heap.h revision 086aeeaae12517475c22695a200be45495516549
1// Copyright 2010 the V8 project authors. All rights reserved.
2// Redistribution and use in source and binary forms, with or without
3// modification, are permitted provided that the following conditions are
4// met:
5//
6//     * Redistributions of source code must retain the above copyright
7//       notice, this list of conditions and the following disclaimer.
8//     * Redistributions in binary form must reproduce the above
9//       copyright notice, this list of conditions and the following
10//       disclaimer in the documentation and/or other materials provided
11//       with the distribution.
12//     * Neither the name of Google Inc. nor the names of its
13//       contributors may be used to endorse or promote products derived
14//       from this software without specific prior written permission.
15//
16// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28#ifndef V8_HEAP_H_
29#define V8_HEAP_H_
30
31#include <math.h>
32
33#include "spaces.h"
34#include "splay-tree-inl.h"
35#include "v8-counters.h"
36
37namespace v8 {
38namespace internal {
39
40
41// Defines all the roots in Heap.
42#define UNCONDITIONAL_STRONG_ROOT_LIST(V)                                      \
43  /* Put the byte array map early.  We need it to be in place by the time   */ \
44  /* the deserializer hits the next page, since it wants to put a byte      */ \
45  /* array in the unused space at the end of the page.                      */ \
46  V(Map, byte_array_map, ByteArrayMap)                                         \
47  V(Map, one_pointer_filler_map, OnePointerFillerMap)                          \
48  V(Map, two_pointer_filler_map, TwoPointerFillerMap)                          \
49  /* Cluster the most popular ones in a few cache lines here at the top.    */ \
50  V(Smi, stack_limit, StackLimit)                                              \
51  V(Object, undefined_value, UndefinedValue)                                   \
52  V(Object, the_hole_value, TheHoleValue)                                      \
53  V(Object, null_value, NullValue)                                             \
54  V(Object, true_value, TrueValue)                                             \
55  V(Object, false_value, FalseValue)                                           \
56  V(Object, arguments_marker, ArgumentsMarker)                                 \
57  V(Map, heap_number_map, HeapNumberMap)                                       \
58  V(Map, global_context_map, GlobalContextMap)                                 \
59  V(Map, fixed_array_map, FixedArrayMap)                                       \
60  V(Map, fixed_cow_array_map, FixedCOWArrayMap)                                \
61  V(Object, no_interceptor_result_sentinel, NoInterceptorResultSentinel)       \
62  V(Map, meta_map, MetaMap)                                                    \
63  V(Object, termination_exception, TerminationException)                       \
64  V(Map, hash_table_map, HashTableMap)                                         \
65  V(FixedArray, empty_fixed_array, EmptyFixedArray)                            \
66  V(ByteArray, empty_byte_array, EmptyByteArray)                               \
67  V(Map, string_map, StringMap)                                                \
68  V(Map, ascii_string_map, AsciiStringMap)                                     \
69  V(Map, symbol_map, SymbolMap)                                                \
70  V(Map, ascii_symbol_map, AsciiSymbolMap)                                     \
71  V(Map, cons_symbol_map, ConsSymbolMap)                                       \
72  V(Map, cons_ascii_symbol_map, ConsAsciiSymbolMap)                            \
73  V(Map, external_symbol_map, ExternalSymbolMap)                               \
74  V(Map, external_symbol_with_ascii_data_map, ExternalSymbolWithAsciiDataMap)  \
75  V(Map, external_ascii_symbol_map, ExternalAsciiSymbolMap)                    \
76  V(Map, cons_string_map, ConsStringMap)                                       \
77  V(Map, cons_ascii_string_map, ConsAsciiStringMap)                            \
78  V(Map, external_string_map, ExternalStringMap)                               \
79  V(Map, external_string_with_ascii_data_map, ExternalStringWithAsciiDataMap)  \
80  V(Map, external_ascii_string_map, ExternalAsciiStringMap)                    \
81  V(Map, undetectable_string_map, UndetectableStringMap)                       \
82  V(Map, undetectable_ascii_string_map, UndetectableAsciiStringMap)            \
83  V(Map, pixel_array_map, PixelArrayMap)                                       \
84  V(Map, external_byte_array_map, ExternalByteArrayMap)                        \
85  V(Map, external_unsigned_byte_array_map, ExternalUnsignedByteArrayMap)       \
86  V(Map, external_short_array_map, ExternalShortArrayMap)                      \
87  V(Map, external_unsigned_short_array_map, ExternalUnsignedShortArrayMap)     \
88  V(Map, external_int_array_map, ExternalIntArrayMap)                          \
89  V(Map, external_unsigned_int_array_map, ExternalUnsignedIntArrayMap)         \
90  V(Map, external_float_array_map, ExternalFloatArrayMap)                      \
91  V(Map, context_map, ContextMap)                                              \
92  V(Map, catch_context_map, CatchContextMap)                                   \
93  V(Map, code_map, CodeMap)                                                    \
94  V(Map, oddball_map, OddballMap)                                              \
95  V(Map, global_property_cell_map, GlobalPropertyCellMap)                      \
96  V(Map, shared_function_info_map, SharedFunctionInfoMap)                      \
97  V(Map, proxy_map, ProxyMap)                                                  \
98  V(Object, nan_value, NanValue)                                               \
99  V(Object, minus_zero_value, MinusZeroValue)                                  \
100  V(Object, instanceof_cache_function, InstanceofCacheFunction)                \
101  V(Object, instanceof_cache_map, InstanceofCacheMap)                          \
102  V(Object, instanceof_cache_answer, InstanceofCacheAnswer)                    \
103  V(String, empty_string, EmptyString)                                         \
104  V(DescriptorArray, empty_descriptor_array, EmptyDescriptorArray)             \
105  V(Map, neander_map, NeanderMap)                                              \
106  V(JSObject, message_listeners, MessageListeners)                             \
107  V(Proxy, prototype_accessors, PrototypeAccessors)                            \
108  V(NumberDictionary, code_stubs, CodeStubs)                                   \
109  V(NumberDictionary, non_monomorphic_cache, NonMonomorphicCache)              \
110  V(Code, js_entry_code, JsEntryCode)                                          \
111  V(Code, js_construct_entry_code, JsConstructEntryCode)                       \
112  V(Code, c_entry_code, CEntryCode)                                            \
113  V(FixedArray, number_string_cache, NumberStringCache)                        \
114  V(FixedArray, single_character_string_cache, SingleCharacterStringCache)     \
115  V(FixedArray, natives_source_cache, NativesSourceCache)                      \
116  V(Object, last_script_id, LastScriptId)                                      \
117  V(Script, empty_script, EmptyScript)                                         \
118  V(Smi, real_stack_limit, RealStackLimit)                                     \
119  V(StringDictionary, intrinsic_function_names, IntrinsicFunctionNames)        \
120
121#if V8_TARGET_ARCH_ARM && !V8_INTERPRETED_REGEXP
122#define STRONG_ROOT_LIST(V)                                                    \
123  UNCONDITIONAL_STRONG_ROOT_LIST(V)                                            \
124  V(Code, re_c_entry_code, RegExpCEntryCode)
125#else
126#define STRONG_ROOT_LIST(V) UNCONDITIONAL_STRONG_ROOT_LIST(V)
127#endif
128
129#define ROOT_LIST(V)                                  \
130  STRONG_ROOT_LIST(V)                                 \
131  V(SymbolTable, symbol_table, SymbolTable)
132
133#define SYMBOL_LIST(V)                                                   \
134  V(Array_symbol, "Array")                                               \
135  V(Object_symbol, "Object")                                             \
136  V(Proto_symbol, "__proto__")                                           \
137  V(StringImpl_symbol, "StringImpl")                                     \
138  V(arguments_symbol, "arguments")                                       \
139  V(Arguments_symbol, "Arguments")                                       \
140  V(arguments_shadow_symbol, ".arguments")                               \
141  V(call_symbol, "call")                                                 \
142  V(apply_symbol, "apply")                                               \
143  V(caller_symbol, "caller")                                             \
144  V(boolean_symbol, "boolean")                                           \
145  V(Boolean_symbol, "Boolean")                                           \
146  V(callee_symbol, "callee")                                             \
147  V(constructor_symbol, "constructor")                                   \
148  V(code_symbol, ".code")                                                \
149  V(result_symbol, ".result")                                            \
150  V(catch_var_symbol, ".catch-var")                                      \
151  V(empty_symbol, "")                                                    \
152  V(eval_symbol, "eval")                                                 \
153  V(function_symbol, "function")                                         \
154  V(length_symbol, "length")                                             \
155  V(name_symbol, "name")                                                 \
156  V(number_symbol, "number")                                             \
157  V(Number_symbol, "Number")                                             \
158  V(RegExp_symbol, "RegExp")                                             \
159  V(source_symbol, "source")                                             \
160  V(global_symbol, "global")                                             \
161  V(ignore_case_symbol, "ignoreCase")                                    \
162  V(multiline_symbol, "multiline")                                       \
163  V(input_symbol, "input")                                               \
164  V(index_symbol, "index")                                               \
165  V(last_index_symbol, "lastIndex")                                      \
166  V(object_symbol, "object")                                             \
167  V(prototype_symbol, "prototype")                                       \
168  V(string_symbol, "string")                                             \
169  V(String_symbol, "String")                                             \
170  V(Date_symbol, "Date")                                                 \
171  V(this_symbol, "this")                                                 \
172  V(to_string_symbol, "toString")                                        \
173  V(char_at_symbol, "CharAt")                                            \
174  V(undefined_symbol, "undefined")                                       \
175  V(value_of_symbol, "valueOf")                                          \
176  V(InitializeVarGlobal_symbol, "InitializeVarGlobal")                   \
177  V(InitializeConstGlobal_symbol, "InitializeConstGlobal")               \
178  V(KeyedLoadSpecialized_symbol, "KeyedLoadSpecialized")                 \
179  V(KeyedStoreSpecialized_symbol, "KeyedStoreSpecialized")               \
180  V(stack_overflow_symbol, "kStackOverflowBoilerplate")                  \
181  V(illegal_access_symbol, "illegal access")                             \
182  V(out_of_memory_symbol, "out-of-memory")                               \
183  V(illegal_execution_state_symbol, "illegal execution state")           \
184  V(get_symbol, "get")                                                   \
185  V(set_symbol, "set")                                                   \
186  V(function_class_symbol, "Function")                                   \
187  V(illegal_argument_symbol, "illegal argument")                         \
188  V(MakeReferenceError_symbol, "MakeReferenceError")                     \
189  V(MakeSyntaxError_symbol, "MakeSyntaxError")                           \
190  V(MakeTypeError_symbol, "MakeTypeError")                               \
191  V(invalid_lhs_in_assignment_symbol, "invalid_lhs_in_assignment")       \
192  V(invalid_lhs_in_for_in_symbol, "invalid_lhs_in_for_in")               \
193  V(invalid_lhs_in_postfix_op_symbol, "invalid_lhs_in_postfix_op")       \
194  V(invalid_lhs_in_prefix_op_symbol, "invalid_lhs_in_prefix_op")         \
195  V(illegal_return_symbol, "illegal_return")                             \
196  V(illegal_break_symbol, "illegal_break")                               \
197  V(illegal_continue_symbol, "illegal_continue")                         \
198  V(unknown_label_symbol, "unknown_label")                               \
199  V(redeclaration_symbol, "redeclaration")                               \
200  V(failure_symbol, "<failure>")                                         \
201  V(space_symbol, " ")                                                   \
202  V(exec_symbol, "exec")                                                 \
203  V(zero_symbol, "0")                                                    \
204  V(global_eval_symbol, "GlobalEval")                                    \
205  V(identity_hash_symbol, "v8::IdentityHash")                            \
206  V(closure_symbol, "(closure)")
207
208
209// Forward declarations.
210class GCTracer;
211class HeapStats;
212class WeakObjectRetainer;
213
214
215typedef String* (*ExternalStringTableUpdaterCallback)(Object** pointer);
216
217typedef bool (*DirtyRegionCallback)(Address start,
218                                    Address end,
219                                    ObjectSlotCallback copy_object_func);
220
221
222// The all static Heap captures the interface to the global object heap.
223// All JavaScript contexts by this process share the same object heap.
224
225class Heap : public AllStatic {
226 public:
227  // Configure heap size before setup. Return false if the heap has been
228  // setup already.
229  static bool ConfigureHeap(int max_semispace_size,
230                            int max_old_gen_size,
231                            int max_executable_size);
232  static bool ConfigureHeapDefault();
233
234  // Initializes the global object heap. If create_heap_objects is true,
235  // also creates the basic non-mutable objects.
236  // Returns whether it succeeded.
237  static bool Setup(bool create_heap_objects);
238
239  // Destroys all memory allocated by the heap.
240  static void TearDown();
241
242  // Set the stack limit in the roots_ array.  Some architectures generate
243  // code that looks here, because it is faster than loading from the static
244  // jslimit_/real_jslimit_ variable in the StackGuard.
245  static void SetStackLimits();
246
247  // Returns whether Setup has been called.
248  static bool HasBeenSetup();
249
250  // Returns the maximum amount of memory reserved for the heap.  For
251  // the young generation, we reserve 4 times the amount needed for a
252  // semi space.  The young generation consists of two semi spaces and
253  // we reserve twice the amount needed for those in order to ensure
254  // that new space can be aligned to its size.
255  static intptr_t MaxReserved() {
256    return 4 * reserved_semispace_size_ + max_old_generation_size_;
257  }
258  static int MaxSemiSpaceSize() { return max_semispace_size_; }
259  static int ReservedSemiSpaceSize() { return reserved_semispace_size_; }
260  static int InitialSemiSpaceSize() { return initial_semispace_size_; }
261  static intptr_t MaxOldGenerationSize() { return max_old_generation_size_; }
262  static intptr_t MaxExecutableSize() { return max_executable_size_; }
263
264  // Returns the capacity of the heap in bytes w/o growing. Heap grows when
265  // more spaces are needed until it reaches the limit.
266  static intptr_t Capacity();
267
268  // Returns the amount of memory currently committed for the heap.
269  static intptr_t CommittedMemory();
270
271  // Returns the amount of executable memory currently committed for the heap.
272  static intptr_t CommittedMemoryExecutable();
273
274  // Returns the available bytes in space w/o growing.
275  // Heap doesn't guarantee that it can allocate an object that requires
276  // all available bytes. Check MaxHeapObjectSize() instead.
277  static intptr_t Available();
278
279  // Returns the maximum object size in paged space.
280  static inline int MaxObjectSizeInPagedSpace();
281
282  // Returns of size of all objects residing in the heap.
283  static intptr_t SizeOfObjects();
284
285  // Return the starting address and a mask for the new space.  And-masking an
286  // address with the mask will result in the start address of the new space
287  // for all addresses in either semispace.
288  static Address NewSpaceStart() { return new_space_.start(); }
289  static uintptr_t NewSpaceMask() { return new_space_.mask(); }
290  static Address NewSpaceTop() { return new_space_.top(); }
291
292  static NewSpace* new_space() { return &new_space_; }
293  static OldSpace* old_pointer_space() { return old_pointer_space_; }
294  static OldSpace* old_data_space() { return old_data_space_; }
295  static OldSpace* code_space() { return code_space_; }
296  static MapSpace* map_space() { return map_space_; }
297  static CellSpace* cell_space() { return cell_space_; }
298  static LargeObjectSpace* lo_space() { return lo_space_; }
299
300  static bool always_allocate() { return always_allocate_scope_depth_ != 0; }
301  static Address always_allocate_scope_depth_address() {
302    return reinterpret_cast<Address>(&always_allocate_scope_depth_);
303  }
304  static bool linear_allocation() {
305    return linear_allocation_scope_depth_ != 0;
306  }
307
308  static Address* NewSpaceAllocationTopAddress() {
309    return new_space_.allocation_top_address();
310  }
311  static Address* NewSpaceAllocationLimitAddress() {
312    return new_space_.allocation_limit_address();
313  }
314
315  // Uncommit unused semi space.
316  static bool UncommitFromSpace() { return new_space_.UncommitFromSpace(); }
317
318#ifdef ENABLE_HEAP_PROTECTION
319  // Protect/unprotect the heap by marking all spaces read-only/writable.
320  static void Protect();
321  static void Unprotect();
322#endif
323
324  // Allocates and initializes a new JavaScript object based on a
325  // constructor.
326  // Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation
327  // failed.
328  // Please note this does not perform a garbage collection.
329  MUST_USE_RESULT static MaybeObject* AllocateJSObject(
330      JSFunction* constructor, PretenureFlag pretenure = NOT_TENURED);
331
332  // Allocates and initializes a new global object based on a constructor.
333  // Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation
334  // failed.
335  // Please note this does not perform a garbage collection.
336  MUST_USE_RESULT static MaybeObject* AllocateGlobalObject(
337      JSFunction* constructor);
338
339  // Returns a deep copy of the JavaScript object.
340  // Properties and elements are copied too.
341  // Returns failure if allocation failed.
342  MUST_USE_RESULT static MaybeObject* CopyJSObject(JSObject* source);
343
344  // Allocates the function prototype.
345  // Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation
346  // failed.
347  // Please note this does not perform a garbage collection.
348  MUST_USE_RESULT static MaybeObject* AllocateFunctionPrototype(
349      JSFunction* function);
350
351  // Reinitialize an JSGlobalProxy based on a constructor.  The object
352  // must have the same size as objects allocated using the
353  // constructor.  The object is reinitialized and behaves as an
354  // object that has been freshly allocated using the constructor.
355  MUST_USE_RESULT static MaybeObject* ReinitializeJSGlobalProxy(
356      JSFunction* constructor,
357      JSGlobalProxy* global);
358
359  // Allocates and initializes a new JavaScript object based on a map.
360  // Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation
361  // failed.
362  // Please note this does not perform a garbage collection.
363  MUST_USE_RESULT static MaybeObject* AllocateJSObjectFromMap(
364      Map* map, PretenureFlag pretenure = NOT_TENURED);
365
366  // Allocates a heap object based on the map.
367  // Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation
368  // failed.
369  // Please note this function does not perform a garbage collection.
370  MUST_USE_RESULT static MaybeObject* Allocate(Map* map, AllocationSpace space);
371
372  // Allocates a JS Map in the heap.
373  // Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation
374  // failed.
375  // Please note this function does not perform a garbage collection.
376  MUST_USE_RESULT static MaybeObject* AllocateMap(InstanceType instance_type,
377                                             int instance_size);
378
379  // Allocates a partial map for bootstrapping.
380  MUST_USE_RESULT static MaybeObject* AllocatePartialMap(
381      InstanceType instance_type,
382      int instance_size);
383
384  // Allocate a map for the specified function
385  MUST_USE_RESULT static MaybeObject* AllocateInitialMap(JSFunction* fun);
386
387  // Allocates an empty code cache.
388  MUST_USE_RESULT static MaybeObject* AllocateCodeCache();
389
390  // Clear the Instanceof cache (used when a prototype changes).
391  static void ClearInstanceofCache() {
392    set_instanceof_cache_function(the_hole_value());
393  }
394
395  // Allocates and fully initializes a String.  There are two String
396  // encodings: ASCII and two byte. One should choose between the three string
397  // allocation functions based on the encoding of the string buffer used to
398  // initialized the string.
399  //   - ...FromAscii initializes the string from a buffer that is ASCII
400  //     encoded (it does not check that the buffer is ASCII encoded) and the
401  //     result will be ASCII encoded.
402  //   - ...FromUTF8 initializes the string from a buffer that is UTF-8
403  //     encoded.  If the characters are all single-byte characters, the
404  //     result will be ASCII encoded, otherwise it will converted to two
405  //     byte.
406  //   - ...FromTwoByte initializes the string from a buffer that is two-byte
407  //     encoded.  If the characters are all single-byte characters, the
408  //     result will be converted to ASCII, otherwise it will be left as
409  //     two-byte.
410  // Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation
411  // failed.
412  // Please note this does not perform a garbage collection.
413  MUST_USE_RESULT static MaybeObject* AllocateStringFromAscii(
414      Vector<const char> str,
415      PretenureFlag pretenure = NOT_TENURED);
416  MUST_USE_RESULT static inline MaybeObject* AllocateStringFromUtf8(
417      Vector<const char> str,
418      PretenureFlag pretenure = NOT_TENURED);
419  MUST_USE_RESULT static MaybeObject* AllocateStringFromUtf8Slow(
420      Vector<const char> str,
421      PretenureFlag pretenure = NOT_TENURED);
422  MUST_USE_RESULT static MaybeObject* AllocateStringFromTwoByte(
423      Vector<const uc16> str,
424      PretenureFlag pretenure = NOT_TENURED);
425
426  // Allocates a symbol in old space based on the character stream.
427  // Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation
428  // failed.
429  // Please note this function does not perform a garbage collection.
430  MUST_USE_RESULT static inline MaybeObject* AllocateSymbol(
431      Vector<const char> str,
432      int chars,
433      uint32_t hash_field);
434
435  MUST_USE_RESULT static inline MaybeObject* AllocateAsciiSymbol(
436        Vector<const char> str,
437        uint32_t hash_field);
438
439  MUST_USE_RESULT static inline MaybeObject* AllocateTwoByteSymbol(
440        Vector<const uc16> str,
441        uint32_t hash_field);
442
443  MUST_USE_RESULT static MaybeObject* AllocateInternalSymbol(
444      unibrow::CharacterStream* buffer, int chars, uint32_t hash_field);
445
446  MUST_USE_RESULT static MaybeObject* AllocateExternalSymbol(
447      Vector<const char> str,
448      int chars);
449
450
451  // Allocates and partially initializes a String.  There are two String
452  // encodings: ASCII and two byte.  These functions allocate a string of the
453  // given length and set its map and length fields.  The characters of the
454  // string are uninitialized.
455  // Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation
456  // failed.
457  // Please note this does not perform a garbage collection.
458  MUST_USE_RESULT static MaybeObject* AllocateRawAsciiString(
459      int length,
460      PretenureFlag pretenure = NOT_TENURED);
461  MUST_USE_RESULT static MaybeObject* AllocateRawTwoByteString(
462      int length,
463      PretenureFlag pretenure = NOT_TENURED);
464
465  // Computes a single character string where the character has code.
466  // A cache is used for ascii codes.
467  // Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation
468  // failed. Please note this does not perform a garbage collection.
469  MUST_USE_RESULT static MaybeObject* LookupSingleCharacterStringFromCode(
470      uint16_t code);
471
472  // Allocate a byte array of the specified length
473  // Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation
474  // failed.
475  // Please note this does not perform a garbage collection.
476  MUST_USE_RESULT static MaybeObject* AllocateByteArray(int length,
477                                                   PretenureFlag pretenure);
478
479  // Allocate a non-tenured byte array of the specified length
480  // Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation
481  // failed.
482  // Please note this does not perform a garbage collection.
483  MUST_USE_RESULT static MaybeObject* AllocateByteArray(int length);
484
485  // Allocate a pixel array of the specified length
486  // Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation
487  // failed.
488  // Please note this does not perform a garbage collection.
489  MUST_USE_RESULT static MaybeObject* AllocatePixelArray(int length,
490                                                    uint8_t* external_pointer,
491                                                    PretenureFlag pretenure);
492
493  // Allocates an external array of the specified length and type.
494  // Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation
495  // failed.
496  // Please note this does not perform a garbage collection.
497  MUST_USE_RESULT static MaybeObject* AllocateExternalArray(
498      int length,
499      ExternalArrayType array_type,
500      void* external_pointer,
501      PretenureFlag pretenure);
502
503  // Allocate a tenured JS global property cell.
504  // Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation
505  // failed.
506  // Please note this does not perform a garbage collection.
507  MUST_USE_RESULT static MaybeObject* AllocateJSGlobalPropertyCell(
508      Object* value);
509
510  // Allocates a fixed array initialized with undefined values
511  // Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation
512  // failed.
513  // Please note this does not perform a garbage collection.
514  MUST_USE_RESULT static MaybeObject* AllocateFixedArray(
515      int length,
516      PretenureFlag pretenure);
517  // Allocates a fixed array initialized with undefined values
518  MUST_USE_RESULT static MaybeObject* AllocateFixedArray(int length);
519
520  // Allocates an uninitialized fixed array. It must be filled by the caller.
521  //
522  // Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation
523  // failed.
524  // Please note this does not perform a garbage collection.
525  MUST_USE_RESULT static MaybeObject* AllocateUninitializedFixedArray(
526      int length);
527
528  // Make a copy of src and return it. Returns
529  // Failure::RetryAfterGC(requested_bytes, space) if the allocation failed.
530  MUST_USE_RESULT static inline MaybeObject* CopyFixedArray(FixedArray* src);
531
532  // Make a copy of src, set the map, and return the copy. Returns
533  // Failure::RetryAfterGC(requested_bytes, space) if the allocation failed.
534  MUST_USE_RESULT static MaybeObject* CopyFixedArrayWithMap(FixedArray* src,
535                                                            Map* map);
536
537  // Allocates a fixed array initialized with the hole values.
538  // Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation
539  // failed.
540  // Please note this does not perform a garbage collection.
541  MUST_USE_RESULT static MaybeObject* AllocateFixedArrayWithHoles(
542      int length,
543      PretenureFlag pretenure = NOT_TENURED);
544
545  // AllocateHashTable is identical to AllocateFixedArray except
546  // that the resulting object has hash_table_map as map.
547  MUST_USE_RESULT static MaybeObject* AllocateHashTable(
548      int length, PretenureFlag pretenure = NOT_TENURED);
549
550  // Allocate a global (but otherwise uninitialized) context.
551  MUST_USE_RESULT static MaybeObject* AllocateGlobalContext();
552
553  // Allocate a function context.
554  MUST_USE_RESULT static MaybeObject* AllocateFunctionContext(
555      int length,
556      JSFunction* closure);
557
558  // Allocate a 'with' context.
559  MUST_USE_RESULT static MaybeObject* AllocateWithContext(
560      Context* previous,
561      JSObject* extension,
562      bool is_catch_context);
563
564  // Allocates a new utility object in the old generation.
565  MUST_USE_RESULT static MaybeObject* AllocateStruct(InstanceType type);
566
567  // Allocates a function initialized with a shared part.
568  // Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation
569  // failed.
570  // Please note this does not perform a garbage collection.
571  MUST_USE_RESULT static MaybeObject* AllocateFunction(
572      Map* function_map,
573      SharedFunctionInfo* shared,
574      Object* prototype,
575      PretenureFlag pretenure = TENURED);
576
577  // Indicies for direct access into argument objects.
578  static const int kArgumentsObjectSize =
579      JSObject::kHeaderSize + 2 * kPointerSize;
580  static const int arguments_callee_index = 0;
581  static const int arguments_length_index = 1;
582
583  // Allocates an arguments object - optionally with an elements array.
584  // Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation
585  // failed.
586  // Please note this does not perform a garbage collection.
587  MUST_USE_RESULT static MaybeObject* AllocateArgumentsObject(Object* callee,
588                                                              int length);
589
590  // Same as NewNumberFromDouble, but may return a preallocated/immutable
591  // number object (e.g., minus_zero_value_, nan_value_)
592  MUST_USE_RESULT static MaybeObject* NumberFromDouble(
593      double value, PretenureFlag pretenure = NOT_TENURED);
594
595  // Allocated a HeapNumber from value.
596  MUST_USE_RESULT static MaybeObject* AllocateHeapNumber(
597      double value,
598      PretenureFlag pretenure);
599  // pretenure = NOT_TENURED.
600  MUST_USE_RESULT static MaybeObject* AllocateHeapNumber(double value);
601
602  // Converts an int into either a Smi or a HeapNumber object.
603  // Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation
604  // failed.
605  // Please note this does not perform a garbage collection.
606  MUST_USE_RESULT static inline MaybeObject* NumberFromInt32(int32_t value);
607
608  // Converts an int into either a Smi or a HeapNumber object.
609  // Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation
610  // failed.
611  // Please note this does not perform a garbage collection.
612  MUST_USE_RESULT static inline MaybeObject* NumberFromUint32(uint32_t value);
613
614  // Allocates a new proxy object.
615  // Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation
616  // failed.
617  // Please note this does not perform a garbage collection.
618  MUST_USE_RESULT static MaybeObject* AllocateProxy(
619      Address proxy,
620      PretenureFlag pretenure = NOT_TENURED);
621
622  // Allocates a new SharedFunctionInfo object.
623  // Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation
624  // failed.
625  // Please note this does not perform a garbage collection.
626  MUST_USE_RESULT static MaybeObject* AllocateSharedFunctionInfo(Object* name);
627
628  // Allocates a new cons string object.
629  // Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation
630  // failed.
631  // Please note this does not perform a garbage collection.
632  MUST_USE_RESULT static MaybeObject* AllocateConsString(String* first,
633                                                         String* second);
634
635  // Allocates a new sub string object which is a substring of an underlying
636  // string buffer stretching from the index start (inclusive) to the index
637  // end (exclusive).
638  // Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation
639  // failed.
640  // Please note this does not perform a garbage collection.
641  MUST_USE_RESULT static MaybeObject* AllocateSubString(
642      String* buffer,
643      int start,
644      int end,
645      PretenureFlag pretenure = NOT_TENURED);
646
647  // Allocate a new external string object, which is backed by a string
648  // resource that resides outside the V8 heap.
649  // Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation
650  // failed.
651  // Please note this does not perform a garbage collection.
652  MUST_USE_RESULT static MaybeObject* AllocateExternalStringFromAscii(
653      ExternalAsciiString::Resource* resource);
654  MUST_USE_RESULT static MaybeObject* AllocateExternalStringFromTwoByte(
655      ExternalTwoByteString::Resource* resource);
656
657  // Finalizes an external string by deleting the associated external
658  // data and clearing the resource pointer.
659  static inline void FinalizeExternalString(String* string);
660
661  // Allocates an uninitialized object.  The memory is non-executable if the
662  // hardware and OS allow.
663  // Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation
664  // failed.
665  // Please note this function does not perform a garbage collection.
666  MUST_USE_RESULT static inline MaybeObject* AllocateRaw(
667      int size_in_bytes,
668      AllocationSpace space,
669      AllocationSpace retry_space);
670
671  // Initialize a filler object to keep the ability to iterate over the heap
672  // when shortening objects.
673  static void CreateFillerObjectAt(Address addr, int size);
674
675  // Makes a new native code object
676  // Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation
677  // failed. On success, the pointer to the Code object is stored in the
678  // self_reference. This allows generated code to reference its own Code
679  // object by containing this pointer.
680  // Please note this function does not perform a garbage collection.
681  MUST_USE_RESULT static MaybeObject* CreateCode(const CodeDesc& desc,
682                                                 Code::Flags flags,
683                                                 Handle<Object> self_reference);
684
685  MUST_USE_RESULT static MaybeObject* CopyCode(Code* code);
686
687  // Copy the code and scope info part of the code object, but insert
688  // the provided data as the relocation information.
689  MUST_USE_RESULT static MaybeObject* CopyCode(Code* code,
690                                               Vector<byte> reloc_info);
691
692  // Finds the symbol for string in the symbol table.
693  // If not found, a new symbol is added to the table and returned.
694  // Returns Failure::RetryAfterGC(requested_bytes, space) if allocation
695  // failed.
696  // Please note this function does not perform a garbage collection.
697  MUST_USE_RESULT static MaybeObject* LookupSymbol(Vector<const char> str);
698  MUST_USE_RESULT static MaybeObject* LookupAsciiSymbol(Vector<const char> str);
699  MUST_USE_RESULT static MaybeObject* LookupTwoByteSymbol(
700      Vector<const uc16> str);
701  MUST_USE_RESULT static MaybeObject* LookupAsciiSymbol(const char* str) {
702    return LookupSymbol(CStrVector(str));
703  }
704  MUST_USE_RESULT static MaybeObject* LookupSymbol(String* str);
705  static bool LookupSymbolIfExists(String* str, String** symbol);
706  static bool LookupTwoCharsSymbolIfExists(String* str, String** symbol);
707
708  // Compute the matching symbol map for a string if possible.
709  // NULL is returned if string is in new space or not flattened.
710  static Map* SymbolMapForString(String* str);
711
712  // Tries to flatten a string before compare operation.
713  //
714  // Returns a failure in case it was decided that flattening was
715  // necessary and failed.  Note, if flattening is not necessary the
716  // string might stay non-flat even when not a failure is returned.
717  //
718  // Please note this function does not perform a garbage collection.
719  MUST_USE_RESULT static inline MaybeObject* PrepareForCompare(String* str);
720
721  // Converts the given boolean condition to JavaScript boolean value.
722  static Object* ToBoolean(bool condition) {
723    return condition ? true_value() : false_value();
724  }
725
726  // Code that should be run before and after each GC.  Includes some
727  // reporting/verification activities when compiled with DEBUG set.
728  static void GarbageCollectionPrologue();
729  static void GarbageCollectionEpilogue();
730
731  // Performs garbage collection operation.
732  // Returns whether there is a chance that another major GC could
733  // collect more garbage.
734  static bool CollectGarbage(AllocationSpace space, GarbageCollector collector);
735
736  // Performs garbage collection operation.
737  // Returns whether there is a chance that another major GC could
738  // collect more garbage.
739  inline static bool CollectGarbage(AllocationSpace space);
740
741  // Performs a full garbage collection. Force compaction if the
742  // parameter is true.
743  static void CollectAllGarbage(bool force_compaction);
744
745  // Last hope GC, should try to squeeze as much as possible.
746  static void CollectAllAvailableGarbage();
747
748  // Notify the heap that a context has been disposed.
749  static int NotifyContextDisposed() { return ++contexts_disposed_; }
750
751  // Utility to invoke the scavenger. This is needed in test code to
752  // ensure correct callback for weak global handles.
753  static void PerformScavenge();
754
755#ifdef DEBUG
756  // Utility used with flag gc-greedy.
757  static void GarbageCollectionGreedyCheck();
758#endif
759
760  static void AddGCPrologueCallback(
761      GCEpilogueCallback callback, GCType gc_type_filter);
762  static void RemoveGCPrologueCallback(GCEpilogueCallback callback);
763
764  static void AddGCEpilogueCallback(
765      GCEpilogueCallback callback, GCType gc_type_filter);
766  static void RemoveGCEpilogueCallback(GCEpilogueCallback callback);
767
768  static void SetGlobalGCPrologueCallback(GCCallback callback) {
769    ASSERT((callback == NULL) ^ (global_gc_prologue_callback_ == NULL));
770    global_gc_prologue_callback_ = callback;
771  }
772  static void SetGlobalGCEpilogueCallback(GCCallback callback) {
773    ASSERT((callback == NULL) ^ (global_gc_epilogue_callback_ == NULL));
774    global_gc_epilogue_callback_ = callback;
775  }
776
777  // Heap root getters.  We have versions with and without type::cast() here.
778  // You can't use type::cast during GC because the assert fails.
779#define ROOT_ACCESSOR(type, name, camel_name)                                  \
780  static inline type* name() {                                                 \
781    return type::cast(roots_[k##camel_name##RootIndex]);                       \
782  }                                                                            \
783  static inline type* raw_unchecked_##name() {                                 \
784    return reinterpret_cast<type*>(roots_[k##camel_name##RootIndex]);          \
785  }
786  ROOT_LIST(ROOT_ACCESSOR)
787#undef ROOT_ACCESSOR
788
789// Utility type maps
790#define STRUCT_MAP_ACCESSOR(NAME, Name, name)                                  \
791    static inline Map* name##_map() {                                          \
792      return Map::cast(roots_[k##Name##MapRootIndex]);                         \
793    }
794  STRUCT_LIST(STRUCT_MAP_ACCESSOR)
795#undef STRUCT_MAP_ACCESSOR
796
797#define SYMBOL_ACCESSOR(name, str) static inline String* name() {              \
798    return String::cast(roots_[k##name##RootIndex]);                           \
799  }
800  SYMBOL_LIST(SYMBOL_ACCESSOR)
801#undef SYMBOL_ACCESSOR
802
803  // The hidden_symbol is special because it is the empty string, but does
804  // not match the empty string.
805  static String* hidden_symbol() { return hidden_symbol_; }
806
807  static void set_global_contexts_list(Object* object) {
808    global_contexts_list_ = object;
809  }
810  static Object* global_contexts_list() { return global_contexts_list_; }
811
812  // Iterates over all roots in the heap.
813  static void IterateRoots(ObjectVisitor* v, VisitMode mode);
814  // Iterates over all strong roots in the heap.
815  static void IterateStrongRoots(ObjectVisitor* v, VisitMode mode);
816  // Iterates over all the other roots in the heap.
817  static void IterateWeakRoots(ObjectVisitor* v, VisitMode mode);
818
819  enum ExpectedPageWatermarkState {
820    WATERMARK_SHOULD_BE_VALID,
821    WATERMARK_CAN_BE_INVALID
822  };
823
824  // For each dirty region on a page in use from an old space call
825  // visit_dirty_region callback.
826  // If either visit_dirty_region or callback can cause an allocation
827  // in old space and changes in allocation watermark then
828  // can_preallocate_during_iteration should be set to true.
829  // All pages will be marked as having invalid watermark upon
830  // iteration completion.
831  static void IterateDirtyRegions(
832      PagedSpace* space,
833      DirtyRegionCallback visit_dirty_region,
834      ObjectSlotCallback callback,
835      ExpectedPageWatermarkState expected_page_watermark_state);
836
837  // Interpret marks as a bitvector of dirty marks for regions of size
838  // Page::kRegionSize aligned by Page::kRegionAlignmentMask and covering
839  // memory interval from start to top. For each dirty region call a
840  // visit_dirty_region callback. Return updated bitvector of dirty marks.
841  static uint32_t IterateDirtyRegions(uint32_t marks,
842                                      Address start,
843                                      Address end,
844                                      DirtyRegionCallback visit_dirty_region,
845                                      ObjectSlotCallback callback);
846
847  // Iterate pointers to from semispace of new space found in memory interval
848  // from start to end.
849  // Update dirty marks for page containing start address.
850  static void IterateAndMarkPointersToFromSpace(Address start,
851                                                Address end,
852                                                ObjectSlotCallback callback);
853
854  // Iterate pointers to new space found in memory interval from start to end.
855  // Return true if pointers to new space was found.
856  static bool IteratePointersInDirtyRegion(Address start,
857                                           Address end,
858                                           ObjectSlotCallback callback);
859
860
861  // Iterate pointers to new space found in memory interval from start to end.
862  // This interval is considered to belong to the map space.
863  // Return true if pointers to new space was found.
864  static bool IteratePointersInDirtyMapsRegion(Address start,
865                                               Address end,
866                                               ObjectSlotCallback callback);
867
868
869  // Returns whether the object resides in new space.
870  static inline bool InNewSpace(Object* object);
871  static inline bool InFromSpace(Object* object);
872  static inline bool InToSpace(Object* object);
873
874  // Checks whether an address/object in the heap (including auxiliary
875  // area and unused area).
876  static bool Contains(Address addr);
877  static bool Contains(HeapObject* value);
878
879  // Checks whether an address/object in a space.
880  // Currently used by tests, serialization and heap verification only.
881  static bool InSpace(Address addr, AllocationSpace space);
882  static bool InSpace(HeapObject* value, AllocationSpace space);
883
884  // Finds out which space an object should get promoted to based on its type.
885  static inline OldSpace* TargetSpace(HeapObject* object);
886  static inline AllocationSpace TargetSpaceId(InstanceType type);
887
888  // Sets the stub_cache_ (only used when expanding the dictionary).
889  static void public_set_code_stubs(NumberDictionary* value) {
890    roots_[kCodeStubsRootIndex] = value;
891  }
892
893  // Support for computing object sizes for old objects during GCs. Returns
894  // a function that is guaranteed to be safe for computing object sizes in
895  // the current GC phase.
896  static HeapObjectCallback GcSafeSizeOfOldObjectFunction() {
897    return gc_safe_size_of_old_object_;
898  }
899
900  // Sets the non_monomorphic_cache_ (only used when expanding the dictionary).
901  static void public_set_non_monomorphic_cache(NumberDictionary* value) {
902    roots_[kNonMonomorphicCacheRootIndex] = value;
903  }
904
905  static void public_set_empty_script(Script* script) {
906    roots_[kEmptyScriptRootIndex] = script;
907  }
908
909  // Update the next script id.
910  static inline void SetLastScriptId(Object* last_script_id);
911
912  // Generated code can embed this address to get access to the roots.
913  static Object** roots_address() { return roots_; }
914
915  // Get address of global contexts list for serialization support.
916  static Object** global_contexts_list_address() {
917    return &global_contexts_list_;
918  }
919
920#ifdef DEBUG
921  static void Print();
922  static void PrintHandles();
923
924  // Verify the heap is in its normal state before or after a GC.
925  static void Verify();
926
927  // Report heap statistics.
928  static void ReportHeapStatistics(const char* title);
929  static void ReportCodeStatistics(const char* title);
930
931  // Fill in bogus values in from space
932  static void ZapFromSpace();
933#endif
934
935#if defined(ENABLE_LOGGING_AND_PROFILING)
936  // Print short heap statistics.
937  static void PrintShortHeapStatistics();
938#endif
939
940  // Makes a new symbol object
941  // Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation
942  // failed.
943  // Please note this function does not perform a garbage collection.
944  MUST_USE_RESULT static MaybeObject* CreateSymbol(const char* str,
945                                                   int length,
946                                                   int hash);
947  MUST_USE_RESULT static MaybeObject* CreateSymbol(String* str);
948
949  // Write barrier support for address[offset] = o.
950  static inline void RecordWrite(Address address, int offset);
951
952  // Write barrier support for address[start : start + len[ = o.
953  static inline void RecordWrites(Address address, int start, int len);
954
955  // Given an address occupied by a live code object, return that object.
956  static Object* FindCodeObject(Address a);
957
958  // Invoke Shrink on shrinkable spaces.
959  static void Shrink();
960
961  enum HeapState { NOT_IN_GC, SCAVENGE, MARK_COMPACT };
962  static inline HeapState gc_state() { return gc_state_; }
963
964#ifdef DEBUG
965  static bool IsAllocationAllowed() { return allocation_allowed_; }
966  static inline bool allow_allocation(bool enable);
967
968  static bool disallow_allocation_failure() {
969    return disallow_allocation_failure_;
970  }
971
972  static void TracePathToObject(Object* target);
973  static void TracePathToGlobal();
974#endif
975
976  // Callback function passed to Heap::Iterate etc.  Copies an object if
977  // necessary, the object might be promoted to an old space.  The caller must
978  // ensure the precondition that the object is (a) a heap object and (b) in
979  // the heap's from space.
980  static void ScavengePointer(HeapObject** p);
981  static inline void ScavengeObject(HeapObject** p, HeapObject* object);
982
983  // Commits from space if it is uncommitted.
984  static void EnsureFromSpaceIsCommitted();
985
986  // Support for partial snapshots.  After calling this we can allocate a
987  // certain number of bytes using only linear allocation (with a
988  // LinearAllocationScope and an AlwaysAllocateScope) without using freelists
989  // or causing a GC.  It returns true of space was reserved or false if a GC is
990  // needed.  For paged spaces the space requested must include the space wasted
991  // at the end of each page when allocating linearly.
992  static void ReserveSpace(
993    int new_space_size,
994    int pointer_space_size,
995    int data_space_size,
996    int code_space_size,
997    int map_space_size,
998    int cell_space_size,
999    int large_object_size);
1000
1001  //
1002  // Support for the API.
1003  //
1004
1005  static bool CreateApiObjects();
1006
1007  // Attempt to find the number in a small cache.  If we finds it, return
1008  // the string representation of the number.  Otherwise return undefined.
1009  static Object* GetNumberStringCache(Object* number);
1010
1011  // Update the cache with a new number-string pair.
1012  static void SetNumberStringCache(Object* number, String* str);
1013
1014  // Adjusts the amount of registered external memory.
1015  // Returns the adjusted value.
1016  static inline int AdjustAmountOfExternalAllocatedMemory(int change_in_bytes);
1017
1018  // Allocate uninitialized fixed array.
1019  MUST_USE_RESULT static MaybeObject* AllocateRawFixedArray(int length);
1020  MUST_USE_RESULT static MaybeObject* AllocateRawFixedArray(
1021      int length,
1022      PretenureFlag pretenure);
1023
1024  // True if we have reached the allocation limit in the old generation that
1025  // should force the next GC (caused normally) to be a full one.
1026  static bool OldGenerationPromotionLimitReached() {
1027    return (PromotedSpaceSize() + PromotedExternalMemorySize())
1028           > old_gen_promotion_limit_;
1029  }
1030
1031  static intptr_t OldGenerationSpaceAvailable() {
1032    return old_gen_allocation_limit_ -
1033           (PromotedSpaceSize() + PromotedExternalMemorySize());
1034  }
1035
1036  // True if we have reached the allocation limit in the old generation that
1037  // should artificially cause a GC right now.
1038  static bool OldGenerationAllocationLimitReached() {
1039    return OldGenerationSpaceAvailable() < 0;
1040  }
1041
1042  // Can be called when the embedding application is idle.
1043  static bool IdleNotification();
1044
1045  // Declare all the root indices.
1046  enum RootListIndex {
1047#define ROOT_INDEX_DECLARATION(type, name, camel_name) k##camel_name##RootIndex,
1048    STRONG_ROOT_LIST(ROOT_INDEX_DECLARATION)
1049#undef ROOT_INDEX_DECLARATION
1050
1051// Utility type maps
1052#define DECLARE_STRUCT_MAP(NAME, Name, name) k##Name##MapRootIndex,
1053  STRUCT_LIST(DECLARE_STRUCT_MAP)
1054#undef DECLARE_STRUCT_MAP
1055
1056#define SYMBOL_INDEX_DECLARATION(name, str) k##name##RootIndex,
1057    SYMBOL_LIST(SYMBOL_INDEX_DECLARATION)
1058#undef SYMBOL_DECLARATION
1059
1060    kSymbolTableRootIndex,
1061    kStrongRootListLength = kSymbolTableRootIndex,
1062    kRootListLength
1063  };
1064
1065  MUST_USE_RESULT static MaybeObject* NumberToString(
1066      Object* number,
1067      bool check_number_string_cache = true);
1068
1069  static Map* MapForExternalArrayType(ExternalArrayType array_type);
1070  static RootListIndex RootIndexForExternalArrayType(
1071      ExternalArrayType array_type);
1072
1073  static void RecordStats(HeapStats* stats, bool take_snapshot = false);
1074
1075  // Copy block of memory from src to dst. Size of block should be aligned
1076  // by pointer size.
1077  static inline void CopyBlock(Address dst, Address src, int byte_size);
1078
1079  static inline void CopyBlockToOldSpaceAndUpdateRegionMarks(Address dst,
1080                                                             Address src,
1081                                                             int byte_size);
1082
1083  // Optimized version of memmove for blocks with pointer size aligned sizes and
1084  // pointer size aligned addresses.
1085  static inline void MoveBlock(Address dst, Address src, int byte_size);
1086
1087  static inline void MoveBlockToOldSpaceAndUpdateRegionMarks(Address dst,
1088                                                             Address src,
1089                                                             int byte_size);
1090
1091  // Check new space expansion criteria and expand semispaces if it was hit.
1092  static void CheckNewSpaceExpansionCriteria();
1093
1094  static inline void IncrementYoungSurvivorsCounter(int survived) {
1095    young_survivors_after_last_gc_ = survived;
1096    survived_since_last_expansion_ += survived;
1097  }
1098
1099  static void UpdateNewSpaceReferencesInExternalStringTable(
1100      ExternalStringTableUpdaterCallback updater_func);
1101
1102  static void ProcessWeakReferences(WeakObjectRetainer* retainer);
1103
1104  // Helper function that governs the promotion policy from new space to
1105  // old.  If the object's old address lies below the new space's age
1106  // mark or if we've already filled the bottom 1/16th of the to space,
1107  // we try to promote this object.
1108  static inline bool ShouldBePromoted(Address old_address, int object_size);
1109
1110  static int MaxObjectSizeInNewSpace() { return kMaxObjectSizeInNewSpace; }
1111
1112  static void ClearJSFunctionResultCaches();
1113
1114  static void ClearNormalizedMapCaches();
1115
1116  static GCTracer* tracer() { return tracer_; }
1117
1118 private:
1119  static int reserved_semispace_size_;
1120  static int max_semispace_size_;
1121  static int initial_semispace_size_;
1122  static intptr_t max_old_generation_size_;
1123  static intptr_t max_executable_size_;
1124  static intptr_t code_range_size_;
1125
1126  // For keeping track of how much data has survived
1127  // scavenge since last new space expansion.
1128  static int survived_since_last_expansion_;
1129
1130  static int always_allocate_scope_depth_;
1131  static int linear_allocation_scope_depth_;
1132
1133  // For keeping track of context disposals.
1134  static int contexts_disposed_;
1135
1136#if defined(V8_TARGET_ARCH_X64)
1137  static const int kMaxObjectSizeInNewSpace = 1024*KB;
1138#else
1139  static const int kMaxObjectSizeInNewSpace = 512*KB;
1140#endif
1141
1142  static NewSpace new_space_;
1143  static OldSpace* old_pointer_space_;
1144  static OldSpace* old_data_space_;
1145  static OldSpace* code_space_;
1146  static MapSpace* map_space_;
1147  static CellSpace* cell_space_;
1148  static LargeObjectSpace* lo_space_;
1149  static HeapState gc_state_;
1150
1151  // Returns the size of object residing in non new spaces.
1152  static intptr_t PromotedSpaceSize();
1153
1154  // Returns the amount of external memory registered since last global gc.
1155  static int PromotedExternalMemorySize();
1156
1157  static int mc_count_;  // how many mark-compact collections happened
1158  static int ms_count_;  // how many mark-sweep collections happened
1159  static int gc_count_;  // how many gc happened
1160
1161  // Total length of the strings we failed to flatten since the last GC.
1162  static int unflattened_strings_length_;
1163
1164#define ROOT_ACCESSOR(type, name, camel_name)                                  \
1165  static inline void set_##name(type* value) {                                 \
1166    roots_[k##camel_name##RootIndex] = value;                                  \
1167  }
1168  ROOT_LIST(ROOT_ACCESSOR)
1169#undef ROOT_ACCESSOR
1170
1171#ifdef DEBUG
1172  static bool allocation_allowed_;
1173
1174  // If the --gc-interval flag is set to a positive value, this
1175  // variable holds the value indicating the number of allocations
1176  // remain until the next failure and garbage collection.
1177  static int allocation_timeout_;
1178
1179  // Do we expect to be able to handle allocation failure at this
1180  // time?
1181  static bool disallow_allocation_failure_;
1182#endif  // DEBUG
1183
1184  // Limit that triggers a global GC on the next (normally caused) GC.  This
1185  // is checked when we have already decided to do a GC to help determine
1186  // which collector to invoke.
1187  static intptr_t old_gen_promotion_limit_;
1188
1189  // Limit that triggers a global GC as soon as is reasonable.  This is
1190  // checked before expanding a paged space in the old generation and on
1191  // every allocation in large object space.
1192  static intptr_t old_gen_allocation_limit_;
1193
1194  // Limit on the amount of externally allocated memory allowed
1195  // between global GCs. If reached a global GC is forced.
1196  static intptr_t external_allocation_limit_;
1197
1198  // The amount of external memory registered through the API kept alive
1199  // by global handles
1200  static int amount_of_external_allocated_memory_;
1201
1202  // Caches the amount of external memory registered at the last global gc.
1203  static int amount_of_external_allocated_memory_at_last_global_gc_;
1204
1205  // Indicates that an allocation has failed in the old generation since the
1206  // last GC.
1207  static int old_gen_exhausted_;
1208
1209  static Object* roots_[kRootListLength];
1210
1211  static Object* global_contexts_list_;
1212
1213  struct StringTypeTable {
1214    InstanceType type;
1215    int size;
1216    RootListIndex index;
1217  };
1218
1219  struct ConstantSymbolTable {
1220    const char* contents;
1221    RootListIndex index;
1222  };
1223
1224  struct StructTable {
1225    InstanceType type;
1226    int size;
1227    RootListIndex index;
1228  };
1229
1230  static const StringTypeTable string_type_table[];
1231  static const ConstantSymbolTable constant_symbol_table[];
1232  static const StructTable struct_table[];
1233
1234  // The special hidden symbol which is an empty string, but does not match
1235  // any string when looked up in properties.
1236  static String* hidden_symbol_;
1237
1238  // GC callback function, called before and after mark-compact GC.
1239  // Allocations in the callback function are disallowed.
1240  struct GCPrologueCallbackPair {
1241    GCPrologueCallbackPair(GCPrologueCallback callback, GCType gc_type)
1242        : callback(callback), gc_type(gc_type) {
1243    }
1244    bool operator==(const GCPrologueCallbackPair& pair) const {
1245      return pair.callback == callback;
1246    }
1247    GCPrologueCallback callback;
1248    GCType gc_type;
1249  };
1250  static List<GCPrologueCallbackPair> gc_prologue_callbacks_;
1251
1252  struct GCEpilogueCallbackPair {
1253    GCEpilogueCallbackPair(GCEpilogueCallback callback, GCType gc_type)
1254        : callback(callback), gc_type(gc_type) {
1255    }
1256    bool operator==(const GCEpilogueCallbackPair& pair) const {
1257      return pair.callback == callback;
1258    }
1259    GCEpilogueCallback callback;
1260    GCType gc_type;
1261  };
1262  static List<GCEpilogueCallbackPair> gc_epilogue_callbacks_;
1263
1264  static GCCallback global_gc_prologue_callback_;
1265  static GCCallback global_gc_epilogue_callback_;
1266
1267  // Support for computing object sizes during GC.
1268  static HeapObjectCallback gc_safe_size_of_old_object_;
1269  static int GcSafeSizeOfOldObject(HeapObject* object);
1270  static int GcSafeSizeOfOldObjectWithEncodedMap(HeapObject* object);
1271
1272  // Update the GC state. Called from the mark-compact collector.
1273  static void MarkMapPointersAsEncoded(bool encoded) {
1274    gc_safe_size_of_old_object_ = encoded
1275        ? &GcSafeSizeOfOldObjectWithEncodedMap
1276        : &GcSafeSizeOfOldObject;
1277  }
1278
1279  // Checks whether a global GC is necessary
1280  static GarbageCollector SelectGarbageCollector(AllocationSpace space);
1281
1282  // Performs garbage collection
1283  // Returns whether there is a chance another major GC could
1284  // collect more garbage.
1285  static bool PerformGarbageCollection(GarbageCollector collector,
1286                                       GCTracer* tracer);
1287
1288  // Allocate an uninitialized object in map space.  The behavior is identical
1289  // to Heap::AllocateRaw(size_in_bytes, MAP_SPACE), except that (a) it doesn't
1290  // have to test the allocation space argument and (b) can reduce code size
1291  // (since both AllocateRaw and AllocateRawMap are inlined).
1292  MUST_USE_RESULT static inline MaybeObject* AllocateRawMap();
1293
1294  // Allocate an uninitialized object in the global property cell space.
1295  MUST_USE_RESULT static inline MaybeObject* AllocateRawCell();
1296
1297  // Initializes a JSObject based on its map.
1298  static void InitializeJSObjectFromMap(JSObject* obj,
1299                                        FixedArray* properties,
1300                                        Map* map);
1301
1302  static bool CreateInitialMaps();
1303  static bool CreateInitialObjects();
1304
1305  // These four Create*EntryStub functions are here and forced to not be inlined
1306  // because of a gcc-4.4 bug that assigns wrong vtable entries.
1307  NO_INLINE(static void CreateCEntryStub());
1308  NO_INLINE(static void CreateJSEntryStub());
1309  NO_INLINE(static void CreateJSConstructEntryStub());
1310  NO_INLINE(static void CreateRegExpCEntryStub());
1311
1312  static void CreateFixedStubs();
1313
1314  MUST_USE_RESULT static MaybeObject* CreateOddball(const char* to_string,
1315                                                    Object* to_number);
1316
1317  // Allocate empty fixed array.
1318  MUST_USE_RESULT static MaybeObject* AllocateEmptyFixedArray();
1319
1320  // Performs a minor collection in new generation.
1321  static void Scavenge();
1322
1323  static String* UpdateNewSpaceReferenceInExternalStringTableEntry(
1324      Object** pointer);
1325
1326  static Address DoScavenge(ObjectVisitor* scavenge_visitor,
1327                            Address new_space_front);
1328
1329  // Performs a major collection in the whole heap.
1330  static void MarkCompact(GCTracer* tracer);
1331
1332  // Code to be run before and after mark-compact.
1333  static void MarkCompactPrologue(bool is_compacting);
1334
1335  // Completely clear the Instanceof cache (to stop it keeping objects alive
1336  // around a GC).
1337  static void CompletelyClearInstanceofCache() {
1338    set_instanceof_cache_map(the_hole_value());
1339    set_instanceof_cache_function(the_hole_value());
1340  }
1341
1342#if defined(DEBUG) || defined(ENABLE_LOGGING_AND_PROFILING)
1343  // Record statistics before and after garbage collection.
1344  static void ReportStatisticsBeforeGC();
1345  static void ReportStatisticsAfterGC();
1346#endif
1347
1348  // Slow part of scavenge object.
1349  static void ScavengeObjectSlow(HeapObject** p, HeapObject* object);
1350
1351  // Initializes a function with a shared part and prototype.
1352  // Returns the function.
1353  // Note: this code was factored out of AllocateFunction such that
1354  // other parts of the VM could use it. Specifically, a function that creates
1355  // instances of type JS_FUNCTION_TYPE benefit from the use of this function.
1356  // Please note this does not perform a garbage collection.
1357  MUST_USE_RESULT static inline MaybeObject* InitializeFunction(
1358      JSFunction* function,
1359      SharedFunctionInfo* shared,
1360      Object* prototype);
1361
1362  static GCTracer* tracer_;
1363
1364
1365  // Initializes the number to string cache based on the max semispace size.
1366  MUST_USE_RESULT static MaybeObject* InitializeNumberStringCache();
1367  // Flush the number to string cache.
1368  static void FlushNumberStringCache();
1369
1370  static void UpdateSurvivalRateTrend(int start_new_space_size);
1371
1372  enum SurvivalRateTrend { INCREASING, STABLE, DECREASING, FLUCTUATING };
1373
1374  static const int kYoungSurvivalRateThreshold = 90;
1375  static const int kYoungSurvivalRateAllowedDeviation = 15;
1376
1377  static int young_survivors_after_last_gc_;
1378  static int high_survival_rate_period_length_;
1379  static double survival_rate_;
1380  static SurvivalRateTrend previous_survival_rate_trend_;
1381  static SurvivalRateTrend survival_rate_trend_;
1382
1383  static void set_survival_rate_trend(SurvivalRateTrend survival_rate_trend) {
1384    ASSERT(survival_rate_trend != FLUCTUATING);
1385    previous_survival_rate_trend_ = survival_rate_trend_;
1386    survival_rate_trend_ = survival_rate_trend;
1387  }
1388
1389  static SurvivalRateTrend survival_rate_trend() {
1390    if (survival_rate_trend_ == STABLE) {
1391      return STABLE;
1392    } else if (previous_survival_rate_trend_ == STABLE) {
1393      return survival_rate_trend_;
1394    } else if (survival_rate_trend_ != previous_survival_rate_trend_) {
1395      return FLUCTUATING;
1396    } else {
1397      return survival_rate_trend_;
1398    }
1399  }
1400
1401  static bool IsStableOrIncreasingSurvivalTrend() {
1402    switch (survival_rate_trend()) {
1403      case STABLE:
1404      case INCREASING:
1405        return true;
1406      default:
1407        return false;
1408    }
1409  }
1410
1411  static bool IsIncreasingSurvivalTrend() {
1412    return survival_rate_trend() == INCREASING;
1413  }
1414
1415  static bool IsHighSurvivalRate() {
1416    return high_survival_rate_period_length_ > 0;
1417  }
1418
1419  static const int kInitialSymbolTableSize = 2048;
1420  static const int kInitialEvalCacheSize = 64;
1421
1422  friend class Factory;
1423  friend class DisallowAllocationFailure;
1424  friend class AlwaysAllocateScope;
1425  friend class LinearAllocationScope;
1426  friend class MarkCompactCollector;
1427};
1428
1429
1430class HeapStats {
1431 public:
1432  static const int kStartMarker = 0xDECADE00;
1433  static const int kEndMarker = 0xDECADE01;
1434
1435  int* start_marker;                    //  0
1436  int* new_space_size;                  //  1
1437  int* new_space_capacity;              //  2
1438  intptr_t* old_pointer_space_size;          //  3
1439  intptr_t* old_pointer_space_capacity;      //  4
1440  intptr_t* old_data_space_size;             //  5
1441  intptr_t* old_data_space_capacity;         //  6
1442  intptr_t* code_space_size;                 //  7
1443  intptr_t* code_space_capacity;             //  8
1444  intptr_t* map_space_size;                  //  9
1445  intptr_t* map_space_capacity;              // 10
1446  intptr_t* cell_space_size;                 // 11
1447  intptr_t* cell_space_capacity;             // 12
1448  intptr_t* lo_space_size;                   // 13
1449  int* global_handle_count;             // 14
1450  int* weak_global_handle_count;        // 15
1451  int* pending_global_handle_count;     // 16
1452  int* near_death_global_handle_count;  // 17
1453  int* destroyed_global_handle_count;   // 18
1454  intptr_t* memory_allocator_size;           // 19
1455  intptr_t* memory_allocator_capacity;       // 20
1456  int* objects_per_type;                // 21
1457  int* size_per_type;                   // 22
1458  int* os_error;                        // 23
1459  int* end_marker;                      // 24
1460};
1461
1462
1463class AlwaysAllocateScope {
1464 public:
1465  AlwaysAllocateScope() {
1466    // We shouldn't hit any nested scopes, because that requires
1467    // non-handle code to call handle code. The code still works but
1468    // performance will degrade, so we want to catch this situation
1469    // in debug mode.
1470    ASSERT(Heap::always_allocate_scope_depth_ == 0);
1471    Heap::always_allocate_scope_depth_++;
1472  }
1473
1474  ~AlwaysAllocateScope() {
1475    Heap::always_allocate_scope_depth_--;
1476    ASSERT(Heap::always_allocate_scope_depth_ == 0);
1477  }
1478};
1479
1480
1481class LinearAllocationScope {
1482 public:
1483  LinearAllocationScope() {
1484    Heap::linear_allocation_scope_depth_++;
1485  }
1486
1487  ~LinearAllocationScope() {
1488    Heap::linear_allocation_scope_depth_--;
1489    ASSERT(Heap::linear_allocation_scope_depth_ >= 0);
1490  }
1491};
1492
1493
1494#ifdef DEBUG
1495// Visitor class to verify interior pointers in spaces that do not contain
1496// or care about intergenerational references. All heap object pointers have to
1497// point into the heap to a location that has a map pointer at its first word.
1498// Caveat: Heap::Contains is an approximation because it can return true for
1499// objects in a heap space but above the allocation pointer.
1500class VerifyPointersVisitor: public ObjectVisitor {
1501 public:
1502  void VisitPointers(Object** start, Object** end) {
1503    for (Object** current = start; current < end; current++) {
1504      if ((*current)->IsHeapObject()) {
1505        HeapObject* object = HeapObject::cast(*current);
1506        ASSERT(Heap::Contains(object));
1507        ASSERT(object->map()->IsMap());
1508      }
1509    }
1510  }
1511};
1512
1513
1514// Visitor class to verify interior pointers in spaces that use region marks
1515// to keep track of intergenerational references.
1516// As VerifyPointersVisitor but also checks that dirty marks are set
1517// for regions covering intergenerational references.
1518class VerifyPointersAndDirtyRegionsVisitor: public ObjectVisitor {
1519 public:
1520  void VisitPointers(Object** start, Object** end) {
1521    for (Object** current = start; current < end; current++) {
1522      if ((*current)->IsHeapObject()) {
1523        HeapObject* object = HeapObject::cast(*current);
1524        ASSERT(Heap::Contains(object));
1525        ASSERT(object->map()->IsMap());
1526        if (Heap::InNewSpace(object)) {
1527          ASSERT(Heap::InToSpace(object));
1528          Address addr = reinterpret_cast<Address>(current);
1529          ASSERT(Page::FromAddress(addr)->IsRegionDirty(addr));
1530        }
1531      }
1532    }
1533  }
1534};
1535#endif
1536
1537
1538// Space iterator for iterating over all spaces of the heap.
1539// Returns each space in turn, and null when it is done.
1540class AllSpaces BASE_EMBEDDED {
1541 public:
1542  Space* next();
1543  AllSpaces() { counter_ = FIRST_SPACE; }
1544 private:
1545  int counter_;
1546};
1547
1548
1549// Space iterator for iterating over all old spaces of the heap: Old pointer
1550// space, old data space and code space.
1551// Returns each space in turn, and null when it is done.
1552class OldSpaces BASE_EMBEDDED {
1553 public:
1554  OldSpace* next();
1555  OldSpaces() { counter_ = OLD_POINTER_SPACE; }
1556 private:
1557  int counter_;
1558};
1559
1560
1561// Space iterator for iterating over all the paged spaces of the heap:
1562// Map space, old pointer space, old data space, code space and cell space.
1563// Returns each space in turn, and null when it is done.
1564class PagedSpaces BASE_EMBEDDED {
1565 public:
1566  PagedSpace* next();
1567  PagedSpaces() { counter_ = OLD_POINTER_SPACE; }
1568 private:
1569  int counter_;
1570};
1571
1572
1573// Space iterator for iterating over all spaces of the heap.
1574// For each space an object iterator is provided. The deallocation of the
1575// returned object iterators is handled by the space iterator.
1576class SpaceIterator : public Malloced {
1577 public:
1578  SpaceIterator();
1579  explicit SpaceIterator(HeapObjectCallback size_func);
1580  virtual ~SpaceIterator();
1581
1582  bool has_next();
1583  ObjectIterator* next();
1584
1585 private:
1586  ObjectIterator* CreateIterator();
1587
1588  int current_space_;  // from enum AllocationSpace.
1589  ObjectIterator* iterator_;  // object iterator for the current space.
1590  HeapObjectCallback size_func_;
1591};
1592
1593
1594// A HeapIterator provides iteration over the whole heap. It
1595// aggregates the specific iterators for the different spaces as
1596// these can only iterate over one space only.
1597//
1598// HeapIterator can skip free list nodes (that is, de-allocated heap
1599// objects that still remain in the heap). As implementation of free
1600// nodes filtering uses GC marks, it can't be used during MS/MC GC
1601// phases. Also, it is forbidden to interrupt iteration in this mode,
1602// as this will leave heap objects marked (and thus, unusable).
1603class HeapObjectsFilter;
1604
1605class HeapIterator BASE_EMBEDDED {
1606 public:
1607  enum HeapObjectsFiltering {
1608    kNoFiltering,
1609    kFilterFreeListNodes,
1610    kFilterUnreachable
1611  };
1612
1613  HeapIterator();
1614  explicit HeapIterator(HeapObjectsFiltering filtering);
1615  ~HeapIterator();
1616
1617  HeapObject* next();
1618  void reset();
1619
1620 private:
1621  // Perform the initialization.
1622  void Init();
1623  // Perform all necessary shutdown (destruction) work.
1624  void Shutdown();
1625  HeapObject* NextObject();
1626
1627  HeapObjectsFiltering filtering_;
1628  HeapObjectsFilter* filter_;
1629  // Space iterator for iterating all the spaces.
1630  SpaceIterator* space_iterator_;
1631  // Object iterator for the space currently being iterated.
1632  ObjectIterator* object_iterator_;
1633};
1634
1635
1636// Cache for mapping (map, property name) into field offset.
1637// Cleared at startup and prior to mark sweep collection.
1638class KeyedLookupCache {
1639 public:
1640  // Lookup field offset for (map, name). If absent, -1 is returned.
1641  static int Lookup(Map* map, String* name);
1642
1643  // Update an element in the cache.
1644  static void Update(Map* map, String* name, int field_offset);
1645
1646  // Clear the cache.
1647  static void Clear();
1648
1649  static const int kLength = 64;
1650  static const int kCapacityMask = kLength - 1;
1651  static const int kMapHashShift = 2;
1652
1653 private:
1654  static inline int Hash(Map* map, String* name);
1655
1656  // Get the address of the keys and field_offsets arrays.  Used in
1657  // generated code to perform cache lookups.
1658  static Address keys_address() {
1659    return reinterpret_cast<Address>(&keys_);
1660  }
1661
1662  static Address field_offsets_address() {
1663    return reinterpret_cast<Address>(&field_offsets_);
1664  }
1665
1666  struct Key {
1667    Map* map;
1668    String* name;
1669  };
1670  static Key keys_[kLength];
1671  static int field_offsets_[kLength];
1672
1673  friend class ExternalReference;
1674};
1675
1676
1677// Cache for mapping (array, property name) into descriptor index.
1678// The cache contains both positive and negative results.
1679// Descriptor index equals kNotFound means the property is absent.
1680// Cleared at startup and prior to any gc.
1681class DescriptorLookupCache {
1682 public:
1683  // Lookup descriptor index for (map, name).
1684  // If absent, kAbsent is returned.
1685  static int Lookup(DescriptorArray* array, String* name) {
1686    if (!StringShape(name).IsSymbol()) return kAbsent;
1687    int index = Hash(array, name);
1688    Key& key = keys_[index];
1689    if ((key.array == array) && (key.name == name)) return results_[index];
1690    return kAbsent;
1691  }
1692
1693  // Update an element in the cache.
1694  static void Update(DescriptorArray* array, String* name, int result) {
1695    ASSERT(result != kAbsent);
1696    if (StringShape(name).IsSymbol()) {
1697      int index = Hash(array, name);
1698      Key& key = keys_[index];
1699      key.array = array;
1700      key.name = name;
1701      results_[index] = result;
1702    }
1703  }
1704
1705  // Clear the cache.
1706  static void Clear();
1707
1708  static const int kAbsent = -2;
1709 private:
1710  static int Hash(DescriptorArray* array, String* name) {
1711    // Uses only lower 32 bits if pointers are larger.
1712    uint32_t array_hash =
1713        static_cast<uint32_t>(reinterpret_cast<uintptr_t>(array)) >> 2;
1714    uint32_t name_hash =
1715        static_cast<uint32_t>(reinterpret_cast<uintptr_t>(name)) >> 2;
1716    return (array_hash ^ name_hash) % kLength;
1717  }
1718
1719  static const int kLength = 64;
1720  struct Key {
1721    DescriptorArray* array;
1722    String* name;
1723  };
1724
1725  static Key keys_[kLength];
1726  static int results_[kLength];
1727};
1728
1729
1730// ----------------------------------------------------------------------------
1731// Marking stack for tracing live objects.
1732
1733class MarkingStack {
1734 public:
1735  void Initialize(Address low, Address high) {
1736    top_ = low_ = reinterpret_cast<HeapObject**>(low);
1737    high_ = reinterpret_cast<HeapObject**>(high);
1738    overflowed_ = false;
1739  }
1740
1741  bool is_full() { return top_ >= high_; }
1742
1743  bool is_empty() { return top_ <= low_; }
1744
1745  bool overflowed() { return overflowed_; }
1746
1747  void clear_overflowed() { overflowed_ = false; }
1748
1749  // Push the (marked) object on the marking stack if there is room,
1750  // otherwise mark the object as overflowed and wait for a rescan of the
1751  // heap.
1752  void Push(HeapObject* object) {
1753    CHECK(object->IsHeapObject());
1754    if (is_full()) {
1755      object->SetOverflow();
1756      overflowed_ = true;
1757    } else {
1758      *(top_++) = object;
1759    }
1760  }
1761
1762  HeapObject* Pop() {
1763    ASSERT(!is_empty());
1764    HeapObject* object = *(--top_);
1765    CHECK(object->IsHeapObject());
1766    return object;
1767  }
1768
1769 private:
1770  HeapObject** low_;
1771  HeapObject** top_;
1772  HeapObject** high_;
1773  bool overflowed_;
1774};
1775
1776
1777// A helper class to document/test C++ scopes where we do not
1778// expect a GC. Usage:
1779//
1780// /* Allocation not allowed: we cannot handle a GC in this scope. */
1781// { AssertNoAllocation nogc;
1782//   ...
1783// }
1784
1785#ifdef DEBUG
1786
1787class DisallowAllocationFailure {
1788 public:
1789  DisallowAllocationFailure() {
1790    old_state_ = Heap::disallow_allocation_failure_;
1791    Heap::disallow_allocation_failure_ = true;
1792  }
1793  ~DisallowAllocationFailure() {
1794    Heap::disallow_allocation_failure_ = old_state_;
1795  }
1796 private:
1797  bool old_state_;
1798};
1799
1800class AssertNoAllocation {
1801 public:
1802  AssertNoAllocation() {
1803    old_state_ = Heap::allow_allocation(false);
1804  }
1805
1806  ~AssertNoAllocation() {
1807    Heap::allow_allocation(old_state_);
1808  }
1809
1810 private:
1811  bool old_state_;
1812};
1813
1814class DisableAssertNoAllocation {
1815 public:
1816  DisableAssertNoAllocation() {
1817    old_state_ = Heap::allow_allocation(true);
1818  }
1819
1820  ~DisableAssertNoAllocation() {
1821    Heap::allow_allocation(old_state_);
1822  }
1823
1824 private:
1825  bool old_state_;
1826};
1827
1828#else  // ndef DEBUG
1829
1830class AssertNoAllocation {
1831 public:
1832  AssertNoAllocation() { }
1833  ~AssertNoAllocation() { }
1834};
1835
1836class DisableAssertNoAllocation {
1837 public:
1838  DisableAssertNoAllocation() { }
1839  ~DisableAssertNoAllocation() { }
1840};
1841
1842#endif
1843
1844// GCTracer collects and prints ONE line after each garbage collector
1845// invocation IFF --trace_gc is used.
1846
1847class GCTracer BASE_EMBEDDED {
1848 public:
1849  class Scope BASE_EMBEDDED {
1850   public:
1851    enum ScopeId {
1852      EXTERNAL,
1853      MC_MARK,
1854      MC_SWEEP,
1855      MC_SWEEP_NEWSPACE,
1856      MC_COMPACT,
1857      MC_FLUSH_CODE,
1858      kNumberOfScopes
1859    };
1860
1861    Scope(GCTracer* tracer, ScopeId scope)
1862        : tracer_(tracer),
1863        scope_(scope) {
1864      start_time_ = OS::TimeCurrentMillis();
1865    }
1866
1867    ~Scope() {
1868      ASSERT((0 <= scope_) && (scope_ < kNumberOfScopes));
1869      tracer_->scopes_[scope_] += OS::TimeCurrentMillis() - start_time_;
1870    }
1871
1872   private:
1873    GCTracer* tracer_;
1874    ScopeId scope_;
1875    double start_time_;
1876  };
1877
1878  GCTracer();
1879  ~GCTracer();
1880
1881  // Sets the collector.
1882  void set_collector(GarbageCollector collector) { collector_ = collector; }
1883
1884  // Sets the GC count.
1885  void set_gc_count(int count) { gc_count_ = count; }
1886
1887  // Sets the full GC count.
1888  void set_full_gc_count(int count) { full_gc_count_ = count; }
1889
1890  // Sets the flag that this is a compacting full GC.
1891  void set_is_compacting() { is_compacting_ = true; }
1892  bool is_compacting() const { return is_compacting_; }
1893
1894  // Increment and decrement the count of marked objects.
1895  void increment_marked_count() { ++marked_count_; }
1896  void decrement_marked_count() { --marked_count_; }
1897
1898  int marked_count() { return marked_count_; }
1899
1900  void increment_promoted_objects_size(int object_size) {
1901    promoted_objects_size_ += object_size;
1902  }
1903
1904  // Returns maximum GC pause.
1905  static int get_max_gc_pause() { return max_gc_pause_; }
1906
1907  // Returns maximum size of objects alive after GC.
1908  static intptr_t get_max_alive_after_gc() { return max_alive_after_gc_; }
1909
1910  // Returns minimal interval between two subsequent collections.
1911  static int get_min_in_mutator() { return min_in_mutator_; }
1912
1913 private:
1914  // Returns a string matching the collector.
1915  const char* CollectorString();
1916
1917  // Returns size of object in heap (in MB).
1918  double SizeOfHeapObjects() {
1919    return (static_cast<double>(Heap::SizeOfObjects())) / MB;
1920  }
1921
1922  double start_time_;  // Timestamp set in the constructor.
1923  intptr_t start_size_;  // Size of objects in heap set in constructor.
1924  GarbageCollector collector_;  // Type of collector.
1925
1926  // A count (including this one, eg, the first collection is 1) of the
1927  // number of garbage collections.
1928  int gc_count_;
1929
1930  // A count (including this one) of the number of full garbage collections.
1931  int full_gc_count_;
1932
1933  // True if the current GC is a compacting full collection, false
1934  // otherwise.
1935  bool is_compacting_;
1936
1937  // True if the *previous* full GC cwas a compacting collection (will be
1938  // false if there has not been a previous full GC).
1939  bool previous_has_compacted_;
1940
1941  // On a full GC, a count of the number of marked objects.  Incremented
1942  // when an object is marked and decremented when an object's mark bit is
1943  // cleared.  Will be zero on a scavenge collection.
1944  int marked_count_;
1945
1946  // The count from the end of the previous full GC.  Will be zero if there
1947  // was no previous full GC.
1948  int previous_marked_count_;
1949
1950  // Amounts of time spent in different scopes during GC.
1951  double scopes_[Scope::kNumberOfScopes];
1952
1953  // Total amount of space either wasted or contained in one of free lists
1954  // before the current GC.
1955  intptr_t in_free_list_or_wasted_before_gc_;
1956
1957  // Difference between space used in the heap at the beginning of the current
1958  // collection and the end of the previous collection.
1959  intptr_t allocated_since_last_gc_;
1960
1961  // Amount of time spent in mutator that is time elapsed between end of the
1962  // previous collection and the beginning of the current one.
1963  double spent_in_mutator_;
1964
1965  // Size of objects promoted during the current collection.
1966  intptr_t promoted_objects_size_;
1967
1968  // Maximum GC pause.
1969  static int max_gc_pause_;
1970
1971  // Maximum size of objects alive after GC.
1972  static intptr_t max_alive_after_gc_;
1973
1974  // Minimal interval between two subsequent collections.
1975  static int min_in_mutator_;
1976
1977  // Size of objects alive after last GC.
1978  static intptr_t alive_after_last_gc_;
1979
1980  static double last_gc_end_timestamp_;
1981};
1982
1983
1984class TranscendentalCache {
1985 public:
1986  enum Type {ACOS, ASIN, ATAN, COS, EXP, LOG, SIN, TAN, kNumberOfCaches};
1987  static const int kTranscendentalTypeBits = 3;
1988  STATIC_ASSERT((1 << kTranscendentalTypeBits) >= kNumberOfCaches);
1989
1990  explicit TranscendentalCache(Type t);
1991
1992  // Returns a heap number with f(input), where f is a math function specified
1993  // by the 'type' argument.
1994  MUST_USE_RESULT static inline MaybeObject* Get(Type type, double input) {
1995    TranscendentalCache* cache = caches_[type];
1996    if (cache == NULL) {
1997      caches_[type] = cache = new TranscendentalCache(type);
1998    }
1999    return cache->Get(input);
2000  }
2001
2002  // The cache contains raw Object pointers.  This method disposes of
2003  // them before a garbage collection.
2004  static void Clear();
2005
2006 private:
2007  MUST_USE_RESULT inline MaybeObject* Get(double input) {
2008    Converter c;
2009    c.dbl = input;
2010    int hash = Hash(c);
2011    Element e = elements_[hash];
2012    if (e.in[0] == c.integers[0] &&
2013        e.in[1] == c.integers[1]) {
2014      ASSERT(e.output != NULL);
2015      Counters::transcendental_cache_hit.Increment();
2016      return e.output;
2017    }
2018    double answer = Calculate(input);
2019    Counters::transcendental_cache_miss.Increment();
2020    Object* heap_number;
2021    { MaybeObject* maybe_heap_number = Heap::AllocateHeapNumber(answer);
2022      if (!maybe_heap_number->ToObject(&heap_number)) return maybe_heap_number;
2023    }
2024    elements_[hash].in[0] = c.integers[0];
2025    elements_[hash].in[1] = c.integers[1];
2026    elements_[hash].output = heap_number;
2027    return heap_number;
2028  }
2029
2030  inline double Calculate(double input) {
2031    switch (type_) {
2032      case ACOS:
2033        return acos(input);
2034      case ASIN:
2035        return asin(input);
2036      case ATAN:
2037        return atan(input);
2038      case COS:
2039        return cos(input);
2040      case EXP:
2041        return exp(input);
2042      case LOG:
2043        return log(input);
2044      case SIN:
2045        return sin(input);
2046      case TAN:
2047        return tan(input);
2048      default:
2049        return 0.0;  // Never happens.
2050    }
2051  }
2052  static const int kCacheSize = 512;
2053  struct Element {
2054    uint32_t in[2];
2055    Object* output;
2056  };
2057  union Converter {
2058    double dbl;
2059    uint32_t integers[2];
2060  };
2061  inline static int Hash(const Converter& c) {
2062    uint32_t hash = (c.integers[0] ^ c.integers[1]);
2063    hash ^= static_cast<int32_t>(hash) >> 16;
2064    hash ^= static_cast<int32_t>(hash) >> 8;
2065    return (hash & (kCacheSize - 1));
2066  }
2067
2068  static Address cache_array_address() {
2069    // Used to create an external reference.
2070    return reinterpret_cast<Address>(caches_);
2071  }
2072
2073  // Allow access to the caches_ array as an ExternalReference.
2074  friend class ExternalReference;
2075  // Inline implementation of the cache.
2076  friend class TranscendentalCacheStub;
2077
2078  static TranscendentalCache* caches_[kNumberOfCaches];
2079  Element elements_[kCacheSize];
2080  Type type_;
2081};
2082
2083
2084// External strings table is a place where all external strings are
2085// registered.  We need to keep track of such strings to properly
2086// finalize them.
2087class ExternalStringTable : public AllStatic {
2088 public:
2089  // Registers an external string.
2090  inline static void AddString(String* string);
2091
2092  inline static void Iterate(ObjectVisitor* v);
2093
2094  // Restores internal invariant and gets rid of collected strings.
2095  // Must be called after each Iterate() that modified the strings.
2096  static void CleanUp();
2097
2098  // Destroys all allocated memory.
2099  static void TearDown();
2100
2101 private:
2102  friend class Heap;
2103
2104  inline static void Verify();
2105
2106  inline static void AddOldString(String* string);
2107
2108  // Notifies the table that only a prefix of the new list is valid.
2109  inline static void ShrinkNewStrings(int position);
2110
2111  // To speed up scavenge collections new space string are kept
2112  // separate from old space strings.
2113  static List<Object*> new_space_strings_;
2114  static List<Object*> old_space_strings_;
2115};
2116
2117
2118// Abstract base class for checking whether a weak object should be retained.
2119class WeakObjectRetainer {
2120 public:
2121  virtual ~WeakObjectRetainer() {}
2122
2123  // Return whether this object should be retained. If NULL is returned the
2124  // object has no references. Otherwise the address of the retained object
2125  // should be returned as in some GC situations the object has been moved.
2126  virtual Object* RetainAs(Object* object) = 0;
2127};
2128
2129
2130} }  // namespace v8::internal
2131
2132#endif  // V8_HEAP_H_
2133