlock *ExitSucc = NewExit->getTerminator()->getSuccessor(0);
663
664    // If the successor of the exit block had PHI nodes, add an entry for
665    // NewExit.
666    PHINode *PN;
667    for (BasicBlock::iterator I = ExitSucc->begin();
668         (PN = dyn_cast<PHINode>(I)); ++I) {
669      Value *V = PN->getIncomingValueForBlock(ExitBlocks[i]);
670      std::map<const Value *, Value*>::iterator It = ValueMap.find(V);
671      if (It != ValueMap.end()) V = It->second;
672      PN->addIncoming(V, NewExit);
673    }
674  }
675
676  // Rewrite the code to refer to itself.
677  for (unsigned i = 0, e = NewBlocks.size(); i != e; ++i)
678    for (BasicBlock::iterator I = NewBlocks[i]->begin(),
679           E = NewBlocks[i]->end(); I != E; ++I)
680      RemapInstruction(I, ValueMap);
681
682  // Rewrite the original preheader to select between versions of the loop.
683  BranchInst *OldBR = cast<BranchInst>(OrigPreheader->getTerminator());
684  assert(OldBR->isUnconditional() && OldBR->getSuccessor(0) == LoopBlocks[0] &&
685         "Preheader splitting did not work correctly!");
686
687  // Emit the new branch that selects between the two versions of this loop.
688  EmitPreheaderBranchOnCondition(LIC, Val, NewBlocks[0], LoopBlocks[0], OldBR);
689  OldBR->eraseFromParent();
690
691  LoopProcessWorklist.push_back(L);
692  LoopProcessWorklist.push_back(NewLoop);
693
694  // Now we rewrite the original code to know that the condition is true and the
695  // new code to know that the condition is false.
696  RewriteLoopBodyWithConditionConstant(L      , LIC, Val, false);
697
698  // It's possible that simplifying one loop could cause the other to be
699  // deleted.  If so, don't simplify it.
700  if (!LoopProcessWorklist.empty() && LoopProcessWorklist.back() == NewLoop)
701    RewriteLoopBodyWithConditionConstant(NewLoop, LIC, Val, true);
702}
703
704/// RemoveFromWorklist - Remove all instances of I from the worklist vector
705/// specified.
706static void RemoveFromWorklist(Instruction *I,
707                               std::vector<Instruction*> &Worklist) {
708  std::vector<Instruction*>::iterator WI = std::find(Worklist.begin(),
709                                                     Worklist.end(), I);
710  while (WI != Worklist.end()) {
711    unsigned Offset = WI-Worklist.begin();
712    Worklist.erase(WI);
713    WI = std::find(Worklist.begin()+Offset, Worklist.end(), I);
714  }
715}
716
717/// ReplaceUsesOfWith - When we find that I really equals V, remove I from the
718/// program, replacing all uses with V and update the worklist.
719static void ReplaceUsesOfWith(Instruction *I, Value *V,
720                              std::vector<Instruction*> &Worklist) {
721  DOUT << "Replace with '" << *V << "': " << *I;
722
723  // Add uses to the worklist, which may be dead now.
724  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
725    if (Instruction *Use = dyn_cast<Instruction>(I->getOperand(i)))
726      Worklist.push_back(Use);
727
728  // Add users to the worklist which may be simplified now.
729  for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
730       UI != E; ++UI)
731    Worklist.push_back(cast<Instruction>(*UI));
732  I->replaceAllUsesWith(V);
733  I->eraseFromParent();
734  RemoveFromWorklist(I, Worklist);
735  ++NumSimplify;
736}
737
738/// RemoveBlockIfDead - If the specified block is dead, remove it, update loop
739/// information, and remove any dead successors it has.
740///
741void LoopUnswitch::RemoveBlockIfDead(BasicBlock *BB,
742                                     std::vector<Instruction*> &Worklist) {
743  if (pred_begin(BB) != pred_end(BB)) {
744    // This block isn't dead, since an edge to BB was just removed, see if there
745    // are any easy simplifications we can do now.
746    if (BasicBlock *Pred = BB->getSinglePredecessor()) {
747      // If it has one pred, fold phi nodes in BB.
748      while (isa<PHINode>(BB->begin()))
749        ReplaceUsesOfWith(BB->begin(),
750                          cast<PHINode>(BB->begin())->getIncomingValue(0),
751                          Worklist);
752
753      // If this is the header of a loop and the only pred is the latch, we now
754      // have an unreachable loop.
755      if (Loop *L = LI->getLoopFor(BB))
756        if (L->getHeader() == BB && L->contains(Pred)) {
757          // Remove the branch from the latch to the header block, this makes
758          // the header dead, which will make the latch dead (because the header
759          // dominates the latch).
760          Pred->getTerminator()->eraseFromParent();
761          new UnreachableInst(Pred);
762
763          // The loop is now broken, remove it from LI.
764          RemoveLoopFromHierarchy(L);
765
766          // Reprocess the header, which now IS dead.
767          RemoveBlockIfDead(BB, Worklist);
768          return;
769        }
770
771      // If pred ends in a uncond branch, add uncond branch to worklist so that
772      // the two blocks will get merged.
773      if (BranchInst *BI = dyn_cast<BranchInst>(Pred->getTerminator()))
774        if (BI->isUnconditional())
775          Worklist.push_back(BI);
776    }
777    return;
778  }
779
780  DOUT << "Nuking dead block: " << *BB;
781
782  // Remove the instructions in the basic block from the worklist.
783  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
784    RemoveFromWorklist(I, Worklist);
785
786    // Anything that uses the instructions in this basic block should have their
787    // uses replaced with undefs.
788    if (!I->use_empty())
789      I->replaceAllUsesWith(UndefValue::get(I->getType()));
790  }
791
792  // If this is the edge to the header block for a loop, remove the loop and
793  // promote all subloops.
794  if (Loop *BBLoop = LI->getLoopFor(BB)) {
795    if (BBLoop->getLoopLatch() == BB)
796      RemoveLoopFromHierarchy(BBLoop);
797  }
798
799  // Remove the block from the loop info, which removes it from any loops it
800  // was in.
801  LI->removeBlock(BB);
802
803
804  // Remove phi node entries in successors for this block.
805  TerminatorInst *TI = BB->getTerminator();
806  std::vector<BasicBlock*> Succs;
807  for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
808    Succs.push_back(TI->getSuccessor(i));
809    TI->getSuccessor(i)->removePredecessor(BB);
810  }
811
812  // Unique the successors, remove anything with multiple uses.
813  std::sort(Succs.begin(), Succs.end());
814  Succs.erase(std::unique(Succs.begin(), Succs.end()), Succs.end());
815
816  // Remove the basic block, including all of the instructions contained in it.
817  BB->eraseFromParent();
818
819  // Remove successor blocks here that are not dead, so that we know we only
820  // have dead blocks in this list.  Nondead blocks have a way of becoming dead,
821  // then getting removed before we revisit them, which is badness.
822  //
823  for (unsigned i = 0; i != Succs.size(); ++i)
824    if (pred_begin(Succs[i]) != pred_end(Succs[i])) {
825      // One exception is loop headers.  If this block was the preheader for a
826      // loop, then we DO want to visit the loop so the loop gets deleted.
827      // We know that if the successor is a loop header, that this loop had to
828      // be the preheader: the case where this was the latch block was handled
829      // above and headers can only have two predecessors.
830      if (!LI->isLoopHeader(Succs[i])) {
831        Succs.erase(Succs.begin()+i);
832        --i;
833      }
834    }
835
836  for (unsigned i = 0, e = Succs.size(); i != e; ++i)
837    RemoveBlockIfDead(Succs[i], Worklist);
838}
839
840/// RemoveLoopFromHierarchy - We have discovered that the specified loop has
841/// become unwrapped, either because the backedge was deleted, or because the
842/// edge into the header was removed.  If the edge into the header from the
843/// latch block was removed, the loop is unwrapped but subloops are still alive,
844/// so they just reparent loops.  If the loops are actually dead, they will be
845/// removed later.
846void LoopUnswitch::RemoveLoopFromHierarchy(Loop *L) {
847  if (Loop *ParentLoop = L->getParentLoop()) { // Not a top-level loop.
848    // Reparent all of the blocks in this loop.  Since BBLoop had a parent,
849    // they are now all in it.
850    for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
851         I != E; ++I)
852      if (LI->getLoopFor(*I) == L)    // Don't change blocks in subloops.
853        LI->changeLoopFor(*I, ParentLoop);
854
855    // Remove the loop from its parent loop.
856    for (Loop::iterator I = ParentLoop->begin(), E = ParentLoop->end();;
857         ++I) {
858      assert(I != E && "Couldn't find loop");
859      if (*I == L) {
860        ParentLoop->removeChildLoop(I);
861        break;
862      }
863    }
864
865    // Move all subloops into the parent loop.
866    while (L->begin() != L->end())
867      ParentLoop->addChildLoop(L->removeChildLoop(L->end()-1));
868  } else {
869    // Reparent all of the blocks in this loop.  Since BBLoop had no parent,
870    // they no longer in a loop at all.
871
872    for (unsigned i = 0; i != L->getBlocks().size(); ++i) {
873      // Don't change blocks in subloops.
874      if (LI->getLoopFor(L->getBlocks()[i]) == L) {
875        LI->removeBlock(L->getBlocks()[i]);
876        --i;
877      }
878    }
879
880    // Remove the loop from the top-level LoopInfo object.
881    for (LoopInfo::iterator I = LI->begin(), E = LI->end();; ++I) {
882      assert(I != E && "Couldn't find loop");
883      if (*I == L) {
884        LI->removeLoop(I);
885        break;
886      }
887    }
888
889    // Move all of the subloops to the top-level.
890    while (L->begin() != L->end())
891      LI->addTopLevelLoop(L->removeChildLoop(L->end()-1));
892  }
893
894  delete L;
895  RemoveLoopFromWorklist(L);
896}
897
898
899
900// RewriteLoopBodyWithConditionConstant - We know either that the value LIC has
901// the value specified by Val in the specified loop, or we know it does NOT have
902// that value.  Rewrite any uses of LIC or of properties correlated to it.
903void LoopUnswitch::RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC,
904                                                        Constant *Val,
905                                                        bool IsEqual) {
906  assert(!isa<Constant>(LIC) && "Why are we unswitching on a constant?");
907
908  // FIXME: Support correlated properties, like:
909  //  for (...)
910  //    if (li1 < li2)
911  //      ...
912  //    if (li1 > li2)
913  //      ...
914
915  // FOLD boolean conditions (X|LIC), (X&LIC).  Fold conditional branches,
916  // selects, switches.
917  std::vector<User*> Users(LIC->use_begin(), LIC->use_end());
918  std::vector<Instruction*> Worklist;
919
920  // If we know that LIC == Val, or that LIC == NotVal, just replace uses of LIC
921  // in the loop with the appropriate one directly.
922  if (IsEqual || (isa<ConstantInt>(Val) && Val->getType() == Type::Int1Ty)) {
923    Value *Replacement;
924    if (IsEqual)
925      Replacement = Val;
926    else
927      Replacement = ConstantInt::get(Type::Int1Ty,
928                                     !cast<ConstantInt>(Val)->getZExtValue());
929
930    for (unsigned i = 0, e = Users.size(); i != e; ++i)
931      if (Instruction *U = cast<Instruction>(Users[i])) {
932        if (!L->contains(U->getParent()))
933          continue;
934        U->replaceUsesOfWith(LIC, Replacement);
935        Worklist.push_back(U);
936      }
937  } else {
938    // Otherwise, we don't know the precise value of LIC, but we do know that it
939    // is certainly NOT "Val".  As such, simplify any uses in the loop that we
940    // can.  This case occurs when we unswitch switch statements.
941    for (unsigned i = 0, e = Users.size(); i != e; ++i)
942      if (Instruction *U = cast<Instruction>(Users[i])) {
943        if (!L->contains(U->getParent()))
944          continue;
945
946        Worklist.push_back(U);
947
948        // If we know that LIC is not Val, use this info to simplify code.
949        if (SwitchInst *SI = dyn_cast<SwitchInst>(U)) {
950          for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i) {
951            if (SI->getCaseValue(i) == Val) {
952              // Found a dead case value.  Don't remove PHI nodes in the
953              // successor if they become single-entry, those PHI nodes may
954              // be in the Users list.
955
956              // FIXME: This is a hack.  We need to keep the successor around
957              // and hooked up so as to preserve the loop structure, because
958              // trying to update it is complicated.  So instead we preserve the
959              // loop structure and put the block on an dead code path.
960
961              BasicBlock* Old = SI->getParent();
962              BasicBlock* Split = SplitBlock(Old, SI);
963
964              Instruction* OldTerm = Old->getTerminator();
965              new BranchInst(Split, SI->getSuccessor(i),
966                             ConstantInt::getTrue(), OldTerm);
967
968              Old->getTerminator()->eraseFromParent();
969
970
971              PHINode *PN;
972              for (BasicBlock::iterator II = SI->getSuccessor(i)->begin();
973                   (PN = dyn_cast<PHINode>(II)); ++II) {
974                Value *InVal = PN->removeIncomingValue(Split, false);
975                PN->addIncoming(InVal, Old);
976              }
977
978              SI->removeCase(i);
979              break;
980            }
981          }
982        }
983
984        // TODO: We could do other simplifications, for example, turning
985        // LIC == Val -> false.
986      }
987  }
988
989  SimplifyCode(Worklist);
990}
991
992/// SimplifyCode - Okay, now that we have simplified some instructions in the
993/// loop, walk over it and constant prop, dce, and fold control flow where
994/// possible.  Note that this is effectively a very simple loop-structure-aware
995/// optimizer.  During processing of this loop, L could very well be deleted, so
996/// it must not be used.
997///
998/// FIXME: When the loop optimizer is more mature, separate this out to a new
999/// pass.
1000///
1001void LoopUnswitch::SimplifyCode(std::vector<Instruction*> &Worklist) {
1002  while (!Worklist.empty()) {
1003    Instruction *I = Worklist.back();
1004    Worklist.pop_back();
1005
1006    // Simple constant folding.
1007    if (Constant *C = ConstantFoldInstruction(I)) {
1008      ReplaceUsesOfWith(I, C, Worklist);
1009      continue;
1010    }
1011
1012    // Simple DCE.
1013    if (isInstructionTriviallyDead(I)) {
1014      DOUT << "Remove dead instruction '" << *I;
1015
1016      // Add uses to the worklist, which may be dead now.
1017      for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
1018        if (Instruction *Use = dyn_cast<Instruction>(I->getOperand(i)))
1019          Worklist.push_back(Use);
1020      I->eraseFromParent();
1021      RemoveFromWorklist(I, Worklist);
1022      ++NumSimplify;
1023      continue;
1024    }
1025
1026    // Special case hacks that appear commonly in unswitched code.
1027    switch (I->getOpcode()) {
1028    case Instruction::Select:
1029      if (ConstantInt *CB = dyn_cast<ConstantInt>(I->getOperand(0))) {
1030        ReplaceUsesOfWith(I, I->getOperand(!CB->getZExtValue()+1), Worklist);
1031        continue;
1032      }
1033      break;
1034    case Instruction::And:
1035      if (isa<ConstantInt>(I->getOperand(0)) &&
1036          I->getOperand(0)->getType() == Type::Int1Ty)   // constant -> RHS
1037        cast<BinaryOperator>(I)->swapOperands();
1038      if (ConstantInt *CB = dyn_cast<ConstantInt>(I->getOperand(1)))
1039        if (CB->getType() == Type::Int1Ty) {
1040          if (CB->getZExtValue())   // X & 1 -> X
1041            ReplaceUsesOfWith(I, I->getOperand(0), Worklist);
1042          else                  // X & 0 -> 0
1043            ReplaceUsesOfWith(I, I->getOperand(1), Worklist);
1044          continue;
1045        }
1046      break;
1047    case Instruction::Or:
1048      if (isa<ConstantInt>(I->getOperand(0)) &&
1049          I->getOperand(0)->getType() == Type::Int1Ty)   // constant -> RHS
1050        cast<BinaryOperator>(I)->swapOperands();
1051      if (ConstantInt *CB = dyn_cast<ConstantInt>(I->getOperand(1)))
1052        if (CB->getType() == Type::Int1Ty) {
1053          if (CB->getZExtValue())   // X | 1 -> 1
1054            ReplaceUsesOfWith(I, I->getOperand(1), Worklist);
1055          else                  // X | 0 -> X
1056            ReplaceUsesOfWith(I, I->getOperand(0), Worklist);
1057          continue;
1058        }
1059      break;
1060    case Instruction::Br: {
1061      BranchInst *BI = cast<BranchInst>(I);
1062      if (BI->isUnconditional()) {
1063        // If BI's parent is the only pred of the successor, fold the two blocks
1064        // together.
1065        BasicBlock *Pred = BI->getParent();
1066        BasicBlock *Succ = BI->getSuccessor(0);
1067        BasicBlock *SinglePred = Succ->getSinglePredecessor();
1068        if (!SinglePred) continue;  // Nothing to do.
1069        assert(SinglePred == Pred && "CFG broken");
1070
1071        DOUT << "Merging blocks: " << Pred->getName() << " <- "
1072             << Succ->getName() << "\n";
1073
1074        // Resolve any single entry PHI nodes in Succ.
1075        while (PHINode *PN = dyn_cast<PHINode>(Succ->begin()))
1076          ReplaceUsesOfWith(PN, PN->getIncomingValue(0), Worklist);
1077
1078        // Move all of the successor contents from Succ to Pred.
1079        Pred->getInstList().splice(BI, Succ->getInstList(), Succ->begin(),
1080                                   Succ->end());
1081        BI->eraseFromParent();
1082        RemoveFromWorklist(BI, Worklist);
1083
1084        // If Succ has any successors with PHI nodes, update them to have
1085        // entries coming from Pred instead of Succ.
1086        Succ->replaceAllUsesWith(Pred);
1087
1088        // Remove Succ from the loop tree.
1089        LI->removeBlock(Succ);
1090        Succ->eraseFromParent();
1091        ++NumSimplify;
1092      } else if (ConstantInt *CB = dyn_cast<ConstantInt>(BI->getCondition())){
1093        // Conditional branch.  Turn it into an unconditional branch, then
1094        // remove dead blocks.
1095        break;  // FIXME: Enable.
1096
1097        DOUT << "Folded branch: " << *BI;
1098        BasicBlock *DeadSucc = BI->getSuccessor(CB->getZExtValue());
1099        BasicBlock *LiveSucc = BI->getSuccessor(!CB->getZExtValue());
1100        DeadSucc->removePredecessor(BI->getParent(), true);
1101        Worklist.push_back(new BranchInst(LiveSucc, BI));
1102        BI->eraseFromParent();
1103        RemoveFromWorklist(BI, Worklist);
1104        ++NumSimplify;
1105
1106        RemoveBlockIfDead(DeadSucc, Worklist);
1107      }
1108      break;
1109    }
1110    }
1111  }
1112}
1113