LoopUnswitch.cpp revision f8bf116f808ecc6a9ca09cb761fe2a169e006b57
1//===-- LoopUnswitch.cpp - Hoist loop-invariant conditionals in loop ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass transforms loops that contain branches on loop-invariant conditions
11// to have multiple loops.  For example, it turns the left into the right code:
12//
13//  for (...)                  if (lic)
14//    A                          for (...)
15//    if (lic)                     A; B; C
16//      B                      else
17//    C                          for (...)
18//                                 A; C
19//
20// This can increase the size of the code exponentially (doubling it every time
21// a loop is unswitched) so we only unswitch if the resultant code will be
22// smaller than a threshold.
23//
24// This pass expects LICM to be run before it to hoist invariant conditions out
25// of the loop, to make the unswitching opportunity obvious.
26//
27//===----------------------------------------------------------------------===//
28
29#define DEBUG_TYPE "loop-unswitch"
30#include "llvm/Transforms/Scalar.h"
31#include "llvm/Constants.h"
32#include "llvm/Function.h"
33#include "llvm/Instructions.h"
34#include "llvm/Analysis/LoopInfo.h"
35#include "llvm/Transforms/Utils/Cloning.h"
36#include "llvm/Transforms/Utils/Local.h"
37#include "llvm/Transforms/Utils/BasicBlockUtils.h"
38#include "llvm/ADT/Statistic.h"
39#include "llvm/ADT/PostOrderIterator.h"
40#include "llvm/Support/Debug.h"
41#include "llvm/Support/CommandLine.h"
42#include <algorithm>
43#include <iostream>
44#include <set>
45using namespace llvm;
46
47namespace {
48  Statistic<> NumBranches("loop-unswitch", "Number of branches unswitched");
49  Statistic<> NumSwitches("loop-unswitch", "Number of switches unswitched");
50  Statistic<> NumSelects ("loop-unswitch", "Number of selects unswitched");
51  Statistic<> NumTrivial ("loop-unswitch",
52                          "Number of unswitches that are trivial");
53  Statistic<> NumSimplify("loop-unswitch",
54                          "Number of simplifications of unswitched code");
55  cl::opt<unsigned>
56  Threshold("loop-unswitch-threshold", cl::desc("Max loop size to unswitch"),
57            cl::init(10), cl::Hidden);
58
59  class LoopUnswitch : public FunctionPass {
60    LoopInfo *LI;  // Loop information
61
62    // LoopProcessWorklist - List of loops we need to process.
63    std::vector<Loop*> LoopProcessWorklist;
64  public:
65    virtual bool runOnFunction(Function &F);
66    bool visitLoop(Loop *L);
67
68    /// This transformation requires natural loop information & requires that
69    /// loop preheaders be inserted into the CFG...
70    ///
71    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
72      AU.addRequiredID(LoopSimplifyID);
73      AU.addPreservedID(LoopSimplifyID);
74      AU.addRequired<LoopInfo>();
75      AU.addPreserved<LoopInfo>();
76    }
77
78  private:
79    /// RemoveLoopFromWorklist - If the specified loop is on the loop worklist,
80    /// remove it.
81    void RemoveLoopFromWorklist(Loop *L) {
82      std::vector<Loop*>::iterator I = std::find(LoopProcessWorklist.begin(),
83                                                 LoopProcessWorklist.end(), L);
84      if (I != LoopProcessWorklist.end())
85        LoopProcessWorklist.erase(I);
86    }
87
88    bool UnswitchIfProfitable(Value *LoopCond, Constant *Val,Loop *L);
89    unsigned getLoopUnswitchCost(Loop *L, Value *LIC);
90    void UnswitchTrivialCondition(Loop *L, Value *Cond, Constant *Val,
91                                  BasicBlock *ExitBlock);
92    void UnswitchNontrivialCondition(Value *LIC, Constant *OnVal, Loop *L);
93    BasicBlock *SplitEdge(BasicBlock *From, BasicBlock *To);
94    BasicBlock *SplitBlock(BasicBlock *Old, Instruction *SplitPt);
95
96    void RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC,
97                                              Constant *Val, bool isEqual);
98
99    void SimplifyCode(std::vector<Instruction*> &Worklist);
100    void RemoveBlockIfDead(BasicBlock *BB,
101                           std::vector<Instruction*> &Worklist);
102    void RemoveLoopFromHierarchy(Loop *L);
103  };
104  RegisterOpt<LoopUnswitch> X("loop-unswitch", "Unswitch loops");
105}
106
107FunctionPass *llvm::createLoopUnswitchPass() { return new LoopUnswitch(); }
108
109bool LoopUnswitch::runOnFunction(Function &F) {
110  bool Changed = false;
111  LI = &getAnalysis<LoopInfo>();
112
113  // Populate the worklist of loops to process in post-order.
114  for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
115    for (po_iterator<Loop*> LI = po_begin(*I), E = po_end(*I); LI != E; ++LI)
116      LoopProcessWorklist.push_back(*LI);
117
118  // Process the loops in worklist order, this is a post-order visitation of
119  // the loops.  We use a worklist of loops so that loops can be removed at any
120  // time if they are deleted (e.g. the backedge of a loop is removed).
121  while (!LoopProcessWorklist.empty()) {
122    Loop *L = LoopProcessWorklist.back();
123    LoopProcessWorklist.pop_back();
124    Changed |= visitLoop(L);
125  }
126
127  return Changed;
128}
129
130/// FindLIVLoopCondition - Cond is a condition that occurs in L.  If it is
131/// invariant in the loop, or has an invariant piece, return the invariant.
132/// Otherwise, return null.
133static Value *FindLIVLoopCondition(Value *Cond, Loop *L, bool &Changed) {
134  // Constants should be folded, not unswitched on!
135  if (isa<Constant>(Cond)) return false;
136
137  // TODO: Handle: br (VARIANT|INVARIANT).
138  // TODO: Hoist simple expressions out of loops.
139  if (L->isLoopInvariant(Cond)) return Cond;
140
141  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Cond))
142    if (BO->getOpcode() == Instruction::And ||
143        BO->getOpcode() == Instruction::Or) {
144      // If either the left or right side is invariant, we can unswitch on this,
145      // which will cause the branch to go away in one loop and the condition to
146      // simplify in the other one.
147      if (Value *LHS = FindLIVLoopCondition(BO->getOperand(0), L, Changed))
148        return LHS;
149      if (Value *RHS = FindLIVLoopCondition(BO->getOperand(1), L, Changed))
150        return RHS;
151    }
152
153      return 0;
154}
155
156bool LoopUnswitch::visitLoop(Loop *L) {
157  bool Changed = false;
158
159  // Loop over all of the basic blocks in the loop.  If we find an interior
160  // block that is branching on a loop-invariant condition, we can unswitch this
161  // loop.
162  for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
163       I != E; ++I) {
164    TerminatorInst *TI = (*I)->getTerminator();
165    if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
166      // If this isn't branching on an invariant condition, we can't unswitch
167      // it.
168      if (BI->isConditional()) {
169        // See if this, or some part of it, is loop invariant.  If so, we can
170        // unswitch on it if we desire.
171        Value *LoopCond = FindLIVLoopCondition(BI->getCondition(), L, Changed);
172        if (LoopCond && UnswitchIfProfitable(LoopCond, ConstantBool::True, L)) {
173          ++NumBranches;
174          return true;
175        }
176      }
177    } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
178      Value *LoopCond = FindLIVLoopCondition(SI->getCondition(), L, Changed);
179      if (LoopCond && SI->getNumCases() > 1) {
180        // Find a value to unswitch on:
181        // FIXME: this should chose the most expensive case!
182        Constant *UnswitchVal = SI->getCaseValue(1);
183        if (UnswitchIfProfitable(LoopCond, UnswitchVal, L)) {
184          ++NumSwitches;
185          return true;
186        }
187      }
188    }
189
190    // Scan the instructions to check for unswitchable values.
191    for (BasicBlock::iterator BBI = (*I)->begin(), E = (*I)->end();
192         BBI != E; ++BBI)
193      if (SelectInst *SI = dyn_cast<SelectInst>(BBI)) {
194        Value *LoopCond = FindLIVLoopCondition(SI->getCondition(), L, Changed);
195        if (LoopCond && UnswitchIfProfitable(LoopCond, ConstantBool::True, L)) {
196          ++NumSelects;
197          return true;
198        }
199      }
200  }
201
202  return Changed;
203}
204
205
206/// LoopValuesUsedOutsideLoop - Return true if there are any values defined in
207/// the loop that are used by instructions outside of it.
208static bool LoopValuesUsedOutsideLoop(Loop *L) {
209  // We will be doing lots of "loop contains block" queries.  Loop::contains is
210  // linear time, use a set to speed this up.
211  std::set<BasicBlock*> LoopBlocks;
212
213  for (Loop::block_iterator BB = L->block_begin(), E = L->block_end();
214       BB != E; ++BB)
215    LoopBlocks.insert(*BB);
216
217  for (Loop::block_iterator BB = L->block_begin(), E = L->block_end();
218       BB != E; ++BB) {
219    for (BasicBlock::iterator I = (*BB)->begin(), E = (*BB)->end(); I != E; ++I)
220      for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
221           ++UI) {
222        BasicBlock *UserBB = cast<Instruction>(*UI)->getParent();
223        if (!LoopBlocks.count(UserBB))
224          return true;
225      }
226  }
227  return false;
228}
229
230/// isTrivialLoopExitBlock - Check to see if all paths from BB either:
231///   1. Exit the loop with no side effects.
232///   2. Branch to the latch block with no side-effects.
233///
234/// If these conditions are true, we return true and set ExitBB to the block we
235/// exit through.
236///
237static bool isTrivialLoopExitBlockHelper(Loop *L, BasicBlock *BB,
238                                         BasicBlock *&ExitBB,
239                                         std::set<BasicBlock*> &Visited) {
240  if (!Visited.insert(BB).second) {
241    // Already visited and Ok, end of recursion.
242    return true;
243  } else if (!L->contains(BB)) {
244    // Otherwise, this is a loop exit, this is fine so long as this is the
245    // first exit.
246    if (ExitBB != 0) return false;
247    ExitBB = BB;
248    return true;
249  }
250
251  // Otherwise, this is an unvisited intra-loop node.  Check all successors.
252  for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI) {
253    // Check to see if the successor is a trivial loop exit.
254    if (!isTrivialLoopExitBlockHelper(L, *SI, ExitBB, Visited))
255      return false;
256  }
257
258  // Okay, everything after this looks good, check to make sure that this block
259  // doesn't include any side effects.
260  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
261    if (I->mayWriteToMemory())
262      return false;
263
264  return true;
265}
266
267/// isTrivialLoopExitBlock - Return true if the specified block unconditionally
268/// leads to an exit from the specified loop, and has no side-effects in the
269/// process.  If so, return the block that is exited to, otherwise return null.
270static BasicBlock *isTrivialLoopExitBlock(Loop *L, BasicBlock *BB) {
271  std::set<BasicBlock*> Visited;
272  Visited.insert(L->getHeader());  // Branches to header are ok.
273  BasicBlock *ExitBB = 0;
274  if (isTrivialLoopExitBlockHelper(L, BB, ExitBB, Visited))
275    return ExitBB;
276  return 0;
277}
278
279/// IsTrivialUnswitchCondition - Check to see if this unswitch condition is
280/// trivial: that is, that the condition controls whether or not the loop does
281/// anything at all.  If this is a trivial condition, unswitching produces no
282/// code duplications (equivalently, it produces a simpler loop and a new empty
283/// loop, which gets deleted).
284///
285/// If this is a trivial condition, return true, otherwise return false.  When
286/// returning true, this sets Cond and Val to the condition that controls the
287/// trivial condition: when Cond dynamically equals Val, the loop is known to
288/// exit.  Finally, this sets LoopExit to the BB that the loop exits to when
289/// Cond == Val.
290///
291static bool IsTrivialUnswitchCondition(Loop *L, Value *Cond, Constant **Val = 0,
292                                       BasicBlock **LoopExit = 0) {
293  BasicBlock *Header = L->getHeader();
294  TerminatorInst *HeaderTerm = Header->getTerminator();
295
296  BasicBlock *LoopExitBB = 0;
297  if (BranchInst *BI = dyn_cast<BranchInst>(HeaderTerm)) {
298    // If the header block doesn't end with a conditional branch on Cond, we
299    // can't handle it.
300    if (!BI->isConditional() || BI->getCondition() != Cond)
301      return false;
302
303    // Check to see if a successor of the branch is guaranteed to go to the
304    // latch block or exit through a one exit block without having any
305    // side-effects.  If so, determine the value of Cond that causes it to do
306    // this.
307    if ((LoopExitBB = isTrivialLoopExitBlock(L, BI->getSuccessor(0)))) {
308      if (Val) *Val = ConstantBool::True;
309    } else if ((LoopExitBB = isTrivialLoopExitBlock(L, BI->getSuccessor(1)))) {
310      if (Val) *Val = ConstantBool::False;
311    }
312  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(HeaderTerm)) {
313    // If this isn't a switch on Cond, we can't handle it.
314    if (SI->getCondition() != Cond) return false;
315
316    // Check to see if a successor of the switch is guaranteed to go to the
317    // latch block or exit through a one exit block without having any
318    // side-effects.  If so, determine the value of Cond that causes it to do
319    // this.  Note that we can't trivially unswitch on the default case.
320    for (unsigned i = 1, e = SI->getNumSuccessors(); i != e; ++i)
321      if ((LoopExitBB = isTrivialLoopExitBlock(L, SI->getSuccessor(i)))) {
322        // Okay, we found a trivial case, remember the value that is trivial.
323        if (Val) *Val = SI->getCaseValue(i);
324        break;
325      }
326  }
327
328  // If we didn't find a single unique LoopExit block, or if the loop exit block
329  // contains phi nodes, this isn't trivial.
330  if (!LoopExitBB || isa<PHINode>(LoopExitBB->begin()))
331    return false;   // Can't handle this.
332
333  if (LoopExit) *LoopExit = LoopExitBB;
334
335  // We already know that nothing uses any scalar values defined inside of this
336  // loop.  As such, we just have to check to see if this loop will execute any
337  // side-effecting instructions (e.g. stores, calls, volatile loads) in the
338  // part of the loop that the code *would* execute.  We already checked the
339  // tail, check the header now.
340  for (BasicBlock::iterator I = Header->begin(), E = Header->end(); I != E; ++I)
341    if (I->mayWriteToMemory())
342      return false;
343  return true;
344}
345
346/// getLoopUnswitchCost - Return the cost (code size growth) that will happen if
347/// we choose to unswitch the specified loop on the specified value.
348///
349unsigned LoopUnswitch::getLoopUnswitchCost(Loop *L, Value *LIC) {
350  // If the condition is trivial, always unswitch.  There is no code growth for
351  // this case.
352  if (IsTrivialUnswitchCondition(L, LIC))
353    return 0;
354
355  unsigned Cost = 0;
356  // FIXME: this is brain dead.  It should take into consideration code
357  // shrinkage.
358  for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
359       I != E; ++I) {
360    BasicBlock *BB = *I;
361    // Do not include empty blocks in the cost calculation.  This happen due to
362    // loop canonicalization and will be removed.
363    if (BB->begin() == BasicBlock::iterator(BB->getTerminator()))
364      continue;
365
366    // Count basic blocks.
367    ++Cost;
368  }
369
370  return Cost;
371}
372
373/// UnswitchIfProfitable - We have found that we can unswitch L when
374/// LoopCond == Val to simplify the loop.  If we decide that this is profitable,
375/// unswitch the loop, reprocess the pieces, then return true.
376bool LoopUnswitch::UnswitchIfProfitable(Value *LoopCond, Constant *Val,Loop *L){
377  // Check to see if it would be profitable to unswitch this loop.
378  if (getLoopUnswitchCost(L, LoopCond) > Threshold) {
379    // FIXME: this should estimate growth by the amount of code shared by the
380    // resultant unswitched loops.
381    //
382    DEBUG(std::cerr << "NOT unswitching loop %"
383                    << L->getHeader()->getName() << ", cost too high: "
384                    << L->getBlocks().size() << "\n");
385    return false;
386  }
387
388  // If this loop has live-out values, we can't unswitch it. We need something
389  // like loop-closed SSA form in order to know how to insert PHI nodes for
390  // these values.
391  if (LoopValuesUsedOutsideLoop(L)) {
392    DEBUG(std::cerr << "NOT unswitching loop %" << L->getHeader()->getName()
393                    << ", a loop value is used outside loop!\n");
394    return false;
395  }
396
397  // If this is a trivial condition to unswitch (which results in no code
398  // duplication), do it now.
399  Constant *CondVal;
400  BasicBlock *ExitBlock;
401  if (IsTrivialUnswitchCondition(L, LoopCond, &CondVal, &ExitBlock)) {
402    UnswitchTrivialCondition(L, LoopCond, CondVal, ExitBlock);
403  } else {
404    UnswitchNontrivialCondition(LoopCond, Val, L);
405  }
406
407  return true;
408}
409
410/// SplitBlock - Split the specified block at the specified instruction - every
411/// thing before SplitPt stays in Old and everything starting with SplitPt moves
412/// to a new block.  The two blocks are joined by an unconditional branch and
413/// the loop info is updated.
414///
415BasicBlock *LoopUnswitch::SplitBlock(BasicBlock *Old, Instruction *SplitPt) {
416  BasicBlock::iterator SplitIt = SplitPt;
417  while (isa<PHINode>(SplitIt))
418    ++SplitIt;
419  BasicBlock *New = Old->splitBasicBlock(SplitIt, Old->getName()+".split");
420
421  // The new block lives in whichever loop the old one did.
422  if (Loop *L = LI->getLoopFor(Old))
423    L->addBasicBlockToLoop(New, *LI);
424
425  return New;
426}
427
428
429BasicBlock *LoopUnswitch::SplitEdge(BasicBlock *BB, BasicBlock *Succ) {
430  TerminatorInst *LatchTerm = BB->getTerminator();
431  unsigned SuccNum = 0;
432  for (unsigned i = 0, e = LatchTerm->getNumSuccessors(); ; ++i) {
433    assert(i != e && "Didn't find edge?");
434    if (LatchTerm->getSuccessor(i) == Succ) {
435      SuccNum = i;
436      break;
437    }
438  }
439
440  // If this is a critical edge, let SplitCriticalEdge do it.
441  if (SplitCriticalEdge(BB->getTerminator(), SuccNum, this))
442    return LatchTerm->getSuccessor(SuccNum);
443
444  // If the edge isn't critical, then BB has a single successor or Succ has a
445  // single pred.  Split the block.
446  BasicBlock::iterator SplitPoint;
447  if (BasicBlock *SP = Succ->getSinglePredecessor()) {
448    // If the successor only has a single pred, split the top of the successor
449    // block.
450    assert(SP == BB && "CFG broken");
451    return SplitBlock(Succ, Succ->begin());
452  } else {
453    // Otherwise, if BB has a single successor, split it at the bottom of the
454    // block.
455    assert(BB->getTerminator()->getNumSuccessors() == 1 &&
456           "Should have a single succ!");
457    return SplitBlock(BB, BB->getTerminator());
458  }
459}
460
461
462
463// RemapInstruction - Convert the instruction operands from referencing the
464// current values into those specified by ValueMap.
465//
466static inline void RemapInstruction(Instruction *I,
467                                    std::map<const Value *, Value*> &ValueMap) {
468  for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) {
469    Value *Op = I->getOperand(op);
470    std::map<const Value *, Value*>::iterator It = ValueMap.find(Op);
471    if (It != ValueMap.end()) Op = It->second;
472    I->setOperand(op, Op);
473  }
474}
475
476/// CloneLoop - Recursively clone the specified loop and all of its children,
477/// mapping the blocks with the specified map.
478static Loop *CloneLoop(Loop *L, Loop *PL, std::map<const Value*, Value*> &VM,
479                       LoopInfo *LI) {
480  Loop *New = new Loop();
481
482  if (PL)
483    PL->addChildLoop(New);
484  else
485    LI->addTopLevelLoop(New);
486
487  // Add all of the blocks in L to the new loop.
488  for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
489       I != E; ++I)
490    if (LI->getLoopFor(*I) == L)
491      New->addBasicBlockToLoop(cast<BasicBlock>(VM[*I]), *LI);
492
493  // Add all of the subloops to the new loop.
494  for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
495    CloneLoop(*I, New, VM, LI);
496
497  return New;
498}
499
500/// EmitPreheaderBranchOnCondition - Emit a conditional branch on two values
501/// if LIC == Val, branch to TrueDst, otherwise branch to FalseDest.  Insert the
502/// code immediately before InsertPt.
503static void EmitPreheaderBranchOnCondition(Value *LIC, Constant *Val,
504                                           BasicBlock *TrueDest,
505                                           BasicBlock *FalseDest,
506                                           Instruction *InsertPt) {
507  // Insert a conditional branch on LIC to the two preheaders.  The original
508  // code is the true version and the new code is the false version.
509  Value *BranchVal = LIC;
510  if (!isa<ConstantBool>(Val)) {
511    BranchVal = BinaryOperator::createSetEQ(LIC, Val, "tmp", InsertPt);
512  } else if (Val != ConstantBool::True) {
513    // We want to enter the new loop when the condition is true.
514    std::swap(TrueDest, FalseDest);
515  }
516
517  // Insert the new branch.
518  new BranchInst(TrueDest, FalseDest, BranchVal, InsertPt);
519}
520
521
522/// UnswitchTrivialCondition - Given a loop that has a trivial unswitchable
523/// condition in it (a cond branch from its header block to its latch block,
524/// where the path through the loop that doesn't execute its body has no
525/// side-effects), unswitch it.  This doesn't involve any code duplication, just
526/// moving the conditional branch outside of the loop and updating loop info.
527void LoopUnswitch::UnswitchTrivialCondition(Loop *L, Value *Cond,
528                                            Constant *Val,
529                                            BasicBlock *ExitBlock) {
530  DEBUG(std::cerr << "loop-unswitch: Trivial-Unswitch loop %"
531        << L->getHeader()->getName() << " [" << L->getBlocks().size()
532        << " blocks] in Function " << L->getHeader()->getParent()->getName()
533        << " on cond: " << *Val << " == " << *Cond << "\n");
534
535  // First step, split the preheader, so that we know that there is a safe place
536  // to insert the conditional branch.  We will change 'OrigPH' to have a
537  // conditional branch on Cond.
538  BasicBlock *OrigPH = L->getLoopPreheader();
539  BasicBlock *NewPH = SplitEdge(OrigPH, L->getHeader());
540
541  // Now that we have a place to insert the conditional branch, create a place
542  // to branch to: this is the exit block out of the loop that we should
543  // short-circuit to.
544
545  // Split this block now, so that the loop maintains its exit block, and so
546  // that the jump from the preheader can execute the contents of the exit block
547  // without actually branching to it (the exit block should be dominated by the
548  // loop header, not the preheader).
549  assert(!L->contains(ExitBlock) && "Exit block is in the loop?");
550  BasicBlock *NewExit = SplitBlock(ExitBlock, ExitBlock->begin());
551
552  // Okay, now we have a position to branch from and a position to branch to,
553  // insert the new conditional branch.
554  EmitPreheaderBranchOnCondition(Cond, Val, NewExit, NewPH,
555                                 OrigPH->getTerminator());
556  OrigPH->getTerminator()->eraseFromParent();
557
558  // We need to reprocess this loop, it could be unswitched again.
559  LoopProcessWorklist.push_back(L);
560
561  // Now that we know that the loop is never entered when this condition is a
562  // particular value, rewrite the loop with this info.  We know that this will
563  // at least eliminate the old branch.
564  RewriteLoopBodyWithConditionConstant(L, Cond, Val, false);
565  ++NumTrivial;
566}
567
568
569/// VersionLoop - We determined that the loop is profitable to unswitch when LIC
570/// equal Val.  Split it into loop versions and test the condition outside of
571/// either loop.  Return the loops created as Out1/Out2.
572void LoopUnswitch::UnswitchNontrivialCondition(Value *LIC, Constant *Val,
573                                               Loop *L) {
574  Function *F = L->getHeader()->getParent();
575  DEBUG(std::cerr << "loop-unswitch: Unswitching loop %"
576                  << L->getHeader()->getName() << " [" << L->getBlocks().size()
577                  << " blocks] in Function " << F->getName()
578                  << " when '" << *Val << "' == " << *LIC << "\n");
579
580  // LoopBlocks contains all of the basic blocks of the loop, including the
581  // preheader of the loop, the body of the loop, and the exit blocks of the
582  // loop, in that order.
583  std::vector<BasicBlock*> LoopBlocks;
584
585  // First step, split the preheader and exit blocks, and add these blocks to
586  // the LoopBlocks list.
587  BasicBlock *OrigPreheader = L->getLoopPreheader();
588  LoopBlocks.push_back(SplitEdge(OrigPreheader, L->getHeader()));
589
590  // We want the loop to come after the preheader, but before the exit blocks.
591  LoopBlocks.insert(LoopBlocks.end(), L->block_begin(), L->block_end());
592
593  std::vector<BasicBlock*> ExitBlocks;
594  L->getExitBlocks(ExitBlocks);
595  std::sort(ExitBlocks.begin(), ExitBlocks.end());
596  ExitBlocks.erase(std::unique(ExitBlocks.begin(), ExitBlocks.end()),
597                   ExitBlocks.end());
598
599  // Split all of the edges from inside the loop to their exit blocks.  This
600  // unswitching trivial: no phi nodes to update.
601  unsigned NumBlocks = L->getBlocks().size();
602
603  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
604    BasicBlock *ExitBlock = ExitBlocks[i];
605    std::vector<BasicBlock*> Preds(pred_begin(ExitBlock), pred_end(ExitBlock));
606
607    for (unsigned j = 0, e = Preds.size(); j != e; ++j) {
608      assert(L->contains(Preds[j]) &&
609             "All preds of loop exit blocks must be the same loop!");
610      SplitEdge(Preds[j], ExitBlock);
611    }
612  }
613
614  // The exit blocks may have been changed due to edge splitting, recompute.
615  ExitBlocks.clear();
616  L->getExitBlocks(ExitBlocks);
617  std::sort(ExitBlocks.begin(), ExitBlocks.end());
618  ExitBlocks.erase(std::unique(ExitBlocks.begin(), ExitBlocks.end()),
619                   ExitBlocks.end());
620
621  // Add exit blocks to the loop blocks.
622  LoopBlocks.insert(LoopBlocks.end(), ExitBlocks.begin(), ExitBlocks.end());
623
624  // Next step, clone all of the basic blocks that make up the loop (including
625  // the loop preheader and exit blocks), keeping track of the mapping between
626  // the instructions and blocks.
627  std::vector<BasicBlock*> NewBlocks;
628  NewBlocks.reserve(LoopBlocks.size());
629  std::map<const Value*, Value*> ValueMap;
630  for (unsigned i = 0, e = LoopBlocks.size(); i != e; ++i) {
631    BasicBlock *New = CloneBasicBlock(LoopBlocks[i], ValueMap, ".us", F);
632    NewBlocks.push_back(New);
633    ValueMap[LoopBlocks[i]] = New;  // Keep the BB mapping.
634  }
635
636  // Splice the newly inserted blocks into the function right before the
637  // original preheader.
638  F->getBasicBlockList().splice(LoopBlocks[0], F->getBasicBlockList(),
639                                NewBlocks[0], F->end());
640
641  // Now we create the new Loop object for the versioned loop.
642  Loop *NewLoop = CloneLoop(L, L->getParentLoop(), ValueMap, LI);
643  Loop *ParentLoop = L->getParentLoop();
644  if (ParentLoop) {
645    // Make sure to add the cloned preheader and exit blocks to the parent loop
646    // as well.
647    ParentLoop->addBasicBlockToLoop(NewBlocks[0], *LI);
648  }
649
650  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
651    BasicBlock *NewExit = cast<BasicBlock>(ValueMap[ExitBlocks[i]]);
652    // The new exit block should be in the same loop as the old one.
653    if (Loop *ExitBBLoop = LI->getLoopFor(ExitBlocks[i]))
654      ExitBBLoop->addBasicBlockToLoop(NewExit, *LI);
655
656    assert(NewExit->getTerminator()->getNumSuccessors() == 1 &&
657           "Exit block should have been split to have one successor!");
658    BasicBlock *ExitSucc = NewExit->getTerminator()->getSuccessor(0);
659
660    // If the successor of the exit block had PHI nodes, add an entry for
661    // NewExit.
662    PHINode *PN;
663    for (BasicBlock::iterator I = ExitSucc->begin();
664         (PN = dyn_cast<PHINode>(I)); ++I) {
665      Value *V = PN->getIncomingValueForBlock(ExitBlocks[i]);
666      std::map<const Value *, Value*>::iterator It = ValueMap.find(V);
667      if (It != ValueMap.end()) V = It->second;
668      PN->addIncoming(V, NewExit);
669    }
670  }
671
672  // Rewrite the code to refer to itself.
673  for (unsigned i = 0, e = NewBlocks.size(); i != e; ++i)
674    for (BasicBlock::iterator I = NewBlocks[i]->begin(),
675           E = NewBlocks[i]->end(); I != E; ++I)
676      RemapInstruction(I, ValueMap);
677
678  // Rewrite the original preheader to select between versions of the loop.
679  BranchInst *OldBR = cast<BranchInst>(OrigPreheader->getTerminator());
680  assert(OldBR->isUnconditional() && OldBR->getSuccessor(0) == LoopBlocks[0] &&
681         "Preheader splitting did not work correctly!");
682
683  // Emit the new branch that selects between the two versions of this loop.
684  EmitPreheaderBranchOnCondition(LIC, Val, NewBlocks[0], LoopBlocks[0], OldBR);
685  OldBR->eraseFromParent();
686
687  LoopProcessWorklist.push_back(L);
688  LoopProcessWorklist.push_back(NewLoop);
689
690  // Now we rewrite the original code to know that the condition is true and the
691  // new code to know that the condition is false.
692  RewriteLoopBodyWithConditionConstant(L      , LIC, Val, false);
693
694  // It's possible that simplifying one loop could cause the other to be
695  // deleted.  If so, don't simplify it.
696  if (!LoopProcessWorklist.empty() && LoopProcessWorklist.back() == NewLoop)
697    RewriteLoopBodyWithConditionConstant(NewLoop, LIC, Val, true);
698}
699
700/// RemoveFromWorklist - Remove all instances of I from the worklist vector
701/// specified.
702static void RemoveFromWorklist(Instruction *I,
703                               std::vector<Instruction*> &Worklist) {
704  std::vector<Instruction*>::iterator WI = std::find(Worklist.begin(),
705                                                     Worklist.end(), I);
706  while (WI != Worklist.end()) {
707    unsigned Offset = WI-Worklist.begin();
708    Worklist.erase(WI);
709    WI = std::find(Worklist.begin()+Offset, Worklist.end(), I);
710  }
711}
712
713/// ReplaceUsesOfWith - When we find that I really equals V, remove I from the
714/// program, replacing all uses with V and update the worklist.
715static void ReplaceUsesOfWith(Instruction *I, Value *V,
716                              std::vector<Instruction*> &Worklist) {
717  DEBUG(std::cerr << "Replace with '" << *V << "': " << *I);
718
719  // Add uses to the worklist, which may be dead now.
720  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
721    if (Instruction *Use = dyn_cast<Instruction>(I->getOperand(i)))
722      Worklist.push_back(Use);
723
724  // Add users to the worklist which may be simplified now.
725  for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
726       UI != E; ++UI)
727    Worklist.push_back(cast<Instruction>(*UI));
728  I->replaceAllUsesWith(V);
729  I->eraseFromParent();
730  RemoveFromWorklist(I, Worklist);
731  ++NumSimplify;
732}
733
734/// RemoveBlockIfDead - If the specified block is dead, remove it, update loop
735/// information, and remove any dead successors it has.
736///
737void LoopUnswitch::RemoveBlockIfDead(BasicBlock *BB,
738                                     std::vector<Instruction*> &Worklist) {
739  if (pred_begin(BB) != pred_end(BB)) {
740    // This block isn't dead, since an edge to BB was just removed, see if there
741    // are any easy simplifications we can do now.
742    if (BasicBlock *Pred = BB->getSinglePredecessor()) {
743      // If it has one pred, fold phi nodes in BB.
744      while (isa<PHINode>(BB->begin()))
745        ReplaceUsesOfWith(BB->begin(),
746                          cast<PHINode>(BB->begin())->getIncomingValue(0),
747                          Worklist);
748
749      // If this is the header of a loop and the only pred is the latch, we now
750      // have an unreachable loop.
751      if (Loop *L = LI->getLoopFor(BB))
752        if (L->getHeader() == BB && L->contains(Pred)) {
753          // Remove the branch from the latch to the header block, this makes
754          // the header dead, which will make the latch dead (because the header
755          // dominates the latch).
756          Pred->getTerminator()->eraseFromParent();
757          new UnreachableInst(Pred);
758
759          // The loop is now broken, remove it from LI.
760          RemoveLoopFromHierarchy(L);
761
762          // Reprocess the header, which now IS dead.
763          RemoveBlockIfDead(BB, Worklist);
764          return;
765        }
766
767      // If pred ends in a uncond branch, add uncond branch to worklist so that
768      // the two blocks will get merged.
769      if (BranchInst *BI = dyn_cast<BranchInst>(Pred->getTerminator()))
770        if (BI->isUnconditional())
771          Worklist.push_back(BI);
772    }
773    return;
774  }
775
776  DEBUG(std::cerr << "Nuking dead block: " << *BB);
777
778  // Remove the instructions in the basic block from the worklist.
779  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
780    RemoveFromWorklist(I, Worklist);
781
782    // Anything that uses the instructions in this basic block should have their
783    // uses replaced with undefs.
784    if (!I->use_empty())
785      I->replaceAllUsesWith(UndefValue::get(I->getType()));
786  }
787
788  // If this is the edge to the header block for a loop, remove the loop and
789  // promote all subloops.
790  if (Loop *BBLoop = LI->getLoopFor(BB)) {
791    if (BBLoop->getLoopLatch() == BB)
792      RemoveLoopFromHierarchy(BBLoop);
793  }
794
795  // Remove the block from the loop info, which removes it from any loops it
796  // was in.
797  LI->removeBlock(BB);
798
799
800  // Remove phi node entries in successors for this block.
801  TerminatorInst *TI = BB->getTerminator();
802  std::vector<BasicBlock*> Succs;
803  for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
804    Succs.push_back(TI->getSuccessor(i));
805    TI->getSuccessor(i)->removePredecessor(BB);
806  }
807
808  // Unique the successors, remove anything with multiple uses.
809  std::sort(Succs.begin(), Succs.end());
810  Succs.erase(std::unique(Succs.begin(), Succs.end()), Succs.end());
811
812  // Remove the basic block, including all of the instructions contained in it.
813  BB->eraseFromParent();
814
815  // Remove successor blocks here that are not dead, so that we know we only
816  // have dead blocks in this list.  Nondead blocks have a way of becoming dead,
817  // then getting removed before we revisit them, which is badness.
818  //
819  for (unsigned i = 0; i != Succs.size(); ++i)
820    if (pred_begin(Succs[i]) != pred_end(Succs[i])) {
821      // One exception is loop headers.  If this block was the preheader for a
822      // loop, then we DO want to visit the loop so the loop gets deleted.
823      // We know that if the successor is a loop header, that this loop had to
824      // be the preheader: the case where this was the latch block was handled
825      // above and headers can only have two predecessors.
826      if (!LI->isLoopHeader(Succs[i])) {
827        Succs.erase(Succs.begin()+i);
828        --i;
829      }
830    }
831
832  for (unsigned i = 0, e = Succs.size(); i != e; ++i)
833    RemoveBlockIfDead(Succs[i], Worklist);
834}
835
836/// RemoveLoopFromHierarchy - We have discovered that the specified loop has
837/// become unwrapped, either because the backedge was deleted, or because the
838/// edge into the header was removed.  If the edge into the header from the
839/// latch block was removed, the loop is unwrapped but subloops are still alive,
840/// so they just reparent loops.  If the loops are actually dead, they will be
841/// removed later.
842void LoopUnswitch::RemoveLoopFromHierarchy(Loop *L) {
843  if (Loop *ParentLoop = L->getParentLoop()) { // Not a top-level loop.
844    // Reparent all of the blocks in this loop.  Since BBLoop had a parent,
845    // they are now all in it.
846    for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
847         I != E; ++I)
848      if (LI->getLoopFor(*I) == L)    // Don't change blocks in subloops.
849        LI->changeLoopFor(*I, ParentLoop);
850
851    // Remove the loop from its parent loop.
852    for (Loop::iterator I = ParentLoop->begin(), E = ParentLoop->end();;
853         ++I) {
854      assert(I != E && "Couldn't find loop");
855      if (*I == L) {
856        ParentLoop->removeChildLoop(I);
857        break;
858      }
859    }
860
861    // Move all subloops into the parent loop.
862    while (L->begin() != L->end())
863      ParentLoop->addChildLoop(L->removeChildLoop(L->end()-1));
864  } else {
865    // Reparent all of the blocks in this loop.  Since BBLoop had no parent,
866    // they no longer in a loop at all.
867
868    for (unsigned i = 0; i != L->getBlocks().size(); ++i) {
869      // Don't change blocks in subloops.
870      if (LI->getLoopFor(L->getBlocks()[i]) == L) {
871        LI->removeBlock(L->getBlocks()[i]);
872        --i;
873      }
874    }
875
876    // Remove the loop from the top-level LoopInfo object.
877    for (LoopInfo::iterator I = LI->begin(), E = LI->end();; ++I) {
878      assert(I != E && "Couldn't find loop");
879      if (*I == L) {
880        LI->removeLoop(I);
881        break;
882      }
883    }
884
885    // Move all of the subloops to the top-level.
886    while (L->begin() != L->end())
887      LI->addTopLevelLoop(L->removeChildLoop(L->end()-1));
888  }
889
890  delete L;
891  RemoveLoopFromWorklist(L);
892}
893
894
895
896// RewriteLoopBodyWithConditionConstant - We know either that the value LIC has
897// the value specified by Val in the specified loop, or we know it does NOT have
898// that value.  Rewrite any uses of LIC or of properties correlated to it.
899void LoopUnswitch::RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC,
900                                                        Constant *Val,
901                                                        bool IsEqual) {
902  assert(!isa<Constant>(LIC) && "Why are we unswitching on a constant?");
903
904  // FIXME: Support correlated properties, like:
905  //  for (...)
906  //    if (li1 < li2)
907  //      ...
908  //    if (li1 > li2)
909  //      ...
910
911  // FOLD boolean conditions (X|LIC), (X&LIC).  Fold conditional branches,
912  // selects, switches.
913  std::vector<User*> Users(LIC->use_begin(), LIC->use_end());
914  std::vector<Instruction*> Worklist;
915
916  // If we know that LIC == Val, or that LIC == NotVal, just replace uses of LIC
917  // in the loop with the appropriate one directly.
918  if (IsEqual || isa<ConstantBool>(Val)) {
919    Value *Replacement;
920    if (IsEqual)
921      Replacement = Val;
922    else
923      Replacement = ConstantBool::get(!cast<ConstantBool>(Val)->getValue());
924
925    for (unsigned i = 0, e = Users.size(); i != e; ++i)
926      if (Instruction *U = cast<Instruction>(Users[i])) {
927        if (!L->contains(U->getParent()))
928          continue;
929        U->replaceUsesOfWith(LIC, Replacement);
930        Worklist.push_back(U);
931      }
932  } else {
933    // Otherwise, we don't know the precise value of LIC, but we do know that it
934    // is certainly NOT "Val".  As such, simplify any uses in the loop that we
935    // can.  This case occurs when we unswitch switch statements.
936    for (unsigned i = 0, e = Users.size(); i != e; ++i)
937      if (Instruction *U = cast<Instruction>(Users[i])) {
938        if (!L->contains(U->getParent()))
939          continue;
940
941        Worklist.push_back(U);
942
943        // If we know that LIC is not Val, use this info to simplify code.
944        if (SwitchInst *SI = dyn_cast<SwitchInst>(U)) {
945          for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i) {
946            if (SI->getCaseValue(i) == Val) {
947              // Found a dead case value.  Don't remove PHI nodes in the
948              // successor if they become single-entry, those PHI nodes may
949              // be in the Users list.
950              SI->getSuccessor(i)->removePredecessor(SI->getParent(), true);
951              SI->removeCase(i);
952              break;
953            }
954          }
955        }
956
957        // TODO: We could do other simplifications, for example, turning
958        // LIC == Val -> false.
959      }
960  }
961
962  SimplifyCode(Worklist);
963}
964
965/// SimplifyCode - Okay, now that we have simplified some instructions in the
966/// loop, walk over it and constant prop, dce, and fold control flow where
967/// possible.  Note that this is effectively a very simple loop-structure-aware
968/// optimizer.  During processing of this loop, L could very well be deleted, so
969/// it must not be used.
970///
971/// FIXME: When the loop optimizer is more mature, separate this out to a new
972/// pass.
973///
974void LoopUnswitch::SimplifyCode(std::vector<Instruction*> &Worklist) {
975  while (!Worklist.empty()) {
976    Instruction *I = Worklist.back();
977    Worklist.pop_back();
978
979    // Simple constant folding.
980    if (Constant *C = ConstantFoldInstruction(I)) {
981      ReplaceUsesOfWith(I, C, Worklist);
982      continue;
983    }
984
985    // Simple DCE.
986    if (isInstructionTriviallyDead(I)) {
987      DEBUG(std::cerr << "Remove dead instruction '" << *I);
988
989      // Add uses to the worklist, which may be dead now.
990      for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
991        if (Instruction *Use = dyn_cast<Instruction>(I->getOperand(i)))
992          Worklist.push_back(Use);
993      I->eraseFromParent();
994      RemoveFromWorklist(I, Worklist);
995      ++NumSimplify;
996      continue;
997    }
998
999    // Special case hacks that appear commonly in unswitched code.
1000    switch (I->getOpcode()) {
1001    case Instruction::Select:
1002      if (ConstantBool *CB = dyn_cast<ConstantBool>(I->getOperand(0))) {
1003        ReplaceUsesOfWith(I, I->getOperand(!CB->getValue()+1), Worklist);
1004        continue;
1005      }
1006      break;
1007    case Instruction::And:
1008      if (isa<ConstantBool>(I->getOperand(0)))   // constant -> RHS
1009        cast<BinaryOperator>(I)->swapOperands();
1010      if (ConstantBool *CB = dyn_cast<ConstantBool>(I->getOperand(1))) {
1011        if (CB->getValue())   // X & 1 -> X
1012          ReplaceUsesOfWith(I, I->getOperand(0), Worklist);
1013        else                  // X & 0 -> 0
1014          ReplaceUsesOfWith(I, I->getOperand(1), Worklist);
1015        continue;
1016      }
1017      break;
1018    case Instruction::Or:
1019      if (isa<ConstantBool>(I->getOperand(0)))   // constant -> RHS
1020        cast<BinaryOperator>(I)->swapOperands();
1021      if (ConstantBool *CB = dyn_cast<ConstantBool>(I->getOperand(1))) {
1022        if (CB->getValue())   // X | 1 -> 1
1023          ReplaceUsesOfWith(I, I->getOperand(1), Worklist);
1024        else                  // X | 0 -> X
1025          ReplaceUsesOfWith(I, I->getOperand(0), Worklist);
1026        continue;
1027      }
1028      break;
1029    case Instruction::Br: {
1030      BranchInst *BI = cast<BranchInst>(I);
1031      if (BI->isUnconditional()) {
1032        // If BI's parent is the only pred of the successor, fold the two blocks
1033        // together.
1034        BasicBlock *Pred = BI->getParent();
1035        BasicBlock *Succ = BI->getSuccessor(0);
1036        BasicBlock *SinglePred = Succ->getSinglePredecessor();
1037        if (!SinglePred) continue;  // Nothing to do.
1038        assert(SinglePred == Pred && "CFG broken");
1039
1040        DEBUG(std::cerr << "Merging blocks: " << Pred->getName() << " <- "
1041                        << Succ->getName() << "\n");
1042
1043        // Resolve any single entry PHI nodes in Succ.
1044        while (PHINode *PN = dyn_cast<PHINode>(Succ->begin()))
1045          ReplaceUsesOfWith(PN, PN->getIncomingValue(0), Worklist);
1046
1047        // Move all of the successor contents from Succ to Pred.
1048        Pred->getInstList().splice(BI, Succ->getInstList(), Succ->begin(),
1049                                   Succ->end());
1050        BI->eraseFromParent();
1051        RemoveFromWorklist(BI, Worklist);
1052
1053        // If Succ has any successors with PHI nodes, update them to have
1054        // entries coming from Pred instead of Succ.
1055        Succ->replaceAllUsesWith(Pred);
1056
1057        // Remove Succ from the loop tree.
1058        LI->removeBlock(Succ);
1059        Succ->eraseFromParent();
1060        ++NumSimplify;
1061      } else if (ConstantBool *CB = dyn_cast<ConstantBool>(BI->getCondition())){
1062        // Conditional branch.  Turn it into an unconditional branch, then
1063        // remove dead blocks.
1064        break;  // FIXME: Enable.
1065
1066        DEBUG(std::cerr << "Folded branch: " << *BI);
1067        BasicBlock *DeadSucc = BI->getSuccessor(CB->getValue());
1068        BasicBlock *LiveSucc = BI->getSuccessor(!CB->getValue());
1069        DeadSucc->removePredecessor(BI->getParent(), true);
1070        Worklist.push_back(new BranchInst(LiveSucc, BI));
1071        BI->eraseFromParent();
1072        RemoveFromWorklist(BI, Worklist);
1073        ++NumSimplify;
1074
1075        RemoveBlockIfDead(DeadSucc, Worklist);
1076      }
1077      break;
1078    }
1079    }
1080  }
1081}
1082