Local.cpp revision 43a8241b65b70ded3a87fb26852719633908a1e4
1//===-- Local.cpp - Functions to perform local transformations ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This family of functions perform various local transformations to the
11// program.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Transforms/Utils/Local.h"
16#include "llvm/Constants.h"
17#include "llvm/GlobalAlias.h"
18#include "llvm/GlobalVariable.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/Instructions.h"
21#include "llvm/Intrinsics.h"
22#include "llvm/IntrinsicInst.h"
23#include "llvm/LLVMContext.h"
24#include "llvm/ADT/SmallPtrSet.h"
25#include "llvm/Analysis/ConstantFolding.h"
26#include "llvm/Analysis/DebugInfo.h"
27#include "llvm/Analysis/InstructionSimplify.h"
28#include "llvm/Analysis/ProfileInfo.h"
29#include "llvm/Target/TargetData.h"
30#include "llvm/Support/CFG.h"
31#include "llvm/Support/Debug.h"
32#include "llvm/Support/GetElementPtrTypeIterator.h"
33#include "llvm/Support/MathExtras.h"
34#include "llvm/Support/raw_ostream.h"
35using namespace llvm;
36
37//===----------------------------------------------------------------------===//
38//  Local analysis.
39//
40
41/// isSafeToLoadUnconditionally - Return true if we know that executing a load
42/// from this value cannot trap.  If it is not obviously safe to load from the
43/// specified pointer, we do a quick local scan of the basic block containing
44/// ScanFrom, to determine if the address is already accessed.
45bool llvm::isSafeToLoadUnconditionally(Value *V, Instruction *ScanFrom) {
46  // If it is an alloca it is always safe to load from.
47  if (isa<AllocaInst>(V)) return true;
48
49  // If it is a global variable it is mostly safe to load from.
50  if (const GlobalValue *GV = dyn_cast<GlobalVariable>(V))
51    // Don't try to evaluate aliases.  External weak GV can be null.
52    return !isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage();
53
54  // Otherwise, be a little bit agressive by scanning the local block where we
55  // want to check to see if the pointer is already being loaded or stored
56  // from/to.  If so, the previous load or store would have already trapped,
57  // so there is no harm doing an extra load (also, CSE will later eliminate
58  // the load entirely).
59  BasicBlock::iterator BBI = ScanFrom, E = ScanFrom->getParent()->begin();
60
61  while (BBI != E) {
62    --BBI;
63
64    // If we see a free or a call which may write to memory (i.e. which might do
65    // a free) the pointer could be marked invalid.
66    if (isa<CallInst>(BBI) && BBI->mayWriteToMemory() &&
67        !isa<DbgInfoIntrinsic>(BBI))
68      return false;
69
70    if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
71      if (LI->getOperand(0) == V) return true;
72    } else if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) {
73      if (SI->getOperand(1) == V) return true;
74    }
75  }
76  return false;
77}
78
79
80//===----------------------------------------------------------------------===//
81//  Local constant propagation.
82//
83
84// ConstantFoldTerminator - If a terminator instruction is predicated on a
85// constant value, convert it into an unconditional branch to the constant
86// destination.
87//
88bool llvm::ConstantFoldTerminator(BasicBlock *BB) {
89  TerminatorInst *T = BB->getTerminator();
90
91  // Branch - See if we are conditional jumping on constant
92  if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
93    if (BI->isUnconditional()) return false;  // Can't optimize uncond branch
94    BasicBlock *Dest1 = BI->getSuccessor(0);
95    BasicBlock *Dest2 = BI->getSuccessor(1);
96
97    if (ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition())) {
98      // Are we branching on constant?
99      // YES.  Change to unconditional branch...
100      BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2;
101      BasicBlock *OldDest     = Cond->getZExtValue() ? Dest2 : Dest1;
102
103      //cerr << "Function: " << T->getParent()->getParent()
104      //     << "\nRemoving branch from " << T->getParent()
105      //     << "\n\nTo: " << OldDest << endl;
106
107      // Let the basic block know that we are letting go of it.  Based on this,
108      // it will adjust it's PHI nodes.
109      assert(BI->getParent() && "Terminator not inserted in block!");
110      OldDest->removePredecessor(BI->getParent());
111
112      // Set the unconditional destination, and change the insn to be an
113      // unconditional branch.
114      BI->setUnconditionalDest(Destination);
115      return true;
116    }
117
118    if (Dest2 == Dest1) {       // Conditional branch to same location?
119      // This branch matches something like this:
120      //     br bool %cond, label %Dest, label %Dest
121      // and changes it into:  br label %Dest
122
123      // Let the basic block know that we are letting go of one copy of it.
124      assert(BI->getParent() && "Terminator not inserted in block!");
125      Dest1->removePredecessor(BI->getParent());
126
127      // Change a conditional branch to unconditional.
128      BI->setUnconditionalDest(Dest1);
129      return true;
130    }
131    return false;
132  }
133
134  if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) {
135    // If we are switching on a constant, we can convert the switch into a
136    // single branch instruction!
137    ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition());
138    BasicBlock *TheOnlyDest = SI->getSuccessor(0);  // The default dest
139    BasicBlock *DefaultDest = TheOnlyDest;
140    assert(TheOnlyDest == SI->getDefaultDest() &&
141           "Default destination is not successor #0?");
142
143    // Figure out which case it goes to.
144    for (unsigned i = 1, e = SI->getNumSuccessors(); i != e; ++i) {
145      // Found case matching a constant operand?
146      if (SI->getSuccessorValue(i) == CI) {
147        TheOnlyDest = SI->getSuccessor(i);
148        break;
149      }
150
151      // Check to see if this branch is going to the same place as the default
152      // dest.  If so, eliminate it as an explicit compare.
153      if (SI->getSuccessor(i) == DefaultDest) {
154        // Remove this entry.
155        DefaultDest->removePredecessor(SI->getParent());
156        SI->removeCase(i);
157        --i; --e;  // Don't skip an entry...
158        continue;
159      }
160
161      // Otherwise, check to see if the switch only branches to one destination.
162      // We do this by reseting "TheOnlyDest" to null when we find two non-equal
163      // destinations.
164      if (SI->getSuccessor(i) != TheOnlyDest) TheOnlyDest = 0;
165    }
166
167    if (CI && !TheOnlyDest) {
168      // Branching on a constant, but not any of the cases, go to the default
169      // successor.
170      TheOnlyDest = SI->getDefaultDest();
171    }
172
173    // If we found a single destination that we can fold the switch into, do so
174    // now.
175    if (TheOnlyDest) {
176      // Insert the new branch.
177      BranchInst::Create(TheOnlyDest, SI);
178      BasicBlock *BB = SI->getParent();
179
180      // Remove entries from PHI nodes which we no longer branch to...
181      for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) {
182        // Found case matching a constant operand?
183        BasicBlock *Succ = SI->getSuccessor(i);
184        if (Succ == TheOnlyDest)
185          TheOnlyDest = 0;  // Don't modify the first branch to TheOnlyDest
186        else
187          Succ->removePredecessor(BB);
188      }
189
190      // Delete the old switch.
191      BB->getInstList().erase(SI);
192      return true;
193    }
194
195    if (SI->getNumSuccessors() == 2) {
196      // Otherwise, we can fold this switch into a conditional branch
197      // instruction if it has only one non-default destination.
198      Value *Cond = new ICmpInst(SI, ICmpInst::ICMP_EQ, SI->getCondition(),
199                                 SI->getSuccessorValue(1), "cond");
200      // Insert the new branch.
201      BranchInst::Create(SI->getSuccessor(1), SI->getSuccessor(0), Cond, SI);
202
203      // Delete the old switch.
204      SI->eraseFromParent();
205      return true;
206    }
207    return false;
208  }
209
210  if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(T)) {
211    // indirectbr blockaddress(@F, @BB) -> br label @BB
212    if (BlockAddress *BA =
213          dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) {
214      BasicBlock *TheOnlyDest = BA->getBasicBlock();
215      // Insert the new branch.
216      BranchInst::Create(TheOnlyDest, IBI);
217
218      for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
219        if (IBI->getDestination(i) == TheOnlyDest)
220          TheOnlyDest = 0;
221        else
222          IBI->getDestination(i)->removePredecessor(IBI->getParent());
223      }
224      IBI->eraseFromParent();
225
226      // If we didn't find our destination in the IBI successor list, then we
227      // have undefined behavior.  Replace the unconditional branch with an
228      // 'unreachable' instruction.
229      if (TheOnlyDest) {
230        BB->getTerminator()->eraseFromParent();
231        new UnreachableInst(BB->getContext(), BB);
232      }
233
234      return true;
235    }
236  }
237
238  return false;
239}
240
241
242//===----------------------------------------------------------------------===//
243//  Local dead code elimination.
244//
245
246/// isInstructionTriviallyDead - Return true if the result produced by the
247/// instruction is not used, and the instruction has no side effects.
248///
249bool llvm::isInstructionTriviallyDead(Instruction *I) {
250  if (!I->use_empty() || isa<TerminatorInst>(I)) return false;
251
252  // We don't want debug info removed by anything this general.
253  if (isa<DbgInfoIntrinsic>(I)) return false;
254
255  // Likewise for memory use markers.
256  if (isa<MemoryUseIntrinsic>(I)) return false;
257
258  if (!I->mayHaveSideEffects()) return true;
259
260  // Special case intrinsics that "may have side effects" but can be deleted
261  // when dead.
262  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
263    // Safe to delete llvm.stacksave if dead.
264    if (II->getIntrinsicID() == Intrinsic::stacksave)
265      return true;
266  return false;
267}
268
269/// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a
270/// trivially dead instruction, delete it.  If that makes any of its operands
271/// trivially dead, delete them too, recursively.
272void llvm::RecursivelyDeleteTriviallyDeadInstructions(Value *V) {
273  Instruction *I = dyn_cast<Instruction>(V);
274  if (!I || !I->use_empty() || !isInstructionTriviallyDead(I))
275    return;
276
277  SmallVector<Instruction*, 16> DeadInsts;
278  DeadInsts.push_back(I);
279
280  while (!DeadInsts.empty()) {
281    I = DeadInsts.pop_back_val();
282
283    // Null out all of the instruction's operands to see if any operand becomes
284    // dead as we go.
285    for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
286      Value *OpV = I->getOperand(i);
287      I->setOperand(i, 0);
288
289      if (!OpV->use_empty()) continue;
290
291      // If the operand is an instruction that became dead as we nulled out the
292      // operand, and if it is 'trivially' dead, delete it in a future loop
293      // iteration.
294      if (Instruction *OpI = dyn_cast<Instruction>(OpV))
295        if (isInstructionTriviallyDead(OpI))
296          DeadInsts.push_back(OpI);
297    }
298
299    I->eraseFromParent();
300  }
301}
302
303/// RecursivelyDeleteDeadPHINode - If the specified value is an effectively
304/// dead PHI node, due to being a def-use chain of single-use nodes that
305/// either forms a cycle or is terminated by a trivially dead instruction,
306/// delete it.  If that makes any of its operands trivially dead, delete them
307/// too, recursively.
308void
309llvm::RecursivelyDeleteDeadPHINode(PHINode *PN) {
310  // We can remove a PHI if it is on a cycle in the def-use graph
311  // where each node in the cycle has degree one, i.e. only one use,
312  // and is an instruction with no side effects.
313  if (!PN->hasOneUse())
314    return;
315
316  SmallPtrSet<PHINode *, 4> PHIs;
317  PHIs.insert(PN);
318  for (Instruction *J = cast<Instruction>(*PN->use_begin());
319       J->hasOneUse() && !J->mayHaveSideEffects();
320       J = cast<Instruction>(*J->use_begin()))
321    // If we find a PHI more than once, we're on a cycle that
322    // won't prove fruitful.
323    if (PHINode *JP = dyn_cast<PHINode>(J))
324      if (!PHIs.insert(cast<PHINode>(JP))) {
325        // Break the cycle and delete the PHI and its operands.
326        JP->replaceAllUsesWith(UndefValue::get(JP->getType()));
327        RecursivelyDeleteTriviallyDeadInstructions(JP);
328        break;
329      }
330}
331
332//===----------------------------------------------------------------------===//
333//  Control Flow Graph Restructuring.
334//
335
336
337/// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this
338/// method is called when we're about to delete Pred as a predecessor of BB.  If
339/// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred.
340///
341/// Unlike the removePredecessor method, this attempts to simplify uses of PHI
342/// nodes that collapse into identity values.  For example, if we have:
343///   x = phi(1, 0, 0, 0)
344///   y = and x, z
345///
346/// .. and delete the predecessor corresponding to the '1', this will attempt to
347/// recursively fold the and to 0.
348void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred,
349                                        TargetData *TD) {
350  // This only adjusts blocks with PHI nodes.
351  if (!isa<PHINode>(BB->begin()))
352    return;
353
354  // Remove the entries for Pred from the PHI nodes in BB, but do not simplify
355  // them down.  This will leave us with single entry phi nodes and other phis
356  // that can be removed.
357  BB->removePredecessor(Pred, true);
358
359  WeakVH PhiIt = &BB->front();
360  while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) {
361    PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt));
362
363    Value *PNV = PN->hasConstantValue();
364    if (PNV == 0) continue;
365
366    // If we're able to simplify the phi to a single value, substitute the new
367    // value into all of its uses.
368    assert(PNV != PN && "hasConstantValue broken");
369
370    ReplaceAndSimplifyAllUses(PN, PNV, TD);
371
372    // If recursive simplification ended up deleting the next PHI node we would
373    // iterate to, then our iterator is invalid, restart scanning from the top
374    // of the block.
375    if (PhiIt == 0) PhiIt = &BB->front();
376  }
377}
378
379
380/// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its
381/// predecessor is known to have one successor (DestBB!).  Eliminate the edge
382/// between them, moving the instructions in the predecessor into DestBB and
383/// deleting the predecessor block.
384///
385void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, Pass *P) {
386  // If BB has single-entry PHI nodes, fold them.
387  while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
388    Value *NewVal = PN->getIncomingValue(0);
389    // Replace self referencing PHI with undef, it must be dead.
390    if (NewVal == PN) NewVal = UndefValue::get(PN->getType());
391    PN->replaceAllUsesWith(NewVal);
392    PN->eraseFromParent();
393  }
394
395  BasicBlock *PredBB = DestBB->getSinglePredecessor();
396  assert(PredBB && "Block doesn't have a single predecessor!");
397
398  // Splice all the instructions from PredBB to DestBB.
399  PredBB->getTerminator()->eraseFromParent();
400  DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList());
401
402  // Anything that branched to PredBB now branches to DestBB.
403  PredBB->replaceAllUsesWith(DestBB);
404
405  if (P) {
406    ProfileInfo *PI = P->getAnalysisIfAvailable<ProfileInfo>();
407    if (PI) {
408      PI->replaceAllUses(PredBB, DestBB);
409      PI->removeEdge(ProfileInfo::getEdge(PredBB, DestBB));
410    }
411  }
412  // Nuke BB.
413  PredBB->eraseFromParent();
414}
415
416/// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an
417/// almost-empty BB ending in an unconditional branch to Succ, into succ.
418///
419/// Assumption: Succ is the single successor for BB.
420///
421static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
422  assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!");
423
424  DEBUG(errs() << "Looking to fold " << BB->getName() << " into "
425        << Succ->getName() << "\n");
426  // Shortcut, if there is only a single predecessor it must be BB and merging
427  // is always safe
428  if (Succ->getSinglePredecessor()) return true;
429
430  // Make a list of the predecessors of BB
431  typedef SmallPtrSet<BasicBlock*, 16> BlockSet;
432  BlockSet BBPreds(pred_begin(BB), pred_end(BB));
433
434  // Use that list to make another list of common predecessors of BB and Succ
435  BlockSet CommonPreds;
436  for (pred_iterator PI = pred_begin(Succ), PE = pred_end(Succ);
437        PI != PE; ++PI)
438    if (BBPreds.count(*PI))
439      CommonPreds.insert(*PI);
440
441  // Shortcut, if there are no common predecessors, merging is always safe
442  if (CommonPreds.empty())
443    return true;
444
445  // Look at all the phi nodes in Succ, to see if they present a conflict when
446  // merging these blocks
447  for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
448    PHINode *PN = cast<PHINode>(I);
449
450    // If the incoming value from BB is again a PHINode in
451    // BB which has the same incoming value for *PI as PN does, we can
452    // merge the phi nodes and then the blocks can still be merged
453    PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB));
454    if (BBPN && BBPN->getParent() == BB) {
455      for (BlockSet::iterator PI = CommonPreds.begin(), PE = CommonPreds.end();
456            PI != PE; PI++) {
457        if (BBPN->getIncomingValueForBlock(*PI)
458              != PN->getIncomingValueForBlock(*PI)) {
459          DEBUG(errs() << "Can't fold, phi node " << PN->getName() << " in "
460                << Succ->getName() << " is conflicting with "
461                << BBPN->getName() << " with regard to common predecessor "
462                << (*PI)->getName() << "\n");
463          return false;
464        }
465      }
466    } else {
467      Value* Val = PN->getIncomingValueForBlock(BB);
468      for (BlockSet::iterator PI = CommonPreds.begin(), PE = CommonPreds.end();
469            PI != PE; PI++) {
470        // See if the incoming value for the common predecessor is equal to the
471        // one for BB, in which case this phi node will not prevent the merging
472        // of the block.
473        if (Val != PN->getIncomingValueForBlock(*PI)) {
474          DEBUG(errs() << "Can't fold, phi node " << PN->getName() << " in "
475                << Succ->getName() << " is conflicting with regard to common "
476                << "predecessor " << (*PI)->getName() << "\n");
477          return false;
478        }
479      }
480    }
481  }
482
483  return true;
484}
485
486/// TryToSimplifyUncondBranchFromEmptyBlock - BB is known to contain an
487/// unconditional branch, and contains no instructions other than PHI nodes,
488/// potential debug intrinsics and the branch.  If possible, eliminate BB by
489/// rewriting all the predecessors to branch to the successor block and return
490/// true.  If we can't transform, return false.
491bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB) {
492  // We can't eliminate infinite loops.
493  BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0);
494  if (BB == Succ) return false;
495
496  // Check to see if merging these blocks would cause conflicts for any of the
497  // phi nodes in BB or Succ. If not, we can safely merge.
498  if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false;
499
500  // Check for cases where Succ has multiple predecessors and a PHI node in BB
501  // has uses which will not disappear when the PHI nodes are merged.  It is
502  // possible to handle such cases, but difficult: it requires checking whether
503  // BB dominates Succ, which is non-trivial to calculate in the case where
504  // Succ has multiple predecessors.  Also, it requires checking whether
505  // constructing the necessary self-referential PHI node doesn't intoduce any
506  // conflicts; this isn't too difficult, but the previous code for doing this
507  // was incorrect.
508  //
509  // Note that if this check finds a live use, BB dominates Succ, so BB is
510  // something like a loop pre-header (or rarely, a part of an irreducible CFG);
511  // folding the branch isn't profitable in that case anyway.
512  if (!Succ->getSinglePredecessor()) {
513    BasicBlock::iterator BBI = BB->begin();
514    while (isa<PHINode>(*BBI)) {
515      for (Value::use_iterator UI = BBI->use_begin(), E = BBI->use_end();
516           UI != E; ++UI) {
517        if (PHINode* PN = dyn_cast<PHINode>(*UI)) {
518          if (PN->getIncomingBlock(UI) != BB)
519            return false;
520        } else {
521          return false;
522        }
523      }
524      ++BBI;
525    }
526  }
527
528  DEBUG(errs() << "Killing Trivial BB: \n" << *BB);
529
530  if (isa<PHINode>(Succ->begin())) {
531    // If there is more than one pred of succ, and there are PHI nodes in
532    // the successor, then we need to add incoming edges for the PHI nodes
533    //
534    const SmallVector<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB));
535
536    // Loop over all of the PHI nodes in the successor of BB.
537    for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
538      PHINode *PN = cast<PHINode>(I);
539      Value *OldVal = PN->removeIncomingValue(BB, false);
540      assert(OldVal && "No entry in PHI for Pred BB!");
541
542      // If this incoming value is one of the PHI nodes in BB, the new entries
543      // in the PHI node are the entries from the old PHI.
544      if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) {
545        PHINode *OldValPN = cast<PHINode>(OldVal);
546        for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i)
547          // Note that, since we are merging phi nodes and BB and Succ might
548          // have common predecessors, we could end up with a phi node with
549          // identical incoming branches. This will be cleaned up later (and
550          // will trigger asserts if we try to clean it up now, without also
551          // simplifying the corresponding conditional branch).
552          PN->addIncoming(OldValPN->getIncomingValue(i),
553                          OldValPN->getIncomingBlock(i));
554      } else {
555        // Add an incoming value for each of the new incoming values.
556        for (unsigned i = 0, e = BBPreds.size(); i != e; ++i)
557          PN->addIncoming(OldVal, BBPreds[i]);
558      }
559    }
560  }
561
562  while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
563    if (Succ->getSinglePredecessor()) {
564      // BB is the only predecessor of Succ, so Succ will end up with exactly
565      // the same predecessors BB had.
566      Succ->getInstList().splice(Succ->begin(),
567                                 BB->getInstList(), BB->begin());
568    } else {
569      // We explicitly check for such uses in CanPropagatePredecessorsForPHIs.
570      assert(PN->use_empty() && "There shouldn't be any uses here!");
571      PN->eraseFromParent();
572    }
573  }
574
575  // Everything that jumped to BB now goes to Succ.
576  BB->replaceAllUsesWith(Succ);
577  if (!Succ->hasName()) Succ->takeName(BB);
578  BB->eraseFromParent();              // Delete the old basic block.
579  return true;
580}
581
582
583
584/// OnlyUsedByDbgIntrinsics - Return true if the instruction I is only used
585/// by DbgIntrinsics. If DbgInUses is specified then the vector is filled
586/// with the DbgInfoIntrinsic that use the instruction I.
587bool llvm::OnlyUsedByDbgInfoIntrinsics(Instruction *I,
588                               SmallVectorImpl<DbgInfoIntrinsic *> *DbgInUses) {
589  if (DbgInUses)
590    DbgInUses->clear();
591
592  for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); UI != UE;
593       ++UI) {
594    if (DbgInfoIntrinsic *DI = dyn_cast<DbgInfoIntrinsic>(*UI)) {
595      if (DbgInUses)
596        DbgInUses->push_back(DI);
597    } else {
598      if (DbgInUses)
599        DbgInUses->clear();
600      return false;
601    }
602  }
603  return true;
604}
605
606/// EliminateDuplicatePHINodes - Check for and eliminate duplicate PHI
607/// nodes in this block. This doesn't try to be clever about PHI nodes
608/// which differ only in the order of the incoming values, but instcombine
609/// orders them so it usually won't matter.
610///
611bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) {
612  bool Changed = false;
613
614  // This implementation doesn't currently consider undef operands
615  // specially. Theroetically, two phis which are identical except for
616  // one having an undef where the other doesn't could be collapsed.
617
618  // Map from PHI hash values to PHI nodes. If multiple PHIs have
619  // the same hash value, the element is the first PHI in the
620  // linked list in CollisionMap.
621  DenseMap<uintptr_t, PHINode *> HashMap;
622
623  // Maintain linked lists of PHI nodes with common hash values.
624  DenseMap<PHINode *, PHINode *> CollisionMap;
625
626  // Examine each PHI.
627  for (BasicBlock::iterator I = BB->begin();
628       PHINode *PN = dyn_cast<PHINode>(I++); ) {
629    // Compute a hash value on the operands. Instcombine will likely have sorted
630    // them, which helps expose duplicates, but we have to check all the
631    // operands to be safe in case instcombine hasn't run.
632    uintptr_t Hash = 0;
633    for (User::op_iterator I = PN->op_begin(), E = PN->op_end(); I != E; ++I) {
634      // This hash algorithm is quite weak as hash functions go, but it seems
635      // to do a good enough job for this particular purpose, and is very quick.
636      Hash ^= reinterpret_cast<uintptr_t>(static_cast<Value *>(*I));
637      Hash = (Hash << 7) | (Hash >> (sizeof(uintptr_t) * CHAR_BIT - 7));
638    }
639    // If we've never seen this hash value before, it's a unique PHI.
640    std::pair<DenseMap<uintptr_t, PHINode *>::iterator, bool> Pair =
641      HashMap.insert(std::make_pair(Hash, PN));
642    if (Pair.second) continue;
643    // Otherwise it's either a duplicate or a hash collision.
644    for (PHINode *OtherPN = Pair.first->second; ; ) {
645      if (OtherPN->isIdenticalTo(PN)) {
646        // A duplicate. Replace this PHI with its duplicate.
647        PN->replaceAllUsesWith(OtherPN);
648        PN->eraseFromParent();
649        Changed = true;
650        break;
651      }
652      // A non-duplicate hash collision.
653      DenseMap<PHINode *, PHINode *>::iterator I = CollisionMap.find(OtherPN);
654      if (I == CollisionMap.end()) {
655        // Set this PHI to be the head of the linked list of colliding PHIs.
656        PHINode *Old = Pair.first->second;
657        Pair.first->second = PN;
658        CollisionMap[PN] = Old;
659        break;
660      }
661      // Procede to the next PHI in the list.
662      OtherPN = I->second;
663    }
664  }
665
666  return Changed;
667}
668