Local.cpp revision ba25f0924ef3be887fb67ed6a66f3dee77461f44
1//===-- Local.cpp - Functions to perform local transformations ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This family of functions perform various local transformations to the
11// program.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Transforms/Utils/Local.h"
16#include "llvm/Constants.h"
17#include "llvm/GlobalAlias.h"
18#include "llvm/GlobalVariable.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/Instructions.h"
21#include "llvm/Intrinsics.h"
22#include "llvm/IntrinsicInst.h"
23#include "llvm/ADT/DenseMap.h"
24#include "llvm/ADT/SmallPtrSet.h"
25#include "llvm/Analysis/ConstantFolding.h"
26#include "llvm/Analysis/InstructionSimplify.h"
27#include "llvm/Analysis/ProfileInfo.h"
28#include "llvm/Target/TargetData.h"
29#include "llvm/Support/CFG.h"
30#include "llvm/Support/Debug.h"
31#include "llvm/Support/GetElementPtrTypeIterator.h"
32#include "llvm/Support/MathExtras.h"
33#include "llvm/Support/ValueHandle.h"
34#include "llvm/Support/raw_ostream.h"
35using namespace llvm;
36
37//===----------------------------------------------------------------------===//
38//  Local analysis.
39//
40
41/// isSafeToLoadUnconditionally - Return true if we know that executing a load
42/// from this value cannot trap.  If it is not obviously safe to load from the
43/// specified pointer, we do a quick local scan of the basic block containing
44/// ScanFrom, to determine if the address is already accessed.
45bool llvm::isSafeToLoadUnconditionally(Value *V, Instruction *ScanFrom) {
46  // If it is an alloca it is always safe to load from.
47  if (isa<AllocaInst>(V)) return true;
48
49  // If it is a global variable it is mostly safe to load from.
50  if (const GlobalValue *GV = dyn_cast<GlobalVariable>(V))
51    // Don't try to evaluate aliases.  External weak GV can be null.
52    return !isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage();
53
54  // Otherwise, be a little bit agressive by scanning the local block where we
55  // want to check to see if the pointer is already being loaded or stored
56  // from/to.  If so, the previous load or store would have already trapped,
57  // so there is no harm doing an extra load (also, CSE will later eliminate
58  // the load entirely).
59  BasicBlock::iterator BBI = ScanFrom, E = ScanFrom->getParent()->begin();
60
61  while (BBI != E) {
62    --BBI;
63
64    // If we see a free or a call which may write to memory (i.e. which might do
65    // a free) the pointer could be marked invalid.
66    if (isa<CallInst>(BBI) && BBI->mayWriteToMemory() &&
67        !isa<DbgInfoIntrinsic>(BBI))
68      return false;
69
70    if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
71      if (LI->getOperand(0) == V) return true;
72    } else if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) {
73      if (SI->getOperand(1) == V) return true;
74    }
75  }
76  return false;
77}
78
79
80//===----------------------------------------------------------------------===//
81//  Local constant propagation.
82//
83
84// ConstantFoldTerminator - If a terminator instruction is predicated on a
85// constant value, convert it into an unconditional branch to the constant
86// destination.
87//
88bool llvm::ConstantFoldTerminator(BasicBlock *BB) {
89  TerminatorInst *T = BB->getTerminator();
90
91  // Branch - See if we are conditional jumping on constant
92  if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
93    if (BI->isUnconditional()) return false;  // Can't optimize uncond branch
94    BasicBlock *Dest1 = BI->getSuccessor(0);
95    BasicBlock *Dest2 = BI->getSuccessor(1);
96
97    if (ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition())) {
98      // Are we branching on constant?
99      // YES.  Change to unconditional branch...
100      BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2;
101      BasicBlock *OldDest     = Cond->getZExtValue() ? Dest2 : Dest1;
102
103      //cerr << "Function: " << T->getParent()->getParent()
104      //     << "\nRemoving branch from " << T->getParent()
105      //     << "\n\nTo: " << OldDest << endl;
106
107      // Let the basic block know that we are letting go of it.  Based on this,
108      // it will adjust it's PHI nodes.
109      assert(BI->getParent() && "Terminator not inserted in block!");
110      OldDest->removePredecessor(BI->getParent());
111
112      // Set the unconditional destination, and change the insn to be an
113      // unconditional branch.
114      BI->setUnconditionalDest(Destination);
115      return true;
116    }
117
118    if (Dest2 == Dest1) {       // Conditional branch to same location?
119      // This branch matches something like this:
120      //     br bool %cond, label %Dest, label %Dest
121      // and changes it into:  br label %Dest
122
123      // Let the basic block know that we are letting go of one copy of it.
124      assert(BI->getParent() && "Terminator not inserted in block!");
125      Dest1->removePredecessor(BI->getParent());
126
127      // Change a conditional branch to unconditional.
128      BI->setUnconditionalDest(Dest1);
129      return true;
130    }
131    return false;
132  }
133
134  if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) {
135    // If we are switching on a constant, we can convert the switch into a
136    // single branch instruction!
137    ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition());
138    BasicBlock *TheOnlyDest = SI->getSuccessor(0);  // The default dest
139    BasicBlock *DefaultDest = TheOnlyDest;
140    assert(TheOnlyDest == SI->getDefaultDest() &&
141           "Default destination is not successor #0?");
142
143    // Figure out which case it goes to.
144    for (unsigned i = 1, e = SI->getNumSuccessors(); i != e; ++i) {
145      // Found case matching a constant operand?
146      if (SI->getSuccessorValue(i) == CI) {
147        TheOnlyDest = SI->getSuccessor(i);
148        break;
149      }
150
151      // Check to see if this branch is going to the same place as the default
152      // dest.  If so, eliminate it as an explicit compare.
153      if (SI->getSuccessor(i) == DefaultDest) {
154        // Remove this entry.
155        DefaultDest->removePredecessor(SI->getParent());
156        SI->removeCase(i);
157        --i; --e;  // Don't skip an entry...
158        continue;
159      }
160
161      // Otherwise, check to see if the switch only branches to one destination.
162      // We do this by reseting "TheOnlyDest" to null when we find two non-equal
163      // destinations.
164      if (SI->getSuccessor(i) != TheOnlyDest) TheOnlyDest = 0;
165    }
166
167    if (CI && !TheOnlyDest) {
168      // Branching on a constant, but not any of the cases, go to the default
169      // successor.
170      TheOnlyDest = SI->getDefaultDest();
171    }
172
173    // If we found a single destination that we can fold the switch into, do so
174    // now.
175    if (TheOnlyDest) {
176      // Insert the new branch.
177      BranchInst::Create(TheOnlyDest, SI);
178      BasicBlock *BB = SI->getParent();
179
180      // Remove entries from PHI nodes which we no longer branch to...
181      for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) {
182        // Found case matching a constant operand?
183        BasicBlock *Succ = SI->getSuccessor(i);
184        if (Succ == TheOnlyDest)
185          TheOnlyDest = 0;  // Don't modify the first branch to TheOnlyDest
186        else
187          Succ->removePredecessor(BB);
188      }
189
190      // Delete the old switch.
191      BB->getInstList().erase(SI);
192      return true;
193    }
194
195    if (SI->getNumSuccessors() == 2) {
196      // Otherwise, we can fold this switch into a conditional branch
197      // instruction if it has only one non-default destination.
198      Value *Cond = new ICmpInst(SI, ICmpInst::ICMP_EQ, SI->getCondition(),
199                                 SI->getSuccessorValue(1), "cond");
200      // Insert the new branch.
201      BranchInst::Create(SI->getSuccessor(1), SI->getSuccessor(0), Cond, SI);
202
203      // Delete the old switch.
204      SI->eraseFromParent();
205      return true;
206    }
207    return false;
208  }
209
210  if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(T)) {
211    // indirectbr blockaddress(@F, @BB) -> br label @BB
212    if (BlockAddress *BA =
213          dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) {
214      BasicBlock *TheOnlyDest = BA->getBasicBlock();
215      // Insert the new branch.
216      BranchInst::Create(TheOnlyDest, IBI);
217
218      for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
219        if (IBI->getDestination(i) == TheOnlyDest)
220          TheOnlyDest = 0;
221        else
222          IBI->getDestination(i)->removePredecessor(IBI->getParent());
223      }
224      IBI->eraseFromParent();
225
226      // If we didn't find our destination in the IBI successor list, then we
227      // have undefined behavior.  Replace the unconditional branch with an
228      // 'unreachable' instruction.
229      if (TheOnlyDest) {
230        BB->getTerminator()->eraseFromParent();
231        new UnreachableInst(BB->getContext(), BB);
232      }
233
234      return true;
235    }
236  }
237
238  return false;
239}
240
241
242//===----------------------------------------------------------------------===//
243//  Local dead code elimination.
244//
245
246/// isInstructionTriviallyDead - Return true if the result produced by the
247/// instruction is not used, and the instruction has no side effects.
248///
249bool llvm::isInstructionTriviallyDead(Instruction *I) {
250  if (!I->use_empty() || isa<TerminatorInst>(I)) return false;
251
252  // We don't want debug info removed by anything this general.
253  if (isa<DbgInfoIntrinsic>(I)) return false;
254
255  // Likewise for memory use markers.
256  if (isa<MemoryUseIntrinsic>(I)) return false;
257
258  if (!I->mayHaveSideEffects()) return true;
259
260  // Special case intrinsics that "may have side effects" but can be deleted
261  // when dead.
262  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
263    // Safe to delete llvm.stacksave if dead.
264    if (II->getIntrinsicID() == Intrinsic::stacksave)
265      return true;
266  return false;
267}
268
269/// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a
270/// trivially dead instruction, delete it.  If that makes any of its operands
271/// trivially dead, delete them too, recursively.  Return true if any
272/// instructions were deleted.
273bool llvm::RecursivelyDeleteTriviallyDeadInstructions(Value *V) {
274  Instruction *I = dyn_cast<Instruction>(V);
275  if (!I || !I->use_empty() || !isInstructionTriviallyDead(I))
276    return false;
277
278  SmallVector<Instruction*, 16> DeadInsts;
279  DeadInsts.push_back(I);
280
281  do {
282    I = DeadInsts.pop_back_val();
283
284    // Null out all of the instruction's operands to see if any operand becomes
285    // dead as we go.
286    for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
287      Value *OpV = I->getOperand(i);
288      I->setOperand(i, 0);
289
290      if (!OpV->use_empty()) continue;
291
292      // If the operand is an instruction that became dead as we nulled out the
293      // operand, and if it is 'trivially' dead, delete it in a future loop
294      // iteration.
295      if (Instruction *OpI = dyn_cast<Instruction>(OpV))
296        if (isInstructionTriviallyDead(OpI))
297          DeadInsts.push_back(OpI);
298    }
299
300    I->eraseFromParent();
301  } while (!DeadInsts.empty());
302
303  return true;
304}
305
306/// RecursivelyDeleteDeadPHINode - If the specified value is an effectively
307/// dead PHI node, due to being a def-use chain of single-use nodes that
308/// either forms a cycle or is terminated by a trivially dead instruction,
309/// delete it.  If that makes any of its operands trivially dead, delete them
310/// too, recursively.  Return true if the PHI node is actually deleted.
311bool
312llvm::RecursivelyDeleteDeadPHINode(PHINode *PN) {
313  // We can remove a PHI if it is on a cycle in the def-use graph
314  // where each node in the cycle has degree one, i.e. only one use,
315  // and is an instruction with no side effects.
316  if (!PN->hasOneUse())
317    return false;
318
319  bool Changed = false;
320  SmallPtrSet<PHINode *, 4> PHIs;
321  PHIs.insert(PN);
322  for (Instruction *J = cast<Instruction>(*PN->use_begin());
323       J->hasOneUse() && !J->mayHaveSideEffects();
324       J = cast<Instruction>(*J->use_begin()))
325    // If we find a PHI more than once, we're on a cycle that
326    // won't prove fruitful.
327    if (PHINode *JP = dyn_cast<PHINode>(J))
328      if (!PHIs.insert(cast<PHINode>(JP))) {
329        // Break the cycle and delete the PHI and its operands.
330        JP->replaceAllUsesWith(UndefValue::get(JP->getType()));
331        (void)RecursivelyDeleteTriviallyDeadInstructions(JP);
332        Changed = true;
333        break;
334      }
335  return Changed;
336}
337
338//===----------------------------------------------------------------------===//
339//  Control Flow Graph Restructuring.
340//
341
342
343/// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this
344/// method is called when we're about to delete Pred as a predecessor of BB.  If
345/// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred.
346///
347/// Unlike the removePredecessor method, this attempts to simplify uses of PHI
348/// nodes that collapse into identity values.  For example, if we have:
349///   x = phi(1, 0, 0, 0)
350///   y = and x, z
351///
352/// .. and delete the predecessor corresponding to the '1', this will attempt to
353/// recursively fold the and to 0.
354void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred,
355                                        TargetData *TD) {
356  // This only adjusts blocks with PHI nodes.
357  if (!isa<PHINode>(BB->begin()))
358    return;
359
360  // Remove the entries for Pred from the PHI nodes in BB, but do not simplify
361  // them down.  This will leave us with single entry phi nodes and other phis
362  // that can be removed.
363  BB->removePredecessor(Pred, true);
364
365  WeakVH PhiIt = &BB->front();
366  while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) {
367    PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt));
368
369    Value *PNV = PN->hasConstantValue();
370    if (PNV == 0) continue;
371
372    // If we're able to simplify the phi to a single value, substitute the new
373    // value into all of its uses.
374    assert(PNV != PN && "hasConstantValue broken");
375
376    ReplaceAndSimplifyAllUses(PN, PNV, TD);
377
378    // If recursive simplification ended up deleting the next PHI node we would
379    // iterate to, then our iterator is invalid, restart scanning from the top
380    // of the block.
381    if (PhiIt == 0) PhiIt = &BB->front();
382  }
383}
384
385
386/// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its
387/// predecessor is known to have one successor (DestBB!).  Eliminate the edge
388/// between them, moving the instructions in the predecessor into DestBB and
389/// deleting the predecessor block.
390///
391void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, Pass *P) {
392  // If BB has single-entry PHI nodes, fold them.
393  while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
394    Value *NewVal = PN->getIncomingValue(0);
395    // Replace self referencing PHI with undef, it must be dead.
396    if (NewVal == PN) NewVal = UndefValue::get(PN->getType());
397    PN->replaceAllUsesWith(NewVal);
398    PN->eraseFromParent();
399  }
400
401  BasicBlock *PredBB = DestBB->getSinglePredecessor();
402  assert(PredBB && "Block doesn't have a single predecessor!");
403
404  // Splice all the instructions from PredBB to DestBB.
405  PredBB->getTerminator()->eraseFromParent();
406  DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList());
407
408  // Anything that branched to PredBB now branches to DestBB.
409  PredBB->replaceAllUsesWith(DestBB);
410
411  if (P) {
412    ProfileInfo *PI = P->getAnalysisIfAvailable<ProfileInfo>();
413    if (PI) {
414      PI->replaceAllUses(PredBB, DestBB);
415      PI->removeEdge(ProfileInfo::getEdge(PredBB, DestBB));
416    }
417  }
418  // Nuke BB.
419  PredBB->eraseFromParent();
420}
421
422/// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an
423/// almost-empty BB ending in an unconditional branch to Succ, into succ.
424///
425/// Assumption: Succ is the single successor for BB.
426///
427static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
428  assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!");
429
430  DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into "
431        << Succ->getName() << "\n");
432  // Shortcut, if there is only a single predecessor it must be BB and merging
433  // is always safe
434  if (Succ->getSinglePredecessor()) return true;
435
436  // Make a list of the predecessors of BB
437  typedef SmallPtrSet<BasicBlock*, 16> BlockSet;
438  BlockSet BBPreds(pred_begin(BB), pred_end(BB));
439
440  // Use that list to make another list of common predecessors of BB and Succ
441  BlockSet CommonPreds;
442  for (pred_iterator PI = pred_begin(Succ), PE = pred_end(Succ);
443        PI != PE; ++PI)
444    if (BBPreds.count(*PI))
445      CommonPreds.insert(*PI);
446
447  // Shortcut, if there are no common predecessors, merging is always safe
448  if (CommonPreds.empty())
449    return true;
450
451  // Look at all the phi nodes in Succ, to see if they present a conflict when
452  // merging these blocks
453  for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
454    PHINode *PN = cast<PHINode>(I);
455
456    // If the incoming value from BB is again a PHINode in
457    // BB which has the same incoming value for *PI as PN does, we can
458    // merge the phi nodes and then the blocks can still be merged
459    PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB));
460    if (BBPN && BBPN->getParent() == BB) {
461      for (BlockSet::iterator PI = CommonPreds.begin(), PE = CommonPreds.end();
462            PI != PE; PI++) {
463        if (BBPN->getIncomingValueForBlock(*PI)
464              != PN->getIncomingValueForBlock(*PI)) {
465          DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in "
466                << Succ->getName() << " is conflicting with "
467                << BBPN->getName() << " with regard to common predecessor "
468                << (*PI)->getName() << "\n");
469          return false;
470        }
471      }
472    } else {
473      Value* Val = PN->getIncomingValueForBlock(BB);
474      for (BlockSet::iterator PI = CommonPreds.begin(), PE = CommonPreds.end();
475            PI != PE; PI++) {
476        // See if the incoming value for the common predecessor is equal to the
477        // one for BB, in which case this phi node will not prevent the merging
478        // of the block.
479        if (Val != PN->getIncomingValueForBlock(*PI)) {
480          DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in "
481                << Succ->getName() << " is conflicting with regard to common "
482                << "predecessor " << (*PI)->getName() << "\n");
483          return false;
484        }
485      }
486    }
487  }
488
489  return true;
490}
491
492/// TryToSimplifyUncondBranchFromEmptyBlock - BB is known to contain an
493/// unconditional branch, and contains no instructions other than PHI nodes,
494/// potential debug intrinsics and the branch.  If possible, eliminate BB by
495/// rewriting all the predecessors to branch to the successor block and return
496/// true.  If we can't transform, return false.
497bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB) {
498  // We can't eliminate infinite loops.
499  BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0);
500  if (BB == Succ) return false;
501
502  // Check to see if merging these blocks would cause conflicts for any of the
503  // phi nodes in BB or Succ. If not, we can safely merge.
504  if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false;
505
506  // Check for cases where Succ has multiple predecessors and a PHI node in BB
507  // has uses which will not disappear when the PHI nodes are merged.  It is
508  // possible to handle such cases, but difficult: it requires checking whether
509  // BB dominates Succ, which is non-trivial to calculate in the case where
510  // Succ has multiple predecessors.  Also, it requires checking whether
511  // constructing the necessary self-referential PHI node doesn't intoduce any
512  // conflicts; this isn't too difficult, but the previous code for doing this
513  // was incorrect.
514  //
515  // Note that if this check finds a live use, BB dominates Succ, so BB is
516  // something like a loop pre-header (or rarely, a part of an irreducible CFG);
517  // folding the branch isn't profitable in that case anyway.
518  if (!Succ->getSinglePredecessor()) {
519    BasicBlock::iterator BBI = BB->begin();
520    while (isa<PHINode>(*BBI)) {
521      for (Value::use_iterator UI = BBI->use_begin(), E = BBI->use_end();
522           UI != E; ++UI) {
523        if (PHINode* PN = dyn_cast<PHINode>(*UI)) {
524          if (PN->getIncomingBlock(UI) != BB)
525            return false;
526        } else {
527          return false;
528        }
529      }
530      ++BBI;
531    }
532  }
533
534  DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB);
535
536  if (isa<PHINode>(Succ->begin())) {
537    // If there is more than one pred of succ, and there are PHI nodes in
538    // the successor, then we need to add incoming edges for the PHI nodes
539    //
540    const SmallVector<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB));
541
542    // Loop over all of the PHI nodes in the successor of BB.
543    for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
544      PHINode *PN = cast<PHINode>(I);
545      Value *OldVal = PN->removeIncomingValue(BB, false);
546      assert(OldVal && "No entry in PHI for Pred BB!");
547
548      // If this incoming value is one of the PHI nodes in BB, the new entries
549      // in the PHI node are the entries from the old PHI.
550      if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) {
551        PHINode *OldValPN = cast<PHINode>(OldVal);
552        for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i)
553          // Note that, since we are merging phi nodes and BB and Succ might
554          // have common predecessors, we could end up with a phi node with
555          // identical incoming branches. This will be cleaned up later (and
556          // will trigger asserts if we try to clean it up now, without also
557          // simplifying the corresponding conditional branch).
558          PN->addIncoming(OldValPN->getIncomingValue(i),
559                          OldValPN->getIncomingBlock(i));
560      } else {
561        // Add an incoming value for each of the new incoming values.
562        for (unsigned i = 0, e = BBPreds.size(); i != e; ++i)
563          PN->addIncoming(OldVal, BBPreds[i]);
564      }
565    }
566  }
567
568  while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
569    if (Succ->getSinglePredecessor()) {
570      // BB is the only predecessor of Succ, so Succ will end up with exactly
571      // the same predecessors BB had.
572      Succ->getInstList().splice(Succ->begin(),
573                                 BB->getInstList(), BB->begin());
574    } else {
575      // We explicitly check for such uses in CanPropagatePredecessorsForPHIs.
576      assert(PN->use_empty() && "There shouldn't be any uses here!");
577      PN->eraseFromParent();
578    }
579  }
580
581  // Everything that jumped to BB now goes to Succ.
582  BB->replaceAllUsesWith(Succ);
583  if (!Succ->hasName()) Succ->takeName(BB);
584  BB->eraseFromParent();              // Delete the old basic block.
585  return true;
586}
587
588
589
590/// OnlyUsedByDbgIntrinsics - Return true if the instruction I is only used
591/// by DbgIntrinsics. If DbgInUses is specified then the vector is filled
592/// with the DbgInfoIntrinsic that use the instruction I.
593bool llvm::OnlyUsedByDbgInfoIntrinsics(Instruction *I,
594                               SmallVectorImpl<DbgInfoIntrinsic *> *DbgInUses) {
595  if (DbgInUses)
596    DbgInUses->clear();
597
598  for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); UI != UE;
599       ++UI) {
600    if (DbgInfoIntrinsic *DI = dyn_cast<DbgInfoIntrinsic>(*UI)) {
601      if (DbgInUses)
602        DbgInUses->push_back(DI);
603    } else {
604      if (DbgInUses)
605        DbgInUses->clear();
606      return false;
607    }
608  }
609  return true;
610}
611
612/// EliminateDuplicatePHINodes - Check for and eliminate duplicate PHI
613/// nodes in this block. This doesn't try to be clever about PHI nodes
614/// which differ only in the order of the incoming values, but instcombine
615/// orders them so it usually won't matter.
616///
617bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) {
618  bool Changed = false;
619
620  // This implementation doesn't currently consider undef operands
621  // specially. Theroetically, two phis which are identical except for
622  // one having an undef where the other doesn't could be collapsed.
623
624  // Map from PHI hash values to PHI nodes. If multiple PHIs have
625  // the same hash value, the element is the first PHI in the
626  // linked list in CollisionMap.
627  DenseMap<uintptr_t, PHINode *> HashMap;
628
629  // Maintain linked lists of PHI nodes with common hash values.
630  DenseMap<PHINode *, PHINode *> CollisionMap;
631
632  // Examine each PHI.
633  for (BasicBlock::iterator I = BB->begin();
634       PHINode *PN = dyn_cast<PHINode>(I++); ) {
635    // Compute a hash value on the operands. Instcombine will likely have sorted
636    // them, which helps expose duplicates, but we have to check all the
637    // operands to be safe in case instcombine hasn't run.
638    uintptr_t Hash = 0;
639    for (User::op_iterator I = PN->op_begin(), E = PN->op_end(); I != E; ++I) {
640      // This hash algorithm is quite weak as hash functions go, but it seems
641      // to do a good enough job for this particular purpose, and is very quick.
642      Hash ^= reinterpret_cast<uintptr_t>(static_cast<Value *>(*I));
643      Hash = (Hash << 7) | (Hash >> (sizeof(uintptr_t) * CHAR_BIT - 7));
644    }
645    // If we've never seen this hash value before, it's a unique PHI.
646    std::pair<DenseMap<uintptr_t, PHINode *>::iterator, bool> Pair =
647      HashMap.insert(std::make_pair(Hash, PN));
648    if (Pair.second) continue;
649    // Otherwise it's either a duplicate or a hash collision.
650    for (PHINode *OtherPN = Pair.first->second; ; ) {
651      if (OtherPN->isIdenticalTo(PN)) {
652        // A duplicate. Replace this PHI with its duplicate.
653        PN->replaceAllUsesWith(OtherPN);
654        PN->eraseFromParent();
655        Changed = true;
656        break;
657      }
658      // A non-duplicate hash collision.
659      DenseMap<PHINode *, PHINode *>::iterator I = CollisionMap.find(OtherPN);
660      if (I == CollisionMap.end()) {
661        // Set this PHI to be the head of the linked list of colliding PHIs.
662        PHINode *Old = Pair.first->second;
663        Pair.first->second = PN;
664        CollisionMap[PN] = Old;
665        break;
666      }
667      // Procede to the next PHI in the list.
668      OtherPN = I->second;
669    }
670  }
671
672  return Changed;
673}
674