platform-solaris.cc revision 9fac840a46e8b7e26894f4792ba26dde14c56b04
1// Copyright 2006-2009 the V8 project authors. All rights reserved.
2// Redistribution and use in source and binary forms, with or without
3// modification, are permitted provided that the following conditions are
4// met:
5//
6//     * Redistributions of source code must retain the above copyright
7//       notice, this list of conditions and the following disclaimer.
8//     * Redistributions in binary form must reproduce the above
9//       copyright notice, this list of conditions and the following
10//       disclaimer in the documentation and/or other materials provided
11//       with the distribution.
12//     * Neither the name of Google Inc. nor the names of its
13//       contributors may be used to endorse or promote products derived
14//       from this software without specific prior written permission.
15//
16// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28// Platform specific code for Solaris 10 goes here. For the POSIX comaptible
29// parts the implementation is in platform-posix.cc.
30
31#ifdef __sparc
32# error "V8 does not support the SPARC CPU architecture."
33#endif
34
35#include <sys/stack.h>  // for stack alignment
36#include <unistd.h>  // getpagesize(), usleep()
37#include <sys/mman.h>  // mmap()
38#include <ucontext.h>  // walkstack(), getcontext()
39#include <dlfcn.h>     // dladdr
40#include <pthread.h>
41#include <sched.h>  // for sched_yield
42#include <semaphore.h>
43#include <time.h>
44#include <sys/time.h>  // gettimeofday(), timeradd()
45#include <errno.h>
46#include <ieeefp.h>  // finite()
47#include <signal.h>  // sigemptyset(), etc
48
49
50#undef MAP_TYPE
51
52#include "v8.h"
53
54#include "platform.h"
55#include "vm-state-inl.h"
56
57
58// It seems there is a bug in some Solaris distributions (experienced in
59// SunOS 5.10 Generic_141445-09) which make it difficult or impossible to
60// access signbit() despite the availability of other C99 math functions.
61#ifndef signbit
62// Test sign - usually defined in math.h
63int signbit(double x) {
64  // We need to take care of the special case of both positive and negative
65  // versions of zero.
66  if (x == 0) {
67    return fpclass(x) & FP_NZERO;
68  } else {
69    // This won't detect negative NaN but that should be okay since we don't
70    // assume that behavior.
71    return x < 0;
72  }
73}
74#endif  // signbit
75
76namespace v8 {
77namespace internal {
78
79
80// 0 is never a valid thread id on Solaris since the main thread is 1 and
81// subsequent have their ids incremented from there
82static const pthread_t kNoThread = (pthread_t) 0;
83
84
85double ceiling(double x) {
86  return ceil(x);
87}
88
89
90void OS::Setup() {
91  // Seed the random number generator.
92  // Convert the current time to a 64-bit integer first, before converting it
93  // to an unsigned. Going directly will cause an overflow and the seed to be
94  // set to all ones. The seed will be identical for different instances that
95  // call this setup code within the same millisecond.
96  uint64_t seed = static_cast<uint64_t>(TimeCurrentMillis());
97  srandom(static_cast<unsigned int>(seed));
98}
99
100
101uint64_t OS::CpuFeaturesImpliedByPlatform() {
102  return 0;  // Solaris runs on a lot of things.
103}
104
105
106int OS::ActivationFrameAlignment() {
107  return STACK_ALIGN;
108}
109
110
111void OS::ReleaseStore(volatile AtomicWord* ptr, AtomicWord value) {
112  __asm__ __volatile__("" : : : "memory");
113  *ptr = value;
114}
115
116
117const char* OS::LocalTimezone(double time) {
118  if (isnan(time)) return "";
119  time_t tv = static_cast<time_t>(floor(time/msPerSecond));
120  struct tm* t = localtime(&tv);
121  if (NULL == t) return "";
122  return tzname[0];  // The location of the timezone string on Solaris.
123}
124
125
126double OS::LocalTimeOffset() {
127  // On Solaris, struct tm does not contain a tm_gmtoff field.
128  time_t utc = time(NULL);
129  ASSERT(utc != -1);
130  struct tm* loc = localtime(&utc);
131  ASSERT(loc != NULL);
132  return static_cast<double>((mktime(loc) - utc) * msPerSecond);
133}
134
135
136// We keep the lowest and highest addresses mapped as a quick way of
137// determining that pointers are outside the heap (used mostly in assertions
138// and verification).  The estimate is conservative, ie, not all addresses in
139// 'allocated' space are actually allocated to our heap.  The range is
140// [lowest, highest), inclusive on the low and and exclusive on the high end.
141static void* lowest_ever_allocated = reinterpret_cast<void*>(-1);
142static void* highest_ever_allocated = reinterpret_cast<void*>(0);
143
144
145static void UpdateAllocatedSpaceLimits(void* address, int size) {
146  lowest_ever_allocated = Min(lowest_ever_allocated, address);
147  highest_ever_allocated =
148      Max(highest_ever_allocated,
149          reinterpret_cast<void*>(reinterpret_cast<char*>(address) + size));
150}
151
152
153bool OS::IsOutsideAllocatedSpace(void* address) {
154  return address < lowest_ever_allocated || address >= highest_ever_allocated;
155}
156
157
158size_t OS::AllocateAlignment() {
159  return static_cast<size_t>(getpagesize());
160}
161
162
163void* OS::Allocate(const size_t requested,
164                   size_t* allocated,
165                   bool is_executable) {
166  const size_t msize = RoundUp(requested, getpagesize());
167  int prot = PROT_READ | PROT_WRITE | (is_executable ? PROT_EXEC : 0);
168  void* mbase = mmap(NULL, msize, prot, MAP_PRIVATE | MAP_ANON, -1, 0);
169
170  if (mbase == MAP_FAILED) {
171    LOG(StringEvent("OS::Allocate", "mmap failed"));
172    return NULL;
173  }
174  *allocated = msize;
175  UpdateAllocatedSpaceLimits(mbase, msize);
176  return mbase;
177}
178
179
180void OS::Free(void* address, const size_t size) {
181  // TODO(1240712): munmap has a return value which is ignored here.
182  int result = munmap(address, size);
183  USE(result);
184  ASSERT(result == 0);
185}
186
187
188#ifdef ENABLE_HEAP_PROTECTION
189
190void OS::Protect(void* address, size_t size) {
191  // TODO(1240712): mprotect has a return value which is ignored here.
192  mprotect(address, size, PROT_READ);
193}
194
195
196void OS::Unprotect(void* address, size_t size, bool is_executable) {
197  // TODO(1240712): mprotect has a return value which is ignored here.
198  int prot = PROT_READ | PROT_WRITE | (is_executable ? PROT_EXEC : 0);
199  mprotect(address, size, prot);
200}
201
202#endif
203
204
205void OS::Sleep(int milliseconds) {
206  useconds_t ms = static_cast<useconds_t>(milliseconds);
207  usleep(1000 * ms);
208}
209
210
211void OS::Abort() {
212  // Redirect to std abort to signal abnormal program termination.
213  abort();
214}
215
216
217void OS::DebugBreak() {
218  asm("int $3");
219}
220
221
222class PosixMemoryMappedFile : public OS::MemoryMappedFile {
223 public:
224  PosixMemoryMappedFile(FILE* file, void* memory, int size)
225    : file_(file), memory_(memory), size_(size) { }
226  virtual ~PosixMemoryMappedFile();
227  virtual void* memory() { return memory_; }
228 private:
229  FILE* file_;
230  void* memory_;
231  int size_;
232};
233
234
235OS::MemoryMappedFile* OS::MemoryMappedFile::create(const char* name, int size,
236    void* initial) {
237  FILE* file = fopen(name, "w+");
238  if (file == NULL) return NULL;
239  int result = fwrite(initial, size, 1, file);
240  if (result < 1) {
241    fclose(file);
242    return NULL;
243  }
244  void* memory =
245      mmap(0, size, PROT_READ | PROT_WRITE, MAP_SHARED, fileno(file), 0);
246  return new PosixMemoryMappedFile(file, memory, size);
247}
248
249
250PosixMemoryMappedFile::~PosixMemoryMappedFile() {
251  if (memory_) munmap(memory_, size_);
252  fclose(file_);
253}
254
255
256void OS::LogSharedLibraryAddresses() {
257}
258
259
260void OS::SignalCodeMovingGC() {
261}
262
263
264struct StackWalker {
265  Vector<OS::StackFrame>& frames;
266  int index;
267};
268
269
270static int StackWalkCallback(uintptr_t pc, int signo, void* data) {
271  struct StackWalker* walker = static_cast<struct StackWalker*>(data);
272  Dl_info info;
273
274  int i = walker->index;
275
276  walker->frames[i].address = reinterpret_cast<void*>(pc);
277
278  // Make sure line termination is in place.
279  walker->frames[i].text[OS::kStackWalkMaxTextLen - 1] = '\0';
280
281  Vector<char> text = MutableCStrVector(walker->frames[i].text,
282                                        OS::kStackWalkMaxTextLen);
283
284  if (dladdr(reinterpret_cast<void*>(pc), &info) == 0) {
285    OS::SNPrintF(text, "[0x%p]", pc);
286  } else if ((info.dli_fname != NULL && info.dli_sname != NULL)) {
287    // We have symbol info.
288    OS::SNPrintF(text, "%s'%s+0x%x", info.dli_fname, info.dli_sname, pc);
289  } else {
290    // No local symbol info.
291    OS::SNPrintF(text,
292                 "%s'0x%p [0x%p]",
293                 info.dli_fname,
294                 pc - reinterpret_cast<uintptr_t>(info.dli_fbase),
295                 pc);
296  }
297  walker->index++;
298  return 0;
299}
300
301
302int OS::StackWalk(Vector<OS::StackFrame> frames) {
303  ucontext_t ctx;
304  struct StackWalker walker = { frames, 0 };
305
306  if (getcontext(&ctx) < 0) return kStackWalkError;
307
308  if (!walkcontext(&ctx, StackWalkCallback, &walker)) {
309    return kStackWalkError;
310  }
311
312  return walker.index;
313}
314
315
316// Constants used for mmap.
317static const int kMmapFd = -1;
318static const int kMmapFdOffset = 0;
319
320
321VirtualMemory::VirtualMemory(size_t size) {
322  address_ = mmap(NULL, size, PROT_NONE,
323                  MAP_PRIVATE | MAP_ANON | MAP_NORESERVE,
324                  kMmapFd, kMmapFdOffset);
325  size_ = size;
326}
327
328
329VirtualMemory::~VirtualMemory() {
330  if (IsReserved()) {
331    if (0 == munmap(address(), size())) address_ = MAP_FAILED;
332  }
333}
334
335
336bool VirtualMemory::IsReserved() {
337  return address_ != MAP_FAILED;
338}
339
340
341bool VirtualMemory::Commit(void* address, size_t size, bool executable) {
342  int prot = PROT_READ | PROT_WRITE | (executable ? PROT_EXEC : 0);
343  if (MAP_FAILED == mmap(address, size, prot,
344                         MAP_PRIVATE | MAP_ANON | MAP_FIXED,
345                         kMmapFd, kMmapFdOffset)) {
346    return false;
347  }
348
349  UpdateAllocatedSpaceLimits(address, size);
350  return true;
351}
352
353
354bool VirtualMemory::Uncommit(void* address, size_t size) {
355  return mmap(address, size, PROT_NONE,
356              MAP_PRIVATE | MAP_ANON | MAP_NORESERVE | MAP_FIXED,
357              kMmapFd, kMmapFdOffset) != MAP_FAILED;
358}
359
360
361class ThreadHandle::PlatformData : public Malloced {
362 public:
363  explicit PlatformData(ThreadHandle::Kind kind) {
364    Initialize(kind);
365  }
366
367  void Initialize(ThreadHandle::Kind kind) {
368    switch (kind) {
369      case ThreadHandle::SELF: thread_ = pthread_self(); break;
370      case ThreadHandle::INVALID: thread_ = kNoThread; break;
371    }
372  }
373
374  pthread_t thread_;  // Thread handle for pthread.
375};
376
377
378ThreadHandle::ThreadHandle(Kind kind) {
379  data_ = new PlatformData(kind);
380}
381
382
383void ThreadHandle::Initialize(ThreadHandle::Kind kind) {
384  data_->Initialize(kind);
385}
386
387
388ThreadHandle::~ThreadHandle() {
389  delete data_;
390}
391
392
393bool ThreadHandle::IsSelf() const {
394  return pthread_equal(data_->thread_, pthread_self());
395}
396
397
398bool ThreadHandle::IsValid() const {
399  return data_->thread_ != kNoThread;
400}
401
402
403Thread::Thread() : ThreadHandle(ThreadHandle::INVALID) {
404  set_name("v8:<unknown>");
405}
406
407
408Thread::Thread(const char* name) : ThreadHandle(ThreadHandle::INVALID) {
409  set_name(name);
410}
411
412
413Thread::~Thread() {
414}
415
416
417static void* ThreadEntry(void* arg) {
418  Thread* thread = reinterpret_cast<Thread*>(arg);
419  // This is also initialized by the first argument to pthread_create() but we
420  // don't know which thread will run first (the original thread or the new
421  // one) so we initialize it here too.
422  thread->thread_handle_data()->thread_ = pthread_self();
423  ASSERT(thread->IsValid());
424  thread->Run();
425  return NULL;
426}
427
428
429void Thread::set_name(const char* name) {
430  strncpy(name_, name, sizeof(name_));
431  name_[sizeof(name_) - 1] = '\0';
432}
433
434
435void Thread::Start() {
436  pthread_create(&thread_handle_data()->thread_, NULL, ThreadEntry, this);
437  ASSERT(IsValid());
438}
439
440
441void Thread::Join() {
442  pthread_join(thread_handle_data()->thread_, NULL);
443}
444
445
446Thread::LocalStorageKey Thread::CreateThreadLocalKey() {
447  pthread_key_t key;
448  int result = pthread_key_create(&key, NULL);
449  USE(result);
450  ASSERT(result == 0);
451  return static_cast<LocalStorageKey>(key);
452}
453
454
455void Thread::DeleteThreadLocalKey(LocalStorageKey key) {
456  pthread_key_t pthread_key = static_cast<pthread_key_t>(key);
457  int result = pthread_key_delete(pthread_key);
458  USE(result);
459  ASSERT(result == 0);
460}
461
462
463void* Thread::GetThreadLocal(LocalStorageKey key) {
464  pthread_key_t pthread_key = static_cast<pthread_key_t>(key);
465  return pthread_getspecific(pthread_key);
466}
467
468
469void Thread::SetThreadLocal(LocalStorageKey key, void* value) {
470  pthread_key_t pthread_key = static_cast<pthread_key_t>(key);
471  pthread_setspecific(pthread_key, value);
472}
473
474
475void Thread::YieldCPU() {
476  sched_yield();
477}
478
479
480class SolarisMutex : public Mutex {
481 public:
482
483  SolarisMutex() {
484    pthread_mutexattr_t attr;
485    pthread_mutexattr_init(&attr);
486    pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE);
487    pthread_mutex_init(&mutex_, &attr);
488  }
489
490  ~SolarisMutex() { pthread_mutex_destroy(&mutex_); }
491
492  int Lock() { return pthread_mutex_lock(&mutex_); }
493
494  int Unlock() { return pthread_mutex_unlock(&mutex_); }
495
496 private:
497  pthread_mutex_t mutex_;
498};
499
500
501Mutex* OS::CreateMutex() {
502  return new SolarisMutex();
503}
504
505
506class SolarisSemaphore : public Semaphore {
507 public:
508  explicit SolarisSemaphore(int count) {  sem_init(&sem_, 0, count); }
509  virtual ~SolarisSemaphore() { sem_destroy(&sem_); }
510
511  virtual void Wait();
512  virtual bool Wait(int timeout);
513  virtual void Signal() { sem_post(&sem_); }
514 private:
515  sem_t sem_;
516};
517
518
519void SolarisSemaphore::Wait() {
520  while (true) {
521    int result = sem_wait(&sem_);
522    if (result == 0) return;  // Successfully got semaphore.
523    CHECK(result == -1 && errno == EINTR);  // Signal caused spurious wakeup.
524  }
525}
526
527
528#ifndef TIMEVAL_TO_TIMESPEC
529#define TIMEVAL_TO_TIMESPEC(tv, ts) do {                            \
530    (ts)->tv_sec = (tv)->tv_sec;                                    \
531    (ts)->tv_nsec = (tv)->tv_usec * 1000;                           \
532} while (false)
533#endif
534
535
536#ifndef timeradd
537#define timeradd(a, b, result) \
538  do { \
539    (result)->tv_sec = (a)->tv_sec + (b)->tv_sec; \
540    (result)->tv_usec = (a)->tv_usec + (b)->tv_usec; \
541    if ((result)->tv_usec >= 1000000) { \
542      ++(result)->tv_sec; \
543      (result)->tv_usec -= 1000000; \
544    } \
545  } while (0)
546#endif
547
548
549bool SolarisSemaphore::Wait(int timeout) {
550  const long kOneSecondMicros = 1000000;  // NOLINT
551
552  // Split timeout into second and nanosecond parts.
553  struct timeval delta;
554  delta.tv_usec = timeout % kOneSecondMicros;
555  delta.tv_sec = timeout / kOneSecondMicros;
556
557  struct timeval current_time;
558  // Get the current time.
559  if (gettimeofday(&current_time, NULL) == -1) {
560    return false;
561  }
562
563  // Calculate time for end of timeout.
564  struct timeval end_time;
565  timeradd(&current_time, &delta, &end_time);
566
567  struct timespec ts;
568  TIMEVAL_TO_TIMESPEC(&end_time, &ts);
569  // Wait for semaphore signalled or timeout.
570  while (true) {
571    int result = sem_timedwait(&sem_, &ts);
572    if (result == 0) return true;  // Successfully got semaphore.
573    if (result == -1 && errno == ETIMEDOUT) return false;  // Timeout.
574    CHECK(result == -1 && errno == EINTR);  // Signal caused spurious wakeup.
575  }
576}
577
578
579Semaphore* OS::CreateSemaphore(int count) {
580  return new SolarisSemaphore(count);
581}
582
583
584#ifdef ENABLE_LOGGING_AND_PROFILING
585
586static Sampler* active_sampler_ = NULL;
587
588static void ProfilerSignalHandler(int signal, siginfo_t* info, void* context) {
589  USE(info);
590  if (signal != SIGPROF) return;
591  if (active_sampler_ == NULL) return;
592
593  TickSample sample;
594  sample.pc = 0;
595  sample.sp = 0;
596  sample.fp = 0;
597
598  // We always sample the VM state.
599  sample.state = VMState::current_state();
600
601  active_sampler_->Tick(&sample);
602}
603
604
605class Sampler::PlatformData : public Malloced {
606 public:
607  PlatformData() {
608    signal_handler_installed_ = false;
609  }
610
611  bool signal_handler_installed_;
612  struct sigaction old_signal_handler_;
613  struct itimerval old_timer_value_;
614};
615
616
617Sampler::Sampler(int interval)
618    : interval_(interval),
619      profiling_(false),
620      active_(false),
621      samples_taken_(0) {
622  data_ = new PlatformData();
623}
624
625
626Sampler::~Sampler() {
627  delete data_;
628}
629
630
631void Sampler::Start() {
632  // There can only be one active sampler at the time on POSIX
633  // platforms.
634  if (active_sampler_ != NULL) return;
635
636  // Request profiling signals.
637  struct sigaction sa;
638  sa.sa_sigaction = ProfilerSignalHandler;
639  sigemptyset(&sa.sa_mask);
640  sa.sa_flags = SA_SIGINFO;
641  if (sigaction(SIGPROF, &sa, &data_->old_signal_handler_) != 0) return;
642  data_->signal_handler_installed_ = true;
643
644  // Set the itimer to generate a tick for each interval.
645  itimerval itimer;
646  itimer.it_interval.tv_sec = interval_ / 1000;
647  itimer.it_interval.tv_usec = (interval_ % 1000) * 1000;
648  itimer.it_value.tv_sec = itimer.it_interval.tv_sec;
649  itimer.it_value.tv_usec = itimer.it_interval.tv_usec;
650  setitimer(ITIMER_PROF, &itimer, &data_->old_timer_value_);
651
652  // Set this sampler as the active sampler.
653  active_sampler_ = this;
654  active_ = true;
655}
656
657
658void Sampler::Stop() {
659  // Restore old signal handler
660  if (data_->signal_handler_installed_) {
661    setitimer(ITIMER_PROF, &data_->old_timer_value_, NULL);
662    sigaction(SIGPROF, &data_->old_signal_handler_, 0);
663    data_->signal_handler_installed_ = false;
664  }
665
666  // This sampler is no longer the active sampler.
667  active_sampler_ = NULL;
668  active_ = false;
669}
670
671#endif  // ENABLE_LOGGING_AND_PROFILING
672
673} }  // namespace v8::internal
674