llvm-stress.cpp revision fdc309cc4e95778d7615f3829917c4fe42086e1e
1//===-- llvm-stress.cpp - Print the size of each object section ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This program is a utility that generates random .ll files to stress-test
11// different components in LLVM.
12//
13//===----------------------------------------------------------------------===//
14#include "llvm/LLVMContext.h"
15#include "llvm/Module.h"
16#include "llvm/PassManager.h"
17#include "llvm/Constants.h"
18#include "llvm/Instruction.h"
19#include "llvm/CallGraphSCCPass.h"
20#include "llvm/Assembly/PrintModulePass.h"
21#include "llvm/Analysis/Verifier.h"
22#include "llvm/Support/PassNameParser.h"
23#include "llvm/Support/Debug.h"
24#include "llvm/Support/ManagedStatic.h"
25#include "llvm/Support/PluginLoader.h"
26#include "llvm/Support/PrettyStackTrace.h"
27#include "llvm/Support/ToolOutputFile.h"
28#include <memory>
29#include <sstream>
30#include <set>
31#include <vector>
32#include <algorithm>
33using namespace llvm;
34
35static cl::opt<unsigned> SeedCL("seed",
36  cl::desc("Seed used for randomness"), cl::init(0));
37static cl::opt<unsigned> SizeCL("size",
38  cl::desc("The estimated size of the generated function (# of instrs)"),
39  cl::init(100));
40static cl::opt<std::string>
41OutputFilename("o", cl::desc("Override output filename"),
42               cl::value_desc("filename"));
43
44/// A utility class to provide a pseudo-random number generator which is
45/// the same across all platforms. This is somewhat close to the libc
46/// implementation. Note: This is not a cryptographically secure pseudorandom
47/// number generator.
48class Random {
49public:
50  /// C'tor
51  Random(unsigned _seed):Seed(_seed) {}
52  /// Return the next random value.
53  unsigned Rand() {
54    unsigned Val = Seed + 0x000b07a1;
55    Seed = (Val * 0x3c7c0ac1);
56    // Only lowest 19 bits are random-ish.
57    return Seed & 0x7ffff;
58  }
59
60private:
61  unsigned Seed;
62};
63
64/// Generate an empty function with a default argument list.
65Function *GenEmptyFunction(Module *M) {
66  // Type Definitions
67  std::vector<Type*> ArgsTy;
68  // Define a few arguments
69  LLVMContext &Context = M->getContext();
70  ArgsTy.push_back(PointerType::get(IntegerType::getInt8Ty(Context), 0));
71  ArgsTy.push_back(PointerType::get(IntegerType::getInt32Ty(Context), 0));
72  ArgsTy.push_back(PointerType::get(IntegerType::getInt64Ty(Context), 0));
73  ArgsTy.push_back(IntegerType::getInt32Ty(Context));
74  ArgsTy.push_back(IntegerType::getInt64Ty(Context));
75  ArgsTy.push_back(IntegerType::getInt8Ty(Context));
76
77  FunctionType *FuncTy = FunctionType::get(Type::getVoidTy(Context), ArgsTy, 0);
78  // Pick a unique name to describe the input parameters
79  std::stringstream ss;
80  ss<<"autogen_SD"<<SeedCL;
81  Function *Func = Function::Create(FuncTy, GlobalValue::ExternalLinkage,
82                                    ss.str(), M);
83
84  Func->setCallingConv(CallingConv::C);
85  return Func;
86}
87
88/// A base class, implementing utilities needed for
89/// modifying and adding new random instructions.
90struct Modifier {
91  /// Used to store the randomly generated values.
92  typedef std::vector<Value*> PieceTable;
93
94public:
95  /// C'tor
96  Modifier(BasicBlock *_BB, PieceTable *PT, Random *R):
97    BB(_BB),PT(PT),Ran(R),Context(BB->getContext()) {};
98  /// Add a new instruction.
99  virtual void Act() = 0;
100  /// Add N new instructions,
101  virtual void ActN(unsigned n) {
102    for (unsigned i=0; i<n; ++i)
103      Act();
104  }
105
106protected:
107  /// Return a random value from the list of known values.
108  Value *getRandomVal() {
109    assert(PT->size());
110    return PT->at(Ran->Rand() % PT->size());
111  }
112
113  /// Return a random value with a known type.
114  Value *getRandomValue(Type *Tp) {
115    unsigned index = Ran->Rand();
116    for (unsigned i=0; i<PT->size(); ++i) {
117      Value *V = PT->at((index + i) % PT->size());
118      if (V->getType() == Tp)
119        return V;
120    }
121
122    // If the requested type was not found, generate a constant value.
123    if (Tp->isIntegerTy()) {
124      if (Ran->Rand() & 1)
125        return ConstantInt::getAllOnesValue(Tp);
126      return ConstantInt::getNullValue(Tp);
127    } else if (Tp->isFloatingPointTy()) {
128      if (Ran->Rand() & 1)
129        return ConstantFP::getAllOnesValue(Tp);
130      return ConstantFP::getNullValue(Tp);
131    }
132
133    // TODO: return values for vector types.
134    return UndefValue::get(Tp);
135  }
136
137  /// Return a random value of any pointer type.
138  Value *getRandomPointerValue() {
139    unsigned index = Ran->Rand();
140    for (unsigned i=0; i<PT->size(); ++i) {
141      Value *V = PT->at((index + i) % PT->size());
142      if (V->getType()->isPointerTy())
143        return V;
144    }
145    return UndefValue::get(pickPointerType());
146  }
147
148  /// Return a random value of any vector type.
149  Value *getRandomVectorValue() {
150    unsigned index = Ran->Rand();
151    for (unsigned i=0; i<PT->size(); ++i) {
152      Value *V = PT->at((index + i) % PT->size());
153      if (V->getType()->isVectorTy())
154        return V;
155    }
156    return UndefValue::get(pickVectorType());
157  }
158
159  /// Pick a random type.
160  Type *pickType() {
161    return (Ran->Rand() & 1 ? pickVectorType() : pickScalarType());
162  }
163
164  /// Pick a random pointer type.
165  Type *pickPointerType() {
166    Type *Ty = pickType();
167    return PointerType::get(Ty, 0);
168  }
169
170  /// Pick a random vector type.
171  Type *pickVectorType(unsigned len = (unsigned)-1) {
172    Type *Ty = pickScalarType();
173    // Pick a random vector width in the range 2**0 to 2**4.
174    // by adding two randoms we are generating a normal-like distribution
175    // around 2**3.
176    unsigned width = 1<<((Ran->Rand() % 3) + (Ran->Rand() % 3));
177    if (len != (unsigned)-1)
178      width = len;
179    return VectorType::get(Ty, width);
180  }
181
182  /// Pick a random scalar type.
183  Type *pickScalarType() {
184    switch (Ran->Rand() % 15) {
185    case 0: return Type::getInt1Ty(Context);
186    case 1: return Type::getInt8Ty(Context);
187    case 2: return Type::getInt16Ty(Context);
188    case 3: case 4:
189    case 5: return Type::getFloatTy(Context);
190    case 6: case 7:
191    case 8: return Type::getDoubleTy(Context);
192    case 9: case 10:
193    case 11: return Type::getInt32Ty(Context);
194    case 12: case 13:
195    case 14: return Type::getInt64Ty(Context);
196    }
197    llvm_unreachable("Invalid scalar value");
198  }
199
200  /// Basic block to populate
201  BasicBlock *BB;
202  /// Value table
203  PieceTable *PT;
204  /// Random number generator
205  Random *Ran;
206  /// Context
207  LLVMContext &Context;
208};
209
210struct LoadModifier: public Modifier {
211  LoadModifier(BasicBlock *BB, PieceTable *PT, Random *R):Modifier(BB, PT, R) {};
212  virtual void Act() {
213    // Try to use predefined pointers. If non exist, use undef pointer value;
214    Value *Ptr = getRandomPointerValue();
215    Value *V = new LoadInst(Ptr, "L", BB->getTerminator());
216    PT->push_back(V);
217  }
218};
219
220struct StoreModifier: public Modifier {
221  StoreModifier(BasicBlock *BB, PieceTable *PT, Random *R):Modifier(BB, PT, R) {}
222  virtual void Act() {
223    // Try to use predefined pointers. If non exist, use undef pointer value;
224    Value *Ptr = getRandomPointerValue();
225    Type  *Tp = Ptr->getType();
226    Value *Val = getRandomValue(Tp->getContainedType(0));
227
228    // Do not store vectors of i1s because they are unsupported
229    //by the codegen.
230    if (Tp->isVectorTy() && Tp->getScalarSizeInBits() == 1)
231      return;
232
233    new StoreInst(Val, Ptr, BB->getTerminator());
234  }
235};
236
237struct BinModifier: public Modifier {
238  BinModifier(BasicBlock *BB, PieceTable *PT, Random *R):Modifier(BB, PT, R) {}
239
240  virtual void Act() {
241    Value *Val0 = getRandomVal();
242    Value *Val1 = getRandomValue(Val0->getType());
243
244    // Don't handle pointer types.
245    if (Val0->getType()->isPointerTy() ||
246        Val1->getType()->isPointerTy())
247      return;
248
249    // Don't handle i1 types.
250    if (Val0->getType()->getScalarSizeInBits() == 1)
251      return;
252
253
254    bool isFloat = Val0->getType()->getScalarType()->isFloatingPointTy();
255    Instruction* Term = BB->getTerminator();
256    unsigned R = Ran->Rand() % (isFloat ? 7 : 13);
257    Instruction::BinaryOps Op;
258
259    switch (R) {
260    default: llvm_unreachable("Invalid BinOp");
261    case 0:{Op = (isFloat?Instruction::FAdd : Instruction::Add); break; }
262    case 1:{Op = (isFloat?Instruction::FSub : Instruction::Sub); break; }
263    case 2:{Op = (isFloat?Instruction::FMul : Instruction::Mul); break; }
264    case 3:{Op = (isFloat?Instruction::FDiv : Instruction::SDiv); break; }
265    case 4:{Op = (isFloat?Instruction::FDiv : Instruction::UDiv); break; }
266    case 5:{Op = (isFloat?Instruction::FRem : Instruction::SRem); break; }
267    case 6:{Op = (isFloat?Instruction::FRem : Instruction::URem); break; }
268    case 7: {Op = Instruction::Shl;  break; }
269    case 8: {Op = Instruction::LShr; break; }
270    case 9: {Op = Instruction::AShr; break; }
271    case 10:{Op = Instruction::And;  break; }
272    case 11:{Op = Instruction::Or;   break; }
273    case 12:{Op = Instruction::Xor;  break; }
274    }
275
276    PT->push_back(BinaryOperator::Create(Op, Val0, Val1, "B", Term));
277  }
278};
279
280/// Generate constant values.
281struct ConstModifier: public Modifier {
282  ConstModifier(BasicBlock *BB, PieceTable *PT, Random *R):Modifier(BB, PT, R) {}
283  virtual void Act() {
284    Type *Ty = pickType();
285
286    if (Ty->isVectorTy()) {
287      switch (Ran->Rand() % 2) {
288      case 0: if (Ty->getScalarType()->isIntegerTy())
289                return PT->push_back(ConstantVector::getAllOnesValue(Ty));
290      case 1: if (Ty->getScalarType()->isIntegerTy())
291                return PT->push_back(ConstantVector::getNullValue(Ty));
292      }
293    }
294
295    if (Ty->isFloatingPointTy()) {
296      if (Ran->Rand() & 1)
297        return PT->push_back(ConstantFP::getNullValue(Ty));
298      return PT->push_back(ConstantFP::get(Ty,
299                                           static_cast<double>(1)/Ran->Rand()));
300    }
301
302    if (Ty->isIntegerTy()) {
303      switch (Ran->Rand() % 7) {
304      case 0: if (Ty->isIntegerTy())
305                return PT->push_back(ConstantInt::get(Ty,
306                  APInt::getAllOnesValue(Ty->getPrimitiveSizeInBits())));
307      case 1: if (Ty->isIntegerTy())
308                return PT->push_back(ConstantInt::get(Ty,
309                  APInt::getNullValue(Ty->getPrimitiveSizeInBits())));
310      case 2: case 3: case 4: case 5:
311      case 6: if (Ty->isIntegerTy())
312                PT->push_back(ConstantInt::get(Ty, Ran->Rand()));
313      }
314    }
315
316  }
317};
318
319struct AllocaModifier: public Modifier {
320  AllocaModifier(BasicBlock *BB, PieceTable *PT, Random *R):Modifier(BB, PT, R){}
321
322  virtual void Act() {
323    Type *Tp = pickType();
324    PT->push_back(new AllocaInst(Tp, "A", BB->getFirstNonPHI()));
325  }
326};
327
328struct ExtractElementModifier: public Modifier {
329  ExtractElementModifier(BasicBlock *BB, PieceTable *PT, Random *R):
330    Modifier(BB, PT, R) {}
331
332  virtual void Act() {
333    Value *Val0 = getRandomVectorValue();
334    Value *V = ExtractElementInst::Create(Val0,
335             ConstantInt::get(Type::getInt32Ty(BB->getContext()),
336             Ran->Rand() % cast<VectorType>(Val0->getType())->getNumElements()),
337             "E", BB->getTerminator());
338    return PT->push_back(V);
339  }
340};
341
342struct ShuffModifier: public Modifier {
343  ShuffModifier(BasicBlock *BB, PieceTable *PT, Random *R):Modifier(BB, PT, R) {}
344  virtual void Act() {
345
346    Value *Val0 = getRandomVectorValue();
347    Value *Val1 = getRandomValue(Val0->getType());
348
349    unsigned Width = cast<VectorType>(Val0->getType())->getNumElements();
350    std::vector<Constant*> Idxs;
351
352    Type *I32 = Type::getInt32Ty(BB->getContext());
353    for (unsigned i=0; i<Width; ++i) {
354      Constant *CI = ConstantInt::get(I32, Ran->Rand() % (Width*2));
355      // Pick some undef values.
356      if (!(Ran->Rand() % 5))
357        CI = UndefValue::get(I32);
358      Idxs.push_back(CI);
359    }
360
361    Constant *Mask = ConstantVector::get(Idxs);
362
363    Value *V = new ShuffleVectorInst(Val0, Val1, Mask, "Shuff",
364                                     BB->getTerminator());
365    PT->push_back(V);
366  }
367};
368
369struct InsertElementModifier: public Modifier {
370  InsertElementModifier(BasicBlock *BB, PieceTable *PT, Random *R):
371    Modifier(BB, PT, R) {}
372
373  virtual void Act() {
374    Value *Val0 = getRandomVectorValue();
375    Value *Val1 = getRandomValue(Val0->getType()->getScalarType());
376
377    Value *V = InsertElementInst::Create(Val0, Val1,
378              ConstantInt::get(Type::getInt32Ty(BB->getContext()),
379              Ran->Rand() % cast<VectorType>(Val0->getType())->getNumElements()),
380              "I",  BB->getTerminator());
381    return PT->push_back(V);
382  }
383
384};
385
386struct CastModifier: public Modifier {
387  CastModifier(BasicBlock *BB, PieceTable *PT, Random *R):Modifier(BB, PT, R) {}
388  virtual void Act() {
389
390    Value *V = getRandomVal();
391    Type *VTy = V->getType();
392    Type *DestTy = pickScalarType();
393
394    // Handle vector casts vectors.
395    if (VTy->isVectorTy()) {
396      VectorType *VecTy = cast<VectorType>(VTy);
397      DestTy = pickVectorType(VecTy->getNumElements());
398    }
399
400    // no need to casr.
401    if (VTy == DestTy) return;
402
403    // Pointers:
404    if (VTy->isPointerTy()) {
405      if (!DestTy->isPointerTy())
406        DestTy = PointerType::get(DestTy, 0);
407      return PT->push_back(
408        new BitCastInst(V, DestTy, "PC", BB->getTerminator()));
409    }
410
411    // Generate lots of bitcasts.
412    if ((Ran->Rand() & 1) &&
413        VTy->getPrimitiveSizeInBits() == DestTy->getPrimitiveSizeInBits()) {
414      return PT->push_back(
415        new BitCastInst(V, DestTy, "BC", BB->getTerminator()));
416    }
417
418    // Both types are integers:
419    if (VTy->getScalarType()->isIntegerTy() &&
420        DestTy->getScalarType()->isIntegerTy()) {
421      if (VTy->getScalarType()->getPrimitiveSizeInBits() >
422          DestTy->getScalarType()->getPrimitiveSizeInBits()) {
423        return PT->push_back(
424          new TruncInst(V, DestTy, "Tr", BB->getTerminator()));
425      } else {
426        if (Ran->Rand() & 1)
427          return PT->push_back(
428            new ZExtInst(V, DestTy, "ZE", BB->getTerminator()));
429        return PT->push_back(new SExtInst(V, DestTy, "Se", BB->getTerminator()));
430      }
431    }
432
433    // Fp to int.
434    if (VTy->getScalarType()->isFloatingPointTy() &&
435        DestTy->getScalarType()->isIntegerTy()) {
436      if (Ran->Rand() & 1)
437        return PT->push_back(
438          new FPToSIInst(V, DestTy, "FC", BB->getTerminator()));
439      return PT->push_back(new FPToUIInst(V, DestTy, "FC", BB->getTerminator()));
440    }
441
442    // Int to fp.
443    if (VTy->getScalarType()->isIntegerTy() &&
444        DestTy->getScalarType()->isFloatingPointTy()) {
445      if (Ran->Rand() & 1)
446        return PT->push_back(
447          new SIToFPInst(V, DestTy, "FC", BB->getTerminator()));
448      return PT->push_back(new UIToFPInst(V, DestTy, "FC", BB->getTerminator()));
449
450    }
451
452    // Both floats.
453    if (VTy->getScalarType()->isFloatingPointTy() &&
454        DestTy->getScalarType()->isFloatingPointTy()) {
455      if (VTy->getScalarType()->getPrimitiveSizeInBits() >
456          DestTy->getScalarType()->getPrimitiveSizeInBits()) {
457        return PT->push_back(
458          new FPTruncInst(V, DestTy, "Tr", BB->getTerminator()));
459      } else {
460        return PT->push_back(
461          new FPExtInst(V, DestTy, "ZE", BB->getTerminator()));
462      }
463    }
464  }
465
466};
467
468struct SelectModifier: public Modifier {
469  SelectModifier(BasicBlock *BB, PieceTable *PT, Random *R):
470    Modifier(BB, PT, R) {}
471
472  virtual void Act() {
473    // Try a bunch of different select configuration until a valid one is found.
474      Value *Val0 = getRandomVal();
475      Value *Val1 = getRandomValue(Val0->getType());
476
477      Type *CondTy = Type::getInt1Ty(Context);
478
479      // If the value type is a vector, and we allow vector select, then in 50%
480      // of the cases generate a vector select.
481      if (Val0->getType()->isVectorTy() && (Ran->Rand() % 1)) {
482        unsigned NumElem = cast<VectorType>(Val0->getType())->getNumElements();
483        CondTy = VectorType::get(CondTy, NumElem);
484      }
485
486      Value *Cond = getRandomValue(CondTy);
487      Value *V = SelectInst::Create(Cond, Val0, Val1, "Sl", BB->getTerminator());
488      return PT->push_back(V);
489  }
490};
491
492
493struct CmpModifier: public Modifier {
494  CmpModifier(BasicBlock *BB, PieceTable *PT, Random *R):Modifier(BB, PT, R) {}
495  virtual void Act() {
496
497    Value *Val0 = getRandomVal();
498    Value *Val1 = getRandomValue(Val0->getType());
499
500    if (Val0->getType()->isPointerTy()) return;
501    bool fp = Val0->getType()->getScalarType()->isFloatingPointTy();
502
503    int op;
504    if (fp) {
505      op = Ran->Rand() %
506      (CmpInst::LAST_FCMP_PREDICATE - CmpInst::FIRST_FCMP_PREDICATE) +
507       CmpInst::FIRST_FCMP_PREDICATE;
508    } else {
509      op = Ran->Rand() %
510      (CmpInst::LAST_ICMP_PREDICATE - CmpInst::FIRST_ICMP_PREDICATE) +
511       CmpInst::FIRST_ICMP_PREDICATE;
512    }
513
514    Value *V = CmpInst::Create(fp ? Instruction::FCmp : Instruction::ICmp,
515                               op, Val0, Val1, "Cmp", BB->getTerminator());
516    return PT->push_back(V);
517  }
518};
519
520void FillFunction(Function *F) {
521  // Create a legal entry block.
522  BasicBlock *BB = BasicBlock::Create(F->getContext(), "BB", F);
523  ReturnInst::Create(F->getContext(), BB);
524
525  // Create the value table.
526  Modifier::PieceTable PT;
527  // Pick an initial seed value
528  Random R(SeedCL);
529
530  // Consider arguments as legal values.
531  for (Function::arg_iterator it = F->arg_begin(), e = F->arg_end();
532       it != e; ++it)
533    PT.push_back(it);
534
535  // List of modifiers which add new random instructions.
536  std::vector<Modifier*> Modifiers;
537  std::auto_ptr<Modifier> LM(new LoadModifier(BB, &PT, &R));
538  std::auto_ptr<Modifier> SM(new StoreModifier(BB, &PT, &R));
539  std::auto_ptr<Modifier> EE(new ExtractElementModifier(BB, &PT, &R));
540  std::auto_ptr<Modifier> SHM(new ShuffModifier(BB, &PT, &R));
541  std::auto_ptr<Modifier> IE(new InsertElementModifier(BB, &PT, &R));
542  std::auto_ptr<Modifier> BM(new BinModifier(BB, &PT, &R));
543  std::auto_ptr<Modifier> CM(new CastModifier(BB, &PT, &R));
544  std::auto_ptr<Modifier> SLM(new SelectModifier(BB, &PT, &R));
545  std::auto_ptr<Modifier> PM(new CmpModifier(BB, &PT, &R));
546  Modifiers.push_back(LM.get());
547  Modifiers.push_back(SM.get());
548  Modifiers.push_back(EE.get());
549  Modifiers.push_back(SHM.get());
550  Modifiers.push_back(IE.get());
551  Modifiers.push_back(BM.get());
552  Modifiers.push_back(CM.get());
553  Modifiers.push_back(SLM.get());
554  Modifiers.push_back(PM.get());
555
556  // Generate the random instructions
557  AllocaModifier AM(BB, &PT, &R); AM.ActN(5); // Throw in a few allocas
558  ConstModifier COM(BB, &PT, &R);  COM.ActN(40); // Throw in a few constants
559
560  for (unsigned i=0; i< SizeCL / Modifiers.size(); ++i)
561    for (std::vector<Modifier*>::iterator it = Modifiers.begin(),
562         e = Modifiers.end(); it != e; ++it) {
563      (*it)->Act();
564    }
565
566  SM->ActN(5); // Throw in a few stores.
567}
568
569void IntroduceControlFlow(Function *F) {
570  std::set<Instruction*> BoolInst;
571  for (BasicBlock::iterator it = F->begin()->begin(),
572       e = F->begin()->end(); it != e; ++it) {
573    if (it->getType() == IntegerType::getInt1Ty(F->getContext()))
574      BoolInst.insert(it);
575  }
576
577  for (std::set<Instruction*>::iterator it = BoolInst.begin(),
578       e = BoolInst.end(); it != e; ++it) {
579    Instruction *Instr = *it;
580    BasicBlock *Curr = Instr->getParent();
581    BasicBlock::iterator Loc= Instr;
582    BasicBlock *Next = Curr->splitBasicBlock(Loc, "CF");
583    Instr->moveBefore(Curr->getTerminator());
584    if (Curr != &F->getEntryBlock()) {
585      BranchInst::Create(Curr, Next, Instr, Curr->getTerminator());
586      Curr->getTerminator()->eraseFromParent();
587    }
588  }
589}
590
591int main(int argc, char **argv) {
592  // Init LLVM, call llvm_shutdown() on exit, parse args, etc.
593  llvm::PrettyStackTraceProgram X(argc, argv);
594  cl::ParseCommandLineOptions(argc, argv, "llvm codegen stress-tester\n");
595  llvm_shutdown_obj Y;
596
597  std::auto_ptr<Module> M(new Module("/tmp/autogen.bc", getGlobalContext()));
598  Function *F = GenEmptyFunction(M.get());
599  FillFunction(F);
600  IntroduceControlFlow(F);
601
602  // Figure out what stream we are supposed to write to...
603  OwningPtr<tool_output_file> Out;
604  // Default to standard output.
605  if (OutputFilename.empty())
606    OutputFilename = "-";
607
608  std::string ErrorInfo;
609  Out.reset(new tool_output_file(OutputFilename.c_str(), ErrorInfo,
610                                 raw_fd_ostream::F_Binary));
611  if (!ErrorInfo.empty()) {
612    errs() << ErrorInfo << '\n';
613    return 1;
614  }
615
616  PassManager Passes;
617  Passes.add(createVerifierPass());
618  Passes.add(createPrintModulePass(&Out->os()));
619  Passes.run(*M.get());
620  Out->keep();
621
622  return 0;
623}
624