assembler-mips.h revision 3fb3ca8c7ca439d408449a395897395c0faae8d1
1// Copyright (c) 1994-2006 Sun Microsystems Inc.
2// All Rights Reserved.
3//
4// Redistribution and use in source and binary forms, with or without
5// modification, are permitted provided that the following conditions are
6// met:
7//
8// - Redistributions of source code must retain the above copyright notice,
9// this list of conditions and the following disclaimer.
10//
11// - Redistribution in binary form must reproduce the above copyright
12// notice, this list of conditions and the following disclaimer in the
13// documentation and/or other materials provided with the distribution.
14//
15// - Neither the name of Sun Microsystems or the names of contributors may
16// be used to endorse or promote products derived from this software without
17// specific prior written permission.
18//
19// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
20// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
21// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
23// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
24// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
26// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
27// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
28// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
29// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30
31// The original source code covered by the above license above has been
32// modified significantly by Google Inc.
33// Copyright 2011 the V8 project authors. All rights reserved.
34
35
36#ifndef V8_MIPS_ASSEMBLER_MIPS_H_
37#define V8_MIPS_ASSEMBLER_MIPS_H_
38
39#include <stdio.h>
40#include "assembler.h"
41#include "constants-mips.h"
42#include "serialize.h"
43
44namespace v8 {
45namespace internal {
46
47// CPU Registers.
48//
49// 1) We would prefer to use an enum, but enum values are assignment-
50// compatible with int, which has caused code-generation bugs.
51//
52// 2) We would prefer to use a class instead of a struct but we don't like
53// the register initialization to depend on the particular initialization
54// order (which appears to be different on OS X, Linux, and Windows for the
55// installed versions of C++ we tried). Using a struct permits C-style
56// "initialization". Also, the Register objects cannot be const as this
57// forces initialization stubs in MSVC, making us dependent on initialization
58// order.
59//
60// 3) By not using an enum, we are possibly preventing the compiler from
61// doing certain constant folds, which may significantly reduce the
62// code generated for some assembly instructions (because they boil down
63// to a few constants). If this is a problem, we could change the code
64// such that we use an enum in optimized mode, and the struct in debug
65// mode. This way we get the compile-time error checking in debug mode
66// and best performance in optimized code.
67
68
69// -----------------------------------------------------------------------------
70// Implementation of Register and FPURegister.
71
72// Core register.
73struct Register {
74  static const int kNumRegisters = v8::internal::kNumRegisters;
75  static const int kNumAllocatableRegisters = 14;  // v0 through t7.
76  static const int kSizeInBytes = 4;
77
78  static int ToAllocationIndex(Register reg) {
79    return reg.code() - 2;  // zero_reg and 'at' are skipped.
80  }
81
82  static Register FromAllocationIndex(int index) {
83    ASSERT(index >= 0 && index < kNumAllocatableRegisters);
84    return from_code(index + 2);  // zero_reg and 'at' are skipped.
85  }
86
87  static const char* AllocationIndexToString(int index) {
88    ASSERT(index >= 0 && index < kNumAllocatableRegisters);
89    const char* const names[] = {
90      "v0",
91      "v1",
92      "a0",
93      "a1",
94      "a2",
95      "a3",
96      "t0",
97      "t1",
98      "t2",
99      "t3",
100      "t4",
101      "t5",
102      "t6",
103      "t7",
104    };
105    return names[index];
106  }
107
108  static Register from_code(int code) {
109    Register r = { code };
110    return r;
111  }
112
113  bool is_valid() const { return 0 <= code_ && code_ < kNumRegisters; }
114  bool is(Register reg) const { return code_ == reg.code_; }
115  int code() const {
116    ASSERT(is_valid());
117    return code_;
118  }
119  int bit() const {
120    ASSERT(is_valid());
121    return 1 << code_;
122  }
123
124  // Unfortunately we can't make this private in a struct.
125  int code_;
126};
127
128const Register no_reg = { -1 };
129
130const Register zero_reg = { 0 };
131const Register at = { 1 };
132const Register v0 = { 2 };
133const Register v1 = { 3 };
134const Register a0 = { 4 };
135const Register a1 = { 5 };
136const Register a2 = { 6 };
137const Register a3 = { 7 };
138const Register t0 = { 8 };
139const Register t1 = { 9 };
140const Register t2 = { 10 };
141const Register t3 = { 11 };
142const Register t4 = { 12 };
143const Register t5 = { 13 };
144const Register t6 = { 14 };
145const Register t7 = { 15 };
146const Register s0 = { 16 };
147const Register s1 = { 17 };
148const Register s2 = { 18 };
149const Register s3 = { 19 };
150const Register s4 = { 20 };
151const Register s5 = { 21 };
152const Register s6 = { 22 };
153const Register s7 = { 23 };
154const Register t8 = { 24 };
155const Register t9 = { 25 };
156const Register k0 = { 26 };
157const Register k1 = { 27 };
158const Register gp = { 28 };
159const Register sp = { 29 };
160const Register s8_fp = { 30 };
161const Register ra = { 31 };
162
163
164int ToNumber(Register reg);
165
166Register ToRegister(int num);
167
168// Coprocessor register.
169struct FPURegister {
170  static const int kNumRegisters = v8::internal::kNumFPURegisters;
171  // f0 has been excluded from allocation. This is following ia32
172  // where xmm0 is excluded.
173  static const int kNumAllocatableRegisters = 15;
174
175  static int ToAllocationIndex(FPURegister reg) {
176    ASSERT(reg.code() != 0);
177    ASSERT(reg.code() % 2 == 0);
178    return (reg.code() / 2) - 1;
179  }
180
181  static FPURegister FromAllocationIndex(int index) {
182    ASSERT(index >= 0 && index < kNumAllocatableRegisters);
183    return from_code((index + 1) * 2);
184  }
185
186  static const char* AllocationIndexToString(int index) {
187    ASSERT(index >= 0 && index < kNumAllocatableRegisters);
188    const char* const names[] = {
189      "f2",
190      "f4",
191      "f6",
192      "f8",
193      "f10",
194      "f12",
195      "f14",
196      "f16",
197      "f18",
198      "f20",
199      "f22",
200      "f24",
201      "f26",
202      "f28",
203      "f30"
204    };
205    return names[index];
206  }
207
208  static FPURegister from_code(int code) {
209    FPURegister r = { code };
210    return r;
211  }
212
213  bool is_valid() const { return 0 <= code_ && code_ < kNumFPURegisters ; }
214  bool is(FPURegister creg) const { return code_ == creg.code_; }
215  int code() const {
216    ASSERT(is_valid());
217    return code_;
218  }
219  int bit() const {
220    ASSERT(is_valid());
221    return 1 << code_;
222  }
223  void setcode(int f) {
224    code_ = f;
225    ASSERT(is_valid());
226  }
227  // Unfortunately we can't make this private in a struct.
228  int code_;
229};
230
231typedef FPURegister DoubleRegister;
232
233const FPURegister no_creg = { -1 };
234
235const FPURegister f0 = { 0 };  // Return value in hard float mode.
236const FPURegister f1 = { 1 };
237const FPURegister f2 = { 2 };
238const FPURegister f3 = { 3 };
239const FPURegister f4 = { 4 };
240const FPURegister f5 = { 5 };
241const FPURegister f6 = { 6 };
242const FPURegister f7 = { 7 };
243const FPURegister f8 = { 8 };
244const FPURegister f9 = { 9 };
245const FPURegister f10 = { 10 };
246const FPURegister f11 = { 11 };
247const FPURegister f12 = { 12 };  // Arg 0 in hard float mode.
248const FPURegister f13 = { 13 };
249const FPURegister f14 = { 14 };  // Arg 1 in hard float mode.
250const FPURegister f15 = { 15 };
251const FPURegister f16 = { 16 };
252const FPURegister f17 = { 17 };
253const FPURegister f18 = { 18 };
254const FPURegister f19 = { 19 };
255const FPURegister f20 = { 20 };
256const FPURegister f21 = { 21 };
257const FPURegister f22 = { 22 };
258const FPURegister f23 = { 23 };
259const FPURegister f24 = { 24 };
260const FPURegister f25 = { 25 };
261const FPURegister f26 = { 26 };
262const FPURegister f27 = { 27 };
263const FPURegister f28 = { 28 };
264const FPURegister f29 = { 29 };
265const FPURegister f30 = { 30 };
266const FPURegister f31 = { 31 };
267
268// FPU (coprocessor 1) control registers.
269// Currently only FCSR (#31) is implemented.
270struct FPUControlRegister {
271  bool is_valid() const { return code_ == kFCSRRegister; }
272  bool is(FPUControlRegister creg) const { return code_ == creg.code_; }
273  int code() const {
274    ASSERT(is_valid());
275    return code_;
276  }
277  int bit() const {
278    ASSERT(is_valid());
279    return 1 << code_;
280  }
281  void setcode(int f) {
282    code_ = f;
283    ASSERT(is_valid());
284  }
285  // Unfortunately we can't make this private in a struct.
286  int code_;
287};
288
289const FPUControlRegister no_fpucreg = { kInvalidFPUControlRegister };
290const FPUControlRegister FCSR = { kFCSRRegister };
291
292
293// -----------------------------------------------------------------------------
294// Machine instruction Operands.
295
296// Class Operand represents a shifter operand in data processing instructions.
297class Operand BASE_EMBEDDED {
298 public:
299  // Immediate.
300  INLINE(explicit Operand(int32_t immediate,
301         RelocInfo::Mode rmode = RelocInfo::NONE));
302  INLINE(explicit Operand(const ExternalReference& f));
303  INLINE(explicit Operand(const char* s));
304  INLINE(explicit Operand(Object** opp));
305  INLINE(explicit Operand(Context** cpp));
306  explicit Operand(Handle<Object> handle);
307  INLINE(explicit Operand(Smi* value));
308
309  // Register.
310  INLINE(explicit Operand(Register rm));
311
312  // Return true if this is a register operand.
313  INLINE(bool is_reg() const);
314
315  Register rm() const { return rm_; }
316
317 private:
318  Register rm_;
319  int32_t imm32_;  // Valid if rm_ == no_reg.
320  RelocInfo::Mode rmode_;
321
322  friend class Assembler;
323  friend class MacroAssembler;
324};
325
326
327// On MIPS we have only one adressing mode with base_reg + offset.
328// Class MemOperand represents a memory operand in load and store instructions.
329class MemOperand : public Operand {
330 public:
331  explicit MemOperand(Register rn, int32_t offset = 0);
332  int32_t offset() const { return offset_; }
333
334 private:
335  int32_t offset_;
336
337  friend class Assembler;
338};
339
340
341// CpuFeatures keeps track of which features are supported by the target CPU.
342// Supported features must be enabled by a Scope before use.
343class CpuFeatures : public AllStatic {
344 public:
345  // Detect features of the target CPU. Set safe defaults if the serializer
346  // is enabled (snapshots must be portable).
347  static void Probe();
348
349  // Check whether a feature is supported by the target CPU.
350  static bool IsSupported(CpuFeature f) {
351    ASSERT(initialized_);
352    if (f == FPU && !FLAG_enable_fpu) return false;
353    return (supported_ & (1u << f)) != 0;
354  }
355
356
357#ifdef DEBUG
358  // Check whether a feature is currently enabled.
359  static bool IsEnabled(CpuFeature f) {
360    ASSERT(initialized_);
361    Isolate* isolate = Isolate::UncheckedCurrent();
362    if (isolate == NULL) {
363      // When no isolate is available, work as if we're running in
364      // release mode.
365      return IsSupported(f);
366    }
367    unsigned enabled = static_cast<unsigned>(isolate->enabled_cpu_features());
368    return (enabled & (1u << f)) != 0;
369  }
370#endif
371
372  // Enable a specified feature within a scope.
373  class Scope BASE_EMBEDDED {
374#ifdef DEBUG
375
376   public:
377    explicit Scope(CpuFeature f) {
378      unsigned mask = 1u << f;
379      ASSERT(CpuFeatures::IsSupported(f));
380      ASSERT(!Serializer::enabled() ||
381             (CpuFeatures::found_by_runtime_probing_ & mask) == 0);
382      isolate_ = Isolate::UncheckedCurrent();
383      old_enabled_ = 0;
384      if (isolate_ != NULL) {
385        old_enabled_ = static_cast<unsigned>(isolate_->enabled_cpu_features());
386        isolate_->set_enabled_cpu_features(old_enabled_ | mask);
387      }
388    }
389    ~Scope() {
390      ASSERT_EQ(Isolate::UncheckedCurrent(), isolate_);
391      if (isolate_ != NULL) {
392        isolate_->set_enabled_cpu_features(old_enabled_);
393      }
394    }
395
396 private:
397    Isolate* isolate_;
398    unsigned old_enabled_;
399#else
400
401 public:
402    explicit Scope(CpuFeature f) {}
403#endif
404  };
405
406  class TryForceFeatureScope BASE_EMBEDDED {
407   public:
408    explicit TryForceFeatureScope(CpuFeature f)
409        : old_supported_(CpuFeatures::supported_) {
410      if (CanForce()) {
411        CpuFeatures::supported_ |= (1u << f);
412      }
413    }
414
415    ~TryForceFeatureScope() {
416      if (CanForce()) {
417        CpuFeatures::supported_ = old_supported_;
418      }
419    }
420
421   private:
422    static bool CanForce() {
423      // It's only safe to temporarily force support of CPU features
424      // when there's only a single isolate, which is guaranteed when
425      // the serializer is enabled.
426      return Serializer::enabled();
427    }
428
429    const unsigned old_supported_;
430  };
431
432 private:
433#ifdef DEBUG
434  static bool initialized_;
435#endif
436  static unsigned supported_;
437  static unsigned found_by_runtime_probing_;
438
439  DISALLOW_COPY_AND_ASSIGN(CpuFeatures);
440};
441
442
443class Assembler : public AssemblerBase {
444 public:
445  // Create an assembler. Instructions and relocation information are emitted
446  // into a buffer, with the instructions starting from the beginning and the
447  // relocation information starting from the end of the buffer. See CodeDesc
448  // for a detailed comment on the layout (globals.h).
449  //
450  // If the provided buffer is NULL, the assembler allocates and grows its own
451  // buffer, and buffer_size determines the initial buffer size. The buffer is
452  // owned by the assembler and deallocated upon destruction of the assembler.
453  //
454  // If the provided buffer is not NULL, the assembler uses the provided buffer
455  // for code generation and assumes its size to be buffer_size. If the buffer
456  // is too small, a fatal error occurs. No deallocation of the buffer is done
457  // upon destruction of the assembler.
458  Assembler(Isolate* isolate, void* buffer, int buffer_size);
459  ~Assembler();
460
461  // Overrides the default provided by FLAG_debug_code.
462  void set_emit_debug_code(bool value) { emit_debug_code_ = value; }
463
464  // GetCode emits any pending (non-emitted) code and fills the descriptor
465  // desc. GetCode() is idempotent; it returns the same result if no other
466  // Assembler functions are invoked in between GetCode() calls.
467  void GetCode(CodeDesc* desc);
468
469  // Label operations & relative jumps (PPUM Appendix D).
470  //
471  // Takes a branch opcode (cc) and a label (L) and generates
472  // either a backward branch or a forward branch and links it
473  // to the label fixup chain. Usage:
474  //
475  // Label L;    // unbound label
476  // j(cc, &L);  // forward branch to unbound label
477  // bind(&L);   // bind label to the current pc
478  // j(cc, &L);  // backward branch to bound label
479  // bind(&L);   // illegal: a label may be bound only once
480  //
481  // Note: The same Label can be used for forward and backward branches
482  // but it may be bound only once.
483  void bind(Label* L);  // Binds an unbound label L to current code position.
484  // Determines if Label is bound and near enough so that branch instruction
485  // can be used to reach it, instead of jump instruction.
486  bool is_near(Label* L);
487
488  // Returns the branch offset to the given label from the current code
489  // position. Links the label to the current position if it is still unbound.
490  // Manages the jump elimination optimization if the second parameter is true.
491  int32_t branch_offset(Label* L, bool jump_elimination_allowed);
492  int32_t shifted_branch_offset(Label* L, bool jump_elimination_allowed) {
493    int32_t o = branch_offset(L, jump_elimination_allowed);
494    ASSERT((o & 3) == 0);   // Assert the offset is aligned.
495    return o >> 2;
496  }
497  uint32_t jump_address(Label* L);
498
499  // Puts a labels target address at the given position.
500  // The high 8 bits are set to zero.
501  void label_at_put(Label* L, int at_offset);
502
503  // Read/Modify the code target address in the branch/call instruction at pc.
504  static Address target_address_at(Address pc);
505  static void set_target_address_at(Address pc, Address target);
506
507  // This sets the branch destination (which gets loaded at the call address).
508  // This is for calls and branches within generated code.
509  inline static void set_target_at(Address instruction_payload,
510                                   Address target) {
511    set_target_address_at(instruction_payload, target);
512  }
513
514  // This sets the branch destination.
515  // This is for calls and branches to runtime code.
516  inline static void set_external_target_at(Address instruction_payload,
517                                            Address target) {
518    set_target_address_at(instruction_payload, target);
519  }
520
521  // Size of an instruction.
522  static const int kInstrSize = sizeof(Instr);
523
524  // Difference between address of current opcode and target address offset.
525  static const int kBranchPCOffset = 4;
526
527  // Here we are patching the address in the LUI/ORI instruction pair.
528  // These values are used in the serialization process and must be zero for
529  // MIPS platform, as Code, Embedded Object or External-reference pointers
530  // are split across two consecutive instructions and don't exist separately
531  // in the code, so the serializer should not step forwards in memory after
532  // a target is resolved and written.
533  static const int kCallTargetSize = 0 * kInstrSize;
534  static const int kExternalTargetSize = 0 * kInstrSize;
535
536  // Number of consecutive instructions used to store 32bit constant.
537  // Used in RelocInfo::target_address_address() function to tell serializer
538  // address of the instruction that follows LUI/ORI instruction pair.
539  static const int kInstructionsFor32BitConstant = 2;
540
541  // Distance between the instruction referring to the address of the call
542  // target and the return address.
543  static const int kCallTargetAddressOffset = 4 * kInstrSize;
544
545  // Distance between start of patched return sequence and the emitted address
546  // to jump to.
547  static const int kPatchReturnSequenceAddressOffset = 0;
548
549  // Distance between start of patched debug break slot and the emitted address
550  // to jump to.
551  static const int kPatchDebugBreakSlotAddressOffset =  0 * kInstrSize;
552
553  // Difference between address of current opcode and value read from pc
554  // register.
555  static const int kPcLoadDelta = 4;
556
557  // Number of instructions used for the JS return sequence. The constant is
558  // used by the debugger to patch the JS return sequence.
559  static const int kJSReturnSequenceInstructions = 7;
560  static const int kDebugBreakSlotInstructions = 4;
561  static const int kDebugBreakSlotLength =
562      kDebugBreakSlotInstructions * kInstrSize;
563
564
565  // ---------------------------------------------------------------------------
566  // Code generation.
567
568  // Insert the smallest number of nop instructions
569  // possible to align the pc offset to a multiple
570  // of m. m must be a power of 2 (>= 4).
571  void Align(int m);
572  // Aligns code to something that's optimal for a jump target for the platform.
573  void CodeTargetAlign();
574
575  // Different nop operations are used by the code generator to detect certain
576  // states of the generated code.
577  enum NopMarkerTypes {
578    NON_MARKING_NOP = 0,
579    DEBUG_BREAK_NOP,
580    // IC markers.
581    PROPERTY_ACCESS_INLINED,
582    PROPERTY_ACCESS_INLINED_CONTEXT,
583    PROPERTY_ACCESS_INLINED_CONTEXT_DONT_DELETE,
584    // Helper values.
585    LAST_CODE_MARKER,
586    FIRST_IC_MARKER = PROPERTY_ACCESS_INLINED
587  };
588
589  // Type == 0 is the default non-marking type.
590  void nop(unsigned int type = 0) {
591    ASSERT(type < 32);
592    sll(zero_reg, zero_reg, type, true);
593  }
594
595
596  // --------Branch-and-jump-instructions----------
597  // We don't use likely variant of instructions.
598  void b(int16_t offset);
599  void b(Label* L) { b(branch_offset(L, false)>>2); }
600  void bal(int16_t offset);
601  void bal(Label* L) { bal(branch_offset(L, false)>>2); }
602
603  void beq(Register rs, Register rt, int16_t offset);
604  void beq(Register rs, Register rt, Label* L) {
605    beq(rs, rt, branch_offset(L, false) >> 2);
606  }
607  void bgez(Register rs, int16_t offset);
608  void bgezal(Register rs, int16_t offset);
609  void bgtz(Register rs, int16_t offset);
610  void blez(Register rs, int16_t offset);
611  void bltz(Register rs, int16_t offset);
612  void bltzal(Register rs, int16_t offset);
613  void bne(Register rs, Register rt, int16_t offset);
614  void bne(Register rs, Register rt, Label* L) {
615    bne(rs, rt, branch_offset(L, false)>>2);
616  }
617
618  // Never use the int16_t b(l)cond version with a branch offset
619  // instead of using the Label* version.
620
621  // Jump targets must be in the current 256 MB-aligned region. ie 28 bits.
622  void j(int32_t target);
623  void jal(int32_t target);
624  void jalr(Register rs, Register rd = ra);
625  void jr(Register target);
626
627
628  //-------Data-processing-instructions---------
629
630  // Arithmetic.
631  void addu(Register rd, Register rs, Register rt);
632  void subu(Register rd, Register rs, Register rt);
633  void mult(Register rs, Register rt);
634  void multu(Register rs, Register rt);
635  void div(Register rs, Register rt);
636  void divu(Register rs, Register rt);
637  void mul(Register rd, Register rs, Register rt);
638
639  void addiu(Register rd, Register rs, int32_t j);
640
641  // Logical.
642  void and_(Register rd, Register rs, Register rt);
643  void or_(Register rd, Register rs, Register rt);
644  void xor_(Register rd, Register rs, Register rt);
645  void nor(Register rd, Register rs, Register rt);
646
647  void andi(Register rd, Register rs, int32_t j);
648  void ori(Register rd, Register rs, int32_t j);
649  void xori(Register rd, Register rs, int32_t j);
650  void lui(Register rd, int32_t j);
651
652  // Shifts.
653  // Please note: sll(zero_reg, zero_reg, x) instructions are reserved as nop
654  // and may cause problems in normal code. coming_from_nop makes sure this
655  // doesn't happen.
656  void sll(Register rd, Register rt, uint16_t sa, bool coming_from_nop = false);
657  void sllv(Register rd, Register rt, Register rs);
658  void srl(Register rd, Register rt, uint16_t sa);
659  void srlv(Register rd, Register rt, Register rs);
660  void sra(Register rt, Register rd, uint16_t sa);
661  void srav(Register rt, Register rd, Register rs);
662  void rotr(Register rd, Register rt, uint16_t sa);
663  void rotrv(Register rd, Register rt, Register rs);
664
665
666  //------------Memory-instructions-------------
667
668  void lb(Register rd, const MemOperand& rs);
669  void lbu(Register rd, const MemOperand& rs);
670  void lh(Register rd, const MemOperand& rs);
671  void lhu(Register rd, const MemOperand& rs);
672  void lw(Register rd, const MemOperand& rs);
673  void lwl(Register rd, const MemOperand& rs);
674  void lwr(Register rd, const MemOperand& rs);
675  void sb(Register rd, const MemOperand& rs);
676  void sh(Register rd, const MemOperand& rs);
677  void sw(Register rd, const MemOperand& rs);
678  void swl(Register rd, const MemOperand& rs);
679  void swr(Register rd, const MemOperand& rs);
680
681
682  //-------------Misc-instructions--------------
683
684  // Break / Trap instructions.
685  void break_(uint32_t code, bool break_as_stop = false);
686  void stop(const char* msg, uint32_t code = kMaxStopCode);
687  void tge(Register rs, Register rt, uint16_t code);
688  void tgeu(Register rs, Register rt, uint16_t code);
689  void tlt(Register rs, Register rt, uint16_t code);
690  void tltu(Register rs, Register rt, uint16_t code);
691  void teq(Register rs, Register rt, uint16_t code);
692  void tne(Register rs, Register rt, uint16_t code);
693
694  // Move from HI/LO register.
695  void mfhi(Register rd);
696  void mflo(Register rd);
697
698  // Set on less than.
699  void slt(Register rd, Register rs, Register rt);
700  void sltu(Register rd, Register rs, Register rt);
701  void slti(Register rd, Register rs, int32_t j);
702  void sltiu(Register rd, Register rs, int32_t j);
703
704  // Conditional move.
705  void movz(Register rd, Register rs, Register rt);
706  void movn(Register rd, Register rs, Register rt);
707  void movt(Register rd, Register rs, uint16_t cc = 0);
708  void movf(Register rd, Register rs, uint16_t cc = 0);
709
710  // Bit twiddling.
711  void clz(Register rd, Register rs);
712  void ins_(Register rt, Register rs, uint16_t pos, uint16_t size);
713  void ext_(Register rt, Register rs, uint16_t pos, uint16_t size);
714
715  //--------Coprocessor-instructions----------------
716
717  // Load, store, and move.
718  void lwc1(FPURegister fd, const MemOperand& src);
719  void ldc1(FPURegister fd, const MemOperand& src);
720
721  void swc1(FPURegister fs, const MemOperand& dst);
722  void sdc1(FPURegister fs, const MemOperand& dst);
723
724  void mtc1(Register rt, FPURegister fs);
725  void mfc1(Register rt, FPURegister fs);
726
727  void ctc1(Register rt, FPUControlRegister fs);
728  void cfc1(Register rt, FPUControlRegister fs);
729
730  // Arithmetic.
731  void add_d(FPURegister fd, FPURegister fs, FPURegister ft);
732  void sub_d(FPURegister fd, FPURegister fs, FPURegister ft);
733  void mul_d(FPURegister fd, FPURegister fs, FPURegister ft);
734  void div_d(FPURegister fd, FPURegister fs, FPURegister ft);
735  void abs_d(FPURegister fd, FPURegister fs);
736  void mov_d(FPURegister fd, FPURegister fs);
737  void neg_d(FPURegister fd, FPURegister fs);
738  void sqrt_d(FPURegister fd, FPURegister fs);
739
740  // Conversion.
741  void cvt_w_s(FPURegister fd, FPURegister fs);
742  void cvt_w_d(FPURegister fd, FPURegister fs);
743  void trunc_w_s(FPURegister fd, FPURegister fs);
744  void trunc_w_d(FPURegister fd, FPURegister fs);
745  void round_w_s(FPURegister fd, FPURegister fs);
746  void round_w_d(FPURegister fd, FPURegister fs);
747  void floor_w_s(FPURegister fd, FPURegister fs);
748  void floor_w_d(FPURegister fd, FPURegister fs);
749  void ceil_w_s(FPURegister fd, FPURegister fs);
750  void ceil_w_d(FPURegister fd, FPURegister fs);
751
752  void cvt_l_s(FPURegister fd, FPURegister fs);
753  void cvt_l_d(FPURegister fd, FPURegister fs);
754  void trunc_l_s(FPURegister fd, FPURegister fs);
755  void trunc_l_d(FPURegister fd, FPURegister fs);
756  void round_l_s(FPURegister fd, FPURegister fs);
757  void round_l_d(FPURegister fd, FPURegister fs);
758  void floor_l_s(FPURegister fd, FPURegister fs);
759  void floor_l_d(FPURegister fd, FPURegister fs);
760  void ceil_l_s(FPURegister fd, FPURegister fs);
761  void ceil_l_d(FPURegister fd, FPURegister fs);
762
763  void cvt_s_w(FPURegister fd, FPURegister fs);
764  void cvt_s_l(FPURegister fd, FPURegister fs);
765  void cvt_s_d(FPURegister fd, FPURegister fs);
766
767  void cvt_d_w(FPURegister fd, FPURegister fs);
768  void cvt_d_l(FPURegister fd, FPURegister fs);
769  void cvt_d_s(FPURegister fd, FPURegister fs);
770
771  // Conditions and branches.
772  void c(FPUCondition cond, SecondaryField fmt,
773         FPURegister ft, FPURegister fs, uint16_t cc = 0);
774
775  void bc1f(int16_t offset, uint16_t cc = 0);
776  void bc1f(Label* L, uint16_t cc = 0) { bc1f(branch_offset(L, false)>>2, cc); }
777  void bc1t(int16_t offset, uint16_t cc = 0);
778  void bc1t(Label* L, uint16_t cc = 0) { bc1t(branch_offset(L, false)>>2, cc); }
779  void fcmp(FPURegister src1, const double src2, FPUCondition cond);
780
781  // Check the code size generated from label to here.
782  int SizeOfCodeGeneratedSince(Label* label) {
783    return pc_offset() - label->pos();
784  }
785
786  // Check the number of instructions generated from label to here.
787  int InstructionsGeneratedSince(Label* label) {
788    return SizeOfCodeGeneratedSince(label) / kInstrSize;
789  }
790
791  // Class for scoping postponing the trampoline pool generation.
792  class BlockTrampolinePoolScope {
793   public:
794    explicit BlockTrampolinePoolScope(Assembler* assem) : assem_(assem) {
795      assem_->StartBlockTrampolinePool();
796    }
797    ~BlockTrampolinePoolScope() {
798      assem_->EndBlockTrampolinePool();
799    }
800
801   private:
802    Assembler* assem_;
803
804    DISALLOW_IMPLICIT_CONSTRUCTORS(BlockTrampolinePoolScope);
805  };
806
807  // Class for postponing the assembly buffer growth. Typically used for
808  // sequences of instructions that must be emitted as a unit, before
809  // buffer growth (and relocation) can occur.
810  // This blocking scope is not nestable.
811  class BlockGrowBufferScope {
812   public:
813    explicit BlockGrowBufferScope(Assembler* assem) : assem_(assem) {
814      assem_->StartBlockGrowBuffer();
815    }
816    ~BlockGrowBufferScope() {
817      assem_->EndBlockGrowBuffer();
818    }
819
820    private:
821     Assembler* assem_;
822
823     DISALLOW_IMPLICIT_CONSTRUCTORS(BlockGrowBufferScope);
824  };
825
826  // Debugging.
827
828  // Mark address of the ExitJSFrame code.
829  void RecordJSReturn();
830
831  // Mark address of a debug break slot.
832  void RecordDebugBreakSlot();
833
834  // Record the AST id of the CallIC being compiled, so that it can be placed
835  // in the relocation information.
836  void SetRecordedAstId(unsigned ast_id) {
837    ASSERT(recorded_ast_id_ == kNoASTId);
838    recorded_ast_id_ = ast_id;
839  }
840
841  unsigned RecordedAstId() {
842    ASSERT(recorded_ast_id_ != kNoASTId);
843    return recorded_ast_id_;
844  }
845
846  void ClearRecordedAstId() { recorded_ast_id_ = kNoASTId; }
847
848  // Record a comment relocation entry that can be used by a disassembler.
849  // Use --code-comments to enable.
850  void RecordComment(const char* msg);
851
852  static int RelocateInternalReference(byte* pc, intptr_t pc_delta);
853
854  // Writes a single byte or word of data in the code stream.  Used for
855  // inline tables, e.g., jump-tables.
856  void db(uint8_t data);
857  void dd(uint32_t data);
858
859  int32_t pc_offset() const { return pc_ - buffer_; }
860
861  PositionsRecorder* positions_recorder() { return &positions_recorder_; }
862
863  // Postpone the generation of the trampoline pool for the specified number of
864  // instructions.
865  void BlockTrampolinePoolFor(int instructions);
866
867  // Check if there is less than kGap bytes available in the buffer.
868  // If this is the case, we need to grow the buffer before emitting
869  // an instruction or relocation information.
870  inline bool overflow() const { return pc_ >= reloc_info_writer.pos() - kGap; }
871
872  // Get the number of bytes available in the buffer.
873  inline int available_space() const { return reloc_info_writer.pos() - pc_; }
874
875  // Read/patch instructions.
876  static Instr instr_at(byte* pc) { return *reinterpret_cast<Instr*>(pc); }
877  static void instr_at_put(byte* pc, Instr instr) {
878    *reinterpret_cast<Instr*>(pc) = instr;
879  }
880  Instr instr_at(int pos) { return *reinterpret_cast<Instr*>(buffer_ + pos); }
881  void instr_at_put(int pos, Instr instr) {
882    *reinterpret_cast<Instr*>(buffer_ + pos) = instr;
883  }
884
885  // Check if an instruction is a branch of some kind.
886  static bool IsBranch(Instr instr);
887  static bool IsBeq(Instr instr);
888  static bool IsBne(Instr instr);
889
890  static bool IsJump(Instr instr);
891  static bool IsJ(Instr instr);
892  static bool IsLui(Instr instr);
893  static bool IsOri(Instr instr);
894
895  static bool IsNop(Instr instr, unsigned int type);
896  static bool IsPop(Instr instr);
897  static bool IsPush(Instr instr);
898  static bool IsLwRegFpOffset(Instr instr);
899  static bool IsSwRegFpOffset(Instr instr);
900  static bool IsLwRegFpNegOffset(Instr instr);
901  static bool IsSwRegFpNegOffset(Instr instr);
902
903  static Register GetRtReg(Instr instr);
904  static Register GetRsReg(Instr instr);
905  static Register GetRdReg(Instr instr);
906
907  static uint32_t GetRt(Instr instr);
908  static uint32_t GetRtField(Instr instr);
909  static uint32_t GetRs(Instr instr);
910  static uint32_t GetRsField(Instr instr);
911  static uint32_t GetRd(Instr instr);
912  static uint32_t GetRdField(Instr instr);
913  static uint32_t GetSa(Instr instr);
914  static uint32_t GetSaField(Instr instr);
915  static uint32_t GetOpcodeField(Instr instr);
916  static uint32_t GetFunction(Instr instr);
917  static uint32_t GetFunctionField(Instr instr);
918  static uint32_t GetImmediate16(Instr instr);
919  static uint32_t GetLabelConst(Instr instr);
920
921  static int32_t GetBranchOffset(Instr instr);
922  static bool IsLw(Instr instr);
923  static int16_t GetLwOffset(Instr instr);
924  static Instr SetLwOffset(Instr instr, int16_t offset);
925
926  static bool IsSw(Instr instr);
927  static Instr SetSwOffset(Instr instr, int16_t offset);
928  static bool IsAddImmediate(Instr instr);
929  static Instr SetAddImmediateOffset(Instr instr, int16_t offset);
930
931  static bool IsAndImmediate(Instr instr);
932
933  void CheckTrampolinePool();
934
935 protected:
936  // Relocation for a type-recording IC has the AST id added to it.  This
937  // member variable is a way to pass the information from the call site to
938  // the relocation info.
939  unsigned recorded_ast_id_;
940
941  bool emit_debug_code() const { return emit_debug_code_; }
942
943  int32_t buffer_space() const { return reloc_info_writer.pos() - pc_; }
944
945  // Decode branch instruction at pos and return branch target pos.
946  int target_at(int32_t pos);
947
948  // Patch branch instruction at pos to branch to given branch target pos.
949  void target_at_put(int32_t pos, int32_t target_pos);
950
951  // Say if we need to relocate with this mode.
952  bool MustUseReg(RelocInfo::Mode rmode);
953
954  // Record reloc info for current pc_.
955  void RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data = 0);
956
957  // Block the emission of the trampoline pool before pc_offset.
958  void BlockTrampolinePoolBefore(int pc_offset) {
959    if (no_trampoline_pool_before_ < pc_offset)
960      no_trampoline_pool_before_ = pc_offset;
961  }
962
963  void StartBlockTrampolinePool() {
964    trampoline_pool_blocked_nesting_++;
965  }
966
967  void EndBlockTrampolinePool() {
968    trampoline_pool_blocked_nesting_--;
969  }
970
971  bool is_trampoline_pool_blocked() const {
972    return trampoline_pool_blocked_nesting_ > 0;
973  }
974
975  bool has_exception() const {
976    return internal_trampoline_exception_;
977  }
978
979  bool is_trampoline_emitted() const {
980    return trampoline_emitted_;
981  }
982
983  // Temporarily block automatic assembly buffer growth.
984  void StartBlockGrowBuffer() {
985    ASSERT(!block_buffer_growth_);
986    block_buffer_growth_ = true;
987  }
988
989  void EndBlockGrowBuffer() {
990    ASSERT(block_buffer_growth_);
991    block_buffer_growth_ = false;
992  }
993
994  bool is_buffer_growth_blocked() const {
995    return block_buffer_growth_;
996  }
997
998 private:
999  // Code buffer:
1000  // The buffer into which code and relocation info are generated.
1001  byte* buffer_;
1002  int buffer_size_;
1003  // True if the assembler owns the buffer, false if buffer is external.
1004  bool own_buffer_;
1005
1006  // Buffer size and constant pool distance are checked together at regular
1007  // intervals of kBufferCheckInterval emitted bytes.
1008  static const int kBufferCheckInterval = 1*KB/2;
1009
1010  // Code generation.
1011  // The relocation writer's position is at least kGap bytes below the end of
1012  // the generated instructions. This is so that multi-instruction sequences do
1013  // not have to check for overflow. The same is true for writes of large
1014  // relocation info entries.
1015  static const int kGap = 32;
1016  byte* pc_;  // The program counter - moves forward.
1017
1018
1019  // Repeated checking whether the trampoline pool should be emitted is rather
1020  // expensive. By default we only check again once a number of instructions
1021  // has been generated.
1022  static const int kCheckConstIntervalInst = 32;
1023  static const int kCheckConstInterval = kCheckConstIntervalInst * kInstrSize;
1024
1025  int next_buffer_check_;  // pc offset of next buffer check.
1026
1027  // Emission of the trampoline pool may be blocked in some code sequences.
1028  int trampoline_pool_blocked_nesting_;  // Block emission if this is not zero.
1029  int no_trampoline_pool_before_;  // Block emission before this pc offset.
1030
1031  // Keep track of the last emitted pool to guarantee a maximal distance.
1032  int last_trampoline_pool_end_;  // pc offset of the end of the last pool.
1033
1034  // Automatic growth of the assembly buffer may be blocked for some sequences.
1035  bool block_buffer_growth_;  // Block growth when true.
1036
1037  // Relocation information generation.
1038  // Each relocation is encoded as a variable size value.
1039  static const int kMaxRelocSize = RelocInfoWriter::kMaxSize;
1040  RelocInfoWriter reloc_info_writer;
1041
1042  // The bound position, before this we cannot do instruction elimination.
1043  int last_bound_pos_;
1044
1045  // Code emission.
1046  inline void CheckBuffer();
1047  void GrowBuffer();
1048  inline void emit(Instr x);
1049  inline void CheckTrampolinePoolQuick();
1050
1051  // Instruction generation.
1052  // We have 3 different kind of encoding layout on MIPS.
1053  // However due to many different types of objects encoded in the same fields
1054  // we have quite a few aliases for each mode.
1055  // Using the same structure to refer to Register and FPURegister would spare a
1056  // few aliases, but mixing both does not look clean to me.
1057  // Anyway we could surely implement this differently.
1058
1059  void GenInstrRegister(Opcode opcode,
1060                        Register rs,
1061                        Register rt,
1062                        Register rd,
1063                        uint16_t sa = 0,
1064                        SecondaryField func = NULLSF);
1065
1066  void GenInstrRegister(Opcode opcode,
1067                        Register rs,
1068                        Register rt,
1069                        uint16_t msb,
1070                        uint16_t lsb,
1071                        SecondaryField func);
1072
1073  void GenInstrRegister(Opcode opcode,
1074                        SecondaryField fmt,
1075                        FPURegister ft,
1076                        FPURegister fs,
1077                        FPURegister fd,
1078                        SecondaryField func = NULLSF);
1079
1080  void GenInstrRegister(Opcode opcode,
1081                        SecondaryField fmt,
1082                        Register rt,
1083                        FPURegister fs,
1084                        FPURegister fd,
1085                        SecondaryField func = NULLSF);
1086
1087  void GenInstrRegister(Opcode opcode,
1088                        SecondaryField fmt,
1089                        Register rt,
1090                        FPUControlRegister fs,
1091                        SecondaryField func = NULLSF);
1092
1093
1094  void GenInstrImmediate(Opcode opcode,
1095                         Register rs,
1096                         Register rt,
1097                         int32_t  j);
1098  void GenInstrImmediate(Opcode opcode,
1099                         Register rs,
1100                         SecondaryField SF,
1101                         int32_t  j);
1102  void GenInstrImmediate(Opcode opcode,
1103                         Register r1,
1104                         FPURegister r2,
1105                         int32_t  j);
1106
1107
1108  void GenInstrJump(Opcode opcode,
1109                     uint32_t address);
1110
1111  // Helpers.
1112  void LoadRegPlusOffsetToAt(const MemOperand& src);
1113
1114  // Labels.
1115  void print(Label* L);
1116  void bind_to(Label* L, int pos);
1117  void next(Label* L);
1118
1119  // One trampoline consists of:
1120  // - space for trampoline slots,
1121  // - space for labels.
1122  //
1123  // Space for trampoline slots is equal to slot_count * 2 * kInstrSize.
1124  // Space for trampoline slots preceeds space for labels. Each label is of one
1125  // instruction size, so total amount for labels is equal to
1126  // label_count *  kInstrSize.
1127  class Trampoline {
1128   public:
1129    Trampoline() {
1130      start_ = 0;
1131      next_slot_ = 0;
1132      free_slot_count_ = 0;
1133      end_ = 0;
1134    }
1135    Trampoline(int start, int slot_count) {
1136      start_ = start;
1137      next_slot_ = start;
1138      free_slot_count_ = slot_count;
1139      end_ = start + slot_count * kTrampolineSlotsSize;
1140    }
1141    int start() {
1142      return start_;
1143    }
1144    int end() {
1145      return end_;
1146    }
1147    int take_slot() {
1148      int trampoline_slot = kInvalidSlotPos;
1149      if (free_slot_count_ <= 0) {
1150        // We have run out of space on trampolines.
1151        // Make sure we fail in debug mode, so we become aware of each case
1152        // when this happens.
1153        ASSERT(0);
1154        // Internal exception will be caught.
1155      } else {
1156        trampoline_slot = next_slot_;
1157        free_slot_count_--;
1158        next_slot_ += kTrampolineSlotsSize;
1159      }
1160      return trampoline_slot;
1161    }
1162   private:
1163    int start_;
1164    int end_;
1165    int next_slot_;
1166    int free_slot_count_;
1167  };
1168
1169  int32_t get_trampoline_entry(int32_t pos);
1170  int unbound_labels_count_;
1171  // If trampoline is emitted, generated code is becoming large. As this is
1172  // already a slow case which can possibly break our code generation for the
1173  // extreme case, we use this information to trigger different mode of
1174  // branch instruction generation, where we use jump instructions rather
1175  // than regular branch instructions.
1176  bool trampoline_emitted_;
1177  static const int kTrampolineSlotsSize = 4 * kInstrSize;
1178  static const int kMaxBranchOffset = (1 << (18 - 1)) - 1;
1179  static const int kInvalidSlotPos = -1;
1180
1181  Trampoline trampoline_;
1182  bool internal_trampoline_exception_;
1183
1184  friend class RegExpMacroAssemblerMIPS;
1185  friend class RelocInfo;
1186  friend class CodePatcher;
1187  friend class BlockTrampolinePoolScope;
1188
1189  PositionsRecorder positions_recorder_;
1190  bool emit_debug_code_;
1191  friend class PositionsRecorder;
1192  friend class EnsureSpace;
1193};
1194
1195
1196class EnsureSpace BASE_EMBEDDED {
1197 public:
1198  explicit EnsureSpace(Assembler* assembler) {
1199    assembler->CheckBuffer();
1200  }
1201};
1202
1203} }  // namespace v8::internal
1204
1205#endif  // V8_ARM_ASSEMBLER_MIPS_H_
1206