Local.cpp revision 7af1c78b98d2df7d0ab9154461ca3d835706716e
1//===-- Local.cpp - Functions to perform local transformations ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This family of functions perform various local transformations to the
11// program.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Transforms/Utils/Local.h"
16#include "llvm/Constants.h"
17#include "llvm/GlobalVariable.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/Instructions.h"
20#include "llvm/Intrinsics.h"
21#include "llvm/IntrinsicInst.h"
22#include "llvm/ADT/SmallPtrSet.h"
23#include "llvm/Analysis/ConstantFolding.h"
24#include "llvm/Analysis/DebugInfo.h"
25#include "llvm/Target/TargetData.h"
26#include "llvm/Support/GetElementPtrTypeIterator.h"
27#include "llvm/Support/MathExtras.h"
28using namespace llvm;
29
30//===----------------------------------------------------------------------===//
31//  Local constant propagation.
32//
33
34// ConstantFoldTerminator - If a terminator instruction is predicated on a
35// constant value, convert it into an unconditional branch to the constant
36// destination.
37//
38bool llvm::ConstantFoldTerminator(BasicBlock *BB) {
39  TerminatorInst *T = BB->getTerminator();
40
41  // Branch - See if we are conditional jumping on constant
42  if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
43    if (BI->isUnconditional()) return false;  // Can't optimize uncond branch
44    BasicBlock *Dest1 = BI->getSuccessor(0);
45    BasicBlock *Dest2 = BI->getSuccessor(1);
46
47    if (ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition())) {
48      // Are we branching on constant?
49      // YES.  Change to unconditional branch...
50      BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2;
51      BasicBlock *OldDest     = Cond->getZExtValue() ? Dest2 : Dest1;
52
53      //cerr << "Function: " << T->getParent()->getParent()
54      //     << "\nRemoving branch from " << T->getParent()
55      //     << "\n\nTo: " << OldDest << endl;
56
57      // Let the basic block know that we are letting go of it.  Based on this,
58      // it will adjust it's PHI nodes.
59      assert(BI->getParent() && "Terminator not inserted in block!");
60      OldDest->removePredecessor(BI->getParent());
61
62      // Set the unconditional destination, and change the insn to be an
63      // unconditional branch.
64      BI->setUnconditionalDest(Destination);
65      return true;
66    } else if (Dest2 == Dest1) {       // Conditional branch to same location?
67      // This branch matches something like this:
68      //     br bool %cond, label %Dest, label %Dest
69      // and changes it into:  br label %Dest
70
71      // Let the basic block know that we are letting go of one copy of it.
72      assert(BI->getParent() && "Terminator not inserted in block!");
73      Dest1->removePredecessor(BI->getParent());
74
75      // Change a conditional branch to unconditional.
76      BI->setUnconditionalDest(Dest1);
77      return true;
78    }
79  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) {
80    // If we are switching on a constant, we can convert the switch into a
81    // single branch instruction!
82    ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition());
83    BasicBlock *TheOnlyDest = SI->getSuccessor(0);  // The default dest
84    BasicBlock *DefaultDest = TheOnlyDest;
85    assert(TheOnlyDest == SI->getDefaultDest() &&
86           "Default destination is not successor #0?");
87
88    // Figure out which case it goes to...
89    for (unsigned i = 1, e = SI->getNumSuccessors(); i != e; ++i) {
90      // Found case matching a constant operand?
91      if (SI->getSuccessorValue(i) == CI) {
92        TheOnlyDest = SI->getSuccessor(i);
93        break;
94      }
95
96      // Check to see if this branch is going to the same place as the default
97      // dest.  If so, eliminate it as an explicit compare.
98      if (SI->getSuccessor(i) == DefaultDest) {
99        // Remove this entry...
100        DefaultDest->removePredecessor(SI->getParent());
101        SI->removeCase(i);
102        --i; --e;  // Don't skip an entry...
103        continue;
104      }
105
106      // Otherwise, check to see if the switch only branches to one destination.
107      // We do this by reseting "TheOnlyDest" to null when we find two non-equal
108      // destinations.
109      if (SI->getSuccessor(i) != TheOnlyDest) TheOnlyDest = 0;
110    }
111
112    if (CI && !TheOnlyDest) {
113      // Branching on a constant, but not any of the cases, go to the default
114      // successor.
115      TheOnlyDest = SI->getDefaultDest();
116    }
117
118    // If we found a single destination that we can fold the switch into, do so
119    // now.
120    if (TheOnlyDest) {
121      // Insert the new branch..
122      BranchInst::Create(TheOnlyDest, SI);
123      BasicBlock *BB = SI->getParent();
124
125      // Remove entries from PHI nodes which we no longer branch to...
126      for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) {
127        // Found case matching a constant operand?
128        BasicBlock *Succ = SI->getSuccessor(i);
129        if (Succ == TheOnlyDest)
130          TheOnlyDest = 0;  // Don't modify the first branch to TheOnlyDest
131        else
132          Succ->removePredecessor(BB);
133      }
134
135      // Delete the old switch...
136      BB->getInstList().erase(SI);
137      return true;
138    } else if (SI->getNumSuccessors() == 2) {
139      // Otherwise, we can fold this switch into a conditional branch
140      // instruction if it has only one non-default destination.
141      Value *Cond = new ICmpInst(ICmpInst::ICMP_EQ, SI->getCondition(),
142                                 SI->getSuccessorValue(1), "cond", SI);
143      // Insert the new branch...
144      BranchInst::Create(SI->getSuccessor(1), SI->getSuccessor(0), Cond, SI);
145
146      // Delete the old switch...
147      SI->eraseFromParent();
148      return true;
149    }
150  }
151  return false;
152}
153
154
155//===----------------------------------------------------------------------===//
156//  Local dead code elimination...
157//
158
159/// isInstructionTriviallyDead - Return true if the result produced by the
160/// instruction is not used, and the instruction has no side effects.
161///
162bool llvm::isInstructionTriviallyDead(Instruction *I) {
163  if (!I->use_empty() || isa<TerminatorInst>(I)) return false;
164
165  // We don't want debug info removed by anything this general.
166  if (isa<DbgInfoIntrinsic>(I)) return false;
167
168  if (!I->mayHaveSideEffects()) return true;
169
170  // Special case intrinsics that "may have side effects" but can be deleted
171  // when dead.
172  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
173    // Safe to delete llvm.stacksave if dead.
174    if (II->getIntrinsicID() == Intrinsic::stacksave)
175      return true;
176  return false;
177}
178
179/// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a
180/// trivially dead instruction, delete it.  If that makes any of its operands
181/// trivially dead, delete them too, recursively.
182void llvm::RecursivelyDeleteTriviallyDeadInstructions(Value *V) {
183  Instruction *I = dyn_cast<Instruction>(V);
184  if (!I || !I->use_empty() || !isInstructionTriviallyDead(I))
185    return;
186
187  SmallVector<Instruction*, 16> DeadInsts;
188  DeadInsts.push_back(I);
189
190  while (!DeadInsts.empty()) {
191    I = DeadInsts.back();
192    DeadInsts.pop_back();
193
194    // Null out all of the instruction's operands to see if any operand becomes
195    // dead as we go.
196    for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
197      Value *OpV = I->getOperand(i);
198      I->setOperand(i, 0);
199
200      if (!OpV->use_empty()) continue;
201
202      // If the operand is an instruction that became dead as we nulled out the
203      // operand, and if it is 'trivially' dead, delete it in a future loop
204      // iteration.
205      if (Instruction *OpI = dyn_cast<Instruction>(OpV))
206        if (isInstructionTriviallyDead(OpI))
207          DeadInsts.push_back(OpI);
208    }
209
210    I->eraseFromParent();
211  }
212}
213
214/// RecursivelyDeleteDeadPHINode - If the specified value is an effectively
215/// dead PHI node, due to being a def-use chain of single-use nodes that
216/// either forms a cycle or is terminated by a trivially dead instruction,
217/// delete it.  If that makes any of its operands trivially dead, delete them
218/// too, recursively.
219void
220llvm::RecursivelyDeleteDeadPHINode(PHINode *PN) {
221
222  // We can remove a PHI if it is on a cycle in the def-use graph
223  // where each node in the cycle has degree one, i.e. only one use,
224  // and is an instruction with no side effects.
225  if (!PN->hasOneUse())
226    return;
227
228  SmallPtrSet<PHINode *, 4> PHIs;
229  PHIs.insert(PN);
230  for (Instruction *J = cast<Instruction>(*PN->use_begin());
231       J->hasOneUse() && !J->mayHaveSideEffects();
232       J = cast<Instruction>(*J->use_begin()))
233    // If we find a PHI more than once, we're on a cycle that
234    // won't prove fruitful.
235    if (PHINode *JP = dyn_cast<PHINode>(J))
236      if (!PHIs.insert(cast<PHINode>(JP))) {
237        // Break the cycle and delete the PHI and its operands.
238        JP->replaceAllUsesWith(UndefValue::get(JP->getType()));
239        RecursivelyDeleteTriviallyDeadInstructions(JP);
240        break;
241      }
242}
243
244//===----------------------------------------------------------------------===//
245//  Control Flow Graph Restructuring...
246//
247
248/// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its
249/// predecessor is known to have one successor (DestBB!).  Eliminate the edge
250/// between them, moving the instructions in the predecessor into DestBB and
251/// deleting the predecessor block.
252///
253void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB) {
254  // If BB has single-entry PHI nodes, fold them.
255  while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
256    Value *NewVal = PN->getIncomingValue(0);
257    // Replace self referencing PHI with undef, it must be dead.
258    if (NewVal == PN) NewVal = UndefValue::get(PN->getType());
259    PN->replaceAllUsesWith(NewVal);
260    PN->eraseFromParent();
261  }
262
263  BasicBlock *PredBB = DestBB->getSinglePredecessor();
264  assert(PredBB && "Block doesn't have a single predecessor!");
265
266  // Splice all the instructions from PredBB to DestBB.
267  PredBB->getTerminator()->eraseFromParent();
268  DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList());
269
270  // Anything that branched to PredBB now branches to DestBB.
271  PredBB->replaceAllUsesWith(DestBB);
272
273  // Nuke BB.
274  PredBB->eraseFromParent();
275}
276
277/// OnlyUsedByDbgIntrinsics - Return true if the instruction I is only used
278/// by DbgIntrinsics. If DbgInUses is specified then the vector is filled
279/// with the DbgInfoIntrinsic that use the instruction I.
280bool llvm::OnlyUsedByDbgInfoIntrinsics(Instruction *I,
281                               SmallVectorImpl<DbgInfoIntrinsic *> *DbgInUses) {
282  if (DbgInUses)
283    DbgInUses->clear();
284
285  for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); UI != UE;
286       ++UI) {
287    if (DbgInfoIntrinsic *DI = dyn_cast<DbgInfoIntrinsic>(*UI)) {
288      if (DbgInUses)
289        DbgInUses->push_back(DI);
290    } else {
291      if (DbgInUses)
292        DbgInUses->clear();
293      return false;
294    }
295  }
296  return true;
297}
298
299/// UserIsDebugInfo - Return true if U is a constant expr used by
300/// llvm.dbg.variable or llvm.dbg.global_variable
301bool llvm::UserIsDebugInfo(User *U) {
302  ConstantExpr *CE = dyn_cast<ConstantExpr>(U);
303
304  if (!CE || CE->getNumUses() != 1)
305    return false;
306
307  Constant *Init = dyn_cast<Constant>(CE->use_back());
308  if (!Init || Init->getNumUses() != 1)
309    return false;
310
311  GlobalVariable *GV = dyn_cast<GlobalVariable>(Init->use_back());
312  if (!GV || !GV->hasInitializer() || GV->getInitializer() != Init)
313    return false;
314
315  DIVariable DV(GV);
316  if (!DV.isNull())
317    return true; // User is llvm.dbg.variable
318
319  DIGlobalVariable DGV(GV);
320  if (!DGV.isNull())
321    return true; // User is llvm.dbg.global_variable
322
323  return false;
324}
325
326/// RemoveDbgInfoUser - Remove an User which is representing debug info.
327void llvm::RemoveDbgInfoUser(User *U) {
328  assert (UserIsDebugInfo(U) && "Unexpected User!");
329  ConstantExpr *CE = cast<ConstantExpr>(U);
330  while (!CE->use_empty()) {
331    Constant *C = cast<Constant>(CE->use_back());
332    while (!C->use_empty()) {
333      GlobalVariable *GV = cast<GlobalVariable>(C->use_back());
334      GV->eraseFromParent();
335    }
336    C->destroyConstant();
337  }
338  CE->destroyConstant();
339}
340