SROA.cpp revision 11687d4982200fe99a820ea513100f237dfc1609
1//===- SROA.cpp - Scalar Replacement Of Aggregates ------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9/// \file
10/// This transformation implements the well known scalar replacement of
11/// aggregates transformation. It tries to identify promotable elements of an
12/// aggregate alloca, and promote them to registers. It will also try to
13/// convert uses of an element (or set of elements) of an alloca into a vector
14/// or bitfield-style integer scalar if appropriate.
15///
16/// It works to do this with minimal slicing of the alloca so that regions
17/// which are merely transferred in and out of external memory remain unchanged
18/// and are not decomposed to scalar code.
19///
20/// Because this also performs alloca promotion, it can be thought of as also
21/// serving the purpose of SSA formation. The algorithm iterates on the
22/// function until all opportunities for promotion have been realized.
23///
24//===----------------------------------------------------------------------===//
25
26#define DEBUG_TYPE "sroa"
27#include "llvm/Transforms/Scalar.h"
28#include "llvm/ADT/STLExtras.h"
29#include "llvm/ADT/SetVector.h"
30#include "llvm/ADT/SmallVector.h"
31#include "llvm/ADT/Statistic.h"
32#include "llvm/Analysis/Dominators.h"
33#include "llvm/Analysis/Loads.h"
34#include "llvm/Analysis/PtrUseVisitor.h"
35#include "llvm/Analysis/ValueTracking.h"
36#include "llvm/DIBuilder.h"
37#include "llvm/DebugInfo.h"
38#include "llvm/IR/Constants.h"
39#include "llvm/IR/DataLayout.h"
40#include "llvm/IR/DerivedTypes.h"
41#include "llvm/IR/Function.h"
42#include "llvm/IR/IRBuilder.h"
43#include "llvm/IR/Instructions.h"
44#include "llvm/IR/IntrinsicInst.h"
45#include "llvm/IR/LLVMContext.h"
46#include "llvm/IR/Operator.h"
47#include "llvm/InstVisitor.h"
48#include "llvm/Pass.h"
49#include "llvm/Support/CommandLine.h"
50#include "llvm/Support/Debug.h"
51#include "llvm/Support/ErrorHandling.h"
52#include "llvm/Support/MathExtras.h"
53#include "llvm/Support/raw_ostream.h"
54#include "llvm/Transforms/Utils/Local.h"
55#include "llvm/Transforms/Utils/PromoteMemToReg.h"
56#include "llvm/Transforms/Utils/SSAUpdater.h"
57using namespace llvm;
58
59STATISTIC(NumAllocasAnalyzed, "Number of allocas analyzed for replacement");
60STATISTIC(NumNewAllocas,      "Number of new, smaller allocas introduced");
61STATISTIC(NumPromoted,        "Number of allocas promoted to SSA values");
62STATISTIC(NumLoadsSpeculated, "Number of loads speculated to allow promotion");
63STATISTIC(NumDeleted,         "Number of instructions deleted");
64STATISTIC(NumVectorized,      "Number of vectorized aggregates");
65
66/// Hidden option to force the pass to not use DomTree and mem2reg, instead
67/// forming SSA values through the SSAUpdater infrastructure.
68static cl::opt<bool>
69ForceSSAUpdater("force-ssa-updater", cl::init(false), cl::Hidden);
70
71namespace {
72/// \brief Alloca partitioning representation.
73///
74/// This class represents a partitioning of an alloca into slices, and
75/// information about the nature of uses of each slice of the alloca. The goal
76/// is that this information is sufficient to decide if and how to split the
77/// alloca apart and replace slices with scalars. It is also intended that this
78/// structure can capture the relevant information needed both to decide about
79/// and to enact these transformations.
80class AllocaPartitioning {
81public:
82  /// \brief A common base class for representing a half-open byte range.
83  struct ByteRange {
84    /// \brief The beginning offset of the range.
85    uint64_t BeginOffset;
86
87    /// \brief The ending offset, not included in the range.
88    uint64_t EndOffset;
89
90    ByteRange() : BeginOffset(), EndOffset() {}
91    ByteRange(uint64_t BeginOffset, uint64_t EndOffset)
92        : BeginOffset(BeginOffset), EndOffset(EndOffset) {}
93
94    /// \brief Support for ordering ranges.
95    ///
96    /// This provides an ordering over ranges such that start offsets are
97    /// always increasing, and within equal start offsets, the end offsets are
98    /// decreasing. Thus the spanning range comes first in a cluster with the
99    /// same start position.
100    bool operator<(const ByteRange &RHS) const {
101      if (BeginOffset < RHS.BeginOffset) return true;
102      if (BeginOffset > RHS.BeginOffset) return false;
103      if (EndOffset > RHS.EndOffset) return true;
104      return false;
105    }
106
107    /// \brief Support comparison with a single offset to allow binary searches.
108    friend bool operator<(const ByteRange &LHS, uint64_t RHSOffset) {
109      return LHS.BeginOffset < RHSOffset;
110    }
111
112    friend LLVM_ATTRIBUTE_UNUSED bool operator<(uint64_t LHSOffset,
113                                                const ByteRange &RHS) {
114      return LHSOffset < RHS.BeginOffset;
115    }
116
117    bool operator==(const ByteRange &RHS) const {
118      return BeginOffset == RHS.BeginOffset && EndOffset == RHS.EndOffset;
119    }
120    bool operator!=(const ByteRange &RHS) const { return !operator==(RHS); }
121  };
122
123  /// \brief A partition of an alloca.
124  ///
125  /// This structure represents a contiguous partition of the alloca. These are
126  /// formed by examining the uses of the alloca. During formation, they may
127  /// overlap but once an AllocaPartitioning is built, the Partitions within it
128  /// are all disjoint.
129  struct Partition : public ByteRange {
130    /// \brief Whether this partition is splittable into smaller partitions.
131    ///
132    /// We flag partitions as splittable when they are formed entirely due to
133    /// accesses by trivially splittable operations such as memset and memcpy.
134    bool IsSplittable;
135
136    /// \brief Test whether a partition has been marked as dead.
137    bool isDead() const {
138      if (BeginOffset == UINT64_MAX) {
139        assert(EndOffset == UINT64_MAX);
140        return true;
141      }
142      return false;
143    }
144
145    /// \brief Kill a partition.
146    /// This is accomplished by setting both its beginning and end offset to
147    /// the maximum possible value.
148    void kill() {
149      assert(!isDead() && "He's Dead, Jim!");
150      BeginOffset = EndOffset = UINT64_MAX;
151    }
152
153    Partition() : ByteRange(), IsSplittable() {}
154    Partition(uint64_t BeginOffset, uint64_t EndOffset, bool IsSplittable)
155        : ByteRange(BeginOffset, EndOffset), IsSplittable(IsSplittable) {}
156  };
157
158  /// \brief A particular use of a partition of the alloca.
159  ///
160  /// This structure is used to associate uses of a partition with it. They
161  /// mark the range of bytes which are referenced by a particular instruction,
162  /// and includes a handle to the user itself and the pointer value in use.
163  /// The bounds of these uses are determined by intersecting the bounds of the
164  /// memory use itself with a particular partition. As a consequence there is
165  /// intentionally overlap between various uses of the same partition.
166  struct PartitionUse : public ByteRange {
167    /// \brief The use in question. Provides access to both user and used value.
168    ///
169    /// Note that this may be null if the partition use is *dead*, that is, it
170    /// should be ignored.
171    Use *U;
172
173    PartitionUse() : ByteRange(), U() {}
174    PartitionUse(uint64_t BeginOffset, uint64_t EndOffset, Use *U)
175        : ByteRange(BeginOffset, EndOffset), U(U) {}
176  };
177
178  /// \brief Construct a partitioning of a particular alloca.
179  ///
180  /// Construction does most of the work for partitioning the alloca. This
181  /// performs the necessary walks of users and builds a partitioning from it.
182  AllocaPartitioning(const DataLayout &TD, AllocaInst &AI);
183
184  /// \brief Test whether a pointer to the allocation escapes our analysis.
185  ///
186  /// If this is true, the partitioning is never fully built and should be
187  /// ignored.
188  bool isEscaped() const { return PointerEscapingInstr; }
189
190  /// \brief Support for iterating over the partitions.
191  /// @{
192  typedef SmallVectorImpl<Partition>::iterator iterator;
193  iterator begin() { return Partitions.begin(); }
194  iterator end() { return Partitions.end(); }
195
196  typedef SmallVectorImpl<Partition>::const_iterator const_iterator;
197  const_iterator begin() const { return Partitions.begin(); }
198  const_iterator end() const { return Partitions.end(); }
199  /// @}
200
201  /// \brief Support for iterating over and manipulating a particular
202  /// partition's uses.
203  ///
204  /// The iteration support provided for uses is more limited, but also
205  /// includes some manipulation routines to support rewriting the uses of
206  /// partitions during SROA.
207  /// @{
208  typedef SmallVectorImpl<PartitionUse>::iterator use_iterator;
209  use_iterator use_begin(unsigned Idx) { return Uses[Idx].begin(); }
210  use_iterator use_begin(const_iterator I) { return Uses[I - begin()].begin(); }
211  use_iterator use_end(unsigned Idx) { return Uses[Idx].end(); }
212  use_iterator use_end(const_iterator I) { return Uses[I - begin()].end(); }
213
214  typedef SmallVectorImpl<PartitionUse>::const_iterator const_use_iterator;
215  const_use_iterator use_begin(unsigned Idx) const { return Uses[Idx].begin(); }
216  const_use_iterator use_begin(const_iterator I) const {
217    return Uses[I - begin()].begin();
218  }
219  const_use_iterator use_end(unsigned Idx) const { return Uses[Idx].end(); }
220  const_use_iterator use_end(const_iterator I) const {
221    return Uses[I - begin()].end();
222  }
223
224  unsigned use_size(unsigned Idx) const { return Uses[Idx].size(); }
225  unsigned use_size(const_iterator I) const { return Uses[I - begin()].size(); }
226  const PartitionUse &getUse(unsigned PIdx, unsigned UIdx) const {
227    return Uses[PIdx][UIdx];
228  }
229  const PartitionUse &getUse(const_iterator I, unsigned UIdx) const {
230    return Uses[I - begin()][UIdx];
231  }
232
233  void use_push_back(unsigned Idx, const PartitionUse &PU) {
234    Uses[Idx].push_back(PU);
235  }
236  void use_push_back(const_iterator I, const PartitionUse &PU) {
237    Uses[I - begin()].push_back(PU);
238  }
239  /// @}
240
241  /// \brief Allow iterating the dead users for this alloca.
242  ///
243  /// These are instructions which will never actually use the alloca as they
244  /// are outside the allocated range. They are safe to replace with undef and
245  /// delete.
246  /// @{
247  typedef SmallVectorImpl<Instruction *>::const_iterator dead_user_iterator;
248  dead_user_iterator dead_user_begin() const { return DeadUsers.begin(); }
249  dead_user_iterator dead_user_end() const { return DeadUsers.end(); }
250  /// @}
251
252  /// \brief Allow iterating the dead expressions referring to this alloca.
253  ///
254  /// These are operands which have cannot actually be used to refer to the
255  /// alloca as they are outside its range and the user doesn't correct for
256  /// that. These mostly consist of PHI node inputs and the like which we just
257  /// need to replace with undef.
258  /// @{
259  typedef SmallVectorImpl<Use *>::const_iterator dead_op_iterator;
260  dead_op_iterator dead_op_begin() const { return DeadOperands.begin(); }
261  dead_op_iterator dead_op_end() const { return DeadOperands.end(); }
262  /// @}
263
264  /// \brief MemTransferInst auxiliary data.
265  /// This struct provides some auxiliary data about memory transfer
266  /// intrinsics such as memcpy and memmove. These intrinsics can use two
267  /// different ranges within the same alloca, and provide other challenges to
268  /// correctly represent. We stash extra data to help us untangle this
269  /// after the partitioning is complete.
270  struct MemTransferOffsets {
271    /// The destination begin and end offsets when the destination is within
272    /// this alloca. If the end offset is zero the destination is not within
273    /// this alloca.
274    uint64_t DestBegin, DestEnd;
275
276    /// The source begin and end offsets when the source is within this alloca.
277    /// If the end offset is zero, the source is not within this alloca.
278    uint64_t SourceBegin, SourceEnd;
279
280    /// Flag for whether an alloca is splittable.
281    bool IsSplittable;
282  };
283  MemTransferOffsets getMemTransferOffsets(MemTransferInst &II) const {
284    return MemTransferInstData.lookup(&II);
285  }
286
287  /// \brief Map from a PHI or select operand back to a partition.
288  ///
289  /// When manipulating PHI nodes or selects, they can use more than one
290  /// partition of an alloca. We store a special mapping to allow finding the
291  /// partition referenced by each of these operands, if any.
292  iterator findPartitionForPHIOrSelectOperand(Use *U) {
293    SmallDenseMap<Use *, std::pair<unsigned, unsigned> >::const_iterator MapIt
294      = PHIOrSelectOpMap.find(U);
295    if (MapIt == PHIOrSelectOpMap.end())
296      return end();
297
298    return begin() + MapIt->second.first;
299  }
300
301  /// \brief Map from a PHI or select operand back to the specific use of
302  /// a partition.
303  ///
304  /// Similar to mapping these operands back to the partitions, this maps
305  /// directly to the use structure of that partition.
306  use_iterator findPartitionUseForPHIOrSelectOperand(Use *U) {
307    SmallDenseMap<Use *, std::pair<unsigned, unsigned> >::const_iterator MapIt
308      = PHIOrSelectOpMap.find(U);
309    assert(MapIt != PHIOrSelectOpMap.end());
310    return Uses[MapIt->second.first].begin() + MapIt->second.second;
311  }
312
313  /// \brief Compute a common type among the uses of a particular partition.
314  ///
315  /// This routines walks all of the uses of a particular partition and tries
316  /// to find a common type between them. Untyped operations such as memset and
317  /// memcpy are ignored.
318  Type *getCommonType(iterator I) const;
319
320#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
321  void print(raw_ostream &OS, const_iterator I, StringRef Indent = "  ") const;
322  void printUsers(raw_ostream &OS, const_iterator I,
323                  StringRef Indent = "  ") const;
324  void print(raw_ostream &OS) const;
325  void LLVM_ATTRIBUTE_NOINLINE LLVM_ATTRIBUTE_USED dump(const_iterator I) const;
326  void LLVM_ATTRIBUTE_NOINLINE LLVM_ATTRIBUTE_USED dump() const;
327#endif
328
329private:
330  template <typename DerivedT, typename RetT = void> class BuilderBase;
331  class PartitionBuilder;
332  friend class AllocaPartitioning::PartitionBuilder;
333  class UseBuilder;
334  friend class AllocaPartitioning::UseBuilder;
335
336#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
337  /// \brief Handle to alloca instruction to simplify method interfaces.
338  AllocaInst &AI;
339#endif
340
341  /// \brief The instruction responsible for this alloca having no partitioning.
342  ///
343  /// When an instruction (potentially) escapes the pointer to the alloca, we
344  /// store a pointer to that here and abort trying to partition the alloca.
345  /// This will be null if the alloca is partitioned successfully.
346  Instruction *PointerEscapingInstr;
347
348  /// \brief The partitions of the alloca.
349  ///
350  /// We store a vector of the partitions over the alloca here. This vector is
351  /// sorted by increasing begin offset, and then by decreasing end offset. See
352  /// the Partition inner class for more details. Initially (during
353  /// construction) there are overlaps, but we form a disjoint sequence of
354  /// partitions while finishing construction and a fully constructed object is
355  /// expected to always have this as a disjoint space.
356  SmallVector<Partition, 8> Partitions;
357
358  /// \brief The uses of the partitions.
359  ///
360  /// This is essentially a mapping from each partition to a list of uses of
361  /// that partition. The mapping is done with a Uses vector that has the exact
362  /// same number of entries as the partition vector. Each entry is itself
363  /// a vector of the uses.
364  SmallVector<SmallVector<PartitionUse, 2>, 8> Uses;
365
366  /// \brief Instructions which will become dead if we rewrite the alloca.
367  ///
368  /// Note that these are not separated by partition. This is because we expect
369  /// a partitioned alloca to be completely rewritten or not rewritten at all.
370  /// If rewritten, all these instructions can simply be removed and replaced
371  /// with undef as they come from outside of the allocated space.
372  SmallVector<Instruction *, 8> DeadUsers;
373
374  /// \brief Operands which will become dead if we rewrite the alloca.
375  ///
376  /// These are operands that in their particular use can be replaced with
377  /// undef when we rewrite the alloca. These show up in out-of-bounds inputs
378  /// to PHI nodes and the like. They aren't entirely dead (there might be
379  /// a GEP back into the bounds using it elsewhere) and nor is the PHI, but we
380  /// want to swap this particular input for undef to simplify the use lists of
381  /// the alloca.
382  SmallVector<Use *, 8> DeadOperands;
383
384  /// \brief The underlying storage for auxiliary memcpy and memset info.
385  SmallDenseMap<MemTransferInst *, MemTransferOffsets, 4> MemTransferInstData;
386
387  /// \brief A side datastructure used when building up the partitions and uses.
388  ///
389  /// This mapping is only really used during the initial building of the
390  /// partitioning so that we can retain information about PHI and select nodes
391  /// processed.
392  SmallDenseMap<Instruction *, std::pair<uint64_t, bool> > PHIOrSelectSizes;
393
394  /// \brief Auxiliary information for particular PHI or select operands.
395  SmallDenseMap<Use *, std::pair<unsigned, unsigned>, 4> PHIOrSelectOpMap;
396
397  /// \brief A utility routine called from the constructor.
398  ///
399  /// This does what it says on the tin. It is the key of the alloca partition
400  /// splitting and merging. After it is called we have the desired disjoint
401  /// collection of partitions.
402  void splitAndMergePartitions();
403};
404}
405
406static Value *foldSelectInst(SelectInst &SI) {
407  // If the condition being selected on is a constant or the same value is
408  // being selected between, fold the select. Yes this does (rarely) happen
409  // early on.
410  if (ConstantInt *CI = dyn_cast<ConstantInt>(SI.getCondition()))
411    return SI.getOperand(1+CI->isZero());
412  if (SI.getOperand(1) == SI.getOperand(2))
413    return SI.getOperand(1);
414
415  return 0;
416}
417
418/// \brief Builder for the alloca partitioning.
419///
420/// This class builds an alloca partitioning by recursively visiting the uses
421/// of an alloca and splitting the partitions for each load and store at each
422/// offset.
423class AllocaPartitioning::PartitionBuilder
424    : public PtrUseVisitor<PartitionBuilder> {
425  friend class PtrUseVisitor<PartitionBuilder>;
426  friend class InstVisitor<PartitionBuilder>;
427  typedef PtrUseVisitor<PartitionBuilder> Base;
428
429  const uint64_t AllocSize;
430  AllocaPartitioning &P;
431
432  SmallDenseMap<Instruction *, unsigned> MemTransferPartitionMap;
433
434public:
435  PartitionBuilder(const DataLayout &DL, AllocaInst &AI, AllocaPartitioning &P)
436      : PtrUseVisitor<PartitionBuilder>(DL),
437        AllocSize(DL.getTypeAllocSize(AI.getAllocatedType())),
438        P(P) {}
439
440private:
441  void insertUse(Instruction &I, const APInt &Offset, uint64_t Size,
442                 bool IsSplittable = false) {
443    // Completely skip uses which have a zero size or start either before or
444    // past the end of the allocation.
445    if (Size == 0 || Offset.isNegative() || Offset.uge(AllocSize)) {
446      DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte use @" << Offset
447                   << " which has zero size or starts outside of the "
448                   << AllocSize << " byte alloca:\n"
449                   << "    alloca: " << P.AI << "\n"
450                   << "       use: " << I << "\n");
451      return;
452    }
453
454    uint64_t BeginOffset = Offset.getZExtValue();
455    uint64_t EndOffset = BeginOffset + Size;
456
457    // Clamp the end offset to the end of the allocation. Note that this is
458    // formulated to handle even the case where "BeginOffset + Size" overflows.
459    // NOTE! This may appear superficially to be something we could ignore
460    // entirely, but that is not so! There may be PHI-node uses where some
461    // instructions are dead but not others. We can't completely ignore the
462    // PHI node, and so have to record at least the information here.
463    assert(AllocSize >= BeginOffset); // Established above.
464    if (Size > AllocSize - BeginOffset) {
465      DEBUG(dbgs() << "WARNING: Clamping a " << Size << " byte use @" << Offset
466                   << " to remain within the " << AllocSize << " byte alloca:\n"
467                   << "    alloca: " << P.AI << "\n"
468                   << "       use: " << I << "\n");
469      EndOffset = AllocSize;
470    }
471
472    Partition New(BeginOffset, EndOffset, IsSplittable);
473    P.Partitions.push_back(New);
474  }
475
476  void handleLoadOrStore(Type *Ty, Instruction &I, const APInt &Offset,
477                         bool IsVolatile) {
478    uint64_t Size = DL.getTypeStoreSize(Ty);
479
480    // If this memory access can be shown to *statically* extend outside the
481    // bounds of of the allocation, it's behavior is undefined, so simply
482    // ignore it. Note that this is more strict than the generic clamping
483    // behavior of insertUse. We also try to handle cases which might run the
484    // risk of overflow.
485    // FIXME: We should instead consider the pointer to have escaped if this
486    // function is being instrumented for addressing bugs or race conditions.
487    if (Offset.isNegative() || Size > AllocSize ||
488        Offset.ugt(AllocSize - Size)) {
489      DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte "
490                   << (isa<LoadInst>(I) ? "load" : "store") << " @" << Offset
491                   << " which extends past the end of the " << AllocSize
492                   << " byte alloca:\n"
493                   << "    alloca: " << P.AI << "\n"
494                   << "       use: " << I << "\n");
495      return;
496    }
497
498    // We allow splitting of loads and stores where the type is an integer type
499    // and which cover the entire alloca. Such integer loads and stores
500    // often require decomposition into fine grained loads and stores.
501    bool IsSplittable = false;
502    if (IntegerType *ITy = dyn_cast<IntegerType>(Ty))
503      IsSplittable = !IsVolatile && ITy->getBitWidth() == AllocSize*8;
504
505    insertUse(I, Offset, Size, IsSplittable);
506  }
507
508  void visitLoadInst(LoadInst &LI) {
509    assert((!LI.isSimple() || LI.getType()->isSingleValueType()) &&
510           "All simple FCA loads should have been pre-split");
511
512    if (!IsOffsetKnown)
513      return PI.setAborted(&LI);
514
515    return handleLoadOrStore(LI.getType(), LI, Offset, LI.isVolatile());
516  }
517
518  void visitStoreInst(StoreInst &SI) {
519    Value *ValOp = SI.getValueOperand();
520    if (ValOp == *U)
521      return PI.setEscapedAndAborted(&SI);
522    if (!IsOffsetKnown)
523      return PI.setAborted(&SI);
524
525    assert((!SI.isSimple() || ValOp->getType()->isSingleValueType()) &&
526           "All simple FCA stores should have been pre-split");
527    handleLoadOrStore(ValOp->getType(), SI, Offset, SI.isVolatile());
528  }
529
530
531  void visitMemSetInst(MemSetInst &II) {
532    assert(II.getRawDest() == *U && "Pointer use is not the destination?");
533    ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength());
534    if ((Length && Length->getValue() == 0) ||
535        (IsOffsetKnown && !Offset.isNegative() && Offset.uge(AllocSize)))
536      // Zero-length mem transfer intrinsics can be ignored entirely.
537      return;
538
539    if (!IsOffsetKnown)
540      return PI.setAborted(&II);
541
542    insertUse(II, Offset,
543              Length ? Length->getLimitedValue()
544                     : AllocSize - Offset.getLimitedValue(),
545              (bool)Length);
546  }
547
548  void visitMemTransferInst(MemTransferInst &II) {
549    ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength());
550    if ((Length && Length->getValue() == 0) ||
551        (IsOffsetKnown && !Offset.isNegative() && Offset.uge(AllocSize)))
552      // Zero-length mem transfer intrinsics can be ignored entirely.
553      return;
554
555    if (!IsOffsetKnown)
556      return PI.setAborted(&II);
557
558    uint64_t RawOffset = Offset.getLimitedValue();
559    uint64_t Size = Length ? Length->getLimitedValue()
560                           : AllocSize - RawOffset;
561
562    MemTransferOffsets &Offsets = P.MemTransferInstData[&II];
563
564    // Only intrinsics with a constant length can be split.
565    Offsets.IsSplittable = Length;
566
567    if (*U == II.getRawDest()) {
568      Offsets.DestBegin = RawOffset;
569      Offsets.DestEnd = RawOffset + Size;
570    }
571    if (*U == II.getRawSource()) {
572      Offsets.SourceBegin = RawOffset;
573      Offsets.SourceEnd = RawOffset + Size;
574    }
575
576    // If we have set up end offsets for both the source and the destination,
577    // we have found both sides of this transfer pointing at the same alloca.
578    bool SeenBothEnds = Offsets.SourceEnd && Offsets.DestEnd;
579    if (SeenBothEnds && II.getRawDest() != II.getRawSource()) {
580      unsigned PrevIdx = MemTransferPartitionMap[&II];
581
582      // Check if the begin offsets match and this is a non-volatile transfer.
583      // In that case, we can completely elide the transfer.
584      if (!II.isVolatile() && Offsets.SourceBegin == Offsets.DestBegin) {
585        P.Partitions[PrevIdx].kill();
586        return;
587      }
588
589      // Otherwise we have an offset transfer within the same alloca. We can't
590      // split those.
591      P.Partitions[PrevIdx].IsSplittable = Offsets.IsSplittable = false;
592    } else if (SeenBothEnds) {
593      // Handle the case where this exact use provides both ends of the
594      // operation.
595      assert(II.getRawDest() == II.getRawSource());
596
597      // For non-volatile transfers this is a no-op.
598      if (!II.isVolatile())
599        return;
600
601      // Otherwise just suppress splitting.
602      Offsets.IsSplittable = false;
603    }
604
605
606    // Insert the use now that we've fixed up the splittable nature.
607    insertUse(II, Offset, Size, Offsets.IsSplittable);
608
609    // Setup the mapping from intrinsic to partition of we've not seen both
610    // ends of this transfer.
611    if (!SeenBothEnds) {
612      unsigned NewIdx = P.Partitions.size() - 1;
613      bool Inserted
614        = MemTransferPartitionMap.insert(std::make_pair(&II, NewIdx)).second;
615      assert(Inserted &&
616             "Already have intrinsic in map but haven't seen both ends");
617      (void)Inserted;
618    }
619  }
620
621  // Disable SRoA for any intrinsics except for lifetime invariants.
622  // FIXME: What about debug intrinsics? This matches old behavior, but
623  // doesn't make sense.
624  void visitIntrinsicInst(IntrinsicInst &II) {
625    if (!IsOffsetKnown)
626      return PI.setAborted(&II);
627
628    if (II.getIntrinsicID() == Intrinsic::lifetime_start ||
629        II.getIntrinsicID() == Intrinsic::lifetime_end) {
630      ConstantInt *Length = cast<ConstantInt>(II.getArgOperand(0));
631      uint64_t Size = std::min(AllocSize - Offset.getLimitedValue(),
632                               Length->getLimitedValue());
633      insertUse(II, Offset, Size, true);
634      return;
635    }
636
637    Base::visitIntrinsicInst(II);
638  }
639
640  Instruction *hasUnsafePHIOrSelectUse(Instruction *Root, uint64_t &Size) {
641    // We consider any PHI or select that results in a direct load or store of
642    // the same offset to be a viable use for partitioning purposes. These uses
643    // are considered unsplittable and the size is the maximum loaded or stored
644    // size.
645    SmallPtrSet<Instruction *, 4> Visited;
646    SmallVector<std::pair<Instruction *, Instruction *>, 4> Uses;
647    Visited.insert(Root);
648    Uses.push_back(std::make_pair(cast<Instruction>(*U), Root));
649    // If there are no loads or stores, the access is dead. We mark that as
650    // a size zero access.
651    Size = 0;
652    do {
653      Instruction *I, *UsedI;
654      llvm::tie(UsedI, I) = Uses.pop_back_val();
655
656      if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
657        Size = std::max(Size, DL.getTypeStoreSize(LI->getType()));
658        continue;
659      }
660      if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
661        Value *Op = SI->getOperand(0);
662        if (Op == UsedI)
663          return SI;
664        Size = std::max(Size, DL.getTypeStoreSize(Op->getType()));
665        continue;
666      }
667
668      if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
669        if (!GEP->hasAllZeroIndices())
670          return GEP;
671      } else if (!isa<BitCastInst>(I) && !isa<PHINode>(I) &&
672                 !isa<SelectInst>(I)) {
673        return I;
674      }
675
676      for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); UI != UE;
677           ++UI)
678        if (Visited.insert(cast<Instruction>(*UI)))
679          Uses.push_back(std::make_pair(I, cast<Instruction>(*UI)));
680    } while (!Uses.empty());
681
682    return 0;
683  }
684
685  void visitPHINode(PHINode &PN) {
686    if (PN.use_empty())
687      return;
688    if (!IsOffsetKnown)
689      return PI.setAborted(&PN);
690
691    // See if we already have computed info on this node.
692    std::pair<uint64_t, bool> &PHIInfo = P.PHIOrSelectSizes[&PN];
693    if (PHIInfo.first) {
694      PHIInfo.second = true;
695      insertUse(PN, Offset, PHIInfo.first);
696      return;
697    }
698
699    // Check for an unsafe use of the PHI node.
700    if (Instruction *UnsafeI = hasUnsafePHIOrSelectUse(&PN, PHIInfo.first))
701      return PI.setAborted(UnsafeI);
702
703    insertUse(PN, Offset, PHIInfo.first);
704  }
705
706  void visitSelectInst(SelectInst &SI) {
707    if (SI.use_empty())
708      return;
709    if (Value *Result = foldSelectInst(SI)) {
710      if (Result == *U)
711        // If the result of the constant fold will be the pointer, recurse
712        // through the select as if we had RAUW'ed it.
713        enqueueUsers(SI);
714
715      return;
716    }
717    if (!IsOffsetKnown)
718      return PI.setAborted(&SI);
719
720    // See if we already have computed info on this node.
721    std::pair<uint64_t, bool> &SelectInfo = P.PHIOrSelectSizes[&SI];
722    if (SelectInfo.first) {
723      SelectInfo.second = true;
724      insertUse(SI, Offset, SelectInfo.first);
725      return;
726    }
727
728    // Check for an unsafe use of the PHI node.
729    if (Instruction *UnsafeI = hasUnsafePHIOrSelectUse(&SI, SelectInfo.first))
730      return PI.setAborted(UnsafeI);
731
732    insertUse(SI, Offset, SelectInfo.first);
733  }
734
735  /// \brief Disable SROA entirely if there are unhandled users of the alloca.
736  void visitInstruction(Instruction &I) {
737    PI.setAborted(&I);
738  }
739};
740
741/// \brief Use adder for the alloca partitioning.
742///
743/// This class adds the uses of an alloca to all of the partitions which they
744/// use. For splittable partitions, this can end up doing essentially a linear
745/// walk of the partitions, but the number of steps remains bounded by the
746/// total result instruction size:
747/// - The number of partitions is a result of the number unsplittable
748///   instructions using the alloca.
749/// - The number of users of each partition is at worst the total number of
750///   splittable instructions using the alloca.
751/// Thus we will produce N * M instructions in the end, where N are the number
752/// of unsplittable uses and M are the number of splittable. This visitor does
753/// the exact same number of updates to the partitioning.
754///
755/// In the more common case, this visitor will leverage the fact that the
756/// partition space is pre-sorted, and do a logarithmic search for the
757/// partition needed, making the total visit a classical ((N + M) * log(N))
758/// complexity operation.
759class AllocaPartitioning::UseBuilder : public PtrUseVisitor<UseBuilder> {
760  friend class PtrUseVisitor<UseBuilder>;
761  friend class InstVisitor<UseBuilder>;
762  typedef PtrUseVisitor<UseBuilder> Base;
763
764  const uint64_t AllocSize;
765  AllocaPartitioning &P;
766
767  /// \brief Set to de-duplicate dead instructions found in the use walk.
768  SmallPtrSet<Instruction *, 4> VisitedDeadInsts;
769
770public:
771  UseBuilder(const DataLayout &TD, AllocaInst &AI, AllocaPartitioning &P)
772      : PtrUseVisitor<UseBuilder>(TD),
773        AllocSize(TD.getTypeAllocSize(AI.getAllocatedType())),
774        P(P) {}
775
776private:
777  void markAsDead(Instruction &I) {
778    if (VisitedDeadInsts.insert(&I))
779      P.DeadUsers.push_back(&I);
780  }
781
782  void insertUse(Instruction &User, const APInt &Offset, uint64_t Size) {
783    // If the use has a zero size or extends outside of the allocation, record
784    // it as a dead use for elimination later.
785    if (Size == 0 || Offset.isNegative() || Offset.uge(AllocSize))
786      return markAsDead(User);
787
788    uint64_t BeginOffset = Offset.getZExtValue();
789    uint64_t EndOffset = BeginOffset + Size;
790
791    // Clamp the end offset to the end of the allocation. Note that this is
792    // formulated to handle even the case where "BeginOffset + Size" overflows.
793    assert(AllocSize >= BeginOffset); // Established above.
794    if (Size > AllocSize - BeginOffset)
795      EndOffset = AllocSize;
796
797    // NB: This only works if we have zero overlapping partitions.
798    iterator B = std::lower_bound(P.begin(), P.end(), BeginOffset);
799    if (B != P.begin() && llvm::prior(B)->EndOffset > BeginOffset)
800      B = llvm::prior(B);
801    for (iterator I = B, E = P.end(); I != E && I->BeginOffset < EndOffset;
802         ++I) {
803      PartitionUse NewPU(std::max(I->BeginOffset, BeginOffset),
804                         std::min(I->EndOffset, EndOffset), U);
805      P.use_push_back(I, NewPU);
806      if (isa<PHINode>(U->getUser()) || isa<SelectInst>(U->getUser()))
807        P.PHIOrSelectOpMap[U]
808          = std::make_pair(I - P.begin(), P.Uses[I - P.begin()].size() - 1);
809    }
810  }
811
812  void handleLoadOrStore(Type *Ty, Instruction &I, const APInt &Offset) {
813    uint64_t Size = DL.getTypeStoreSize(Ty);
814
815    // If this memory access can be shown to *statically* extend outside the
816    // bounds of of the allocation, it's behavior is undefined, so simply
817    // ignore it. Note that this is more strict than the generic clamping
818    // behavior of insertUse.
819    if (Offset.isNegative() || Size > AllocSize ||
820        Offset.ugt(AllocSize - Size))
821      return markAsDead(I);
822
823    insertUse(I, Offset, Size);
824  }
825
826  void visitBitCastInst(BitCastInst &BC) {
827    if (BC.use_empty())
828      return markAsDead(BC);
829
830    return Base::visitBitCastInst(BC);
831  }
832
833  void visitGetElementPtrInst(GetElementPtrInst &GEPI) {
834    if (GEPI.use_empty())
835      return markAsDead(GEPI);
836
837    return Base::visitGetElementPtrInst(GEPI);
838  }
839
840  void visitLoadInst(LoadInst &LI) {
841    assert(IsOffsetKnown);
842    handleLoadOrStore(LI.getType(), LI, Offset);
843  }
844
845  void visitStoreInst(StoreInst &SI) {
846    assert(IsOffsetKnown);
847    handleLoadOrStore(SI.getOperand(0)->getType(), SI, Offset);
848  }
849
850  void visitMemSetInst(MemSetInst &II) {
851    ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength());
852    if ((Length && Length->getValue() == 0) ||
853        (IsOffsetKnown && !Offset.isNegative() && Offset.uge(AllocSize)))
854      return markAsDead(II);
855
856    assert(IsOffsetKnown);
857    insertUse(II, Offset, Length ? Length->getLimitedValue()
858                                 : AllocSize - Offset.getLimitedValue());
859  }
860
861  void visitMemTransferInst(MemTransferInst &II) {
862    ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength());
863    if ((Length && Length->getValue() == 0) ||
864        (IsOffsetKnown && !Offset.isNegative() && Offset.uge(AllocSize)))
865      return markAsDead(II);
866
867    assert(IsOffsetKnown);
868    uint64_t Size = Length ? Length->getLimitedValue()
869                           : AllocSize - Offset.getLimitedValue();
870
871    MemTransferOffsets &Offsets = P.MemTransferInstData[&II];
872    if (!II.isVolatile() && Offsets.DestEnd && Offsets.SourceEnd &&
873        Offsets.DestBegin == Offsets.SourceBegin)
874      return markAsDead(II); // Skip identity transfers without side-effects.
875
876    insertUse(II, Offset, Size);
877  }
878
879  void visitIntrinsicInst(IntrinsicInst &II) {
880    assert(IsOffsetKnown);
881    assert(II.getIntrinsicID() == Intrinsic::lifetime_start ||
882           II.getIntrinsicID() == Intrinsic::lifetime_end);
883
884    ConstantInt *Length = cast<ConstantInt>(II.getArgOperand(0));
885    insertUse(II, Offset, std::min(Length->getLimitedValue(),
886                                   AllocSize - Offset.getLimitedValue()));
887  }
888
889  void insertPHIOrSelect(Instruction &User, const APInt &Offset) {
890    uint64_t Size = P.PHIOrSelectSizes.lookup(&User).first;
891
892    // For PHI and select operands outside the alloca, we can't nuke the entire
893    // phi or select -- the other side might still be relevant, so we special
894    // case them here and use a separate structure to track the operands
895    // themselves which should be replaced with undef.
896    if ((Offset.isNegative() && Offset.uge(Size)) ||
897        (!Offset.isNegative() && Offset.uge(AllocSize))) {
898      P.DeadOperands.push_back(U);
899      return;
900    }
901
902    insertUse(User, Offset, Size);
903  }
904
905  void visitPHINode(PHINode &PN) {
906    if (PN.use_empty())
907      return markAsDead(PN);
908
909    assert(IsOffsetKnown);
910    insertPHIOrSelect(PN, Offset);
911  }
912
913  void visitSelectInst(SelectInst &SI) {
914    if (SI.use_empty())
915      return markAsDead(SI);
916
917    if (Value *Result = foldSelectInst(SI)) {
918      if (Result == *U)
919        // If the result of the constant fold will be the pointer, recurse
920        // through the select as if we had RAUW'ed it.
921        enqueueUsers(SI);
922      else
923        // Otherwise the operand to the select is dead, and we can replace it
924        // with undef.
925        P.DeadOperands.push_back(U);
926
927      return;
928    }
929
930    assert(IsOffsetKnown);
931    insertPHIOrSelect(SI, Offset);
932  }
933
934  /// \brief Unreachable, we've already visited the alloca once.
935  void visitInstruction(Instruction &I) {
936    llvm_unreachable("Unhandled instruction in use builder.");
937  }
938};
939
940void AllocaPartitioning::splitAndMergePartitions() {
941  size_t NumDeadPartitions = 0;
942
943  // Track the range of splittable partitions that we pass when accumulating
944  // overlapping unsplittable partitions.
945  uint64_t SplitEndOffset = 0ull;
946
947  Partition New(0ull, 0ull, false);
948
949  for (unsigned i = 0, j = i, e = Partitions.size(); i != e; i = j) {
950    ++j;
951
952    if (!Partitions[i].IsSplittable || New.BeginOffset == New.EndOffset) {
953      assert(New.BeginOffset == New.EndOffset);
954      New = Partitions[i];
955    } else {
956      assert(New.IsSplittable);
957      New.EndOffset = std::max(New.EndOffset, Partitions[i].EndOffset);
958    }
959    assert(New.BeginOffset != New.EndOffset);
960
961    // Scan the overlapping partitions.
962    while (j != e && New.EndOffset > Partitions[j].BeginOffset) {
963      // If the new partition we are forming is splittable, stop at the first
964      // unsplittable partition.
965      if (New.IsSplittable && !Partitions[j].IsSplittable)
966        break;
967
968      // Grow the new partition to include any equally splittable range. 'j' is
969      // always equally splittable when New is splittable, but when New is not
970      // splittable, we may subsume some (or part of some) splitable partition
971      // without growing the new one.
972      if (New.IsSplittable == Partitions[j].IsSplittable) {
973        New.EndOffset = std::max(New.EndOffset, Partitions[j].EndOffset);
974      } else {
975        assert(!New.IsSplittable);
976        assert(Partitions[j].IsSplittable);
977        SplitEndOffset = std::max(SplitEndOffset, Partitions[j].EndOffset);
978      }
979
980      Partitions[j].kill();
981      ++NumDeadPartitions;
982      ++j;
983    }
984
985    // If the new partition is splittable, chop off the end as soon as the
986    // unsplittable subsequent partition starts and ensure we eventually cover
987    // the splittable area.
988    if (j != e && New.IsSplittable) {
989      SplitEndOffset = std::max(SplitEndOffset, New.EndOffset);
990      New.EndOffset = std::min(New.EndOffset, Partitions[j].BeginOffset);
991    }
992
993    // Add the new partition if it differs from the original one and is
994    // non-empty. We can end up with an empty partition here if it was
995    // splittable but there is an unsplittable one that starts at the same
996    // offset.
997    if (New != Partitions[i]) {
998      if (New.BeginOffset != New.EndOffset)
999        Partitions.push_back(New);
1000      // Mark the old one for removal.
1001      Partitions[i].kill();
1002      ++NumDeadPartitions;
1003    }
1004
1005    New.BeginOffset = New.EndOffset;
1006    if (!New.IsSplittable) {
1007      New.EndOffset = std::max(New.EndOffset, SplitEndOffset);
1008      if (j != e && !Partitions[j].IsSplittable)
1009        New.EndOffset = std::min(New.EndOffset, Partitions[j].BeginOffset);
1010      New.IsSplittable = true;
1011      // If there is a trailing splittable partition which won't be fused into
1012      // the next splittable partition go ahead and add it onto the partitions
1013      // list.
1014      if (New.BeginOffset < New.EndOffset &&
1015          (j == e || !Partitions[j].IsSplittable ||
1016           New.EndOffset < Partitions[j].BeginOffset)) {
1017        Partitions.push_back(New);
1018        New.BeginOffset = New.EndOffset = 0ull;
1019      }
1020    }
1021  }
1022
1023  // Re-sort the partitions now that they have been split and merged into
1024  // disjoint set of partitions. Also remove any of the dead partitions we've
1025  // replaced in the process.
1026  std::sort(Partitions.begin(), Partitions.end());
1027  if (NumDeadPartitions) {
1028    assert(Partitions.back().isDead());
1029    assert((ptrdiff_t)NumDeadPartitions ==
1030           std::count(Partitions.begin(), Partitions.end(), Partitions.back()));
1031  }
1032  Partitions.erase(Partitions.end() - NumDeadPartitions, Partitions.end());
1033}
1034
1035AllocaPartitioning::AllocaPartitioning(const DataLayout &TD, AllocaInst &AI)
1036    :
1037#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1038      AI(AI),
1039#endif
1040      PointerEscapingInstr(0) {
1041  PartitionBuilder PB(TD, AI, *this);
1042  PartitionBuilder::PtrInfo PtrI = PB.visitPtr(AI);
1043  if (PtrI.isEscaped() || PtrI.isAborted()) {
1044    // FIXME: We should sink the escape vs. abort info into the caller nicely,
1045    // possibly by just storing the PtrInfo in the AllocaPartitioning.
1046    PointerEscapingInstr = PtrI.getEscapingInst() ? PtrI.getEscapingInst()
1047                                                  : PtrI.getAbortingInst();
1048    assert(PointerEscapingInstr && "Did not track a bad instruction");
1049    return;
1050  }
1051
1052  // Sort the uses. This arranges for the offsets to be in ascending order,
1053  // and the sizes to be in descending order.
1054  std::sort(Partitions.begin(), Partitions.end());
1055
1056  // Remove any partitions from the back which are marked as dead.
1057  while (!Partitions.empty() && Partitions.back().isDead())
1058    Partitions.pop_back();
1059
1060  if (Partitions.size() > 1) {
1061    // Intersect splittability for all partitions with equal offsets and sizes.
1062    // Then remove all but the first so that we have a sequence of non-equal but
1063    // potentially overlapping partitions.
1064    for (iterator I = Partitions.begin(), J = I, E = Partitions.end(); I != E;
1065         I = J) {
1066      ++J;
1067      while (J != E && *I == *J) {
1068        I->IsSplittable &= J->IsSplittable;
1069        ++J;
1070      }
1071    }
1072    Partitions.erase(std::unique(Partitions.begin(), Partitions.end()),
1073                     Partitions.end());
1074
1075    // Split splittable and merge unsplittable partitions into a disjoint set
1076    // of partitions over the used space of the allocation.
1077    splitAndMergePartitions();
1078  }
1079
1080  // Now build up the user lists for each of these disjoint partitions by
1081  // re-walking the recursive users of the alloca.
1082  Uses.resize(Partitions.size());
1083  UseBuilder UB(TD, AI, *this);
1084  PtrI = UB.visitPtr(AI);
1085  assert(!PtrI.isEscaped() && "Previously analyzed pointer now escapes!");
1086  assert(!PtrI.isAborted() && "Early aborted the visit of the pointer.");
1087}
1088
1089Type *AllocaPartitioning::getCommonType(iterator I) const {
1090  Type *Ty = 0;
1091  for (const_use_iterator UI = use_begin(I), UE = use_end(I); UI != UE; ++UI) {
1092    if (!UI->U)
1093      continue; // Skip dead uses.
1094    if (isa<IntrinsicInst>(*UI->U->getUser()))
1095      continue;
1096    if (UI->BeginOffset != I->BeginOffset || UI->EndOffset != I->EndOffset)
1097      continue;
1098
1099    Type *UserTy = 0;
1100    if (LoadInst *LI = dyn_cast<LoadInst>(UI->U->getUser()))
1101      UserTy = LI->getType();
1102    else if (StoreInst *SI = dyn_cast<StoreInst>(UI->U->getUser()))
1103      UserTy = SI->getValueOperand()->getType();
1104    else
1105      return 0; // Bail if we have weird uses.
1106
1107    if (IntegerType *ITy = dyn_cast<IntegerType>(UserTy)) {
1108      // If the type is larger than the partition, skip it. We only encounter
1109      // this for split integer operations where we want to use the type of the
1110      // entity causing the split.
1111      if (ITy->getBitWidth() > (I->EndOffset - I->BeginOffset)*8)
1112        continue;
1113
1114      // If we have found an integer type use covering the alloca, use that
1115      // regardless of the other types, as integers are often used for a "bucket
1116      // of bits" type.
1117      return ITy;
1118    }
1119
1120    if (Ty && Ty != UserTy)
1121      return 0;
1122
1123    Ty = UserTy;
1124  }
1125  return Ty;
1126}
1127
1128#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1129
1130void AllocaPartitioning::print(raw_ostream &OS, const_iterator I,
1131                               StringRef Indent) const {
1132  OS << Indent << "partition #" << (I - begin())
1133     << " [" << I->BeginOffset << "," << I->EndOffset << ")"
1134     << (I->IsSplittable ? " (splittable)" : "")
1135     << (Uses[I - begin()].empty() ? " (zero uses)" : "")
1136     << "\n";
1137}
1138
1139void AllocaPartitioning::printUsers(raw_ostream &OS, const_iterator I,
1140                                    StringRef Indent) const {
1141  for (const_use_iterator UI = use_begin(I), UE = use_end(I); UI != UE; ++UI) {
1142    if (!UI->U)
1143      continue; // Skip dead uses.
1144    OS << Indent << "  [" << UI->BeginOffset << "," << UI->EndOffset << ") "
1145       << "used by: " << *UI->U->getUser() << "\n";
1146    if (MemTransferInst *II = dyn_cast<MemTransferInst>(UI->U->getUser())) {
1147      const MemTransferOffsets &MTO = MemTransferInstData.lookup(II);
1148      bool IsDest;
1149      if (!MTO.IsSplittable)
1150        IsDest = UI->BeginOffset == MTO.DestBegin;
1151      else
1152        IsDest = MTO.DestBegin != 0u;
1153      OS << Indent << "    (original " << (IsDest ? "dest" : "source") << ": "
1154         << "[" << (IsDest ? MTO.DestBegin : MTO.SourceBegin)
1155         << "," << (IsDest ? MTO.DestEnd : MTO.SourceEnd) << ")\n";
1156    }
1157  }
1158}
1159
1160void AllocaPartitioning::print(raw_ostream &OS) const {
1161  if (PointerEscapingInstr) {
1162    OS << "No partitioning for alloca: " << AI << "\n"
1163       << "  A pointer to this alloca escaped by:\n"
1164       << "  " << *PointerEscapingInstr << "\n";
1165    return;
1166  }
1167
1168  OS << "Partitioning of alloca: " << AI << "\n";
1169  for (const_iterator I = begin(), E = end(); I != E; ++I) {
1170    print(OS, I);
1171    printUsers(OS, I);
1172  }
1173}
1174
1175void AllocaPartitioning::dump(const_iterator I) const { print(dbgs(), I); }
1176void AllocaPartitioning::dump() const { print(dbgs()); }
1177
1178#endif // !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1179
1180
1181namespace {
1182/// \brief Implementation of LoadAndStorePromoter for promoting allocas.
1183///
1184/// This subclass of LoadAndStorePromoter adds overrides to handle promoting
1185/// the loads and stores of an alloca instruction, as well as updating its
1186/// debug information. This is used when a domtree is unavailable and thus
1187/// mem2reg in its full form can't be used to handle promotion of allocas to
1188/// scalar values.
1189class AllocaPromoter : public LoadAndStorePromoter {
1190  AllocaInst &AI;
1191  DIBuilder &DIB;
1192
1193  SmallVector<DbgDeclareInst *, 4> DDIs;
1194  SmallVector<DbgValueInst *, 4> DVIs;
1195
1196public:
1197  AllocaPromoter(const SmallVectorImpl<Instruction*> &Insts, SSAUpdater &S,
1198                 AllocaInst &AI, DIBuilder &DIB)
1199    : LoadAndStorePromoter(Insts, S), AI(AI), DIB(DIB) {}
1200
1201  void run(const SmallVectorImpl<Instruction*> &Insts) {
1202    // Remember which alloca we're promoting (for isInstInList).
1203    if (MDNode *DebugNode = MDNode::getIfExists(AI.getContext(), &AI)) {
1204      for (Value::use_iterator UI = DebugNode->use_begin(),
1205                               UE = DebugNode->use_end();
1206           UI != UE; ++UI)
1207        if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(*UI))
1208          DDIs.push_back(DDI);
1209        else if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(*UI))
1210          DVIs.push_back(DVI);
1211    }
1212
1213    LoadAndStorePromoter::run(Insts);
1214    AI.eraseFromParent();
1215    while (!DDIs.empty())
1216      DDIs.pop_back_val()->eraseFromParent();
1217    while (!DVIs.empty())
1218      DVIs.pop_back_val()->eraseFromParent();
1219  }
1220
1221  virtual bool isInstInList(Instruction *I,
1222                            const SmallVectorImpl<Instruction*> &Insts) const {
1223    if (LoadInst *LI = dyn_cast<LoadInst>(I))
1224      return LI->getOperand(0) == &AI;
1225    return cast<StoreInst>(I)->getPointerOperand() == &AI;
1226  }
1227
1228  virtual void updateDebugInfo(Instruction *Inst) const {
1229    for (SmallVector<DbgDeclareInst *, 4>::const_iterator I = DDIs.begin(),
1230           E = DDIs.end(); I != E; ++I) {
1231      DbgDeclareInst *DDI = *I;
1232      if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
1233        ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
1234      else if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
1235        ConvertDebugDeclareToDebugValue(DDI, LI, DIB);
1236    }
1237    for (SmallVector<DbgValueInst *, 4>::const_iterator I = DVIs.begin(),
1238           E = DVIs.end(); I != E; ++I) {
1239      DbgValueInst *DVI = *I;
1240      Value *Arg = 0;
1241      if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
1242        // If an argument is zero extended then use argument directly. The ZExt
1243        // may be zapped by an optimization pass in future.
1244        if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0)))
1245          Arg = dyn_cast<Argument>(ZExt->getOperand(0));
1246        if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0)))
1247          Arg = dyn_cast<Argument>(SExt->getOperand(0));
1248        if (!Arg)
1249          Arg = SI->getOperand(0);
1250      } else if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
1251        Arg = LI->getOperand(0);
1252      } else {
1253        continue;
1254      }
1255      Instruction *DbgVal =
1256        DIB.insertDbgValueIntrinsic(Arg, 0, DIVariable(DVI->getVariable()),
1257                                     Inst);
1258      DbgVal->setDebugLoc(DVI->getDebugLoc());
1259    }
1260  }
1261};
1262} // end anon namespace
1263
1264
1265namespace {
1266/// \brief An optimization pass providing Scalar Replacement of Aggregates.
1267///
1268/// This pass takes allocations which can be completely analyzed (that is, they
1269/// don't escape) and tries to turn them into scalar SSA values. There are
1270/// a few steps to this process.
1271///
1272/// 1) It takes allocations of aggregates and analyzes the ways in which they
1273///    are used to try to split them into smaller allocations, ideally of
1274///    a single scalar data type. It will split up memcpy and memset accesses
1275///    as necessary and try to isolate individual scalar accesses.
1276/// 2) It will transform accesses into forms which are suitable for SSA value
1277///    promotion. This can be replacing a memset with a scalar store of an
1278///    integer value, or it can involve speculating operations on a PHI or
1279///    select to be a PHI or select of the results.
1280/// 3) Finally, this will try to detect a pattern of accesses which map cleanly
1281///    onto insert and extract operations on a vector value, and convert them to
1282///    this form. By doing so, it will enable promotion of vector aggregates to
1283///    SSA vector values.
1284class SROA : public FunctionPass {
1285  const bool RequiresDomTree;
1286
1287  LLVMContext *C;
1288  const DataLayout *TD;
1289  DominatorTree *DT;
1290
1291  /// \brief Worklist of alloca instructions to simplify.
1292  ///
1293  /// Each alloca in the function is added to this. Each new alloca formed gets
1294  /// added to it as well to recursively simplify unless that alloca can be
1295  /// directly promoted. Finally, each time we rewrite a use of an alloca other
1296  /// the one being actively rewritten, we add it back onto the list if not
1297  /// already present to ensure it is re-visited.
1298  SetVector<AllocaInst *, SmallVector<AllocaInst *, 16> > Worklist;
1299
1300  /// \brief A collection of instructions to delete.
1301  /// We try to batch deletions to simplify code and make things a bit more
1302  /// efficient.
1303  SetVector<Instruction *, SmallVector<Instruction *, 8> > DeadInsts;
1304
1305  /// \brief Post-promotion worklist.
1306  ///
1307  /// Sometimes we discover an alloca which has a high probability of becoming
1308  /// viable for SROA after a round of promotion takes place. In those cases,
1309  /// the alloca is enqueued here for re-processing.
1310  ///
1311  /// Note that we have to be very careful to clear allocas out of this list in
1312  /// the event they are deleted.
1313  SetVector<AllocaInst *, SmallVector<AllocaInst *, 16> > PostPromotionWorklist;
1314
1315  /// \brief A collection of alloca instructions we can directly promote.
1316  std::vector<AllocaInst *> PromotableAllocas;
1317
1318public:
1319  SROA(bool RequiresDomTree = true)
1320      : FunctionPass(ID), RequiresDomTree(RequiresDomTree),
1321        C(0), TD(0), DT(0) {
1322    initializeSROAPass(*PassRegistry::getPassRegistry());
1323  }
1324  bool runOnFunction(Function &F);
1325  void getAnalysisUsage(AnalysisUsage &AU) const;
1326
1327  const char *getPassName() const { return "SROA"; }
1328  static char ID;
1329
1330private:
1331  friend class PHIOrSelectSpeculator;
1332  friend class AllocaPartitionRewriter;
1333  friend class AllocaPartitionVectorRewriter;
1334
1335  bool rewriteAllocaPartition(AllocaInst &AI,
1336                              AllocaPartitioning &P,
1337                              AllocaPartitioning::iterator PI);
1338  bool splitAlloca(AllocaInst &AI, AllocaPartitioning &P);
1339  bool runOnAlloca(AllocaInst &AI);
1340  void deleteDeadInstructions(SmallPtrSet<AllocaInst *, 4> &DeletedAllocas);
1341  bool promoteAllocas(Function &F);
1342};
1343}
1344
1345char SROA::ID = 0;
1346
1347FunctionPass *llvm::createSROAPass(bool RequiresDomTree) {
1348  return new SROA(RequiresDomTree);
1349}
1350
1351INITIALIZE_PASS_BEGIN(SROA, "sroa", "Scalar Replacement Of Aggregates",
1352                      false, false)
1353INITIALIZE_PASS_DEPENDENCY(DominatorTree)
1354INITIALIZE_PASS_END(SROA, "sroa", "Scalar Replacement Of Aggregates",
1355                    false, false)
1356
1357namespace {
1358/// \brief Visitor to speculate PHIs and Selects where possible.
1359class PHIOrSelectSpeculator : public InstVisitor<PHIOrSelectSpeculator> {
1360  // Befriend the base class so it can delegate to private visit methods.
1361  friend class llvm::InstVisitor<PHIOrSelectSpeculator>;
1362
1363  const DataLayout &TD;
1364  AllocaPartitioning &P;
1365  SROA &Pass;
1366
1367public:
1368  PHIOrSelectSpeculator(const DataLayout &TD, AllocaPartitioning &P, SROA &Pass)
1369    : TD(TD), P(P), Pass(Pass) {}
1370
1371  /// \brief Visit the users of an alloca partition and rewrite them.
1372  void visitUsers(AllocaPartitioning::const_iterator PI) {
1373    // Note that we need to use an index here as the underlying vector of uses
1374    // may be grown during speculation. However, we never need to re-visit the
1375    // new uses, and so we can use the initial size bound.
1376    for (unsigned Idx = 0, Size = P.use_size(PI); Idx != Size; ++Idx) {
1377      const AllocaPartitioning::PartitionUse &PU = P.getUse(PI, Idx);
1378      if (!PU.U)
1379        continue; // Skip dead use.
1380
1381      visit(cast<Instruction>(PU.U->getUser()));
1382    }
1383  }
1384
1385private:
1386  // By default, skip this instruction.
1387  void visitInstruction(Instruction &I) {}
1388
1389  /// PHI instructions that use an alloca and are subsequently loaded can be
1390  /// rewritten to load both input pointers in the pred blocks and then PHI the
1391  /// results, allowing the load of the alloca to be promoted.
1392  /// From this:
1393  ///   %P2 = phi [i32* %Alloca, i32* %Other]
1394  ///   %V = load i32* %P2
1395  /// to:
1396  ///   %V1 = load i32* %Alloca      -> will be mem2reg'd
1397  ///   ...
1398  ///   %V2 = load i32* %Other
1399  ///   ...
1400  ///   %V = phi [i32 %V1, i32 %V2]
1401  ///
1402  /// We can do this to a select if its only uses are loads and if the operands
1403  /// to the select can be loaded unconditionally.
1404  ///
1405  /// FIXME: This should be hoisted into a generic utility, likely in
1406  /// Transforms/Util/Local.h
1407  bool isSafePHIToSpeculate(PHINode &PN, SmallVectorImpl<LoadInst *> &Loads) {
1408    // For now, we can only do this promotion if the load is in the same block
1409    // as the PHI, and if there are no stores between the phi and load.
1410    // TODO: Allow recursive phi users.
1411    // TODO: Allow stores.
1412    BasicBlock *BB = PN.getParent();
1413    unsigned MaxAlign = 0;
1414    for (Value::use_iterator UI = PN.use_begin(), UE = PN.use_end();
1415         UI != UE; ++UI) {
1416      LoadInst *LI = dyn_cast<LoadInst>(*UI);
1417      if (LI == 0 || !LI->isSimple()) return false;
1418
1419      // For now we only allow loads in the same block as the PHI.  This is
1420      // a common case that happens when instcombine merges two loads through
1421      // a PHI.
1422      if (LI->getParent() != BB) return false;
1423
1424      // Ensure that there are no instructions between the PHI and the load that
1425      // could store.
1426      for (BasicBlock::iterator BBI = &PN; &*BBI != LI; ++BBI)
1427        if (BBI->mayWriteToMemory())
1428          return false;
1429
1430      MaxAlign = std::max(MaxAlign, LI->getAlignment());
1431      Loads.push_back(LI);
1432    }
1433
1434    // We can only transform this if it is safe to push the loads into the
1435    // predecessor blocks. The only thing to watch out for is that we can't put
1436    // a possibly trapping load in the predecessor if it is a critical edge.
1437    for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num; ++Idx) {
1438      TerminatorInst *TI = PN.getIncomingBlock(Idx)->getTerminator();
1439      Value *InVal = PN.getIncomingValue(Idx);
1440
1441      // If the value is produced by the terminator of the predecessor (an
1442      // invoke) or it has side-effects, there is no valid place to put a load
1443      // in the predecessor.
1444      if (TI == InVal || TI->mayHaveSideEffects())
1445        return false;
1446
1447      // If the predecessor has a single successor, then the edge isn't
1448      // critical.
1449      if (TI->getNumSuccessors() == 1)
1450        continue;
1451
1452      // If this pointer is always safe to load, or if we can prove that there
1453      // is already a load in the block, then we can move the load to the pred
1454      // block.
1455      if (InVal->isDereferenceablePointer() ||
1456          isSafeToLoadUnconditionally(InVal, TI, MaxAlign, &TD))
1457        continue;
1458
1459      return false;
1460    }
1461
1462    return true;
1463  }
1464
1465  void visitPHINode(PHINode &PN) {
1466    DEBUG(dbgs() << "    original: " << PN << "\n");
1467
1468    SmallVector<LoadInst *, 4> Loads;
1469    if (!isSafePHIToSpeculate(PN, Loads))
1470      return;
1471
1472    assert(!Loads.empty());
1473
1474    Type *LoadTy = cast<PointerType>(PN.getType())->getElementType();
1475    IRBuilder<> PHIBuilder(&PN);
1476    PHINode *NewPN = PHIBuilder.CreatePHI(LoadTy, PN.getNumIncomingValues(),
1477                                          PN.getName() + ".sroa.speculated");
1478
1479    // Get the TBAA tag and alignment to use from one of the loads.  It doesn't
1480    // matter which one we get and if any differ.
1481    LoadInst *SomeLoad = cast<LoadInst>(Loads.back());
1482    MDNode *TBAATag = SomeLoad->getMetadata(LLVMContext::MD_tbaa);
1483    unsigned Align = SomeLoad->getAlignment();
1484
1485    // Rewrite all loads of the PN to use the new PHI.
1486    do {
1487      LoadInst *LI = Loads.pop_back_val();
1488      LI->replaceAllUsesWith(NewPN);
1489      Pass.DeadInsts.insert(LI);
1490    } while (!Loads.empty());
1491
1492    // Inject loads into all of the pred blocks.
1493    for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num; ++Idx) {
1494      BasicBlock *Pred = PN.getIncomingBlock(Idx);
1495      TerminatorInst *TI = Pred->getTerminator();
1496      Use *InUse = &PN.getOperandUse(PN.getOperandNumForIncomingValue(Idx));
1497      Value *InVal = PN.getIncomingValue(Idx);
1498      IRBuilder<> PredBuilder(TI);
1499
1500      LoadInst *Load
1501        = PredBuilder.CreateLoad(InVal, (PN.getName() + ".sroa.speculate.load." +
1502                                         Pred->getName()));
1503      ++NumLoadsSpeculated;
1504      Load->setAlignment(Align);
1505      if (TBAATag)
1506        Load->setMetadata(LLVMContext::MD_tbaa, TBAATag);
1507      NewPN->addIncoming(Load, Pred);
1508
1509      Instruction *Ptr = dyn_cast<Instruction>(InVal);
1510      if (!Ptr)
1511        // No uses to rewrite.
1512        continue;
1513
1514      // Try to lookup and rewrite any partition uses corresponding to this phi
1515      // input.
1516      AllocaPartitioning::iterator PI
1517        = P.findPartitionForPHIOrSelectOperand(InUse);
1518      if (PI == P.end())
1519        continue;
1520
1521      // Replace the Use in the PartitionUse for this operand with the Use
1522      // inside the load.
1523      AllocaPartitioning::use_iterator UI
1524        = P.findPartitionUseForPHIOrSelectOperand(InUse);
1525      assert(isa<PHINode>(*UI->U->getUser()));
1526      UI->U = &Load->getOperandUse(Load->getPointerOperandIndex());
1527    }
1528    DEBUG(dbgs() << "          speculated to: " << *NewPN << "\n");
1529  }
1530
1531  /// Select instructions that use an alloca and are subsequently loaded can be
1532  /// rewritten to load both input pointers and then select between the result,
1533  /// allowing the load of the alloca to be promoted.
1534  /// From this:
1535  ///   %P2 = select i1 %cond, i32* %Alloca, i32* %Other
1536  ///   %V = load i32* %P2
1537  /// to:
1538  ///   %V1 = load i32* %Alloca      -> will be mem2reg'd
1539  ///   %V2 = load i32* %Other
1540  ///   %V = select i1 %cond, i32 %V1, i32 %V2
1541  ///
1542  /// We can do this to a select if its only uses are loads and if the operand
1543  /// to the select can be loaded unconditionally.
1544  bool isSafeSelectToSpeculate(SelectInst &SI,
1545                               SmallVectorImpl<LoadInst *> &Loads) {
1546    Value *TValue = SI.getTrueValue();
1547    Value *FValue = SI.getFalseValue();
1548    bool TDerefable = TValue->isDereferenceablePointer();
1549    bool FDerefable = FValue->isDereferenceablePointer();
1550
1551    for (Value::use_iterator UI = SI.use_begin(), UE = SI.use_end();
1552         UI != UE; ++UI) {
1553      LoadInst *LI = dyn_cast<LoadInst>(*UI);
1554      if (LI == 0 || !LI->isSimple()) return false;
1555
1556      // Both operands to the select need to be dereferencable, either
1557      // absolutely (e.g. allocas) or at this point because we can see other
1558      // accesses to it.
1559      if (!TDerefable && !isSafeToLoadUnconditionally(TValue, LI,
1560                                                      LI->getAlignment(), &TD))
1561        return false;
1562      if (!FDerefable && !isSafeToLoadUnconditionally(FValue, LI,
1563                                                      LI->getAlignment(), &TD))
1564        return false;
1565      Loads.push_back(LI);
1566    }
1567
1568    return true;
1569  }
1570
1571  void visitSelectInst(SelectInst &SI) {
1572    DEBUG(dbgs() << "    original: " << SI << "\n");
1573
1574    // If the select isn't safe to speculate, just use simple logic to emit it.
1575    SmallVector<LoadInst *, 4> Loads;
1576    if (!isSafeSelectToSpeculate(SI, Loads))
1577      return;
1578
1579    IRBuilder<> IRB(&SI);
1580    Use *Ops[2] = { &SI.getOperandUse(1), &SI.getOperandUse(2) };
1581    AllocaPartitioning::iterator PIs[2];
1582    AllocaPartitioning::PartitionUse PUs[2];
1583    for (unsigned i = 0, e = 2; i != e; ++i) {
1584      PIs[i] = P.findPartitionForPHIOrSelectOperand(Ops[i]);
1585      if (PIs[i] != P.end()) {
1586        // If the pointer is within the partitioning, remove the select from
1587        // its uses. We'll add in the new loads below.
1588        AllocaPartitioning::use_iterator UI
1589          = P.findPartitionUseForPHIOrSelectOperand(Ops[i]);
1590        PUs[i] = *UI;
1591        // Clear out the use here so that the offsets into the use list remain
1592        // stable but this use is ignored when rewriting.
1593        UI->U = 0;
1594      }
1595    }
1596
1597    Value *TV = SI.getTrueValue();
1598    Value *FV = SI.getFalseValue();
1599    // Replace the loads of the select with a select of two loads.
1600    while (!Loads.empty()) {
1601      LoadInst *LI = Loads.pop_back_val();
1602
1603      IRB.SetInsertPoint(LI);
1604      LoadInst *TL =
1605        IRB.CreateLoad(TV, LI->getName() + ".sroa.speculate.load.true");
1606      LoadInst *FL =
1607        IRB.CreateLoad(FV, LI->getName() + ".sroa.speculate.load.false");
1608      NumLoadsSpeculated += 2;
1609
1610      // Transfer alignment and TBAA info if present.
1611      TL->setAlignment(LI->getAlignment());
1612      FL->setAlignment(LI->getAlignment());
1613      if (MDNode *Tag = LI->getMetadata(LLVMContext::MD_tbaa)) {
1614        TL->setMetadata(LLVMContext::MD_tbaa, Tag);
1615        FL->setMetadata(LLVMContext::MD_tbaa, Tag);
1616      }
1617
1618      Value *V = IRB.CreateSelect(SI.getCondition(), TL, FL,
1619                                  LI->getName() + ".sroa.speculated");
1620
1621      LoadInst *Loads[2] = { TL, FL };
1622      for (unsigned i = 0, e = 2; i != e; ++i) {
1623        if (PIs[i] != P.end()) {
1624          Use *LoadUse = &Loads[i]->getOperandUse(0);
1625          assert(PUs[i].U->get() == LoadUse->get());
1626          PUs[i].U = LoadUse;
1627          P.use_push_back(PIs[i], PUs[i]);
1628        }
1629      }
1630
1631      DEBUG(dbgs() << "          speculated to: " << *V << "\n");
1632      LI->replaceAllUsesWith(V);
1633      Pass.DeadInsts.insert(LI);
1634    }
1635  }
1636};
1637}
1638
1639/// \brief Build a GEP out of a base pointer and indices.
1640///
1641/// This will return the BasePtr if that is valid, or build a new GEP
1642/// instruction using the IRBuilder if GEP-ing is needed.
1643static Value *buildGEP(IRBuilder<> &IRB, Value *BasePtr,
1644                       SmallVectorImpl<Value *> &Indices,
1645                       const Twine &Prefix) {
1646  if (Indices.empty())
1647    return BasePtr;
1648
1649  // A single zero index is a no-op, so check for this and avoid building a GEP
1650  // in that case.
1651  if (Indices.size() == 1 && cast<ConstantInt>(Indices.back())->isZero())
1652    return BasePtr;
1653
1654  return IRB.CreateInBoundsGEP(BasePtr, Indices, Prefix + ".idx");
1655}
1656
1657/// \brief Get a natural GEP off of the BasePtr walking through Ty toward
1658/// TargetTy without changing the offset of the pointer.
1659///
1660/// This routine assumes we've already established a properly offset GEP with
1661/// Indices, and arrived at the Ty type. The goal is to continue to GEP with
1662/// zero-indices down through type layers until we find one the same as
1663/// TargetTy. If we can't find one with the same type, we at least try to use
1664/// one with the same size. If none of that works, we just produce the GEP as
1665/// indicated by Indices to have the correct offset.
1666static Value *getNaturalGEPWithType(IRBuilder<> &IRB, const DataLayout &TD,
1667                                    Value *BasePtr, Type *Ty, Type *TargetTy,
1668                                    SmallVectorImpl<Value *> &Indices,
1669                                    const Twine &Prefix) {
1670  if (Ty == TargetTy)
1671    return buildGEP(IRB, BasePtr, Indices, Prefix);
1672
1673  // See if we can descend into a struct and locate a field with the correct
1674  // type.
1675  unsigned NumLayers = 0;
1676  Type *ElementTy = Ty;
1677  do {
1678    if (ElementTy->isPointerTy())
1679      break;
1680    if (SequentialType *SeqTy = dyn_cast<SequentialType>(ElementTy)) {
1681      ElementTy = SeqTy->getElementType();
1682      // Note that we use the default address space as this index is over an
1683      // array or a vector, not a pointer.
1684      Indices.push_back(IRB.getInt(APInt(TD.getPointerSizeInBits(0), 0)));
1685    } else if (StructType *STy = dyn_cast<StructType>(ElementTy)) {
1686      if (STy->element_begin() == STy->element_end())
1687        break; // Nothing left to descend into.
1688      ElementTy = *STy->element_begin();
1689      Indices.push_back(IRB.getInt32(0));
1690    } else {
1691      break;
1692    }
1693    ++NumLayers;
1694  } while (ElementTy != TargetTy);
1695  if (ElementTy != TargetTy)
1696    Indices.erase(Indices.end() - NumLayers, Indices.end());
1697
1698  return buildGEP(IRB, BasePtr, Indices, Prefix);
1699}
1700
1701/// \brief Recursively compute indices for a natural GEP.
1702///
1703/// This is the recursive step for getNaturalGEPWithOffset that walks down the
1704/// element types adding appropriate indices for the GEP.
1705static Value *getNaturalGEPRecursively(IRBuilder<> &IRB, const DataLayout &TD,
1706                                       Value *Ptr, Type *Ty, APInt &Offset,
1707                                       Type *TargetTy,
1708                                       SmallVectorImpl<Value *> &Indices,
1709                                       const Twine &Prefix) {
1710  if (Offset == 0)
1711    return getNaturalGEPWithType(IRB, TD, Ptr, Ty, TargetTy, Indices, Prefix);
1712
1713  // We can't recurse through pointer types.
1714  if (Ty->isPointerTy())
1715    return 0;
1716
1717  // We try to analyze GEPs over vectors here, but note that these GEPs are
1718  // extremely poorly defined currently. The long-term goal is to remove GEPing
1719  // over a vector from the IR completely.
1720  if (VectorType *VecTy = dyn_cast<VectorType>(Ty)) {
1721    unsigned ElementSizeInBits = TD.getTypeSizeInBits(VecTy->getScalarType());
1722    if (ElementSizeInBits % 8)
1723      return 0; // GEPs over non-multiple of 8 size vector elements are invalid.
1724    APInt ElementSize(Offset.getBitWidth(), ElementSizeInBits / 8);
1725    APInt NumSkippedElements = Offset.sdiv(ElementSize);
1726    if (NumSkippedElements.ugt(VecTy->getNumElements()))
1727      return 0;
1728    Offset -= NumSkippedElements * ElementSize;
1729    Indices.push_back(IRB.getInt(NumSkippedElements));
1730    return getNaturalGEPRecursively(IRB, TD, Ptr, VecTy->getElementType(),
1731                                    Offset, TargetTy, Indices, Prefix);
1732  }
1733
1734  if (ArrayType *ArrTy = dyn_cast<ArrayType>(Ty)) {
1735    Type *ElementTy = ArrTy->getElementType();
1736    APInt ElementSize(Offset.getBitWidth(), TD.getTypeAllocSize(ElementTy));
1737    APInt NumSkippedElements = Offset.sdiv(ElementSize);
1738    if (NumSkippedElements.ugt(ArrTy->getNumElements()))
1739      return 0;
1740
1741    Offset -= NumSkippedElements * ElementSize;
1742    Indices.push_back(IRB.getInt(NumSkippedElements));
1743    return getNaturalGEPRecursively(IRB, TD, Ptr, ElementTy, Offset, TargetTy,
1744                                    Indices, Prefix);
1745  }
1746
1747  StructType *STy = dyn_cast<StructType>(Ty);
1748  if (!STy)
1749    return 0;
1750
1751  const StructLayout *SL = TD.getStructLayout(STy);
1752  uint64_t StructOffset = Offset.getZExtValue();
1753  if (StructOffset >= SL->getSizeInBytes())
1754    return 0;
1755  unsigned Index = SL->getElementContainingOffset(StructOffset);
1756  Offset -= APInt(Offset.getBitWidth(), SL->getElementOffset(Index));
1757  Type *ElementTy = STy->getElementType(Index);
1758  if (Offset.uge(TD.getTypeAllocSize(ElementTy)))
1759    return 0; // The offset points into alignment padding.
1760
1761  Indices.push_back(IRB.getInt32(Index));
1762  return getNaturalGEPRecursively(IRB, TD, Ptr, ElementTy, Offset, TargetTy,
1763                                  Indices, Prefix);
1764}
1765
1766/// \brief Get a natural GEP from a base pointer to a particular offset and
1767/// resulting in a particular type.
1768///
1769/// The goal is to produce a "natural" looking GEP that works with the existing
1770/// composite types to arrive at the appropriate offset and element type for
1771/// a pointer. TargetTy is the element type the returned GEP should point-to if
1772/// possible. We recurse by decreasing Offset, adding the appropriate index to
1773/// Indices, and setting Ty to the result subtype.
1774///
1775/// If no natural GEP can be constructed, this function returns null.
1776static Value *getNaturalGEPWithOffset(IRBuilder<> &IRB, const DataLayout &TD,
1777                                      Value *Ptr, APInt Offset, Type *TargetTy,
1778                                      SmallVectorImpl<Value *> &Indices,
1779                                      const Twine &Prefix) {
1780  PointerType *Ty = cast<PointerType>(Ptr->getType());
1781
1782  // Don't consider any GEPs through an i8* as natural unless the TargetTy is
1783  // an i8.
1784  if (Ty == IRB.getInt8PtrTy() && TargetTy->isIntegerTy(8))
1785    return 0;
1786
1787  Type *ElementTy = Ty->getElementType();
1788  if (!ElementTy->isSized())
1789    return 0; // We can't GEP through an unsized element.
1790  APInt ElementSize(Offset.getBitWidth(), TD.getTypeAllocSize(ElementTy));
1791  if (ElementSize == 0)
1792    return 0; // Zero-length arrays can't help us build a natural GEP.
1793  APInt NumSkippedElements = Offset.sdiv(ElementSize);
1794
1795  Offset -= NumSkippedElements * ElementSize;
1796  Indices.push_back(IRB.getInt(NumSkippedElements));
1797  return getNaturalGEPRecursively(IRB, TD, Ptr, ElementTy, Offset, TargetTy,
1798                                  Indices, Prefix);
1799}
1800
1801/// \brief Compute an adjusted pointer from Ptr by Offset bytes where the
1802/// resulting pointer has PointerTy.
1803///
1804/// This tries very hard to compute a "natural" GEP which arrives at the offset
1805/// and produces the pointer type desired. Where it cannot, it will try to use
1806/// the natural GEP to arrive at the offset and bitcast to the type. Where that
1807/// fails, it will try to use an existing i8* and GEP to the byte offset and
1808/// bitcast to the type.
1809///
1810/// The strategy for finding the more natural GEPs is to peel off layers of the
1811/// pointer, walking back through bit casts and GEPs, searching for a base
1812/// pointer from which we can compute a natural GEP with the desired
1813/// properties. The algorithm tries to fold as many constant indices into
1814/// a single GEP as possible, thus making each GEP more independent of the
1815/// surrounding code.
1816static Value *getAdjustedPtr(IRBuilder<> &IRB, const DataLayout &TD,
1817                             Value *Ptr, APInt Offset, Type *PointerTy,
1818                             const Twine &Prefix) {
1819  // Even though we don't look through PHI nodes, we could be called on an
1820  // instruction in an unreachable block, which may be on a cycle.
1821  SmallPtrSet<Value *, 4> Visited;
1822  Visited.insert(Ptr);
1823  SmallVector<Value *, 4> Indices;
1824
1825  // We may end up computing an offset pointer that has the wrong type. If we
1826  // never are able to compute one directly that has the correct type, we'll
1827  // fall back to it, so keep it around here.
1828  Value *OffsetPtr = 0;
1829
1830  // Remember any i8 pointer we come across to re-use if we need to do a raw
1831  // byte offset.
1832  Value *Int8Ptr = 0;
1833  APInt Int8PtrOffset(Offset.getBitWidth(), 0);
1834
1835  Type *TargetTy = PointerTy->getPointerElementType();
1836
1837  do {
1838    // First fold any existing GEPs into the offset.
1839    while (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
1840      APInt GEPOffset(Offset.getBitWidth(), 0);
1841      if (!GEP->accumulateConstantOffset(TD, GEPOffset))
1842        break;
1843      Offset += GEPOffset;
1844      Ptr = GEP->getPointerOperand();
1845      if (!Visited.insert(Ptr))
1846        break;
1847    }
1848
1849    // See if we can perform a natural GEP here.
1850    Indices.clear();
1851    if (Value *P = getNaturalGEPWithOffset(IRB, TD, Ptr, Offset, TargetTy,
1852                                           Indices, Prefix)) {
1853      if (P->getType() == PointerTy) {
1854        // Zap any offset pointer that we ended up computing in previous rounds.
1855        if (OffsetPtr && OffsetPtr->use_empty())
1856          if (Instruction *I = dyn_cast<Instruction>(OffsetPtr))
1857            I->eraseFromParent();
1858        return P;
1859      }
1860      if (!OffsetPtr) {
1861        OffsetPtr = P;
1862      }
1863    }
1864
1865    // Stash this pointer if we've found an i8*.
1866    if (Ptr->getType()->isIntegerTy(8)) {
1867      Int8Ptr = Ptr;
1868      Int8PtrOffset = Offset;
1869    }
1870
1871    // Peel off a layer of the pointer and update the offset appropriately.
1872    if (Operator::getOpcode(Ptr) == Instruction::BitCast) {
1873      Ptr = cast<Operator>(Ptr)->getOperand(0);
1874    } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) {
1875      if (GA->mayBeOverridden())
1876        break;
1877      Ptr = GA->getAliasee();
1878    } else {
1879      break;
1880    }
1881    assert(Ptr->getType()->isPointerTy() && "Unexpected operand type!");
1882  } while (Visited.insert(Ptr));
1883
1884  if (!OffsetPtr) {
1885    if (!Int8Ptr) {
1886      Int8Ptr = IRB.CreateBitCast(Ptr, IRB.getInt8PtrTy(),
1887                                  Prefix + ".raw_cast");
1888      Int8PtrOffset = Offset;
1889    }
1890
1891    OffsetPtr = Int8PtrOffset == 0 ? Int8Ptr :
1892      IRB.CreateInBoundsGEP(Int8Ptr, IRB.getInt(Int8PtrOffset),
1893                            Prefix + ".raw_idx");
1894  }
1895  Ptr = OffsetPtr;
1896
1897  // On the off chance we were targeting i8*, guard the bitcast here.
1898  if (Ptr->getType() != PointerTy)
1899    Ptr = IRB.CreateBitCast(Ptr, PointerTy, Prefix + ".cast");
1900
1901  return Ptr;
1902}
1903
1904/// \brief Test whether we can convert a value from the old to the new type.
1905///
1906/// This predicate should be used to guard calls to convertValue in order to
1907/// ensure that we only try to convert viable values. The strategy is that we
1908/// will peel off single element struct and array wrappings to get to an
1909/// underlying value, and convert that value.
1910static bool canConvertValue(const DataLayout &DL, Type *OldTy, Type *NewTy) {
1911  if (OldTy == NewTy)
1912    return true;
1913  if (DL.getTypeSizeInBits(NewTy) != DL.getTypeSizeInBits(OldTy))
1914    return false;
1915  if (!NewTy->isSingleValueType() || !OldTy->isSingleValueType())
1916    return false;
1917
1918  if (NewTy->isPointerTy() || OldTy->isPointerTy()) {
1919    if (NewTy->isPointerTy() && OldTy->isPointerTy())
1920      return true;
1921    if (NewTy->isIntegerTy() || OldTy->isIntegerTy())
1922      return true;
1923    return false;
1924  }
1925
1926  return true;
1927}
1928
1929/// \brief Generic routine to convert an SSA value to a value of a different
1930/// type.
1931///
1932/// This will try various different casting techniques, such as bitcasts,
1933/// inttoptr, and ptrtoint casts. Use the \c canConvertValue predicate to test
1934/// two types for viability with this routine.
1935static Value *convertValue(const DataLayout &DL, IRBuilder<> &IRB, Value *V,
1936                           Type *Ty) {
1937  assert(canConvertValue(DL, V->getType(), Ty) &&
1938         "Value not convertable to type");
1939  if (V->getType() == Ty)
1940    return V;
1941  if (V->getType()->isIntegerTy() && Ty->isPointerTy())
1942    return IRB.CreateIntToPtr(V, Ty);
1943  if (V->getType()->isPointerTy() && Ty->isIntegerTy())
1944    return IRB.CreatePtrToInt(V, Ty);
1945
1946  return IRB.CreateBitCast(V, Ty);
1947}
1948
1949/// \brief Test whether the given alloca partition can be promoted to a vector.
1950///
1951/// This is a quick test to check whether we can rewrite a particular alloca
1952/// partition (and its newly formed alloca) into a vector alloca with only
1953/// whole-vector loads and stores such that it could be promoted to a vector
1954/// SSA value. We only can ensure this for a limited set of operations, and we
1955/// don't want to do the rewrites unless we are confident that the result will
1956/// be promotable, so we have an early test here.
1957static bool isVectorPromotionViable(const DataLayout &TD,
1958                                    Type *AllocaTy,
1959                                    AllocaPartitioning &P,
1960                                    uint64_t PartitionBeginOffset,
1961                                    uint64_t PartitionEndOffset,
1962                                    AllocaPartitioning::const_use_iterator I,
1963                                    AllocaPartitioning::const_use_iterator E) {
1964  VectorType *Ty = dyn_cast<VectorType>(AllocaTy);
1965  if (!Ty)
1966    return false;
1967
1968  uint64_t ElementSize = TD.getTypeSizeInBits(Ty->getScalarType());
1969
1970  // While the definition of LLVM vectors is bitpacked, we don't support sizes
1971  // that aren't byte sized.
1972  if (ElementSize % 8)
1973    return false;
1974  assert((TD.getTypeSizeInBits(Ty) % 8) == 0 &&
1975         "vector size not a multiple of element size?");
1976  ElementSize /= 8;
1977
1978  for (; I != E; ++I) {
1979    if (!I->U)
1980      continue; // Skip dead use.
1981
1982    uint64_t BeginOffset = I->BeginOffset - PartitionBeginOffset;
1983    uint64_t BeginIndex = BeginOffset / ElementSize;
1984    if (BeginIndex * ElementSize != BeginOffset ||
1985        BeginIndex >= Ty->getNumElements())
1986      return false;
1987    uint64_t EndOffset = I->EndOffset - PartitionBeginOffset;
1988    uint64_t EndIndex = EndOffset / ElementSize;
1989    if (EndIndex * ElementSize != EndOffset ||
1990        EndIndex > Ty->getNumElements())
1991      return false;
1992
1993    assert(EndIndex > BeginIndex && "Empty vector!");
1994    uint64_t NumElements = EndIndex - BeginIndex;
1995    Type *PartitionTy
1996      = (NumElements == 1) ? Ty->getElementType()
1997                           : VectorType::get(Ty->getElementType(), NumElements);
1998
1999    if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I->U->getUser())) {
2000      if (MI->isVolatile())
2001        return false;
2002      if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(I->U->getUser())) {
2003        const AllocaPartitioning::MemTransferOffsets &MTO
2004          = P.getMemTransferOffsets(*MTI);
2005        if (!MTO.IsSplittable)
2006          return false;
2007      }
2008    } else if (I->U->get()->getType()->getPointerElementType()->isStructTy()) {
2009      // Disable vector promotion when there are loads or stores of an FCA.
2010      return false;
2011    } else if (LoadInst *LI = dyn_cast<LoadInst>(I->U->getUser())) {
2012      if (LI->isVolatile())
2013        return false;
2014      if (!canConvertValue(TD, PartitionTy, LI->getType()))
2015        return false;
2016    } else if (StoreInst *SI = dyn_cast<StoreInst>(I->U->getUser())) {
2017      if (SI->isVolatile())
2018        return false;
2019      if (!canConvertValue(TD, SI->getValueOperand()->getType(), PartitionTy))
2020        return false;
2021    } else {
2022      return false;
2023    }
2024  }
2025  return true;
2026}
2027
2028/// \brief Test whether the given alloca partition's integer operations can be
2029/// widened to promotable ones.
2030///
2031/// This is a quick test to check whether we can rewrite the integer loads and
2032/// stores to a particular alloca into wider loads and stores and be able to
2033/// promote the resulting alloca.
2034static bool isIntegerWideningViable(const DataLayout &TD,
2035                                    Type *AllocaTy,
2036                                    uint64_t AllocBeginOffset,
2037                                    AllocaPartitioning &P,
2038                                    AllocaPartitioning::const_use_iterator I,
2039                                    AllocaPartitioning::const_use_iterator E) {
2040  uint64_t SizeInBits = TD.getTypeSizeInBits(AllocaTy);
2041  // Don't create integer types larger than the maximum bitwidth.
2042  if (SizeInBits > IntegerType::MAX_INT_BITS)
2043    return false;
2044
2045  // Don't try to handle allocas with bit-padding.
2046  if (SizeInBits != TD.getTypeStoreSizeInBits(AllocaTy))
2047    return false;
2048
2049  // We need to ensure that an integer type with the appropriate bitwidth can
2050  // be converted to the alloca type, whatever that is. We don't want to force
2051  // the alloca itself to have an integer type if there is a more suitable one.
2052  Type *IntTy = Type::getIntNTy(AllocaTy->getContext(), SizeInBits);
2053  if (!canConvertValue(TD, AllocaTy, IntTy) ||
2054      !canConvertValue(TD, IntTy, AllocaTy))
2055    return false;
2056
2057  uint64_t Size = TD.getTypeStoreSize(AllocaTy);
2058
2059  // Check the uses to ensure the uses are (likely) promotable integer uses.
2060  // Also ensure that the alloca has a covering load or store. We don't want
2061  // to widen the integer operations only to fail to promote due to some other
2062  // unsplittable entry (which we may make splittable later).
2063  bool WholeAllocaOp = false;
2064  for (; I != E; ++I) {
2065    if (!I->U)
2066      continue; // Skip dead use.
2067
2068    uint64_t RelBegin = I->BeginOffset - AllocBeginOffset;
2069    uint64_t RelEnd = I->EndOffset - AllocBeginOffset;
2070
2071    // We can't reasonably handle cases where the load or store extends past
2072    // the end of the aloca's type and into its padding.
2073    if (RelEnd > Size)
2074      return false;
2075
2076    if (LoadInst *LI = dyn_cast<LoadInst>(I->U->getUser())) {
2077      if (LI->isVolatile())
2078        return false;
2079      if (RelBegin == 0 && RelEnd == Size)
2080        WholeAllocaOp = true;
2081      if (IntegerType *ITy = dyn_cast<IntegerType>(LI->getType())) {
2082        if (ITy->getBitWidth() < TD.getTypeStoreSizeInBits(ITy))
2083          return false;
2084        continue;
2085      }
2086      // Non-integer loads need to be convertible from the alloca type so that
2087      // they are promotable.
2088      if (RelBegin != 0 || RelEnd != Size ||
2089          !canConvertValue(TD, AllocaTy, LI->getType()))
2090        return false;
2091    } else if (StoreInst *SI = dyn_cast<StoreInst>(I->U->getUser())) {
2092      Type *ValueTy = SI->getValueOperand()->getType();
2093      if (SI->isVolatile())
2094        return false;
2095      if (RelBegin == 0 && RelEnd == Size)
2096        WholeAllocaOp = true;
2097      if (IntegerType *ITy = dyn_cast<IntegerType>(ValueTy)) {
2098        if (ITy->getBitWidth() < TD.getTypeStoreSizeInBits(ITy))
2099          return false;
2100        continue;
2101      }
2102      // Non-integer stores need to be convertible to the alloca type so that
2103      // they are promotable.
2104      if (RelBegin != 0 || RelEnd != Size ||
2105          !canConvertValue(TD, ValueTy, AllocaTy))
2106        return false;
2107    } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I->U->getUser())) {
2108      if (MI->isVolatile() || !isa<Constant>(MI->getLength()))
2109        return false;
2110      if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(I->U->getUser())) {
2111        const AllocaPartitioning::MemTransferOffsets &MTO
2112          = P.getMemTransferOffsets(*MTI);
2113        if (!MTO.IsSplittable)
2114          return false;
2115      }
2116    } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->U->getUser())) {
2117      if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
2118          II->getIntrinsicID() != Intrinsic::lifetime_end)
2119        return false;
2120    } else {
2121      return false;
2122    }
2123  }
2124  return WholeAllocaOp;
2125}
2126
2127static Value *extractInteger(const DataLayout &DL, IRBuilder<> &IRB, Value *V,
2128                             IntegerType *Ty, uint64_t Offset,
2129                             const Twine &Name) {
2130  DEBUG(dbgs() << "       start: " << *V << "\n");
2131  IntegerType *IntTy = cast<IntegerType>(V->getType());
2132  assert(DL.getTypeStoreSize(Ty) + Offset <= DL.getTypeStoreSize(IntTy) &&
2133         "Element extends past full value");
2134  uint64_t ShAmt = 8*Offset;
2135  if (DL.isBigEndian())
2136    ShAmt = 8*(DL.getTypeStoreSize(IntTy) - DL.getTypeStoreSize(Ty) - Offset);
2137  if (ShAmt) {
2138    V = IRB.CreateLShr(V, ShAmt, Name + ".shift");
2139    DEBUG(dbgs() << "     shifted: " << *V << "\n");
2140  }
2141  assert(Ty->getBitWidth() <= IntTy->getBitWidth() &&
2142         "Cannot extract to a larger integer!");
2143  if (Ty != IntTy) {
2144    V = IRB.CreateTrunc(V, Ty, Name + ".trunc");
2145    DEBUG(dbgs() << "     trunced: " << *V << "\n");
2146  }
2147  return V;
2148}
2149
2150static Value *insertInteger(const DataLayout &DL, IRBuilder<> &IRB, Value *Old,
2151                            Value *V, uint64_t Offset, const Twine &Name) {
2152  IntegerType *IntTy = cast<IntegerType>(Old->getType());
2153  IntegerType *Ty = cast<IntegerType>(V->getType());
2154  assert(Ty->getBitWidth() <= IntTy->getBitWidth() &&
2155         "Cannot insert a larger integer!");
2156  DEBUG(dbgs() << "       start: " << *V << "\n");
2157  if (Ty != IntTy) {
2158    V = IRB.CreateZExt(V, IntTy, Name + ".ext");
2159    DEBUG(dbgs() << "    extended: " << *V << "\n");
2160  }
2161  assert(DL.getTypeStoreSize(Ty) + Offset <= DL.getTypeStoreSize(IntTy) &&
2162         "Element store outside of alloca store");
2163  uint64_t ShAmt = 8*Offset;
2164  if (DL.isBigEndian())
2165    ShAmt = 8*(DL.getTypeStoreSize(IntTy) - DL.getTypeStoreSize(Ty) - Offset);
2166  if (ShAmt) {
2167    V = IRB.CreateShl(V, ShAmt, Name + ".shift");
2168    DEBUG(dbgs() << "     shifted: " << *V << "\n");
2169  }
2170
2171  if (ShAmt || Ty->getBitWidth() < IntTy->getBitWidth()) {
2172    APInt Mask = ~Ty->getMask().zext(IntTy->getBitWidth()).shl(ShAmt);
2173    Old = IRB.CreateAnd(Old, Mask, Name + ".mask");
2174    DEBUG(dbgs() << "      masked: " << *Old << "\n");
2175    V = IRB.CreateOr(Old, V, Name + ".insert");
2176    DEBUG(dbgs() << "    inserted: " << *V << "\n");
2177  }
2178  return V;
2179}
2180
2181static Value *extractVector(IRBuilder<> &IRB, Value *V,
2182                            unsigned BeginIndex, unsigned EndIndex,
2183                            const Twine &Name) {
2184  VectorType *VecTy = cast<VectorType>(V->getType());
2185  unsigned NumElements = EndIndex - BeginIndex;
2186  assert(NumElements <= VecTy->getNumElements() && "Too many elements!");
2187
2188  if (NumElements == VecTy->getNumElements())
2189    return V;
2190
2191  if (NumElements == 1) {
2192    V = IRB.CreateExtractElement(V, IRB.getInt32(BeginIndex),
2193                                 Name + ".extract");
2194    DEBUG(dbgs() << "     extract: " << *V << "\n");
2195    return V;
2196  }
2197
2198  SmallVector<Constant*, 8> Mask;
2199  Mask.reserve(NumElements);
2200  for (unsigned i = BeginIndex; i != EndIndex; ++i)
2201    Mask.push_back(IRB.getInt32(i));
2202  V = IRB.CreateShuffleVector(V, UndefValue::get(V->getType()),
2203                              ConstantVector::get(Mask),
2204                              Name + ".extract");
2205  DEBUG(dbgs() << "     shuffle: " << *V << "\n");
2206  return V;
2207}
2208
2209static Value *insertVector(IRBuilder<> &IRB, Value *Old, Value *V,
2210                           unsigned BeginIndex, const Twine &Name) {
2211  VectorType *VecTy = cast<VectorType>(Old->getType());
2212  assert(VecTy && "Can only insert a vector into a vector");
2213
2214  VectorType *Ty = dyn_cast<VectorType>(V->getType());
2215  if (!Ty) {
2216    // Single element to insert.
2217    V = IRB.CreateInsertElement(Old, V, IRB.getInt32(BeginIndex),
2218                                Name + ".insert");
2219    DEBUG(dbgs() <<  "     insert: " << *V << "\n");
2220    return V;
2221  }
2222
2223  assert(Ty->getNumElements() <= VecTy->getNumElements() &&
2224         "Too many elements!");
2225  if (Ty->getNumElements() == VecTy->getNumElements()) {
2226    assert(V->getType() == VecTy && "Vector type mismatch");
2227    return V;
2228  }
2229  unsigned EndIndex = BeginIndex + Ty->getNumElements();
2230
2231  // When inserting a smaller vector into the larger to store, we first
2232  // use a shuffle vector to widen it with undef elements, and then
2233  // a second shuffle vector to select between the loaded vector and the
2234  // incoming vector.
2235  SmallVector<Constant*, 8> Mask;
2236  Mask.reserve(VecTy->getNumElements());
2237  for (unsigned i = 0; i != VecTy->getNumElements(); ++i)
2238    if (i >= BeginIndex && i < EndIndex)
2239      Mask.push_back(IRB.getInt32(i - BeginIndex));
2240    else
2241      Mask.push_back(UndefValue::get(IRB.getInt32Ty()));
2242  V = IRB.CreateShuffleVector(V, UndefValue::get(V->getType()),
2243                              ConstantVector::get(Mask),
2244                              Name + ".expand");
2245  DEBUG(dbgs() << "    shuffle1: " << *V << "\n");
2246
2247  Mask.clear();
2248  for (unsigned i = 0; i != VecTy->getNumElements(); ++i)
2249    if (i >= BeginIndex && i < EndIndex)
2250      Mask.push_back(IRB.getInt32(i));
2251    else
2252      Mask.push_back(IRB.getInt32(i + VecTy->getNumElements()));
2253  V = IRB.CreateShuffleVector(V, Old, ConstantVector::get(Mask),
2254                              Name + "insert");
2255  DEBUG(dbgs() << "    shuffle2: " << *V << "\n");
2256  return V;
2257}
2258
2259namespace {
2260/// \brief Visitor to rewrite instructions using a partition of an alloca to
2261/// use a new alloca.
2262///
2263/// Also implements the rewriting to vector-based accesses when the partition
2264/// passes the isVectorPromotionViable predicate. Most of the rewriting logic
2265/// lives here.
2266class AllocaPartitionRewriter : public InstVisitor<AllocaPartitionRewriter,
2267                                                   bool> {
2268  // Befriend the base class so it can delegate to private visit methods.
2269  friend class llvm::InstVisitor<AllocaPartitionRewriter, bool>;
2270
2271  const DataLayout &TD;
2272  AllocaPartitioning &P;
2273  SROA &Pass;
2274  AllocaInst &OldAI, &NewAI;
2275  const uint64_t NewAllocaBeginOffset, NewAllocaEndOffset;
2276  Type *NewAllocaTy;
2277
2278  // If we are rewriting an alloca partition which can be written as pure
2279  // vector operations, we stash extra information here. When VecTy is
2280  // non-null, we have some strict guarantees about the rewritten alloca:
2281  //   - The new alloca is exactly the size of the vector type here.
2282  //   - The accesses all either map to the entire vector or to a single
2283  //     element.
2284  //   - The set of accessing instructions is only one of those handled above
2285  //     in isVectorPromotionViable. Generally these are the same access kinds
2286  //     which are promotable via mem2reg.
2287  VectorType *VecTy;
2288  Type *ElementTy;
2289  uint64_t ElementSize;
2290
2291  // This is a convenience and flag variable that will be null unless the new
2292  // alloca's integer operations should be widened to this integer type due to
2293  // passing isIntegerWideningViable above. If it is non-null, the desired
2294  // integer type will be stored here for easy access during rewriting.
2295  IntegerType *IntTy;
2296
2297  // The offset of the partition user currently being rewritten.
2298  uint64_t BeginOffset, EndOffset;
2299  Use *OldUse;
2300  Instruction *OldPtr;
2301
2302  // The name prefix to use when rewriting instructions for this alloca.
2303  std::string NamePrefix;
2304
2305public:
2306  AllocaPartitionRewriter(const DataLayout &TD, AllocaPartitioning &P,
2307                          AllocaPartitioning::iterator PI,
2308                          SROA &Pass, AllocaInst &OldAI, AllocaInst &NewAI,
2309                          uint64_t NewBeginOffset, uint64_t NewEndOffset)
2310    : TD(TD), P(P), Pass(Pass),
2311      OldAI(OldAI), NewAI(NewAI),
2312      NewAllocaBeginOffset(NewBeginOffset),
2313      NewAllocaEndOffset(NewEndOffset),
2314      NewAllocaTy(NewAI.getAllocatedType()),
2315      VecTy(), ElementTy(), ElementSize(), IntTy(),
2316      BeginOffset(), EndOffset() {
2317  }
2318
2319  /// \brief Visit the users of the alloca partition and rewrite them.
2320  bool visitUsers(AllocaPartitioning::const_use_iterator I,
2321                  AllocaPartitioning::const_use_iterator E) {
2322    if (isVectorPromotionViable(TD, NewAI.getAllocatedType(), P,
2323                                NewAllocaBeginOffset, NewAllocaEndOffset,
2324                                I, E)) {
2325      ++NumVectorized;
2326      VecTy = cast<VectorType>(NewAI.getAllocatedType());
2327      ElementTy = VecTy->getElementType();
2328      assert((TD.getTypeSizeInBits(VecTy->getScalarType()) % 8) == 0 &&
2329             "Only multiple-of-8 sized vector elements are viable");
2330      ElementSize = TD.getTypeSizeInBits(VecTy->getScalarType()) / 8;
2331    } else if (isIntegerWideningViable(TD, NewAI.getAllocatedType(),
2332                                       NewAllocaBeginOffset, P, I, E)) {
2333      IntTy = Type::getIntNTy(NewAI.getContext(),
2334                              TD.getTypeSizeInBits(NewAI.getAllocatedType()));
2335    }
2336    bool CanSROA = true;
2337    for (; I != E; ++I) {
2338      if (!I->U)
2339        continue; // Skip dead uses.
2340      BeginOffset = I->BeginOffset;
2341      EndOffset = I->EndOffset;
2342      OldUse = I->U;
2343      OldPtr = cast<Instruction>(I->U->get());
2344      NamePrefix = (Twine(NewAI.getName()) + "." + Twine(BeginOffset)).str();
2345      CanSROA &= visit(cast<Instruction>(I->U->getUser()));
2346    }
2347    if (VecTy) {
2348      assert(CanSROA);
2349      VecTy = 0;
2350      ElementTy = 0;
2351      ElementSize = 0;
2352    }
2353    if (IntTy) {
2354      assert(CanSROA);
2355      IntTy = 0;
2356    }
2357    return CanSROA;
2358  }
2359
2360private:
2361  // Every instruction which can end up as a user must have a rewrite rule.
2362  bool visitInstruction(Instruction &I) {
2363    DEBUG(dbgs() << "    !!!! Cannot rewrite: " << I << "\n");
2364    llvm_unreachable("No rewrite rule for this instruction!");
2365  }
2366
2367  Twine getName(const Twine &Suffix) {
2368    return NamePrefix + Suffix;
2369  }
2370
2371  Value *getAdjustedAllocaPtr(IRBuilder<> &IRB, Type *PointerTy) {
2372    assert(BeginOffset >= NewAllocaBeginOffset);
2373    APInt Offset(TD.getPointerSizeInBits(), BeginOffset - NewAllocaBeginOffset);
2374    return getAdjustedPtr(IRB, TD, &NewAI, Offset, PointerTy, getName(""));
2375  }
2376
2377  /// \brief Compute suitable alignment to access an offset into the new alloca.
2378  unsigned getOffsetAlign(uint64_t Offset) {
2379    unsigned NewAIAlign = NewAI.getAlignment();
2380    if (!NewAIAlign)
2381      NewAIAlign = TD.getABITypeAlignment(NewAI.getAllocatedType());
2382    return MinAlign(NewAIAlign, Offset);
2383  }
2384
2385  /// \brief Compute suitable alignment to access this partition of the new
2386  /// alloca.
2387  unsigned getPartitionAlign() {
2388    return getOffsetAlign(BeginOffset - NewAllocaBeginOffset);
2389  }
2390
2391  /// \brief Compute suitable alignment to access a type at an offset of the
2392  /// new alloca.
2393  ///
2394  /// \returns zero if the type's ABI alignment is a suitable alignment,
2395  /// otherwise returns the maximal suitable alignment.
2396  unsigned getOffsetTypeAlign(Type *Ty, uint64_t Offset) {
2397    unsigned Align = getOffsetAlign(Offset);
2398    return Align == TD.getABITypeAlignment(Ty) ? 0 : Align;
2399  }
2400
2401  /// \brief Compute suitable alignment to access a type at the beginning of
2402  /// this partition of the new alloca.
2403  ///
2404  /// See \c getOffsetTypeAlign for details; this routine delegates to it.
2405  unsigned getPartitionTypeAlign(Type *Ty) {
2406    return getOffsetTypeAlign(Ty, BeginOffset - NewAllocaBeginOffset);
2407  }
2408
2409  unsigned getIndex(uint64_t Offset) {
2410    assert(VecTy && "Can only call getIndex when rewriting a vector");
2411    uint64_t RelOffset = Offset - NewAllocaBeginOffset;
2412    assert(RelOffset / ElementSize < UINT32_MAX && "Index out of bounds");
2413    uint32_t Index = RelOffset / ElementSize;
2414    assert(Index * ElementSize == RelOffset);
2415    return Index;
2416  }
2417
2418  void deleteIfTriviallyDead(Value *V) {
2419    Instruction *I = cast<Instruction>(V);
2420    if (isInstructionTriviallyDead(I))
2421      Pass.DeadInsts.insert(I);
2422  }
2423
2424  Value *rewriteVectorizedLoadInst(IRBuilder<> &IRB) {
2425    unsigned BeginIndex = getIndex(BeginOffset);
2426    unsigned EndIndex = getIndex(EndOffset);
2427    assert(EndIndex > BeginIndex && "Empty vector!");
2428
2429    Value *V = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
2430                                     getName(".load"));
2431    return extractVector(IRB, V, BeginIndex, EndIndex, getName(".vec"));
2432  }
2433
2434  Value *rewriteIntegerLoad(IRBuilder<> &IRB, LoadInst &LI) {
2435    assert(IntTy && "We cannot insert an integer to the alloca");
2436    assert(!LI.isVolatile());
2437    Value *V = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
2438                                     getName(".load"));
2439    V = convertValue(TD, IRB, V, IntTy);
2440    assert(BeginOffset >= NewAllocaBeginOffset && "Out of bounds offset");
2441    uint64_t Offset = BeginOffset - NewAllocaBeginOffset;
2442    if (Offset > 0 || EndOffset < NewAllocaEndOffset)
2443      V = extractInteger(TD, IRB, V, cast<IntegerType>(LI.getType()), Offset,
2444                         getName(".extract"));
2445    return V;
2446  }
2447
2448  bool visitLoadInst(LoadInst &LI) {
2449    DEBUG(dbgs() << "    original: " << LI << "\n");
2450    Value *OldOp = LI.getOperand(0);
2451    assert(OldOp == OldPtr);
2452
2453    uint64_t Size = EndOffset - BeginOffset;
2454    bool IsSplitIntLoad = Size < TD.getTypeStoreSize(LI.getType());
2455
2456    // If this memory access can be shown to *statically* extend outside the
2457    // bounds of the original allocation it's behavior is undefined. Rather
2458    // than trying to transform it, just replace it with undef.
2459    // FIXME: We should do something more clever for functions being
2460    // instrumented by asan.
2461    // FIXME: Eventually, once ASan and friends can flush out bugs here, this
2462    // should be transformed to a load of null making it unreachable.
2463    uint64_t OldAllocSize = TD.getTypeAllocSize(OldAI.getAllocatedType());
2464    if (TD.getTypeStoreSize(LI.getType()) > OldAllocSize) {
2465      LI.replaceAllUsesWith(UndefValue::get(LI.getType()));
2466      Pass.DeadInsts.insert(&LI);
2467      deleteIfTriviallyDead(OldOp);
2468      DEBUG(dbgs() << "          to: undef!!\n");
2469      return true;
2470    }
2471
2472    IRBuilder<> IRB(&LI);
2473    Type *TargetTy = IsSplitIntLoad ? Type::getIntNTy(LI.getContext(), Size * 8)
2474                                    : LI.getType();
2475    bool IsPtrAdjusted = false;
2476    Value *V;
2477    if (VecTy) {
2478      V = rewriteVectorizedLoadInst(IRB);
2479    } else if (IntTy && LI.getType()->isIntegerTy()) {
2480      V = rewriteIntegerLoad(IRB, LI);
2481    } else if (BeginOffset == NewAllocaBeginOffset &&
2482               canConvertValue(TD, NewAllocaTy, LI.getType())) {
2483      V = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
2484                                LI.isVolatile(), getName(".load"));
2485    } else {
2486      Type *LTy = TargetTy->getPointerTo();
2487      V = IRB.CreateAlignedLoad(getAdjustedAllocaPtr(IRB, LTy),
2488                                getPartitionTypeAlign(TargetTy),
2489                                LI.isVolatile(), getName(".load"));
2490      IsPtrAdjusted = true;
2491    }
2492    V = convertValue(TD, IRB, V, TargetTy);
2493
2494    if (IsSplitIntLoad) {
2495      assert(!LI.isVolatile());
2496      assert(LI.getType()->isIntegerTy() &&
2497             "Only integer type loads and stores are split");
2498      assert(LI.getType()->getIntegerBitWidth() ==
2499             TD.getTypeStoreSizeInBits(LI.getType()) &&
2500             "Non-byte-multiple bit width");
2501      assert(LI.getType()->getIntegerBitWidth() ==
2502             TD.getTypeAllocSizeInBits(OldAI.getAllocatedType()) &&
2503             "Only alloca-wide loads can be split and recomposed");
2504      // Move the insertion point just past the load so that we can refer to it.
2505      IRB.SetInsertPoint(llvm::next(BasicBlock::iterator(&LI)));
2506      // Create a placeholder value with the same type as LI to use as the
2507      // basis for the new value. This allows us to replace the uses of LI with
2508      // the computed value, and then replace the placeholder with LI, leaving
2509      // LI only used for this computation.
2510      Value *Placeholder
2511        = new LoadInst(UndefValue::get(LI.getType()->getPointerTo()));
2512      V = insertInteger(TD, IRB, Placeholder, V, BeginOffset,
2513                        getName(".insert"));
2514      LI.replaceAllUsesWith(V);
2515      Placeholder->replaceAllUsesWith(&LI);
2516      delete Placeholder;
2517    } else {
2518      LI.replaceAllUsesWith(V);
2519    }
2520
2521    Pass.DeadInsts.insert(&LI);
2522    deleteIfTriviallyDead(OldOp);
2523    DEBUG(dbgs() << "          to: " << *V << "\n");
2524    return !LI.isVolatile() && !IsPtrAdjusted;
2525  }
2526
2527  bool rewriteVectorizedStoreInst(IRBuilder<> &IRB, Value *V,
2528                                  StoreInst &SI, Value *OldOp) {
2529    unsigned BeginIndex = getIndex(BeginOffset);
2530    unsigned EndIndex = getIndex(EndOffset);
2531    assert(EndIndex > BeginIndex && "Empty vector!");
2532    unsigned NumElements = EndIndex - BeginIndex;
2533    assert(NumElements <= VecTy->getNumElements() && "Too many elements!");
2534    Type *PartitionTy
2535      = (NumElements == 1) ? ElementTy
2536                           : VectorType::get(ElementTy, NumElements);
2537    if (V->getType() != PartitionTy)
2538      V = convertValue(TD, IRB, V, PartitionTy);
2539
2540    // Mix in the existing elements.
2541    Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
2542                                       getName(".load"));
2543    V = insertVector(IRB, Old, V, BeginIndex, getName(".vec"));
2544
2545    StoreInst *Store = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment());
2546    Pass.DeadInsts.insert(&SI);
2547
2548    (void)Store;
2549    DEBUG(dbgs() << "          to: " << *Store << "\n");
2550    return true;
2551  }
2552
2553  bool rewriteIntegerStore(IRBuilder<> &IRB, Value *V, StoreInst &SI) {
2554    assert(IntTy && "We cannot extract an integer from the alloca");
2555    assert(!SI.isVolatile());
2556    if (TD.getTypeSizeInBits(V->getType()) != IntTy->getBitWidth()) {
2557      Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
2558                                         getName(".oldload"));
2559      Old = convertValue(TD, IRB, Old, IntTy);
2560      assert(BeginOffset >= NewAllocaBeginOffset && "Out of bounds offset");
2561      uint64_t Offset = BeginOffset - NewAllocaBeginOffset;
2562      V = insertInteger(TD, IRB, Old, SI.getValueOperand(), Offset,
2563                        getName(".insert"));
2564    }
2565    V = convertValue(TD, IRB, V, NewAllocaTy);
2566    StoreInst *Store = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment());
2567    Pass.DeadInsts.insert(&SI);
2568    (void)Store;
2569    DEBUG(dbgs() << "          to: " << *Store << "\n");
2570    return true;
2571  }
2572
2573  bool visitStoreInst(StoreInst &SI) {
2574    DEBUG(dbgs() << "    original: " << SI << "\n");
2575    Value *OldOp = SI.getOperand(1);
2576    assert(OldOp == OldPtr);
2577    IRBuilder<> IRB(&SI);
2578
2579    Value *V = SI.getValueOperand();
2580
2581    // Strip all inbounds GEPs and pointer casts to try to dig out any root
2582    // alloca that should be re-examined after promoting this alloca.
2583    if (V->getType()->isPointerTy())
2584      if (AllocaInst *AI = dyn_cast<AllocaInst>(V->stripInBoundsOffsets()))
2585        Pass.PostPromotionWorklist.insert(AI);
2586
2587    uint64_t Size = EndOffset - BeginOffset;
2588    if (Size < TD.getTypeStoreSize(V->getType())) {
2589      assert(!SI.isVolatile());
2590      assert(V->getType()->isIntegerTy() &&
2591             "Only integer type loads and stores are split");
2592      assert(V->getType()->getIntegerBitWidth() ==
2593             TD.getTypeStoreSizeInBits(V->getType()) &&
2594             "Non-byte-multiple bit width");
2595      assert(V->getType()->getIntegerBitWidth() ==
2596             TD.getTypeAllocSizeInBits(OldAI.getAllocatedType()) &&
2597             "Only alloca-wide stores can be split and recomposed");
2598      IntegerType *NarrowTy = Type::getIntNTy(SI.getContext(), Size * 8);
2599      V = extractInteger(TD, IRB, V, NarrowTy, BeginOffset,
2600                         getName(".extract"));
2601    }
2602
2603    if (VecTy)
2604      return rewriteVectorizedStoreInst(IRB, V, SI, OldOp);
2605    if (IntTy && V->getType()->isIntegerTy())
2606      return rewriteIntegerStore(IRB, V, SI);
2607
2608    StoreInst *NewSI;
2609    if (BeginOffset == NewAllocaBeginOffset &&
2610        canConvertValue(TD, V->getType(), NewAllocaTy)) {
2611      V = convertValue(TD, IRB, V, NewAllocaTy);
2612      NewSI = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment(),
2613                                     SI.isVolatile());
2614    } else {
2615      Value *NewPtr = getAdjustedAllocaPtr(IRB, V->getType()->getPointerTo());
2616      NewSI = IRB.CreateAlignedStore(V, NewPtr,
2617                                     getPartitionTypeAlign(V->getType()),
2618                                     SI.isVolatile());
2619    }
2620    (void)NewSI;
2621    Pass.DeadInsts.insert(&SI);
2622    deleteIfTriviallyDead(OldOp);
2623
2624    DEBUG(dbgs() << "          to: " << *NewSI << "\n");
2625    return NewSI->getPointerOperand() == &NewAI && !SI.isVolatile();
2626  }
2627
2628  /// \brief Compute an integer value from splatting an i8 across the given
2629  /// number of bytes.
2630  ///
2631  /// Note that this routine assumes an i8 is a byte. If that isn't true, don't
2632  /// call this routine.
2633  /// FIXME: Heed the advice above.
2634  ///
2635  /// \param V The i8 value to splat.
2636  /// \param Size The number of bytes in the output (assuming i8 is one byte)
2637  Value *getIntegerSplat(IRBuilder<> &IRB, Value *V, unsigned Size) {
2638    assert(Size > 0 && "Expected a positive number of bytes.");
2639    IntegerType *VTy = cast<IntegerType>(V->getType());
2640    assert(VTy->getBitWidth() == 8 && "Expected an i8 value for the byte");
2641    if (Size == 1)
2642      return V;
2643
2644    Type *SplatIntTy = Type::getIntNTy(VTy->getContext(), Size*8);
2645    V = IRB.CreateMul(IRB.CreateZExt(V, SplatIntTy, getName(".zext")),
2646                      ConstantExpr::getUDiv(
2647                        Constant::getAllOnesValue(SplatIntTy),
2648                        ConstantExpr::getZExt(
2649                          Constant::getAllOnesValue(V->getType()),
2650                          SplatIntTy)),
2651                      getName(".isplat"));
2652    return V;
2653  }
2654
2655  /// \brief Compute a vector splat for a given element value.
2656  Value *getVectorSplat(IRBuilder<> &IRB, Value *V, unsigned NumElements) {
2657    V = IRB.CreateVectorSplat(NumElements, V, NamePrefix);
2658    DEBUG(dbgs() << "       splat: " << *V << "\n");
2659    return V;
2660  }
2661
2662  bool visitMemSetInst(MemSetInst &II) {
2663    DEBUG(dbgs() << "    original: " << II << "\n");
2664    IRBuilder<> IRB(&II);
2665    assert(II.getRawDest() == OldPtr);
2666
2667    // If the memset has a variable size, it cannot be split, just adjust the
2668    // pointer to the new alloca.
2669    if (!isa<Constant>(II.getLength())) {
2670      II.setDest(getAdjustedAllocaPtr(IRB, II.getRawDest()->getType()));
2671      Type *CstTy = II.getAlignmentCst()->getType();
2672      II.setAlignment(ConstantInt::get(CstTy, getPartitionAlign()));
2673
2674      deleteIfTriviallyDead(OldPtr);
2675      return false;
2676    }
2677
2678    // Record this instruction for deletion.
2679    Pass.DeadInsts.insert(&II);
2680
2681    Type *AllocaTy = NewAI.getAllocatedType();
2682    Type *ScalarTy = AllocaTy->getScalarType();
2683
2684    // If this doesn't map cleanly onto the alloca type, and that type isn't
2685    // a single value type, just emit a memset.
2686    if (!VecTy && !IntTy &&
2687        (BeginOffset != NewAllocaBeginOffset ||
2688         EndOffset != NewAllocaEndOffset ||
2689         !AllocaTy->isSingleValueType() ||
2690         !TD.isLegalInteger(TD.getTypeSizeInBits(ScalarTy)) ||
2691         TD.getTypeSizeInBits(ScalarTy)%8 != 0)) {
2692      Type *SizeTy = II.getLength()->getType();
2693      Constant *Size = ConstantInt::get(SizeTy, EndOffset - BeginOffset);
2694      CallInst *New
2695        = IRB.CreateMemSet(getAdjustedAllocaPtr(IRB,
2696                                                II.getRawDest()->getType()),
2697                           II.getValue(), Size, getPartitionAlign(),
2698                           II.isVolatile());
2699      (void)New;
2700      DEBUG(dbgs() << "          to: " << *New << "\n");
2701      return false;
2702    }
2703
2704    // If we can represent this as a simple value, we have to build the actual
2705    // value to store, which requires expanding the byte present in memset to
2706    // a sensible representation for the alloca type. This is essentially
2707    // splatting the byte to a sufficiently wide integer, splatting it across
2708    // any desired vector width, and bitcasting to the final type.
2709    Value *V;
2710
2711    if (VecTy) {
2712      // If this is a memset of a vectorized alloca, insert it.
2713      assert(ElementTy == ScalarTy);
2714
2715      unsigned BeginIndex = getIndex(BeginOffset);
2716      unsigned EndIndex = getIndex(EndOffset);
2717      assert(EndIndex > BeginIndex && "Empty vector!");
2718      unsigned NumElements = EndIndex - BeginIndex;
2719      assert(NumElements <= VecTy->getNumElements() && "Too many elements!");
2720
2721      Value *Splat = getIntegerSplat(IRB, II.getValue(),
2722                                     TD.getTypeSizeInBits(ElementTy)/8);
2723      Splat = convertValue(TD, IRB, Splat, ElementTy);
2724      if (NumElements > 1)
2725        Splat = getVectorSplat(IRB, Splat, NumElements);
2726
2727      Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
2728                                         getName(".oldload"));
2729      V = insertVector(IRB, Old, Splat, BeginIndex, getName(".vec"));
2730    } else if (IntTy) {
2731      // If this is a memset on an alloca where we can widen stores, insert the
2732      // set integer.
2733      assert(!II.isVolatile());
2734
2735      uint64_t Size = EndOffset - BeginOffset;
2736      V = getIntegerSplat(IRB, II.getValue(), Size);
2737
2738      if (IntTy && (BeginOffset != NewAllocaBeginOffset ||
2739                    EndOffset != NewAllocaBeginOffset)) {
2740        Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
2741                                           getName(".oldload"));
2742        Old = convertValue(TD, IRB, Old, IntTy);
2743        assert(BeginOffset >= NewAllocaBeginOffset && "Out of bounds offset");
2744        uint64_t Offset = BeginOffset - NewAllocaBeginOffset;
2745        V = insertInteger(TD, IRB, Old, V, Offset, getName(".insert"));
2746      } else {
2747        assert(V->getType() == IntTy &&
2748               "Wrong type for an alloca wide integer!");
2749      }
2750      V = convertValue(TD, IRB, V, AllocaTy);
2751    } else {
2752      // Established these invariants above.
2753      assert(BeginOffset == NewAllocaBeginOffset);
2754      assert(EndOffset == NewAllocaEndOffset);
2755
2756      V = getIntegerSplat(IRB, II.getValue(),
2757                          TD.getTypeSizeInBits(ScalarTy)/8);
2758      if (VectorType *AllocaVecTy = dyn_cast<VectorType>(AllocaTy))
2759        V = getVectorSplat(IRB, V, AllocaVecTy->getNumElements());
2760
2761      V = convertValue(TD, IRB, V, AllocaTy);
2762    }
2763
2764    Value *New = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment(),
2765                                        II.isVolatile());
2766    (void)New;
2767    DEBUG(dbgs() << "          to: " << *New << "\n");
2768    return !II.isVolatile();
2769  }
2770
2771  bool visitMemTransferInst(MemTransferInst &II) {
2772    // Rewriting of memory transfer instructions can be a bit tricky. We break
2773    // them into two categories: split intrinsics and unsplit intrinsics.
2774
2775    DEBUG(dbgs() << "    original: " << II << "\n");
2776    IRBuilder<> IRB(&II);
2777
2778    assert(II.getRawSource() == OldPtr || II.getRawDest() == OldPtr);
2779    bool IsDest = II.getRawDest() == OldPtr;
2780
2781    const AllocaPartitioning::MemTransferOffsets &MTO
2782      = P.getMemTransferOffsets(II);
2783
2784    // Compute the relative offset within the transfer.
2785    unsigned IntPtrWidth = TD.getPointerSizeInBits();
2786    APInt RelOffset(IntPtrWidth, BeginOffset - (IsDest ? MTO.DestBegin
2787                                                       : MTO.SourceBegin));
2788
2789    unsigned Align = II.getAlignment();
2790    if (Align > 1)
2791      Align = MinAlign(RelOffset.zextOrTrunc(64).getZExtValue(),
2792                       MinAlign(II.getAlignment(), getPartitionAlign()));
2793
2794    // For unsplit intrinsics, we simply modify the source and destination
2795    // pointers in place. This isn't just an optimization, it is a matter of
2796    // correctness. With unsplit intrinsics we may be dealing with transfers
2797    // within a single alloca before SROA ran, or with transfers that have
2798    // a variable length. We may also be dealing with memmove instead of
2799    // memcpy, and so simply updating the pointers is the necessary for us to
2800    // update both source and dest of a single call.
2801    if (!MTO.IsSplittable) {
2802      Value *OldOp = IsDest ? II.getRawDest() : II.getRawSource();
2803      if (IsDest)
2804        II.setDest(getAdjustedAllocaPtr(IRB, II.getRawDest()->getType()));
2805      else
2806        II.setSource(getAdjustedAllocaPtr(IRB, II.getRawSource()->getType()));
2807
2808      Type *CstTy = II.getAlignmentCst()->getType();
2809      II.setAlignment(ConstantInt::get(CstTy, Align));
2810
2811      DEBUG(dbgs() << "          to: " << II << "\n");
2812      deleteIfTriviallyDead(OldOp);
2813      return false;
2814    }
2815    // For split transfer intrinsics we have an incredibly useful assurance:
2816    // the source and destination do not reside within the same alloca, and at
2817    // least one of them does not escape. This means that we can replace
2818    // memmove with memcpy, and we don't need to worry about all manner of
2819    // downsides to splitting and transforming the operations.
2820
2821    // If this doesn't map cleanly onto the alloca type, and that type isn't
2822    // a single value type, just emit a memcpy.
2823    bool EmitMemCpy
2824      = !VecTy && !IntTy && (BeginOffset != NewAllocaBeginOffset ||
2825                             EndOffset != NewAllocaEndOffset ||
2826                             !NewAI.getAllocatedType()->isSingleValueType());
2827
2828    // If we're just going to emit a memcpy, the alloca hasn't changed, and the
2829    // size hasn't been shrunk based on analysis of the viable range, this is
2830    // a no-op.
2831    if (EmitMemCpy && &OldAI == &NewAI) {
2832      uint64_t OrigBegin = IsDest ? MTO.DestBegin : MTO.SourceBegin;
2833      uint64_t OrigEnd = IsDest ? MTO.DestEnd : MTO.SourceEnd;
2834      // Ensure the start lines up.
2835      assert(BeginOffset == OrigBegin);
2836      (void)OrigBegin;
2837
2838      // Rewrite the size as needed.
2839      if (EndOffset != OrigEnd)
2840        II.setLength(ConstantInt::get(II.getLength()->getType(),
2841                                      EndOffset - BeginOffset));
2842      return false;
2843    }
2844    // Record this instruction for deletion.
2845    Pass.DeadInsts.insert(&II);
2846
2847    // Strip all inbounds GEPs and pointer casts to try to dig out any root
2848    // alloca that should be re-examined after rewriting this instruction.
2849    Value *OtherPtr = IsDest ? II.getRawSource() : II.getRawDest();
2850    if (AllocaInst *AI
2851          = dyn_cast<AllocaInst>(OtherPtr->stripInBoundsOffsets()))
2852      Pass.Worklist.insert(AI);
2853
2854    if (EmitMemCpy) {
2855      Type *OtherPtrTy = IsDest ? II.getRawSource()->getType()
2856                                : II.getRawDest()->getType();
2857
2858      // Compute the other pointer, folding as much as possible to produce
2859      // a single, simple GEP in most cases.
2860      OtherPtr = getAdjustedPtr(IRB, TD, OtherPtr, RelOffset, OtherPtrTy,
2861                                getName("." + OtherPtr->getName()));
2862
2863      Value *OurPtr
2864        = getAdjustedAllocaPtr(IRB, IsDest ? II.getRawDest()->getType()
2865                                           : II.getRawSource()->getType());
2866      Type *SizeTy = II.getLength()->getType();
2867      Constant *Size = ConstantInt::get(SizeTy, EndOffset - BeginOffset);
2868
2869      CallInst *New = IRB.CreateMemCpy(IsDest ? OurPtr : OtherPtr,
2870                                       IsDest ? OtherPtr : OurPtr,
2871                                       Size, Align, II.isVolatile());
2872      (void)New;
2873      DEBUG(dbgs() << "          to: " << *New << "\n");
2874      return false;
2875    }
2876
2877    // Note that we clamp the alignment to 1 here as a 0 alignment for a memcpy
2878    // is equivalent to 1, but that isn't true if we end up rewriting this as
2879    // a load or store.
2880    if (!Align)
2881      Align = 1;
2882
2883    bool IsWholeAlloca = BeginOffset == NewAllocaBeginOffset &&
2884                         EndOffset == NewAllocaEndOffset;
2885    uint64_t Size = EndOffset - BeginOffset;
2886    unsigned BeginIndex = VecTy ? getIndex(BeginOffset) : 0;
2887    unsigned EndIndex = VecTy ? getIndex(EndOffset) : 0;
2888    unsigned NumElements = EndIndex - BeginIndex;
2889    IntegerType *SubIntTy
2890      = IntTy ? Type::getIntNTy(IntTy->getContext(), Size*8) : 0;
2891
2892    Type *OtherPtrTy = NewAI.getType();
2893    if (VecTy && !IsWholeAlloca) {
2894      if (NumElements == 1)
2895        OtherPtrTy = VecTy->getElementType();
2896      else
2897        OtherPtrTy = VectorType::get(VecTy->getElementType(), NumElements);
2898
2899      OtherPtrTy = OtherPtrTy->getPointerTo();
2900    } else if (IntTy && !IsWholeAlloca) {
2901      OtherPtrTy = SubIntTy->getPointerTo();
2902    }
2903
2904    Value *SrcPtr = getAdjustedPtr(IRB, TD, OtherPtr, RelOffset, OtherPtrTy,
2905                                   getName("." + OtherPtr->getName()));
2906    Value *DstPtr = &NewAI;
2907    if (!IsDest)
2908      std::swap(SrcPtr, DstPtr);
2909
2910    Value *Src;
2911    if (VecTy && !IsWholeAlloca && !IsDest) {
2912      Src = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
2913                                  getName(".load"));
2914      Src = extractVector(IRB, Src, BeginIndex, EndIndex, getName(".vec"));
2915    } else if (IntTy && !IsWholeAlloca && !IsDest) {
2916      Src = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
2917                                  getName(".load"));
2918      Src = convertValue(TD, IRB, Src, IntTy);
2919      assert(BeginOffset >= NewAllocaBeginOffset && "Out of bounds offset");
2920      uint64_t Offset = BeginOffset - NewAllocaBeginOffset;
2921      Src = extractInteger(TD, IRB, Src, SubIntTy, Offset, getName(".extract"));
2922    } else {
2923      Src = IRB.CreateAlignedLoad(SrcPtr, Align, II.isVolatile(),
2924                                  getName(".copyload"));
2925    }
2926
2927    if (VecTy && !IsWholeAlloca && IsDest) {
2928      Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
2929                                         getName(".oldload"));
2930      Src = insertVector(IRB, Old, Src, BeginIndex, getName(".vec"));
2931    } else if (IntTy && !IsWholeAlloca && IsDest) {
2932      Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
2933                                         getName(".oldload"));
2934      Old = convertValue(TD, IRB, Old, IntTy);
2935      assert(BeginOffset >= NewAllocaBeginOffset && "Out of bounds offset");
2936      uint64_t Offset = BeginOffset - NewAllocaBeginOffset;
2937      Src = insertInteger(TD, IRB, Old, Src, Offset, getName(".insert"));
2938      Src = convertValue(TD, IRB, Src, NewAllocaTy);
2939    }
2940
2941    StoreInst *Store = cast<StoreInst>(
2942      IRB.CreateAlignedStore(Src, DstPtr, Align, II.isVolatile()));
2943    (void)Store;
2944    DEBUG(dbgs() << "          to: " << *Store << "\n");
2945    return !II.isVolatile();
2946  }
2947
2948  bool visitIntrinsicInst(IntrinsicInst &II) {
2949    assert(II.getIntrinsicID() == Intrinsic::lifetime_start ||
2950           II.getIntrinsicID() == Intrinsic::lifetime_end);
2951    DEBUG(dbgs() << "    original: " << II << "\n");
2952    IRBuilder<> IRB(&II);
2953    assert(II.getArgOperand(1) == OldPtr);
2954
2955    // Record this instruction for deletion.
2956    Pass.DeadInsts.insert(&II);
2957
2958    ConstantInt *Size
2959      = ConstantInt::get(cast<IntegerType>(II.getArgOperand(0)->getType()),
2960                         EndOffset - BeginOffset);
2961    Value *Ptr = getAdjustedAllocaPtr(IRB, II.getArgOperand(1)->getType());
2962    Value *New;
2963    if (II.getIntrinsicID() == Intrinsic::lifetime_start)
2964      New = IRB.CreateLifetimeStart(Ptr, Size);
2965    else
2966      New = IRB.CreateLifetimeEnd(Ptr, Size);
2967
2968    (void)New;
2969    DEBUG(dbgs() << "          to: " << *New << "\n");
2970    return true;
2971  }
2972
2973  bool visitPHINode(PHINode &PN) {
2974    DEBUG(dbgs() << "    original: " << PN << "\n");
2975
2976    // We would like to compute a new pointer in only one place, but have it be
2977    // as local as possible to the PHI. To do that, we re-use the location of
2978    // the old pointer, which necessarily must be in the right position to
2979    // dominate the PHI.
2980    IRBuilder<> PtrBuilder(cast<Instruction>(OldPtr));
2981
2982    Value *NewPtr = getAdjustedAllocaPtr(PtrBuilder, OldPtr->getType());
2983    // Replace the operands which were using the old pointer.
2984    std::replace(PN.op_begin(), PN.op_end(), cast<Value>(OldPtr), NewPtr);
2985
2986    DEBUG(dbgs() << "          to: " << PN << "\n");
2987    deleteIfTriviallyDead(OldPtr);
2988    return false;
2989  }
2990
2991  bool visitSelectInst(SelectInst &SI) {
2992    DEBUG(dbgs() << "    original: " << SI << "\n");
2993    IRBuilder<> IRB(&SI);
2994
2995    // Find the operand we need to rewrite here.
2996    bool IsTrueVal = SI.getTrueValue() == OldPtr;
2997    if (IsTrueVal)
2998      assert(SI.getFalseValue() != OldPtr && "Pointer is both operands!");
2999    else
3000      assert(SI.getFalseValue() == OldPtr && "Pointer isn't an operand!");
3001
3002    Value *NewPtr = getAdjustedAllocaPtr(IRB, OldPtr->getType());
3003    SI.setOperand(IsTrueVal ? 1 : 2, NewPtr);
3004    DEBUG(dbgs() << "          to: " << SI << "\n");
3005    deleteIfTriviallyDead(OldPtr);
3006    return false;
3007  }
3008
3009};
3010}
3011
3012namespace {
3013/// \brief Visitor to rewrite aggregate loads and stores as scalar.
3014///
3015/// This pass aggressively rewrites all aggregate loads and stores on
3016/// a particular pointer (or any pointer derived from it which we can identify)
3017/// with scalar loads and stores.
3018class AggLoadStoreRewriter : public InstVisitor<AggLoadStoreRewriter, bool> {
3019  // Befriend the base class so it can delegate to private visit methods.
3020  friend class llvm::InstVisitor<AggLoadStoreRewriter, bool>;
3021
3022  const DataLayout &TD;
3023
3024  /// Queue of pointer uses to analyze and potentially rewrite.
3025  SmallVector<Use *, 8> Queue;
3026
3027  /// Set to prevent us from cycling with phi nodes and loops.
3028  SmallPtrSet<User *, 8> Visited;
3029
3030  /// The current pointer use being rewritten. This is used to dig up the used
3031  /// value (as opposed to the user).
3032  Use *U;
3033
3034public:
3035  AggLoadStoreRewriter(const DataLayout &TD) : TD(TD) {}
3036
3037  /// Rewrite loads and stores through a pointer and all pointers derived from
3038  /// it.
3039  bool rewrite(Instruction &I) {
3040    DEBUG(dbgs() << "  Rewriting FCA loads and stores...\n");
3041    enqueueUsers(I);
3042    bool Changed = false;
3043    while (!Queue.empty()) {
3044      U = Queue.pop_back_val();
3045      Changed |= visit(cast<Instruction>(U->getUser()));
3046    }
3047    return Changed;
3048  }
3049
3050private:
3051  /// Enqueue all the users of the given instruction for further processing.
3052  /// This uses a set to de-duplicate users.
3053  void enqueueUsers(Instruction &I) {
3054    for (Value::use_iterator UI = I.use_begin(), UE = I.use_end(); UI != UE;
3055         ++UI)
3056      if (Visited.insert(*UI))
3057        Queue.push_back(&UI.getUse());
3058  }
3059
3060  // Conservative default is to not rewrite anything.
3061  bool visitInstruction(Instruction &I) { return false; }
3062
3063  /// \brief Generic recursive split emission class.
3064  template <typename Derived>
3065  class OpSplitter {
3066  protected:
3067    /// The builder used to form new instructions.
3068    IRBuilder<> IRB;
3069    /// The indices which to be used with insert- or extractvalue to select the
3070    /// appropriate value within the aggregate.
3071    SmallVector<unsigned, 4> Indices;
3072    /// The indices to a GEP instruction which will move Ptr to the correct slot
3073    /// within the aggregate.
3074    SmallVector<Value *, 4> GEPIndices;
3075    /// The base pointer of the original op, used as a base for GEPing the
3076    /// split operations.
3077    Value *Ptr;
3078
3079    /// Initialize the splitter with an insertion point, Ptr and start with a
3080    /// single zero GEP index.
3081    OpSplitter(Instruction *InsertionPoint, Value *Ptr)
3082      : IRB(InsertionPoint), GEPIndices(1, IRB.getInt32(0)), Ptr(Ptr) {}
3083
3084  public:
3085    /// \brief Generic recursive split emission routine.
3086    ///
3087    /// This method recursively splits an aggregate op (load or store) into
3088    /// scalar or vector ops. It splits recursively until it hits a single value
3089    /// and emits that single value operation via the template argument.
3090    ///
3091    /// The logic of this routine relies on GEPs and insertvalue and
3092    /// extractvalue all operating with the same fundamental index list, merely
3093    /// formatted differently (GEPs need actual values).
3094    ///
3095    /// \param Ty  The type being split recursively into smaller ops.
3096    /// \param Agg The aggregate value being built up or stored, depending on
3097    /// whether this is splitting a load or a store respectively.
3098    void emitSplitOps(Type *Ty, Value *&Agg, const Twine &Name) {
3099      if (Ty->isSingleValueType())
3100        return static_cast<Derived *>(this)->emitFunc(Ty, Agg, Name);
3101
3102      if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
3103        unsigned OldSize = Indices.size();
3104        (void)OldSize;
3105        for (unsigned Idx = 0, Size = ATy->getNumElements(); Idx != Size;
3106             ++Idx) {
3107          assert(Indices.size() == OldSize && "Did not return to the old size");
3108          Indices.push_back(Idx);
3109          GEPIndices.push_back(IRB.getInt32(Idx));
3110          emitSplitOps(ATy->getElementType(), Agg, Name + "." + Twine(Idx));
3111          GEPIndices.pop_back();
3112          Indices.pop_back();
3113        }
3114        return;
3115      }
3116
3117      if (StructType *STy = dyn_cast<StructType>(Ty)) {
3118        unsigned OldSize = Indices.size();
3119        (void)OldSize;
3120        for (unsigned Idx = 0, Size = STy->getNumElements(); Idx != Size;
3121             ++Idx) {
3122          assert(Indices.size() == OldSize && "Did not return to the old size");
3123          Indices.push_back(Idx);
3124          GEPIndices.push_back(IRB.getInt32(Idx));
3125          emitSplitOps(STy->getElementType(Idx), Agg, Name + "." + Twine(Idx));
3126          GEPIndices.pop_back();
3127          Indices.pop_back();
3128        }
3129        return;
3130      }
3131
3132      llvm_unreachable("Only arrays and structs are aggregate loadable types");
3133    }
3134  };
3135
3136  struct LoadOpSplitter : public OpSplitter<LoadOpSplitter> {
3137    LoadOpSplitter(Instruction *InsertionPoint, Value *Ptr)
3138      : OpSplitter<LoadOpSplitter>(InsertionPoint, Ptr) {}
3139
3140    /// Emit a leaf load of a single value. This is called at the leaves of the
3141    /// recursive emission to actually load values.
3142    void emitFunc(Type *Ty, Value *&Agg, const Twine &Name) {
3143      assert(Ty->isSingleValueType());
3144      // Load the single value and insert it using the indices.
3145      Value *GEP = IRB.CreateInBoundsGEP(Ptr, GEPIndices, Name + ".gep");
3146      Value *Load = IRB.CreateLoad(GEP, Name + ".load");
3147      Agg = IRB.CreateInsertValue(Agg, Load, Indices, Name + ".insert");
3148      DEBUG(dbgs() << "          to: " << *Load << "\n");
3149    }
3150  };
3151
3152  bool visitLoadInst(LoadInst &LI) {
3153    assert(LI.getPointerOperand() == *U);
3154    if (!LI.isSimple() || LI.getType()->isSingleValueType())
3155      return false;
3156
3157    // We have an aggregate being loaded, split it apart.
3158    DEBUG(dbgs() << "    original: " << LI << "\n");
3159    LoadOpSplitter Splitter(&LI, *U);
3160    Value *V = UndefValue::get(LI.getType());
3161    Splitter.emitSplitOps(LI.getType(), V, LI.getName() + ".fca");
3162    LI.replaceAllUsesWith(V);
3163    LI.eraseFromParent();
3164    return true;
3165  }
3166
3167  struct StoreOpSplitter : public OpSplitter<StoreOpSplitter> {
3168    StoreOpSplitter(Instruction *InsertionPoint, Value *Ptr)
3169      : OpSplitter<StoreOpSplitter>(InsertionPoint, Ptr) {}
3170
3171    /// Emit a leaf store of a single value. This is called at the leaves of the
3172    /// recursive emission to actually produce stores.
3173    void emitFunc(Type *Ty, Value *&Agg, const Twine &Name) {
3174      assert(Ty->isSingleValueType());
3175      // Extract the single value and store it using the indices.
3176      Value *Store = IRB.CreateStore(
3177        IRB.CreateExtractValue(Agg, Indices, Name + ".extract"),
3178        IRB.CreateInBoundsGEP(Ptr, GEPIndices, Name + ".gep"));
3179      (void)Store;
3180      DEBUG(dbgs() << "          to: " << *Store << "\n");
3181    }
3182  };
3183
3184  bool visitStoreInst(StoreInst &SI) {
3185    if (!SI.isSimple() || SI.getPointerOperand() != *U)
3186      return false;
3187    Value *V = SI.getValueOperand();
3188    if (V->getType()->isSingleValueType())
3189      return false;
3190
3191    // We have an aggregate being stored, split it apart.
3192    DEBUG(dbgs() << "    original: " << SI << "\n");
3193    StoreOpSplitter Splitter(&SI, *U);
3194    Splitter.emitSplitOps(V->getType(), V, V->getName() + ".fca");
3195    SI.eraseFromParent();
3196    return true;
3197  }
3198
3199  bool visitBitCastInst(BitCastInst &BC) {
3200    enqueueUsers(BC);
3201    return false;
3202  }
3203
3204  bool visitGetElementPtrInst(GetElementPtrInst &GEPI) {
3205    enqueueUsers(GEPI);
3206    return false;
3207  }
3208
3209  bool visitPHINode(PHINode &PN) {
3210    enqueueUsers(PN);
3211    return false;
3212  }
3213
3214  bool visitSelectInst(SelectInst &SI) {
3215    enqueueUsers(SI);
3216    return false;
3217  }
3218};
3219}
3220
3221/// \brief Strip aggregate type wrapping.
3222///
3223/// This removes no-op aggregate types wrapping an underlying type. It will
3224/// strip as many layers of types as it can without changing either the type
3225/// size or the allocated size.
3226static Type *stripAggregateTypeWrapping(const DataLayout &DL, Type *Ty) {
3227  if (Ty->isSingleValueType())
3228    return Ty;
3229
3230  uint64_t AllocSize = DL.getTypeAllocSize(Ty);
3231  uint64_t TypeSize = DL.getTypeSizeInBits(Ty);
3232
3233  Type *InnerTy;
3234  if (ArrayType *ArrTy = dyn_cast<ArrayType>(Ty)) {
3235    InnerTy = ArrTy->getElementType();
3236  } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
3237    const StructLayout *SL = DL.getStructLayout(STy);
3238    unsigned Index = SL->getElementContainingOffset(0);
3239    InnerTy = STy->getElementType(Index);
3240  } else {
3241    return Ty;
3242  }
3243
3244  if (AllocSize > DL.getTypeAllocSize(InnerTy) ||
3245      TypeSize > DL.getTypeSizeInBits(InnerTy))
3246    return Ty;
3247
3248  return stripAggregateTypeWrapping(DL, InnerTy);
3249}
3250
3251/// \brief Try to find a partition of the aggregate type passed in for a given
3252/// offset and size.
3253///
3254/// This recurses through the aggregate type and tries to compute a subtype
3255/// based on the offset and size. When the offset and size span a sub-section
3256/// of an array, it will even compute a new array type for that sub-section,
3257/// and the same for structs.
3258///
3259/// Note that this routine is very strict and tries to find a partition of the
3260/// type which produces the *exact* right offset and size. It is not forgiving
3261/// when the size or offset cause either end of type-based partition to be off.
3262/// Also, this is a best-effort routine. It is reasonable to give up and not
3263/// return a type if necessary.
3264static Type *getTypePartition(const DataLayout &TD, Type *Ty,
3265                              uint64_t Offset, uint64_t Size) {
3266  if (Offset == 0 && TD.getTypeAllocSize(Ty) == Size)
3267    return stripAggregateTypeWrapping(TD, Ty);
3268  if (Offset > TD.getTypeAllocSize(Ty) ||
3269      (TD.getTypeAllocSize(Ty) - Offset) < Size)
3270    return 0;
3271
3272  if (SequentialType *SeqTy = dyn_cast<SequentialType>(Ty)) {
3273    // We can't partition pointers...
3274    if (SeqTy->isPointerTy())
3275      return 0;
3276
3277    Type *ElementTy = SeqTy->getElementType();
3278    uint64_t ElementSize = TD.getTypeAllocSize(ElementTy);
3279    uint64_t NumSkippedElements = Offset / ElementSize;
3280    if (ArrayType *ArrTy = dyn_cast<ArrayType>(SeqTy))
3281      if (NumSkippedElements >= ArrTy->getNumElements())
3282        return 0;
3283    if (VectorType *VecTy = dyn_cast<VectorType>(SeqTy))
3284      if (NumSkippedElements >= VecTy->getNumElements())
3285        return 0;
3286    Offset -= NumSkippedElements * ElementSize;
3287
3288    // First check if we need to recurse.
3289    if (Offset > 0 || Size < ElementSize) {
3290      // Bail if the partition ends in a different array element.
3291      if ((Offset + Size) > ElementSize)
3292        return 0;
3293      // Recurse through the element type trying to peel off offset bytes.
3294      return getTypePartition(TD, ElementTy, Offset, Size);
3295    }
3296    assert(Offset == 0);
3297
3298    if (Size == ElementSize)
3299      return stripAggregateTypeWrapping(TD, ElementTy);
3300    assert(Size > ElementSize);
3301    uint64_t NumElements = Size / ElementSize;
3302    if (NumElements * ElementSize != Size)
3303      return 0;
3304    return ArrayType::get(ElementTy, NumElements);
3305  }
3306
3307  StructType *STy = dyn_cast<StructType>(Ty);
3308  if (!STy)
3309    return 0;
3310
3311  const StructLayout *SL = TD.getStructLayout(STy);
3312  if (Offset >= SL->getSizeInBytes())
3313    return 0;
3314  uint64_t EndOffset = Offset + Size;
3315  if (EndOffset > SL->getSizeInBytes())
3316    return 0;
3317
3318  unsigned Index = SL->getElementContainingOffset(Offset);
3319  Offset -= SL->getElementOffset(Index);
3320
3321  Type *ElementTy = STy->getElementType(Index);
3322  uint64_t ElementSize = TD.getTypeAllocSize(ElementTy);
3323  if (Offset >= ElementSize)
3324    return 0; // The offset points into alignment padding.
3325
3326  // See if any partition must be contained by the element.
3327  if (Offset > 0 || Size < ElementSize) {
3328    if ((Offset + Size) > ElementSize)
3329      return 0;
3330    return getTypePartition(TD, ElementTy, Offset, Size);
3331  }
3332  assert(Offset == 0);
3333
3334  if (Size == ElementSize)
3335    return stripAggregateTypeWrapping(TD, ElementTy);
3336
3337  StructType::element_iterator EI = STy->element_begin() + Index,
3338                               EE = STy->element_end();
3339  if (EndOffset < SL->getSizeInBytes()) {
3340    unsigned EndIndex = SL->getElementContainingOffset(EndOffset);
3341    if (Index == EndIndex)
3342      return 0; // Within a single element and its padding.
3343
3344    // Don't try to form "natural" types if the elements don't line up with the
3345    // expected size.
3346    // FIXME: We could potentially recurse down through the last element in the
3347    // sub-struct to find a natural end point.
3348    if (SL->getElementOffset(EndIndex) != EndOffset)
3349      return 0;
3350
3351    assert(Index < EndIndex);
3352    EE = STy->element_begin() + EndIndex;
3353  }
3354
3355  // Try to build up a sub-structure.
3356  StructType *SubTy = StructType::get(STy->getContext(), makeArrayRef(EI, EE),
3357                                      STy->isPacked());
3358  const StructLayout *SubSL = TD.getStructLayout(SubTy);
3359  if (Size != SubSL->getSizeInBytes())
3360    return 0; // The sub-struct doesn't have quite the size needed.
3361
3362  return SubTy;
3363}
3364
3365/// \brief Rewrite an alloca partition's users.
3366///
3367/// This routine drives both of the rewriting goals of the SROA pass. It tries
3368/// to rewrite uses of an alloca partition to be conducive for SSA value
3369/// promotion. If the partition needs a new, more refined alloca, this will
3370/// build that new alloca, preserving as much type information as possible, and
3371/// rewrite the uses of the old alloca to point at the new one and have the
3372/// appropriate new offsets. It also evaluates how successful the rewrite was
3373/// at enabling promotion and if it was successful queues the alloca to be
3374/// promoted.
3375bool SROA::rewriteAllocaPartition(AllocaInst &AI,
3376                                  AllocaPartitioning &P,
3377                                  AllocaPartitioning::iterator PI) {
3378  uint64_t AllocaSize = PI->EndOffset - PI->BeginOffset;
3379  bool IsLive = false;
3380  for (AllocaPartitioning::use_iterator UI = P.use_begin(PI),
3381                                        UE = P.use_end(PI);
3382       UI != UE && !IsLive; ++UI)
3383    if (UI->U)
3384      IsLive = true;
3385  if (!IsLive)
3386    return false; // No live uses left of this partition.
3387
3388  DEBUG(dbgs() << "Speculating PHIs and selects in partition "
3389               << "[" << PI->BeginOffset << "," << PI->EndOffset << ")\n");
3390
3391  PHIOrSelectSpeculator Speculator(*TD, P, *this);
3392  DEBUG(dbgs() << "  speculating ");
3393  DEBUG(P.print(dbgs(), PI, ""));
3394  Speculator.visitUsers(PI);
3395
3396  // Try to compute a friendly type for this partition of the alloca. This
3397  // won't always succeed, in which case we fall back to a legal integer type
3398  // or an i8 array of an appropriate size.
3399  Type *AllocaTy = 0;
3400  if (Type *PartitionTy = P.getCommonType(PI))
3401    if (TD->getTypeAllocSize(PartitionTy) >= AllocaSize)
3402      AllocaTy = PartitionTy;
3403  if (!AllocaTy)
3404    if (Type *PartitionTy = getTypePartition(*TD, AI.getAllocatedType(),
3405                                             PI->BeginOffset, AllocaSize))
3406      AllocaTy = PartitionTy;
3407  if ((!AllocaTy ||
3408       (AllocaTy->isArrayTy() &&
3409        AllocaTy->getArrayElementType()->isIntegerTy())) &&
3410      TD->isLegalInteger(AllocaSize * 8))
3411    AllocaTy = Type::getIntNTy(*C, AllocaSize * 8);
3412  if (!AllocaTy)
3413    AllocaTy = ArrayType::get(Type::getInt8Ty(*C), AllocaSize);
3414  assert(TD->getTypeAllocSize(AllocaTy) >= AllocaSize);
3415
3416  // Check for the case where we're going to rewrite to a new alloca of the
3417  // exact same type as the original, and with the same access offsets. In that
3418  // case, re-use the existing alloca, but still run through the rewriter to
3419  // perform phi and select speculation.
3420  AllocaInst *NewAI;
3421  if (AllocaTy == AI.getAllocatedType()) {
3422    assert(PI->BeginOffset == 0 &&
3423           "Non-zero begin offset but same alloca type");
3424    assert(PI == P.begin() && "Begin offset is zero on later partition");
3425    NewAI = &AI;
3426  } else {
3427    unsigned Alignment = AI.getAlignment();
3428    if (!Alignment) {
3429      // The minimum alignment which users can rely on when the explicit
3430      // alignment is omitted or zero is that required by the ABI for this
3431      // type.
3432      Alignment = TD->getABITypeAlignment(AI.getAllocatedType());
3433    }
3434    Alignment = MinAlign(Alignment, PI->BeginOffset);
3435    // If we will get at least this much alignment from the type alone, leave
3436    // the alloca's alignment unconstrained.
3437    if (Alignment <= TD->getABITypeAlignment(AllocaTy))
3438      Alignment = 0;
3439    NewAI = new AllocaInst(AllocaTy, 0, Alignment,
3440                           AI.getName() + ".sroa." + Twine(PI - P.begin()),
3441                           &AI);
3442    ++NumNewAllocas;
3443  }
3444
3445  DEBUG(dbgs() << "Rewriting alloca partition "
3446               << "[" << PI->BeginOffset << "," << PI->EndOffset << ") to: "
3447               << *NewAI << "\n");
3448
3449  // Track the high watermark of the post-promotion worklist. We will reset it
3450  // to this point if the alloca is not in fact scheduled for promotion.
3451  unsigned PPWOldSize = PostPromotionWorklist.size();
3452
3453  AllocaPartitionRewriter Rewriter(*TD, P, PI, *this, AI, *NewAI,
3454                                   PI->BeginOffset, PI->EndOffset);
3455  DEBUG(dbgs() << "  rewriting ");
3456  DEBUG(P.print(dbgs(), PI, ""));
3457  bool Promotable = Rewriter.visitUsers(P.use_begin(PI), P.use_end(PI));
3458  if (Promotable) {
3459    DEBUG(dbgs() << "  and queuing for promotion\n");
3460    PromotableAllocas.push_back(NewAI);
3461  } else if (NewAI != &AI) {
3462    // If we can't promote the alloca, iterate on it to check for new
3463    // refinements exposed by splitting the current alloca. Don't iterate on an
3464    // alloca which didn't actually change and didn't get promoted.
3465    Worklist.insert(NewAI);
3466  }
3467
3468  // Drop any post-promotion work items if promotion didn't happen.
3469  if (!Promotable)
3470    while (PostPromotionWorklist.size() > PPWOldSize)
3471      PostPromotionWorklist.pop_back();
3472
3473  return true;
3474}
3475
3476/// \brief Walks the partitioning of an alloca rewriting uses of each partition.
3477bool SROA::splitAlloca(AllocaInst &AI, AllocaPartitioning &P) {
3478  bool Changed = false;
3479  for (AllocaPartitioning::iterator PI = P.begin(), PE = P.end(); PI != PE;
3480       ++PI)
3481    Changed |= rewriteAllocaPartition(AI, P, PI);
3482
3483  return Changed;
3484}
3485
3486/// \brief Analyze an alloca for SROA.
3487///
3488/// This analyzes the alloca to ensure we can reason about it, builds
3489/// a partitioning of the alloca, and then hands it off to be split and
3490/// rewritten as needed.
3491bool SROA::runOnAlloca(AllocaInst &AI) {
3492  DEBUG(dbgs() << "SROA alloca: " << AI << "\n");
3493  ++NumAllocasAnalyzed;
3494
3495  // Special case dead allocas, as they're trivial.
3496  if (AI.use_empty()) {
3497    AI.eraseFromParent();
3498    return true;
3499  }
3500
3501  // Skip alloca forms that this analysis can't handle.
3502  if (AI.isArrayAllocation() || !AI.getAllocatedType()->isSized() ||
3503      TD->getTypeAllocSize(AI.getAllocatedType()) == 0)
3504    return false;
3505
3506  bool Changed = false;
3507
3508  // First, split any FCA loads and stores touching this alloca to promote
3509  // better splitting and promotion opportunities.
3510  AggLoadStoreRewriter AggRewriter(*TD);
3511  Changed |= AggRewriter.rewrite(AI);
3512
3513  // Build the partition set using a recursive instruction-visiting builder.
3514  AllocaPartitioning P(*TD, AI);
3515  DEBUG(P.print(dbgs()));
3516  if (P.isEscaped())
3517    return Changed;
3518
3519  // Delete all the dead users of this alloca before splitting and rewriting it.
3520  for (AllocaPartitioning::dead_user_iterator DI = P.dead_user_begin(),
3521                                              DE = P.dead_user_end();
3522       DI != DE; ++DI) {
3523    Changed = true;
3524    (*DI)->replaceAllUsesWith(UndefValue::get((*DI)->getType()));
3525    DeadInsts.insert(*DI);
3526  }
3527  for (AllocaPartitioning::dead_op_iterator DO = P.dead_op_begin(),
3528                                            DE = P.dead_op_end();
3529       DO != DE; ++DO) {
3530    Value *OldV = **DO;
3531    // Clobber the use with an undef value.
3532    **DO = UndefValue::get(OldV->getType());
3533    if (Instruction *OldI = dyn_cast<Instruction>(OldV))
3534      if (isInstructionTriviallyDead(OldI)) {
3535        Changed = true;
3536        DeadInsts.insert(OldI);
3537      }
3538  }
3539
3540  // No partitions to split. Leave the dead alloca for a later pass to clean up.
3541  if (P.begin() == P.end())
3542    return Changed;
3543
3544  return splitAlloca(AI, P) || Changed;
3545}
3546
3547/// \brief Delete the dead instructions accumulated in this run.
3548///
3549/// Recursively deletes the dead instructions we've accumulated. This is done
3550/// at the very end to maximize locality of the recursive delete and to
3551/// minimize the problems of invalidated instruction pointers as such pointers
3552/// are used heavily in the intermediate stages of the algorithm.
3553///
3554/// We also record the alloca instructions deleted here so that they aren't
3555/// subsequently handed to mem2reg to promote.
3556void SROA::deleteDeadInstructions(SmallPtrSet<AllocaInst*, 4> &DeletedAllocas) {
3557  while (!DeadInsts.empty()) {
3558    Instruction *I = DeadInsts.pop_back_val();
3559    DEBUG(dbgs() << "Deleting dead instruction: " << *I << "\n");
3560
3561    I->replaceAllUsesWith(UndefValue::get(I->getType()));
3562
3563    for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI)
3564      if (Instruction *U = dyn_cast<Instruction>(*OI)) {
3565        // Zero out the operand and see if it becomes trivially dead.
3566        *OI = 0;
3567        if (isInstructionTriviallyDead(U))
3568          DeadInsts.insert(U);
3569      }
3570
3571    if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
3572      DeletedAllocas.insert(AI);
3573
3574    ++NumDeleted;
3575    I->eraseFromParent();
3576  }
3577}
3578
3579/// \brief Promote the allocas, using the best available technique.
3580///
3581/// This attempts to promote whatever allocas have been identified as viable in
3582/// the PromotableAllocas list. If that list is empty, there is nothing to do.
3583/// If there is a domtree available, we attempt to promote using the full power
3584/// of mem2reg. Otherwise, we build and use the AllocaPromoter above which is
3585/// based on the SSAUpdater utilities. This function returns whether any
3586/// promotion occurred.
3587bool SROA::promoteAllocas(Function &F) {
3588  if (PromotableAllocas.empty())
3589    return false;
3590
3591  NumPromoted += PromotableAllocas.size();
3592
3593  if (DT && !ForceSSAUpdater) {
3594    DEBUG(dbgs() << "Promoting allocas with mem2reg...\n");
3595    PromoteMemToReg(PromotableAllocas, *DT);
3596    PromotableAllocas.clear();
3597    return true;
3598  }
3599
3600  DEBUG(dbgs() << "Promoting allocas with SSAUpdater...\n");
3601  SSAUpdater SSA;
3602  DIBuilder DIB(*F.getParent());
3603  SmallVector<Instruction*, 64> Insts;
3604
3605  for (unsigned Idx = 0, Size = PromotableAllocas.size(); Idx != Size; ++Idx) {
3606    AllocaInst *AI = PromotableAllocas[Idx];
3607    for (Value::use_iterator UI = AI->use_begin(), UE = AI->use_end();
3608         UI != UE;) {
3609      Instruction *I = cast<Instruction>(*UI++);
3610      // FIXME: Currently the SSAUpdater infrastructure doesn't reason about
3611      // lifetime intrinsics and so we strip them (and the bitcasts+GEPs
3612      // leading to them) here. Eventually it should use them to optimize the
3613      // scalar values produced.
3614      if (isa<BitCastInst>(I) || isa<GetElementPtrInst>(I)) {
3615        assert(onlyUsedByLifetimeMarkers(I) &&
3616               "Found a bitcast used outside of a lifetime marker.");
3617        while (!I->use_empty())
3618          cast<Instruction>(*I->use_begin())->eraseFromParent();
3619        I->eraseFromParent();
3620        continue;
3621      }
3622      if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
3623        assert(II->getIntrinsicID() == Intrinsic::lifetime_start ||
3624               II->getIntrinsicID() == Intrinsic::lifetime_end);
3625        II->eraseFromParent();
3626        continue;
3627      }
3628
3629      Insts.push_back(I);
3630    }
3631    AllocaPromoter(Insts, SSA, *AI, DIB).run(Insts);
3632    Insts.clear();
3633  }
3634
3635  PromotableAllocas.clear();
3636  return true;
3637}
3638
3639namespace {
3640  /// \brief A predicate to test whether an alloca belongs to a set.
3641  class IsAllocaInSet {
3642    typedef SmallPtrSet<AllocaInst *, 4> SetType;
3643    const SetType &Set;
3644
3645  public:
3646    typedef AllocaInst *argument_type;
3647
3648    IsAllocaInSet(const SetType &Set) : Set(Set) {}
3649    bool operator()(AllocaInst *AI) const { return Set.count(AI); }
3650  };
3651}
3652
3653bool SROA::runOnFunction(Function &F) {
3654  DEBUG(dbgs() << "SROA function: " << F.getName() << "\n");
3655  C = &F.getContext();
3656  TD = getAnalysisIfAvailable<DataLayout>();
3657  if (!TD) {
3658    DEBUG(dbgs() << "  Skipping SROA -- no target data!\n");
3659    return false;
3660  }
3661  DT = getAnalysisIfAvailable<DominatorTree>();
3662
3663  BasicBlock &EntryBB = F.getEntryBlock();
3664  for (BasicBlock::iterator I = EntryBB.begin(), E = llvm::prior(EntryBB.end());
3665       I != E; ++I)
3666    if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
3667      Worklist.insert(AI);
3668
3669  bool Changed = false;
3670  // A set of deleted alloca instruction pointers which should be removed from
3671  // the list of promotable allocas.
3672  SmallPtrSet<AllocaInst *, 4> DeletedAllocas;
3673
3674  do {
3675    while (!Worklist.empty()) {
3676      Changed |= runOnAlloca(*Worklist.pop_back_val());
3677      deleteDeadInstructions(DeletedAllocas);
3678
3679      // Remove the deleted allocas from various lists so that we don't try to
3680      // continue processing them.
3681      if (!DeletedAllocas.empty()) {
3682        Worklist.remove_if(IsAllocaInSet(DeletedAllocas));
3683        PostPromotionWorklist.remove_if(IsAllocaInSet(DeletedAllocas));
3684        PromotableAllocas.erase(std::remove_if(PromotableAllocas.begin(),
3685                                               PromotableAllocas.end(),
3686                                               IsAllocaInSet(DeletedAllocas)),
3687                                PromotableAllocas.end());
3688        DeletedAllocas.clear();
3689      }
3690    }
3691
3692    Changed |= promoteAllocas(F);
3693
3694    Worklist = PostPromotionWorklist;
3695    PostPromotionWorklist.clear();
3696  } while (!Worklist.empty());
3697
3698  return Changed;
3699}
3700
3701void SROA::getAnalysisUsage(AnalysisUsage &AU) const {
3702  if (RequiresDomTree)
3703    AU.addRequired<DominatorTree>();
3704  AU.setPreservesCFG();
3705}
3706