ScalarReplAggregates.cpp revision 5e062a1eda2c4adffd428a35e737a431fc37f4e0
1//===- ScalarReplAggregates.cpp - Scalar Replacement of Aggregates --------===//
2//
3// This transformation implements the well known scalar replacement of
4// aggregates transformation.  This xform breaks up alloca instructions of
5// aggregate type (structure or array) into individual alloca instructions for
6// each member (if possible).
7//
8//===----------------------------------------------------------------------===//
9
10#include "llvm/Transforms/Scalar.h"
11#include "llvm/Function.h"
12#include "llvm/Pass.h"
13#include "llvm/iMemory.h"
14#include "llvm/DerivedTypes.h"
15#include "llvm/Constants.h"
16#include "Support/StringExtras.h"
17#include "Support/Statistic.h"
18
19namespace {
20  Statistic<> NumReplaced("scalarrepl", "Number of alloca's broken up");
21
22  struct SROA : public FunctionPass {
23    bool runOnFunction(Function &F);
24
25  private:
26    bool isSafeArrayElementUse(Value *Ptr);
27    bool isSafeUseOfAllocation(Instruction *User);
28    bool isSafeStructAllocaToPromote(AllocationInst *AI);
29    bool isSafeArrayAllocaToPromote(AllocationInst *AI);
30    AllocaInst *AddNewAlloca(Function &F, const Type *Ty, AllocationInst *Base);
31  };
32
33  RegisterOpt<SROA> X("scalarrepl", "Scalar Replacement of Aggregates");
34}
35
36Pass *createScalarReplAggregatesPass() { return new SROA(); }
37
38
39// runOnFunction - This algorithm is a simple worklist driven algorithm, which
40// runs on all of the malloc/alloca instructions in the function, removing them
41// if they are only used by getelementptr instructions.
42//
43bool SROA::runOnFunction(Function &F) {
44  std::vector<AllocationInst*> WorkList;
45
46  // Scan the entry basic block, adding any alloca's and mallocs to the worklist
47  BasicBlock &BB = F.getEntryNode();
48  for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ++I)
49    if (AllocationInst *A = dyn_cast<AllocationInst>(I))
50      WorkList.push_back(A);
51
52  // Process the worklist
53  bool Changed = false;
54  while (!WorkList.empty()) {
55    AllocationInst *AI = WorkList.back();
56    WorkList.pop_back();
57
58    // We cannot transform the allocation instruction if it is an array
59    // allocation (allocations OF arrays are ok though), and an allocation of a
60    // scalar value cannot be decomposed at all.
61    //
62    if (AI->isArrayAllocation() ||
63        (!isa<StructType>(AI->getAllocatedType()) &&
64         !isa<ArrayType>(AI->getAllocatedType()))) continue;
65
66    // Check that all of the users of the allocation are capable of being
67    // transformed.
68    if (isa<StructType>(AI->getAllocatedType())) {
69      if (!isSafeStructAllocaToPromote(AI))
70        continue;
71    } else if (!isSafeArrayAllocaToPromote(AI))
72      continue;
73
74    DEBUG(std::cerr << "Found inst to xform: " << *AI);
75    Changed = true;
76
77    std::vector<AllocaInst*> ElementAllocas;
78    if (const StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
79      ElementAllocas.reserve(ST->getNumContainedTypes());
80      for (unsigned i = 0, e = ST->getNumContainedTypes(); i != e; ++i) {
81        AllocaInst *NA = new AllocaInst(ST->getContainedType(i), 0,
82                                        AI->getName() + "." + utostr(i), AI);
83        ElementAllocas.push_back(NA);
84        WorkList.push_back(NA);  // Add to worklist for recursive processing
85      }
86    } else {
87      const ArrayType *AT = cast<ArrayType>(AI->getAllocatedType());
88      ElementAllocas.reserve(AT->getNumElements());
89      const Type *ElTy = AT->getElementType();
90      for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
91        AllocaInst *NA = new AllocaInst(ElTy, 0,
92                                        AI->getName() + "." + utostr(i), AI);
93        ElementAllocas.push_back(NA);
94        WorkList.push_back(NA);  // Add to worklist for recursive processing
95      }
96    }
97
98    // Now that we have created the alloca instructions that we want to use,
99    // expand the getelementptr instructions to use them.
100    //
101    for (Value::use_iterator I = AI->use_begin(), E = AI->use_end();
102         I != E; ++I) {
103      Instruction *User = cast<Instruction>(*I);
104      if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
105        // We now know that the GEP is of the form: GEP <ptr>, 0, <cst>
106        uint64_t Idx;
107        if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(GEPI->getOperand(2)))
108          Idx = CSI->getValue();
109        else
110          Idx = cast<ConstantUInt>(GEPI->getOperand(2))->getValue();
111
112        assert(Idx < ElementAllocas.size() && "Index out of range?");
113        AllocaInst *AllocaToUse = ElementAllocas[Idx];
114
115        Value *RepValue;
116        if (GEPI->getNumOperands() == 3) {
117          // Do not insert a new getelementptr instruction with zero indices,
118          // only to have it optimized out later.
119          RepValue = AllocaToUse;
120        } else {
121          // We are indexing deeply into the structure, so we still need a
122          // getelement ptr instruction to finish the indexing.  This may be
123          // expanded itself once the worklist is rerun.
124          //
125          std::string OldName = GEPI->getName();  // Steal the old name...
126          GEPI->setName("");
127          RepValue =
128            new GetElementPtrInst(AllocaToUse,
129                                  std::vector<Value*>(GEPI->op_begin()+3,
130                                                      GEPI->op_end()),
131                                  OldName, GEPI);
132        }
133
134        // Move all of the users over to the new GEP.
135        GEPI->replaceAllUsesWith(RepValue);
136        // Delete the old GEP
137        GEPI->getParent()->getInstList().erase(GEPI);
138      } else {
139        assert(0 && "Unexpected instruction type!");
140      }
141    }
142
143    // Finally, delete the Alloca instruction
144    AI->getParent()->getInstList().erase(AI);
145    NumReplaced++;
146  }
147
148  return Changed;
149}
150
151
152/// isSafeUseOfAllocation - Check to see if this user is an allowed use for an
153/// aggregate allocation.
154///
155bool SROA::isSafeUseOfAllocation(Instruction *User) {
156  if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
157    // The GEP is safe to transform if it is of the form GEP <ptr>, 0, <cst>
158    if (GEPI->getNumOperands() <= 2 ||
159        GEPI->getOperand(1) != Constant::getNullValue(Type::LongTy) ||
160        !isa<Constant>(GEPI->getOperand(2)) ||
161        isa<ConstantExpr>(GEPI->getOperand(2)))
162      return false;
163  } else {
164    return false;
165  }
166  return true;
167}
168
169
170/// isSafeArrayElementUse - Check to see if this use is an allowed use for a
171/// getelementptr instruction of an array aggregate allocation.
172///
173bool SROA::isSafeArrayElementUse(Value *Ptr) {
174  for (Value::use_iterator I = Ptr->use_begin(), E = Ptr->use_end();
175       I != E; ++I) {
176    Instruction *User = cast<Instruction>(*I);
177    switch (User->getOpcode()) {
178    case Instruction::Load:  return true;
179    case Instruction::Store: return User->getOperand(0) != Ptr;
180    case Instruction::GetElementPtr: {
181      GetElementPtrInst *GEP = cast<GetElementPtrInst>(User);
182      if (GEP->getNumOperands() > 1) {
183        if (!isa<Constant>(GEP->getOperand(1)) ||
184            !cast<Constant>(GEP->getOperand(1))->isNullValue())
185          return false;  // Using pointer arithmetic to navigate the array...
186
187        // Check to see if there are any structure indexes involved in this GEP.
188        // If so, then we can safely break the array up until at least the
189        // structure.
190        for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
191          if (GEP->getOperand(i)->getType()->isUnsigned())
192            break;
193      }
194      return isSafeArrayElementUse(GEP);
195    }
196    default:
197      DEBUG(std::cerr << "  Transformation preventing inst: " << *User);
198      return false;
199    }
200  }
201  return true;  // All users look ok :)
202}
203
204
205/// isSafeStructAllocaToPromote - Check to see if the specified allocation of a
206/// structure can be broken down into elements.
207///
208bool SROA::isSafeStructAllocaToPromote(AllocationInst *AI) {
209  // Loop over the use list of the alloca.  We can only transform it if all of
210  // the users are safe to transform.
211  //
212  for (Value::use_iterator I = AI->use_begin(), E = AI->use_end();
213       I != E; ++I)
214    if (!isSafeUseOfAllocation(cast<Instruction>(*I))) {
215      DEBUG(std::cerr << "Cannot transform: " << *AI << "  due to user: "
216                      << *I);
217      return false;
218    }
219  return true;
220}
221
222
223/// isSafeArrayAllocaToPromote - Check to see if the specified allocation of a
224/// structure can be broken down into elements.
225///
226bool SROA::isSafeArrayAllocaToPromote(AllocationInst *AI) {
227  const ArrayType *AT = cast<ArrayType>(AI->getAllocatedType());
228  int64_t NumElements = AT->getNumElements();
229
230  // Loop over the use list of the alloca.  We can only transform it if all of
231  // the users are safe to transform.  Array allocas have extra constraints to
232  // meet though.
233  //
234  for (Value::use_iterator I = AI->use_begin(), E = AI->use_end();
235       I != E; ++I) {
236    Instruction *User = cast<Instruction>(*I);
237    if (!isSafeUseOfAllocation(User)) {
238      DEBUG(std::cerr << "Cannot transform: " << *AI << "  due to user: "
239                      << User);
240      return false;
241    }
242
243    // Check to make sure that getelementptr follow the extra rules for arrays:
244    if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
245      // Check to make sure that index falls within the array.  If not,
246      // something funny is going on, so we won't do the optimization.
247      //
248      if (cast<ConstantSInt>(GEPI->getOperand(2))->getValue() >= NumElements)
249        return false;
250
251      // Check to make sure that the only thing that uses the resultant pointer
252      // is safe for an array access.  For example, code that looks like:
253      //   P = &A[0];  P = P + 1
254      // is legal, and should prevent promotion.
255      //
256      if (!isSafeArrayElementUse(GEPI)) {
257        DEBUG(std::cerr << "Cannot transform: " << *AI
258                        << "  due to uses of user: " << *GEPI);
259        return false;
260      }
261    }
262  }
263  return true;
264}
265
266