SurfaceFlinger.cpp revision 63f165fd6b86d04be94d4023e845e98560504a96
1/*
2 * Copyright (C) 2007 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#define ATRACE_TAG ATRACE_TAG_GRAPHICS
18
19#include <stdint.h>
20#include <sys/types.h>
21#include <errno.h>
22#include <math.h>
23#include <dlfcn.h>
24
25#include <EGL/egl.h>
26#include <GLES/gl.h>
27
28#include <cutils/log.h>
29#include <cutils/properties.h>
30
31#include <binder/IPCThreadState.h>
32#include <binder/IServiceManager.h>
33#include <binder/MemoryHeapBase.h>
34#include <binder/PermissionCache.h>
35
36#include <ui/DisplayInfo.h>
37
38#include <gui/BitTube.h>
39#include <gui/BufferQueue.h>
40#include <gui/IDisplayEventConnection.h>
41#include <gui/SurfaceTextureClient.h>
42
43#include <ui/GraphicBufferAllocator.h>
44#include <ui/PixelFormat.h>
45
46#include <utils/String8.h>
47#include <utils/String16.h>
48#include <utils/StopWatch.h>
49#include <utils/Trace.h>
50
51#include <private/android_filesystem_config.h>
52
53#include "clz.h"
54#include "DdmConnection.h"
55#include "DisplayDevice.h"
56#include "Client.h"
57#include "EventThread.h"
58#include "GLExtensions.h"
59#include "Layer.h"
60#include "LayerDim.h"
61#include "LayerScreenshot.h"
62#include "SurfaceFlinger.h"
63
64#include "DisplayHardware/FramebufferSurface.h"
65#include "DisplayHardware/HWComposer.h"
66
67
68#define EGL_VERSION_HW_ANDROID  0x3143
69
70#define DISPLAY_COUNT       1
71
72namespace android {
73// ---------------------------------------------------------------------------
74
75const String16 sHardwareTest("android.permission.HARDWARE_TEST");
76const String16 sAccessSurfaceFlinger("android.permission.ACCESS_SURFACE_FLINGER");
77const String16 sReadFramebuffer("android.permission.READ_FRAME_BUFFER");
78const String16 sDump("android.permission.DUMP");
79
80// ---------------------------------------------------------------------------
81
82SurfaceFlinger::SurfaceFlinger()
83    :   BnSurfaceComposer(), Thread(false),
84        mTransactionFlags(0),
85        mTransationPending(false),
86        mLayersRemoved(false),
87        mRepaintEverything(0),
88        mBootTime(systemTime()),
89        mVisibleRegionsDirty(false),
90        mHwWorkListDirty(false),
91        mDebugRegion(0),
92        mDebugDDMS(0),
93        mDebugDisableHWC(0),
94        mDebugDisableTransformHint(0),
95        mDebugInSwapBuffers(0),
96        mLastSwapBufferTime(0),
97        mDebugInTransaction(0),
98        mLastTransactionTime(0),
99        mBootFinished(false)
100{
101    ALOGI("SurfaceFlinger is starting");
102
103    // debugging stuff...
104    char value[PROPERTY_VALUE_MAX];
105
106    property_get("debug.sf.showupdates", value, "0");
107    mDebugRegion = atoi(value);
108
109    property_get("debug.sf.ddms", value, "0");
110    mDebugDDMS = atoi(value);
111    if (mDebugDDMS) {
112        if (!startDdmConnection()) {
113            // start failed, and DDMS debugging not enabled
114            mDebugDDMS = 0;
115        }
116    }
117    ALOGI_IF(mDebugRegion, "showupdates enabled");
118    ALOGI_IF(mDebugDDMS, "DDMS debugging enabled");
119}
120
121void SurfaceFlinger::onFirstRef()
122{
123    mEventQueue.init(this);
124
125    run("SurfaceFlinger", PRIORITY_URGENT_DISPLAY);
126
127    // Wait for the main thread to be done with its initialization
128    mReadyToRunBarrier.wait();
129}
130
131
132SurfaceFlinger::~SurfaceFlinger()
133{
134    EGLDisplay display = eglGetDisplay(EGL_DEFAULT_DISPLAY);
135    eglMakeCurrent(display, EGL_NO_SURFACE, EGL_NO_SURFACE, EGL_NO_CONTEXT);
136    eglTerminate(display);
137}
138
139void SurfaceFlinger::binderDied(const wp<IBinder>& who)
140{
141    // the window manager died on us. prepare its eulogy.
142
143    // restore initial conditions (default device unblank, etc)
144    initializeDisplays();
145
146    // restart the boot-animation
147    startBootAnim();
148}
149
150sp<ISurfaceComposerClient> SurfaceFlinger::createConnection()
151{
152    sp<ISurfaceComposerClient> bclient;
153    sp<Client> client(new Client(this));
154    status_t err = client->initCheck();
155    if (err == NO_ERROR) {
156        bclient = client;
157    }
158    return bclient;
159}
160
161sp<IBinder> SurfaceFlinger::createDisplay()
162{
163    class DisplayToken : public BBinder {
164        sp<SurfaceFlinger> flinger;
165        virtual ~DisplayToken() {
166             // no more references, this display must be terminated
167             Mutex::Autolock _l(flinger->mStateLock);
168             flinger->mCurrentState.displays.removeItem(this);
169             flinger->setTransactionFlags(eDisplayTransactionNeeded);
170         }
171     public:
172        DisplayToken(const sp<SurfaceFlinger>& flinger)
173            : flinger(flinger) {
174        }
175    };
176
177    sp<BBinder> token = new DisplayToken(this);
178
179    Mutex::Autolock _l(mStateLock);
180    DisplayDeviceState info(DisplayDevice::DISPLAY_VIRTUAL);
181    mCurrentState.displays.add(token, info);
182
183    return token;
184}
185
186sp<IBinder> SurfaceFlinger::getBuiltInDisplay(int32_t id) {
187    if (uint32_t(id) >= DisplayDevice::NUM_DISPLAY_TYPES) {
188        ALOGE("getDefaultDisplay: id=%d is not a valid default display id", id);
189        return NULL;
190    }
191    return mDefaultDisplays[id];
192}
193
194sp<IGraphicBufferAlloc> SurfaceFlinger::createGraphicBufferAlloc()
195{
196    sp<GraphicBufferAlloc> gba(new GraphicBufferAlloc());
197    return gba;
198}
199
200void SurfaceFlinger::bootFinished()
201{
202    const nsecs_t now = systemTime();
203    const nsecs_t duration = now - mBootTime;
204    ALOGI("Boot is finished (%ld ms)", long(ns2ms(duration)) );
205    mBootFinished = true;
206
207    // wait patiently for the window manager death
208    const String16 name("window");
209    sp<IBinder> window(defaultServiceManager()->getService(name));
210    if (window != 0) {
211        window->linkToDeath(static_cast<IBinder::DeathRecipient*>(this));
212    }
213
214    // stop boot animation
215    // formerly we would just kill the process, but we now ask it to exit so it
216    // can choose where to stop the animation.
217    property_set("service.bootanim.exit", "1");
218}
219
220void SurfaceFlinger::deleteTextureAsync(GLuint texture) {
221    class MessageDestroyGLTexture : public MessageBase {
222        GLuint texture;
223    public:
224        MessageDestroyGLTexture(GLuint texture)
225            : texture(texture) {
226        }
227        virtual bool handler() {
228            glDeleteTextures(1, &texture);
229            return true;
230        }
231    };
232    postMessageAsync(new MessageDestroyGLTexture(texture));
233}
234
235status_t SurfaceFlinger::selectConfigForPixelFormat(
236        EGLDisplay dpy,
237        EGLint const* attrs,
238        PixelFormat format,
239        EGLConfig* outConfig)
240{
241    EGLConfig config = NULL;
242    EGLint numConfigs = -1, n=0;
243    eglGetConfigs(dpy, NULL, 0, &numConfigs);
244    EGLConfig* const configs = new EGLConfig[numConfigs];
245    eglChooseConfig(dpy, attrs, configs, numConfigs, &n);
246    for (int i=0 ; i<n ; i++) {
247        EGLint nativeVisualId = 0;
248        eglGetConfigAttrib(dpy, configs[i], EGL_NATIVE_VISUAL_ID, &nativeVisualId);
249        if (nativeVisualId>0 && format == nativeVisualId) {
250            *outConfig = configs[i];
251            delete [] configs;
252            return NO_ERROR;
253        }
254    }
255    delete [] configs;
256    return NAME_NOT_FOUND;
257}
258
259EGLConfig SurfaceFlinger::selectEGLConfig(EGLDisplay display, EGLint nativeVisualId) {
260    // select our EGLConfig. It must support EGL_RECORDABLE_ANDROID if
261    // it is to be used with WIFI displays
262    EGLConfig config;
263    EGLint dummy;
264    status_t err;
265    EGLint attribs[] = {
266            EGL_SURFACE_TYPE,           EGL_WINDOW_BIT,
267            EGL_RECORDABLE_ANDROID,     EGL_TRUE,
268            EGL_NONE
269    };
270    err = selectConfigForPixelFormat(display, attribs, nativeVisualId, &config);
271    if (err) {
272        // maybe we failed because of EGL_RECORDABLE_ANDROID
273        ALOGW("couldn't find an EGLConfig with EGL_RECORDABLE_ANDROID");
274        attribs[2] = EGL_NONE;
275        err = selectConfigForPixelFormat(display, attribs, nativeVisualId, &config);
276    }
277    ALOGE_IF(err, "couldn't find an EGLConfig matching the screen format");
278    if (eglGetConfigAttrib(display, config, EGL_CONFIG_CAVEAT, &dummy) == EGL_TRUE) {
279        ALOGW_IF(dummy == EGL_SLOW_CONFIG, "EGL_SLOW_CONFIG selected!");
280    }
281    return config;
282}
283
284EGLContext SurfaceFlinger::createGLContext(EGLDisplay display, EGLConfig config) {
285    // Also create our EGLContext
286    EGLint contextAttributes[] = {
287#ifdef EGL_IMG_context_priority
288#ifdef HAS_CONTEXT_PRIORITY
289#warning "using EGL_IMG_context_priority"
290            EGL_CONTEXT_PRIORITY_LEVEL_IMG, EGL_CONTEXT_PRIORITY_HIGH_IMG,
291#endif
292#endif
293            EGL_NONE, EGL_NONE
294    };
295    EGLContext ctxt = eglCreateContext(display, config, NULL, contextAttributes);
296    ALOGE_IF(ctxt==EGL_NO_CONTEXT, "EGLContext creation failed");
297    return ctxt;
298}
299
300void SurfaceFlinger::initializeGL(EGLDisplay display, EGLSurface surface) {
301    EGLBoolean result = eglMakeCurrent(display, surface, surface, mEGLContext);
302    if (!result) {
303        ALOGE("Couldn't create a working GLES context. check logs. exiting...");
304        exit(0);
305    }
306
307    GLExtensions& extensions(GLExtensions::getInstance());
308    extensions.initWithGLStrings(
309            glGetString(GL_VENDOR),
310            glGetString(GL_RENDERER),
311            glGetString(GL_VERSION),
312            glGetString(GL_EXTENSIONS),
313            eglQueryString(display, EGL_VENDOR),
314            eglQueryString(display, EGL_VERSION),
315            eglQueryString(display, EGL_EXTENSIONS));
316
317    EGLint w, h;
318    eglQuerySurface(display, surface, EGL_WIDTH,  &w);
319    eglQuerySurface(display, surface, EGL_HEIGHT, &h);
320
321    glGetIntegerv(GL_MAX_TEXTURE_SIZE, &mMaxTextureSize);
322    glGetIntegerv(GL_MAX_VIEWPORT_DIMS, mMaxViewportDims);
323
324    glPixelStorei(GL_UNPACK_ALIGNMENT, 4);
325    glPixelStorei(GL_PACK_ALIGNMENT, 4);
326    glEnableClientState(GL_VERTEX_ARRAY);
327    glShadeModel(GL_FLAT);
328    glDisable(GL_DITHER);
329    glDisable(GL_CULL_FACE);
330
331    struct pack565 {
332        inline uint16_t operator() (int r, int g, int b) const {
333            return (r<<11)|(g<<5)|b;
334        }
335    } pack565;
336
337    const uint16_t protTexData[] = { pack565(0x03, 0x03, 0x03) };
338    glGenTextures(1, &mProtectedTexName);
339    glBindTexture(GL_TEXTURE_2D, mProtectedTexName);
340    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
341    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
342    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
343    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
344    glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, 1, 1, 0,
345            GL_RGB, GL_UNSIGNED_SHORT_5_6_5, protTexData);
346
347    glViewport(0, 0, w, h);
348    glMatrixMode(GL_PROJECTION);
349    glLoadIdentity();
350    // put the origin in the left-bottom corner
351    glOrthof(0, w, 0, h, 0, 1); // l=0, r=w ; b=0, t=h
352
353    // print some debugging info
354    EGLint r,g,b,a;
355    eglGetConfigAttrib(display, mEGLConfig, EGL_RED_SIZE,   &r);
356    eglGetConfigAttrib(display, mEGLConfig, EGL_GREEN_SIZE, &g);
357    eglGetConfigAttrib(display, mEGLConfig, EGL_BLUE_SIZE,  &b);
358    eglGetConfigAttrib(display, mEGLConfig, EGL_ALPHA_SIZE, &a);
359    ALOGI("EGL informations:");
360    ALOGI("vendor    : %s", extensions.getEglVendor());
361    ALOGI("version   : %s", extensions.getEglVersion());
362    ALOGI("extensions: %s", extensions.getEglExtension());
363    ALOGI("Client API: %s", eglQueryString(display, EGL_CLIENT_APIS)?:"Not Supported");
364    ALOGI("EGLSurface: %d-%d-%d-%d, config=%p", r, g, b, a, mEGLConfig);
365    ALOGI("OpenGL ES informations:");
366    ALOGI("vendor    : %s", extensions.getVendor());
367    ALOGI("renderer  : %s", extensions.getRenderer());
368    ALOGI("version   : %s", extensions.getVersion());
369    ALOGI("extensions: %s", extensions.getExtension());
370    ALOGI("GL_MAX_TEXTURE_SIZE = %d", mMaxTextureSize);
371    ALOGI("GL_MAX_VIEWPORT_DIMS = %d x %d", mMaxViewportDims[0], mMaxViewportDims[1]);
372}
373
374status_t SurfaceFlinger::readyToRun()
375{
376    ALOGI(  "SurfaceFlinger's main thread ready to run. "
377            "Initializing graphics H/W...");
378
379    // initialize EGL
380    mEGLDisplay = eglGetDisplay(EGL_DEFAULT_DISPLAY);
381    eglInitialize(mEGLDisplay, NULL, NULL);
382
383    // Initialize the main display
384    // create native window to main display
385    sp<FramebufferSurface> fbs = FramebufferSurface::create();
386    if (fbs == NULL) {
387        ALOGE("Display subsystem failed to initialize. check logs. exiting...");
388        exit(0);
389    }
390
391    sp<SurfaceTextureClient> stc(new SurfaceTextureClient(
392            static_cast<sp<ISurfaceTexture> >(fbs->getBufferQueue())));
393
394    // initialize the config and context
395    int format;
396    ANativeWindow* const anw = stc.get();
397    anw->query(anw, NATIVE_WINDOW_FORMAT, &format);
398    mEGLConfig  = selectEGLConfig(mEGLDisplay, format);
399    mEGLContext = createGLContext(mEGLDisplay, mEGLConfig);
400
401    // initialize our main display hardware
402
403    for (size_t i=0 ; i<DisplayDevice::NUM_DISPLAY_TYPES ; i++) {
404        mDefaultDisplays[i] = new BBinder();
405        mCurrentState.displays.add(mDefaultDisplays[i],
406                DisplayDeviceState((DisplayDevice::DisplayType)i));
407    }
408    sp<DisplayDevice> hw = new DisplayDevice(this,
409            DisplayDevice::DISPLAY_PRIMARY,
410            mDefaultDisplays[DisplayDevice::DISPLAY_PRIMARY],
411            anw, fbs, mEGLConfig);
412    mDisplays.add(mDefaultDisplays[DisplayDevice::DISPLAY_PRIMARY], hw);
413
414    //  initialize OpenGL ES
415    EGLSurface surface = hw->getEGLSurface();
416    initializeGL(mEGLDisplay, surface);
417
418    // start the EventThread
419    mEventThread = new EventThread(this);
420    mEventQueue.setEventThread(mEventThread);
421
422    // initialize the H/W composer
423    mHwc = new HWComposer(this,
424            *static_cast<HWComposer::EventHandler *>(this),
425            fbs->getFbHal());
426
427    // initialize our drawing state
428    mDrawingState = mCurrentState;
429
430    // We're now ready to accept clients...
431    mReadyToRunBarrier.open();
432
433    // set initial conditions (e.g. unblank default device)
434    initializeDisplays();
435
436    // start boot animation
437    startBootAnim();
438
439    return NO_ERROR;
440}
441
442int32_t SurfaceFlinger::allocateHwcDisplayId(DisplayDevice::DisplayType type) {
443    return (uint32_t(type) < DisplayDevice::NUM_DISPLAY_TYPES) ?
444            type : mHwc->allocateDisplayId();
445}
446
447void SurfaceFlinger::startBootAnim() {
448    // start boot animation
449    property_set("service.bootanim.exit", "0");
450    property_set("ctl.start", "bootanim");
451}
452
453uint32_t SurfaceFlinger::getMaxTextureSize() const {
454    return mMaxTextureSize;
455}
456
457uint32_t SurfaceFlinger::getMaxViewportDims() const {
458    return mMaxViewportDims[0] < mMaxViewportDims[1] ?
459            mMaxViewportDims[0] : mMaxViewportDims[1];
460}
461
462// ----------------------------------------------------------------------------
463
464bool SurfaceFlinger::authenticateSurfaceTexture(
465        const sp<ISurfaceTexture>& surfaceTexture) const {
466    Mutex::Autolock _l(mStateLock);
467    sp<IBinder> surfaceTextureBinder(surfaceTexture->asBinder());
468
469    // Check the visible layer list for the ISurface
470    const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
471    size_t count = currentLayers.size();
472    for (size_t i=0 ; i<count ; i++) {
473        const sp<LayerBase>& layer(currentLayers[i]);
474        sp<LayerBaseClient> lbc(layer->getLayerBaseClient());
475        if (lbc != NULL) {
476            wp<IBinder> lbcBinder = lbc->getSurfaceTextureBinder();
477            if (lbcBinder == surfaceTextureBinder) {
478                return true;
479            }
480        }
481    }
482
483    // Check the layers in the purgatory.  This check is here so that if a
484    // SurfaceTexture gets destroyed before all the clients are done using it,
485    // the error will not be reported as "surface XYZ is not authenticated", but
486    // will instead fail later on when the client tries to use the surface,
487    // which should be reported as "surface XYZ returned an -ENODEV".  The
488    // purgatorized layers are no less authentic than the visible ones, so this
489    // should not cause any harm.
490    size_t purgatorySize =  mLayerPurgatory.size();
491    for (size_t i=0 ; i<purgatorySize ; i++) {
492        const sp<LayerBase>& layer(mLayerPurgatory.itemAt(i));
493        sp<LayerBaseClient> lbc(layer->getLayerBaseClient());
494        if (lbc != NULL) {
495            wp<IBinder> lbcBinder = lbc->getSurfaceTextureBinder();
496            if (lbcBinder == surfaceTextureBinder) {
497                return true;
498            }
499        }
500    }
501
502    return false;
503}
504
505status_t SurfaceFlinger::getDisplayInfo(const sp<IBinder>& display, DisplayInfo* info) {
506    // TODO: this is mostly here only for compatibility
507    //       the display size is needed but the display metrics should come from elsewhere
508    if (display != mDefaultDisplays[ISurfaceComposer::eDisplayIdMain]) {
509        // TODO: additional displays not yet supported
510        return BAD_INDEX;
511    }
512
513    const HWComposer& hwc(getHwComposer());
514    float xdpi = hwc.getDpiX();
515    float ydpi = hwc.getDpiY();
516
517    // TODO: Not sure if display density should handled by SF any longer
518    class Density {
519        static int getDensityFromProperty(char const* propName) {
520            char property[PROPERTY_VALUE_MAX];
521            int density = 0;
522            if (property_get(propName, property, NULL) > 0) {
523                density = atoi(property);
524            }
525            return density;
526        }
527    public:
528        static int getEmuDensity() {
529            return getDensityFromProperty("qemu.sf.lcd_density"); }
530        static int getBuildDensity()  {
531            return getDensityFromProperty("ro.sf.lcd_density"); }
532    };
533    // The density of the device is provided by a build property
534    float density = Density::getBuildDensity() / 160.0f;
535    if (density == 0) {
536        // the build doesn't provide a density -- this is wrong!
537        // use xdpi instead
538        ALOGE("ro.sf.lcd_density must be defined as a build property");
539        density = xdpi / 160.0f;
540    }
541    if (Density::getEmuDensity()) {
542        // if "qemu.sf.lcd_density" is specified, it overrides everything
543        xdpi = ydpi = density = Density::getEmuDensity();
544        density /= 160.0f;
545    }
546
547    sp<const DisplayDevice> hw(getDefaultDisplayDevice());
548    info->w = hw->getWidth();
549    info->h = hw->getHeight();
550    info->xdpi = xdpi;
551    info->ydpi = ydpi;
552    info->fps = float(1e9 / hwc.getRefreshPeriod());
553    info->density = density;
554    info->orientation = hw->getOrientation();
555    // TODO: this needs to go away (currently needed only by webkit)
556    getPixelFormatInfo(hw->getFormat(), &info->pixelFormatInfo);
557    return NO_ERROR;
558}
559
560// ----------------------------------------------------------------------------
561
562sp<IDisplayEventConnection> SurfaceFlinger::createDisplayEventConnection() {
563    return mEventThread->createEventConnection();
564}
565
566void SurfaceFlinger::connectDisplay(const sp<ISurfaceTexture>& surface) {
567
568    sp<IBinder> token;
569    { // scope for the lock
570        Mutex::Autolock _l(mStateLock);
571        token = mExtDisplayToken;
572    }
573
574    if (token == 0) {
575        token = createDisplay();
576    }
577
578    { // scope for the lock
579        Mutex::Autolock _l(mStateLock);
580        if (surface == 0) {
581            // release our current display. we're guarantee to have
582            // a reference to it (token), while we hold the lock
583            mExtDisplayToken = 0;
584        } else {
585            mExtDisplayToken = token;
586        }
587
588        DisplayDeviceState& info(mCurrentState.displays.editValueFor(token));
589        info.surface = surface;
590        setTransactionFlags(eDisplayTransactionNeeded);
591    }
592}
593
594// ----------------------------------------------------------------------------
595
596void SurfaceFlinger::waitForEvent() {
597    mEventQueue.waitMessage();
598}
599
600void SurfaceFlinger::signalTransaction() {
601    mEventQueue.invalidate();
602}
603
604void SurfaceFlinger::signalLayerUpdate() {
605    mEventQueue.invalidate();
606}
607
608void SurfaceFlinger::signalRefresh() {
609    mEventQueue.refresh();
610}
611
612status_t SurfaceFlinger::postMessageAsync(const sp<MessageBase>& msg,
613        nsecs_t reltime, uint32_t flags) {
614    return mEventQueue.postMessage(msg, reltime);
615}
616
617status_t SurfaceFlinger::postMessageSync(const sp<MessageBase>& msg,
618        nsecs_t reltime, uint32_t flags) {
619    status_t res = mEventQueue.postMessage(msg, reltime);
620    if (res == NO_ERROR) {
621        msg->wait();
622    }
623    return res;
624}
625
626bool SurfaceFlinger::threadLoop() {
627    waitForEvent();
628    return true;
629}
630
631void SurfaceFlinger::onVSyncReceived(int type, nsecs_t timestamp) {
632    if (uint32_t(type) < DisplayDevice::NUM_DISPLAY_TYPES) {
633        // we should only receive DisplayDevice::DisplayType from the vsync callback
634        const wp<IBinder>& token(mDefaultDisplays[type]);
635        mEventThread->onVSyncReceived(token, timestamp);
636    }
637}
638
639void SurfaceFlinger::eventControl(int event, int enabled) {
640    getHwComposer().eventControl(event, enabled);
641}
642
643void SurfaceFlinger::onMessageReceived(int32_t what) {
644    ATRACE_CALL();
645    switch (what) {
646    case MessageQueue::INVALIDATE:
647        handleMessageTransaction();
648        handleMessageInvalidate();
649        signalRefresh();
650        break;
651    case MessageQueue::REFRESH:
652        handleMessageRefresh();
653        break;
654    }
655}
656
657void SurfaceFlinger::handleMessageTransaction() {
658    uint32_t transactionFlags = peekTransactionFlags(eTransactionMask);
659    if (transactionFlags) {
660        handleTransaction(transactionFlags);
661    }
662}
663
664void SurfaceFlinger::handleMessageInvalidate() {
665    ATRACE_CALL();
666    handlePageFlip();
667}
668
669void SurfaceFlinger::handleMessageRefresh() {
670    ATRACE_CALL();
671    preComposition();
672    rebuildLayerStacks();
673    setUpHWComposer();
674    doDebugFlashRegions();
675    doComposition();
676    postComposition();
677}
678
679void SurfaceFlinger::doDebugFlashRegions()
680{
681    // is debugging enabled
682    if (CC_LIKELY(!mDebugRegion))
683        return;
684
685    const bool repaintEverything = mRepaintEverything;
686    for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
687        const sp<DisplayDevice>& hw(mDisplays[dpy]);
688        if (hw->canDraw()) {
689            // transform the dirty region into this screen's coordinate space
690            const Region dirtyRegion(hw->getDirtyRegion(repaintEverything));
691            if (!dirtyRegion.isEmpty()) {
692                // redraw the whole screen
693                doComposeSurfaces(hw, Region(hw->bounds()));
694
695                // and draw the dirty region
696                glDisable(GL_TEXTURE_EXTERNAL_OES);
697                glDisable(GL_TEXTURE_2D);
698                glDisable(GL_BLEND);
699                glColor4f(1, 0, 1, 1);
700                const int32_t height = hw->getHeight();
701                Region::const_iterator it = dirtyRegion.begin();
702                Region::const_iterator const end = dirtyRegion.end();
703                while (it != end) {
704                    const Rect& r = *it++;
705                    GLfloat vertices[][2] = {
706                            { r.left,  height - r.top },
707                            { r.left,  height - r.bottom },
708                            { r.right, height - r.bottom },
709                            { r.right, height - r.top }
710                    };
711                    glVertexPointer(2, GL_FLOAT, 0, vertices);
712                    glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
713                }
714                hw->compositionComplete();
715                // FIXME
716                if (hw->getDisplayType() >= DisplayDevice::DISPLAY_VIRTUAL) {
717                    eglSwapBuffers(mEGLDisplay, hw->getEGLSurface());
718                }
719            }
720        }
721    }
722
723    postFramebuffer();
724
725    if (mDebugRegion > 1) {
726        usleep(mDebugRegion * 1000);
727    }
728}
729
730void SurfaceFlinger::preComposition()
731{
732    bool needExtraInvalidate = false;
733    const LayerVector& currentLayers(mDrawingState.layersSortedByZ);
734    const size_t count = currentLayers.size();
735    for (size_t i=0 ; i<count ; i++) {
736        if (currentLayers[i]->onPreComposition()) {
737            needExtraInvalidate = true;
738        }
739    }
740    if (needExtraInvalidate) {
741        signalLayerUpdate();
742    }
743}
744
745void SurfaceFlinger::postComposition()
746{
747    const LayerVector& currentLayers(mDrawingState.layersSortedByZ);
748    const size_t count = currentLayers.size();
749    for (size_t i=0 ; i<count ; i++) {
750        currentLayers[i]->onPostComposition();
751    }
752}
753
754void SurfaceFlinger::rebuildLayerStacks() {
755    // rebuild the visible layer list per screen
756    if (CC_UNLIKELY(mVisibleRegionsDirty)) {
757        ATRACE_CALL();
758        mVisibleRegionsDirty = false;
759        invalidateHwcGeometry();
760        const LayerVector& currentLayers(mDrawingState.layersSortedByZ);
761        for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
762            const sp<DisplayDevice>& hw(mDisplays[dpy]);
763            const Transform& tr(hw->getTransform());
764            const Rect bounds(hw->getBounds());
765
766            Region opaqueRegion;
767            Region dirtyRegion;
768            computeVisibleRegions(currentLayers,
769                    hw->getLayerStack(), dirtyRegion, opaqueRegion);
770
771            Vector< sp<LayerBase> > layersSortedByZ;
772            const size_t count = currentLayers.size();
773            for (size_t i=0 ; i<count ; i++) {
774                const sp<LayerBase>& layer(currentLayers[i]);
775                const Layer::State& s(layer->drawingState());
776                if (s.layerStack == hw->getLayerStack()) {
777                    Region visibleRegion(tr.transform(layer->visibleRegion));
778                    visibleRegion.andSelf(bounds);
779                    if (!visibleRegion.isEmpty()) {
780                        layersSortedByZ.add(layer);
781                    }
782                }
783            }
784            hw->setVisibleLayersSortedByZ(layersSortedByZ);
785            hw->undefinedRegion.set(bounds);
786            hw->undefinedRegion.subtractSelf(tr.transform(opaqueRegion));
787            hw->dirtyRegion.orSelf(dirtyRegion);
788        }
789    }
790}
791
792void SurfaceFlinger::setUpHWComposer() {
793    HWComposer& hwc(getHwComposer());
794    if (hwc.initCheck() == NO_ERROR) {
795        // build the h/w work list
796        const bool workListsDirty = mHwWorkListDirty;
797        mHwWorkListDirty = false;
798        for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
799            sp<const DisplayDevice> hw(mDisplays[dpy]);
800            const int32_t id = hw->getHwcDisplayId();
801            if (id >= 0) {
802                const Vector< sp<LayerBase> >& currentLayers(
803                    hw->getVisibleLayersSortedByZ());
804                const size_t count = currentLayers.size();
805                if (hwc.createWorkList(id, count) >= 0) {
806                    HWComposer::LayerListIterator cur = hwc.begin(id);
807                    const HWComposer::LayerListIterator end = hwc.end(id);
808                    for (size_t i=0 ; cur!=end && i<count ; ++i, ++cur) {
809                        const sp<LayerBase>& layer(currentLayers[i]);
810
811                        if (CC_UNLIKELY(workListsDirty)) {
812                            layer->setGeometry(hw, *cur);
813                            if (mDebugDisableHWC || mDebugRegion) {
814                                cur->setSkip(true);
815                            }
816                        }
817
818                        /*
819                         * update the per-frame h/w composer data for each layer
820                         * and build the transparent region of the FB
821                         */
822                        layer->setPerFrameData(hw, *cur);
823                    }
824                }
825            }
826        }
827        status_t err = hwc.prepare();
828        ALOGE_IF(err, "HWComposer::prepare failed (%s)", strerror(-err));
829    }
830}
831
832void SurfaceFlinger::doComposition() {
833    ATRACE_CALL();
834    const bool repaintEverything = android_atomic_and(0, &mRepaintEverything);
835    for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
836        const sp<DisplayDevice>& hw(mDisplays[dpy]);
837        if (hw->canDraw()) {
838            // transform the dirty region into this screen's coordinate space
839            const Region dirtyRegion(hw->getDirtyRegion(repaintEverything));
840            if (!dirtyRegion.isEmpty()) {
841                // repaint the framebuffer (if needed)
842                doDisplayComposition(hw, dirtyRegion);
843            }
844            hw->dirtyRegion.clear();
845            hw->flip(hw->swapRegion);
846            hw->swapRegion.clear();
847        }
848        // inform the h/w that we're done compositing
849        hw->compositionComplete();
850    }
851    postFramebuffer();
852}
853
854void SurfaceFlinger::postFramebuffer()
855{
856    ATRACE_CALL();
857
858    const nsecs_t now = systemTime();
859    mDebugInSwapBuffers = now;
860
861    HWComposer& hwc(getHwComposer());
862    if (hwc.initCheck() == NO_ERROR) {
863        // FIXME: EGL spec says:
864        //   "surface must be bound to the calling thread's current context,
865        //    for the current rendering API."
866        DisplayDevice::makeCurrent(getDefaultDisplayDevice(), mEGLContext);
867        hwc.commit();
868    }
869
870    for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
871        sp<const DisplayDevice> hw(mDisplays[dpy]);
872        const Vector< sp<LayerBase> >& currentLayers(hw->getVisibleLayersSortedByZ());
873        const size_t count = currentLayers.size();
874        int32_t id = hw->getHwcDisplayId();
875        if (id >=0 && hwc.initCheck() == NO_ERROR) {
876            HWComposer::LayerListIterator cur = hwc.begin(id);
877            const HWComposer::LayerListIterator end = hwc.end(id);
878            for (size_t i = 0; cur != end && i < count; ++i, ++cur) {
879                currentLayers[i]->onLayerDisplayed(hw, &*cur);
880            }
881        } else {
882            for (size_t i = 0; i < count; i++) {
883                currentLayers[i]->onLayerDisplayed(hw, NULL);
884            }
885        }
886    }
887
888    mLastSwapBufferTime = systemTime() - now;
889    mDebugInSwapBuffers = 0;
890}
891
892void SurfaceFlinger::handleTransaction(uint32_t transactionFlags)
893{
894    ATRACE_CALL();
895
896    Mutex::Autolock _l(mStateLock);
897    const nsecs_t now = systemTime();
898    mDebugInTransaction = now;
899
900    // Here we're guaranteed that some transaction flags are set
901    // so we can call handleTransactionLocked() unconditionally.
902    // We call getTransactionFlags(), which will also clear the flags,
903    // with mStateLock held to guarantee that mCurrentState won't change
904    // until the transaction is committed.
905
906    transactionFlags = getTransactionFlags(eTransactionMask);
907    handleTransactionLocked(transactionFlags);
908
909    mLastTransactionTime = systemTime() - now;
910    mDebugInTransaction = 0;
911    invalidateHwcGeometry();
912    // here the transaction has been committed
913}
914
915void SurfaceFlinger::handleTransactionLocked(uint32_t transactionFlags)
916{
917    const LayerVector& currentLayers(mCurrentState.layersSortedByZ);
918    const size_t count = currentLayers.size();
919
920    /*
921     * Traversal of the children
922     * (perform the transaction for each of them if needed)
923     */
924
925    if (transactionFlags & eTraversalNeeded) {
926        for (size_t i=0 ; i<count ; i++) {
927            const sp<LayerBase>& layer = currentLayers[i];
928            uint32_t trFlags = layer->getTransactionFlags(eTransactionNeeded);
929            if (!trFlags) continue;
930
931            const uint32_t flags = layer->doTransaction(0);
932            if (flags & Layer::eVisibleRegion)
933                mVisibleRegionsDirty = true;
934        }
935    }
936
937    /*
938     * Perform display own transactions if needed
939     */
940
941    if (transactionFlags & eDisplayTransactionNeeded) {
942        // here we take advantage of Vector's copy-on-write semantics to
943        // improve performance by skipping the transaction entirely when
944        // know that the lists are identical
945        const KeyedVector<  wp<IBinder>, DisplayDeviceState>& curr(mCurrentState.displays);
946        const KeyedVector<  wp<IBinder>, DisplayDeviceState>& draw(mDrawingState.displays);
947        if (!curr.isIdenticalTo(draw)) {
948            mVisibleRegionsDirty = true;
949            const size_t cc = curr.size();
950                  size_t dc = draw.size();
951
952            // find the displays that were removed
953            // (ie: in drawing state but not in current state)
954            // also handle displays that changed
955            // (ie: displays that are in both lists)
956            for (size_t i=0 ; i<dc ; i++) {
957                const ssize_t j = curr.indexOfKey(draw.keyAt(i));
958                if (j < 0) {
959                    // in drawing state but not in current state
960                    if (!draw[i].isMainDisplay()) {
961                        mDisplays.removeItem(draw.keyAt(i));
962                    } else {
963                        ALOGW("trying to remove the main display");
964                    }
965                } else {
966                    // this display is in both lists. see if something changed.
967                    const DisplayDeviceState& state(curr[j]);
968                    const wp<IBinder>& display(curr.keyAt(j));
969                    if (state.surface->asBinder() != draw[i].surface->asBinder()) {
970                        // changing the surface is like destroying and
971                        // recreating the DisplayDevice, so we just remove it
972                        // from the drawing state, so that it get re-added
973                        // below.
974                        mDisplays.removeItem(display);
975                        mDrawingState.displays.removeItemsAt(i);
976                        dc--; i--;
977                        // at this point we must loop to the next item
978                        continue;
979                    }
980
981                    const sp<DisplayDevice>& disp(getDisplayDevice(display));
982                    if (disp != NULL) {
983                        if (state.layerStack != draw[i].layerStack) {
984                            disp->setLayerStack(state.layerStack);
985                        }
986                        if (state.orientation != draw[i].orientation ||
987                                state.viewport != draw[i].viewport ||
988                                state.frame != draw[i].frame) {
989                            disp->setOrientation(state.orientation);
990                            // TODO: take viewport and frame into account
991                        }
992                    }
993                }
994            }
995
996            // find displays that were added
997            // (ie: in current state but not in drawing state)
998            for (size_t i=0 ; i<cc ; i++) {
999                if (draw.indexOfKey(curr.keyAt(i)) < 0) {
1000                    const DisplayDeviceState& state(curr[i]);
1001                    if (state.surface != NULL) {
1002                        sp<SurfaceTextureClient> stc(
1003                                new SurfaceTextureClient(state.surface));
1004                        const wp<IBinder>& display(curr.keyAt(i));
1005                        sp<DisplayDevice> disp = new DisplayDevice(this,
1006                                state.type, display, stc, 0, mEGLConfig);
1007                        disp->setLayerStack(state.layerStack);
1008                        disp->setOrientation(state.orientation);
1009                        // TODO: take viewport and frame into account
1010                        mDisplays.add(display, disp);
1011                    }
1012                }
1013            }
1014        }
1015    }
1016
1017    /*
1018     * Perform our own transaction if needed
1019     */
1020
1021    const LayerVector& previousLayers(mDrawingState.layersSortedByZ);
1022    if (currentLayers.size() > previousLayers.size()) {
1023        // layers have been added
1024        mVisibleRegionsDirty = true;
1025    }
1026
1027    // some layers might have been removed, so
1028    // we need to update the regions they're exposing.
1029    if (mLayersRemoved) {
1030        mLayersRemoved = false;
1031        mVisibleRegionsDirty = true;
1032        const size_t count = previousLayers.size();
1033        for (size_t i=0 ; i<count ; i++) {
1034            const sp<LayerBase>& layer(previousLayers[i]);
1035            if (currentLayers.indexOf(layer) < 0) {
1036                // this layer is not visible anymore
1037                // TODO: we could traverse the tree from front to back and
1038                //       compute the actual visible region
1039                // TODO: we could cache the transformed region
1040                Layer::State front(layer->drawingState());
1041                Region visibleReg = front.transform.transform(
1042                        Region(Rect(front.active.w, front.active.h)));
1043                invalidateLayerStack(front.layerStack, visibleReg);
1044            }
1045        }
1046    }
1047
1048    commitTransaction();
1049}
1050
1051void SurfaceFlinger::commitTransaction()
1052{
1053    if (!mLayersPendingRemoval.isEmpty()) {
1054        // Notify removed layers now that they can't be drawn from
1055        for (size_t i = 0; i < mLayersPendingRemoval.size(); i++) {
1056            mLayersPendingRemoval[i]->onRemoved();
1057        }
1058        mLayersPendingRemoval.clear();
1059    }
1060
1061    mDrawingState = mCurrentState;
1062    mTransationPending = false;
1063    mTransactionCV.broadcast();
1064}
1065
1066void SurfaceFlinger::computeVisibleRegions(
1067        const LayerVector& currentLayers, uint32_t layerStack,
1068        Region& outDirtyRegion, Region& outOpaqueRegion)
1069{
1070    ATRACE_CALL();
1071
1072    Region aboveOpaqueLayers;
1073    Region aboveCoveredLayers;
1074    Region dirty;
1075
1076    outDirtyRegion.clear();
1077
1078    size_t i = currentLayers.size();
1079    while (i--) {
1080        const sp<LayerBase>& layer = currentLayers[i];
1081
1082        // start with the whole surface at its current location
1083        const Layer::State& s(layer->drawingState());
1084
1085        // only consider the layers on the given later stack
1086        if (s.layerStack != layerStack)
1087            continue;
1088
1089        /*
1090         * opaqueRegion: area of a surface that is fully opaque.
1091         */
1092        Region opaqueRegion;
1093
1094        /*
1095         * visibleRegion: area of a surface that is visible on screen
1096         * and not fully transparent. This is essentially the layer's
1097         * footprint minus the opaque regions above it.
1098         * Areas covered by a translucent surface are considered visible.
1099         */
1100        Region visibleRegion;
1101
1102        /*
1103         * coveredRegion: area of a surface that is covered by all
1104         * visible regions above it (which includes the translucent areas).
1105         */
1106        Region coveredRegion;
1107
1108
1109        // handle hidden surfaces by setting the visible region to empty
1110        if (CC_LIKELY(!(s.flags & layer_state_t::eLayerHidden) && s.alpha)) {
1111            const bool translucent = !layer->isOpaque();
1112            Rect bounds(layer->computeBounds());
1113            visibleRegion.set(bounds);
1114            if (!visibleRegion.isEmpty()) {
1115                // Remove the transparent area from the visible region
1116                if (translucent) {
1117                    Region transparentRegionScreen;
1118                    const Transform tr(s.transform);
1119                    if (tr.transformed()) {
1120                        if (tr.preserveRects()) {
1121                            // transform the transparent region
1122                            transparentRegionScreen = tr.transform(s.transparentRegion);
1123                        } else {
1124                            // transformation too complex, can't do the
1125                            // transparent region optimization.
1126                            transparentRegionScreen.clear();
1127                        }
1128                    } else {
1129                        transparentRegionScreen = s.transparentRegion;
1130                    }
1131                    visibleRegion.subtractSelf(transparentRegionScreen);
1132                }
1133
1134                // compute the opaque region
1135                const int32_t layerOrientation = s.transform.getOrientation();
1136                if (s.alpha==255 && !translucent &&
1137                        ((layerOrientation & Transform::ROT_INVALID) == false)) {
1138                    // the opaque region is the layer's footprint
1139                    opaqueRegion = visibleRegion;
1140                }
1141            }
1142        }
1143
1144        // Clip the covered region to the visible region
1145        coveredRegion = aboveCoveredLayers.intersect(visibleRegion);
1146
1147        // Update aboveCoveredLayers for next (lower) layer
1148        aboveCoveredLayers.orSelf(visibleRegion);
1149
1150        // subtract the opaque region covered by the layers above us
1151        visibleRegion.subtractSelf(aboveOpaqueLayers);
1152
1153        // compute this layer's dirty region
1154        if (layer->contentDirty) {
1155            // we need to invalidate the whole region
1156            dirty = visibleRegion;
1157            // as well, as the old visible region
1158            dirty.orSelf(layer->visibleRegion);
1159            layer->contentDirty = false;
1160        } else {
1161            /* compute the exposed region:
1162             *   the exposed region consists of two components:
1163             *   1) what's VISIBLE now and was COVERED before
1164             *   2) what's EXPOSED now less what was EXPOSED before
1165             *
1166             * note that (1) is conservative, we start with the whole
1167             * visible region but only keep what used to be covered by
1168             * something -- which mean it may have been exposed.
1169             *
1170             * (2) handles areas that were not covered by anything but got
1171             * exposed because of a resize.
1172             */
1173            const Region newExposed = visibleRegion - coveredRegion;
1174            const Region oldVisibleRegion = layer->visibleRegion;
1175            const Region oldCoveredRegion = layer->coveredRegion;
1176            const Region oldExposed = oldVisibleRegion - oldCoveredRegion;
1177            dirty = (visibleRegion&oldCoveredRegion) | (newExposed-oldExposed);
1178        }
1179        dirty.subtractSelf(aboveOpaqueLayers);
1180
1181        // accumulate to the screen dirty region
1182        outDirtyRegion.orSelf(dirty);
1183
1184        // Update aboveOpaqueLayers for next (lower) layer
1185        aboveOpaqueLayers.orSelf(opaqueRegion);
1186
1187        // Store the visible region is screen space
1188        layer->setVisibleRegion(visibleRegion);
1189        layer->setCoveredRegion(coveredRegion);
1190    }
1191
1192    outOpaqueRegion = aboveOpaqueLayers;
1193}
1194
1195void SurfaceFlinger::invalidateLayerStack(uint32_t layerStack,
1196        const Region& dirty) {
1197    for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
1198        const sp<DisplayDevice>& hw(mDisplays[dpy]);
1199        if (hw->getLayerStack() == layerStack) {
1200            hw->dirtyRegion.orSelf(dirty);
1201        }
1202    }
1203}
1204
1205void SurfaceFlinger::handlePageFlip()
1206{
1207    Region dirtyRegion;
1208
1209    bool visibleRegions = false;
1210    const LayerVector& currentLayers(mDrawingState.layersSortedByZ);
1211    const size_t count = currentLayers.size();
1212    for (size_t i=0 ; i<count ; i++) {
1213        const sp<LayerBase>& layer(currentLayers[i]);
1214        const Region dirty(layer->latchBuffer(visibleRegions));
1215        Layer::State s(layer->drawingState());
1216        invalidateLayerStack(s.layerStack, dirty);
1217    }
1218
1219    mVisibleRegionsDirty |= visibleRegions;
1220}
1221
1222void SurfaceFlinger::invalidateHwcGeometry()
1223{
1224    mHwWorkListDirty = true;
1225}
1226
1227
1228void SurfaceFlinger::doDisplayComposition(const sp<const DisplayDevice>& hw,
1229        const Region& inDirtyRegion)
1230{
1231    Region dirtyRegion(inDirtyRegion);
1232
1233    // compute the invalid region
1234    hw->swapRegion.orSelf(dirtyRegion);
1235
1236    uint32_t flags = hw->getFlags();
1237    if (flags & DisplayDevice::SWAP_RECTANGLE) {
1238        // we can redraw only what's dirty, but since SWAP_RECTANGLE only
1239        // takes a rectangle, we must make sure to update that whole
1240        // rectangle in that case
1241        dirtyRegion.set(hw->swapRegion.bounds());
1242    } else {
1243        if (flags & DisplayDevice::PARTIAL_UPDATES) {
1244            // We need to redraw the rectangle that will be updated
1245            // (pushed to the framebuffer).
1246            // This is needed because PARTIAL_UPDATES only takes one
1247            // rectangle instead of a region (see DisplayDevice::flip())
1248            dirtyRegion.set(hw->swapRegion.bounds());
1249        } else {
1250            // we need to redraw everything (the whole screen)
1251            dirtyRegion.set(hw->bounds());
1252            hw->swapRegion = dirtyRegion;
1253        }
1254    }
1255
1256    doComposeSurfaces(hw, dirtyRegion);
1257
1258    // FIXME: we need to call eglSwapBuffers() on displays that have
1259    // GL composition and only on those.
1260    // however, currently hwc.commit() already does that for the main
1261    // display (if there is a hwc) and never for the other ones
1262    if (hw->getDisplayType() >= DisplayDevice::DISPLAY_VIRTUAL ||
1263            getHwComposer().initCheck() != NO_ERROR) {
1264        // FIXME: EGL spec says:
1265        //   "surface must be bound to the calling thread's current context,
1266        //    for the current rendering API."
1267        eglSwapBuffers(mEGLDisplay, hw->getEGLSurface());
1268    }
1269
1270    // update the swap region and clear the dirty region
1271    hw->swapRegion.orSelf(dirtyRegion);
1272}
1273
1274void SurfaceFlinger::doComposeSurfaces(const sp<const DisplayDevice>& hw, const Region& dirty)
1275{
1276    const int32_t id = hw->getHwcDisplayId();
1277    HWComposer& hwc(getHwComposer());
1278    HWComposer::LayerListIterator cur = hwc.begin(id);
1279    const HWComposer::LayerListIterator end = hwc.end(id);
1280
1281    const bool hasGlesComposition = hwc.hasGlesComposition(id) || (cur==end);
1282    if (hasGlesComposition) {
1283        DisplayDevice::makeCurrent(hw, mEGLContext);
1284
1285        // set the frame buffer
1286        glMatrixMode(GL_MODELVIEW);
1287        glLoadIdentity();
1288
1289        // Never touch the framebuffer if we don't have any framebuffer layers
1290        const bool hasHwcComposition = hwc.hasHwcComposition(id);
1291        if (hasHwcComposition) {
1292            // when using overlays, we assume a fully transparent framebuffer
1293            // NOTE: we could reduce how much we need to clear, for instance
1294            // remove where there are opaque FB layers. however, on some
1295            // GPUs doing a "clean slate" glClear might be more efficient.
1296            // We'll revisit later if needed.
1297            glClearColor(0, 0, 0, 0);
1298            glClear(GL_COLOR_BUFFER_BIT);
1299        } else {
1300            const Region region(hw->undefinedRegion.intersect(dirty));
1301            // screen is already cleared here
1302            if (!region.isEmpty()) {
1303                // can happen with SurfaceView
1304                drawWormhole(hw, region);
1305            }
1306        }
1307    }
1308
1309    /*
1310     * and then, render the layers targeted at the framebuffer
1311     */
1312
1313    const Vector< sp<LayerBase> >& layers(hw->getVisibleLayersSortedByZ());
1314    const size_t count = layers.size();
1315    const Transform& tr = hw->getTransform();
1316    if (cur != end) {
1317        // we're using h/w composer
1318        for (size_t i=0 ; i<count && cur!=end ; ++i, ++cur) {
1319            const sp<LayerBase>& layer(layers[i]);
1320            const Region clip(dirty.intersect(tr.transform(layer->visibleRegion)));
1321            if (!clip.isEmpty()) {
1322                switch (cur->getCompositionType()) {
1323                    case HWC_OVERLAY: {
1324                        if ((cur->getHints() & HWC_HINT_CLEAR_FB)
1325                                && i
1326                                && layer->isOpaque()
1327                                && hasGlesComposition) {
1328                            // never clear the very first layer since we're
1329                            // guaranteed the FB is already cleared
1330                            layer->clearWithOpenGL(hw, clip);
1331                        }
1332                        break;
1333                    }
1334                    case HWC_FRAMEBUFFER: {
1335                        layer->draw(hw, clip);
1336                        break;
1337                    }
1338                }
1339            }
1340            layer->setAcquireFence(hw, *cur);
1341        }
1342    } else {
1343        // we're not using h/w composer
1344        for (size_t i=0 ; i<count ; ++i) {
1345            const sp<LayerBase>& layer(layers[i]);
1346            const Region clip(dirty.intersect(
1347                    tr.transform(layer->visibleRegion)));
1348            if (!clip.isEmpty()) {
1349                layer->draw(hw, clip);
1350            }
1351        }
1352    }
1353}
1354
1355void SurfaceFlinger::drawWormhole(const sp<const DisplayDevice>& hw,
1356        const Region& region) const
1357{
1358    glDisable(GL_TEXTURE_EXTERNAL_OES);
1359    glDisable(GL_TEXTURE_2D);
1360    glDisable(GL_BLEND);
1361    glColor4f(0,0,0,0);
1362
1363    const int32_t height = hw->getHeight();
1364    Region::const_iterator it = region.begin();
1365    Region::const_iterator const end = region.end();
1366    while (it != end) {
1367        const Rect& r = *it++;
1368        GLfloat vertices[][2] = {
1369                { r.left,  height - r.top },
1370                { r.left,  height - r.bottom },
1371                { r.right, height - r.bottom },
1372                { r.right, height - r.top }
1373        };
1374        glVertexPointer(2, GL_FLOAT, 0, vertices);
1375        glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
1376    }
1377}
1378
1379ssize_t SurfaceFlinger::addClientLayer(const sp<Client>& client,
1380        const sp<LayerBaseClient>& lbc)
1381{
1382    // attach this layer to the client
1383    size_t name = client->attachLayer(lbc);
1384
1385    // add this layer to the current state list
1386    Mutex::Autolock _l(mStateLock);
1387    mCurrentState.layersSortedByZ.add(lbc);
1388
1389    return ssize_t(name);
1390}
1391
1392status_t SurfaceFlinger::removeLayer(const sp<LayerBase>& layer)
1393{
1394    Mutex::Autolock _l(mStateLock);
1395    status_t err = purgatorizeLayer_l(layer);
1396    if (err == NO_ERROR)
1397        setTransactionFlags(eTransactionNeeded);
1398    return err;
1399}
1400
1401status_t SurfaceFlinger::removeLayer_l(const sp<LayerBase>& layerBase)
1402{
1403    ssize_t index = mCurrentState.layersSortedByZ.remove(layerBase);
1404    if (index >= 0) {
1405        mLayersRemoved = true;
1406        return NO_ERROR;
1407    }
1408    return status_t(index);
1409}
1410
1411status_t SurfaceFlinger::purgatorizeLayer_l(const sp<LayerBase>& layerBase)
1412{
1413    // First add the layer to the purgatory list, which makes sure it won't
1414    // go away, then remove it from the main list (through a transaction).
1415    ssize_t err = removeLayer_l(layerBase);
1416    if (err >= 0) {
1417        mLayerPurgatory.add(layerBase);
1418    }
1419
1420    mLayersPendingRemoval.push(layerBase);
1421
1422    // it's possible that we don't find a layer, because it might
1423    // have been destroyed already -- this is not technically an error
1424    // from the user because there is a race between Client::destroySurface(),
1425    // ~Client() and ~ISurface().
1426    return (err == NAME_NOT_FOUND) ? status_t(NO_ERROR) : err;
1427}
1428
1429uint32_t SurfaceFlinger::peekTransactionFlags(uint32_t flags)
1430{
1431    return android_atomic_release_load(&mTransactionFlags);
1432}
1433
1434uint32_t SurfaceFlinger::getTransactionFlags(uint32_t flags)
1435{
1436    return android_atomic_and(~flags, &mTransactionFlags) & flags;
1437}
1438
1439uint32_t SurfaceFlinger::setTransactionFlags(uint32_t flags)
1440{
1441    uint32_t old = android_atomic_or(flags, &mTransactionFlags);
1442    if ((old & flags)==0) { // wake the server up
1443        signalTransaction();
1444    }
1445    return old;
1446}
1447
1448void SurfaceFlinger::setTransactionState(
1449        const Vector<ComposerState>& state,
1450        const Vector<DisplayState>& displays,
1451        uint32_t flags)
1452{
1453    Mutex::Autolock _l(mStateLock);
1454    uint32_t transactionFlags = 0;
1455
1456    size_t count = displays.size();
1457    for (size_t i=0 ; i<count ; i++) {
1458        const DisplayState& s(displays[i]);
1459        transactionFlags |= setDisplayStateLocked(s);
1460    }
1461
1462    count = state.size();
1463    for (size_t i=0 ; i<count ; i++) {
1464        const ComposerState& s(state[i]);
1465        sp<Client> client( static_cast<Client *>(s.client.get()) );
1466        transactionFlags |= setClientStateLocked(client, s.state);
1467    }
1468
1469    if (transactionFlags) {
1470        // this triggers the transaction
1471        setTransactionFlags(transactionFlags);
1472
1473        // if this is a synchronous transaction, wait for it to take effect
1474        // before returning.
1475        if (flags & eSynchronous) {
1476            mTransationPending = true;
1477        }
1478        while (mTransationPending) {
1479            status_t err = mTransactionCV.waitRelative(mStateLock, s2ns(5));
1480            if (CC_UNLIKELY(err != NO_ERROR)) {
1481                // just in case something goes wrong in SF, return to the
1482                // called after a few seconds.
1483                ALOGW_IF(err == TIMED_OUT, "closeGlobalTransaction timed out!");
1484                mTransationPending = false;
1485                break;
1486            }
1487        }
1488    }
1489}
1490
1491uint32_t SurfaceFlinger::setDisplayStateLocked(const DisplayState& s)
1492{
1493    uint32_t flags = 0;
1494    DisplayDeviceState& disp(mCurrentState.displays.editValueFor(s.token));
1495    if (disp.isValid()) {
1496        const uint32_t what = s.what;
1497        if (what & DisplayState::eSurfaceChanged) {
1498            if (disp.surface->asBinder() != s.surface->asBinder()) {
1499                disp.surface = s.surface;
1500                flags |= eDisplayTransactionNeeded;
1501            }
1502        }
1503        if (what & DisplayState::eLayerStackChanged) {
1504            if (disp.layerStack != s.layerStack) {
1505                disp.layerStack = s.layerStack;
1506                flags |= eDisplayTransactionNeeded;
1507            }
1508        }
1509        if (what & DisplayState::eOrientationChanged) {
1510            if (disp.orientation != s.orientation) {
1511                disp.orientation = s.orientation;
1512                flags |= eDisplayTransactionNeeded;
1513            }
1514        }
1515        if (what & DisplayState::eFrameChanged) {
1516            if (disp.frame != s.frame) {
1517                disp.frame = s.frame;
1518                flags |= eDisplayTransactionNeeded;
1519            }
1520        }
1521        if (what & DisplayState::eViewportChanged) {
1522            if (disp.viewport != s.viewport) {
1523                disp.viewport = s.viewport;
1524                flags |= eDisplayTransactionNeeded;
1525            }
1526        }
1527    }
1528    return flags;
1529}
1530
1531uint32_t SurfaceFlinger::setClientStateLocked(
1532        const sp<Client>& client,
1533        const layer_state_t& s)
1534{
1535    uint32_t flags = 0;
1536    sp<LayerBaseClient> layer(client->getLayerUser(s.surface));
1537    if (layer != 0) {
1538        const uint32_t what = s.what;
1539        if (what & layer_state_t::ePositionChanged) {
1540            if (layer->setPosition(s.x, s.y))
1541                flags |= eTraversalNeeded;
1542        }
1543        if (what & layer_state_t::eLayerChanged) {
1544            // NOTE: index needs to be calculated before we update the state
1545            ssize_t idx = mCurrentState.layersSortedByZ.indexOf(layer);
1546            if (layer->setLayer(s.z)) {
1547                mCurrentState.layersSortedByZ.removeAt(idx);
1548                mCurrentState.layersSortedByZ.add(layer);
1549                // we need traversal (state changed)
1550                // AND transaction (list changed)
1551                flags |= eTransactionNeeded|eTraversalNeeded;
1552            }
1553        }
1554        if (what & layer_state_t::eSizeChanged) {
1555            if (layer->setSize(s.w, s.h)) {
1556                flags |= eTraversalNeeded;
1557            }
1558        }
1559        if (what & layer_state_t::eAlphaChanged) {
1560            if (layer->setAlpha(uint8_t(255.0f*s.alpha+0.5f)))
1561                flags |= eTraversalNeeded;
1562        }
1563        if (what & layer_state_t::eMatrixChanged) {
1564            if (layer->setMatrix(s.matrix))
1565                flags |= eTraversalNeeded;
1566        }
1567        if (what & layer_state_t::eTransparentRegionChanged) {
1568            if (layer->setTransparentRegionHint(s.transparentRegion))
1569                flags |= eTraversalNeeded;
1570        }
1571        if (what & layer_state_t::eVisibilityChanged) {
1572            if (layer->setFlags(s.flags, s.mask))
1573                flags |= eTraversalNeeded;
1574        }
1575        if (what & layer_state_t::eCropChanged) {
1576            if (layer->setCrop(s.crop))
1577                flags |= eTraversalNeeded;
1578        }
1579        if (what & layer_state_t::eLayerStackChanged) {
1580            // NOTE: index needs to be calculated before we update the state
1581            ssize_t idx = mCurrentState.layersSortedByZ.indexOf(layer);
1582            if (layer->setLayerStack(s.layerStack)) {
1583                mCurrentState.layersSortedByZ.removeAt(idx);
1584                mCurrentState.layersSortedByZ.add(layer);
1585                // we need traversal (state changed)
1586                // AND transaction (list changed)
1587                flags |= eTransactionNeeded|eTraversalNeeded;
1588            }
1589        }
1590    }
1591    return flags;
1592}
1593
1594sp<ISurface> SurfaceFlinger::createLayer(
1595        ISurfaceComposerClient::surface_data_t* params,
1596        const String8& name,
1597        const sp<Client>& client,
1598       uint32_t w, uint32_t h, PixelFormat format,
1599        uint32_t flags)
1600{
1601    sp<LayerBaseClient> layer;
1602    sp<ISurface> surfaceHandle;
1603
1604    if (int32_t(w|h) < 0) {
1605        ALOGE("createLayer() failed, w or h is negative (w=%d, h=%d)",
1606                int(w), int(h));
1607        return surfaceHandle;
1608    }
1609
1610    //ALOGD("createLayer for (%d x %d), name=%s", w, h, name.string());
1611    switch (flags & ISurfaceComposerClient::eFXSurfaceMask) {
1612        case ISurfaceComposerClient::eFXSurfaceNormal:
1613            layer = createNormalLayer(client, w, h, flags, format);
1614            break;
1615        case ISurfaceComposerClient::eFXSurfaceBlur:
1616        case ISurfaceComposerClient::eFXSurfaceDim:
1617            layer = createDimLayer(client, w, h, flags);
1618            break;
1619        case ISurfaceComposerClient::eFXSurfaceScreenshot:
1620            layer = createScreenshotLayer(client, w, h, flags);
1621            break;
1622    }
1623
1624    if (layer != 0) {
1625        layer->initStates(w, h, flags);
1626        layer->setName(name);
1627        ssize_t token = addClientLayer(client, layer);
1628        surfaceHandle = layer->getSurface();
1629        if (surfaceHandle != 0) {
1630            params->token = token;
1631            params->identity = layer->getIdentity();
1632        }
1633        setTransactionFlags(eTransactionNeeded);
1634    }
1635
1636    return surfaceHandle;
1637}
1638
1639sp<Layer> SurfaceFlinger::createNormalLayer(
1640        const sp<Client>& client,
1641        uint32_t w, uint32_t h, uint32_t flags,
1642        PixelFormat& format)
1643{
1644    // initialize the surfaces
1645    switch (format) {
1646    case PIXEL_FORMAT_TRANSPARENT:
1647    case PIXEL_FORMAT_TRANSLUCENT:
1648        format = PIXEL_FORMAT_RGBA_8888;
1649        break;
1650    case PIXEL_FORMAT_OPAQUE:
1651#ifdef NO_RGBX_8888
1652        format = PIXEL_FORMAT_RGB_565;
1653#else
1654        format = PIXEL_FORMAT_RGBX_8888;
1655#endif
1656        break;
1657    }
1658
1659#ifdef NO_RGBX_8888
1660    if (format == PIXEL_FORMAT_RGBX_8888)
1661        format = PIXEL_FORMAT_RGBA_8888;
1662#endif
1663
1664    sp<Layer> layer = new Layer(this, client);
1665    status_t err = layer->setBuffers(w, h, format, flags);
1666    if (CC_LIKELY(err != NO_ERROR)) {
1667        ALOGE("createNormalLayer() failed (%s)", strerror(-err));
1668        layer.clear();
1669    }
1670    return layer;
1671}
1672
1673sp<LayerDim> SurfaceFlinger::createDimLayer(
1674        const sp<Client>& client,
1675        uint32_t w, uint32_t h, uint32_t flags)
1676{
1677    sp<LayerDim> layer = new LayerDim(this, client);
1678    return layer;
1679}
1680
1681sp<LayerScreenshot> SurfaceFlinger::createScreenshotLayer(
1682        const sp<Client>& client,
1683        uint32_t w, uint32_t h, uint32_t flags)
1684{
1685    sp<LayerScreenshot> layer = new LayerScreenshot(this, client);
1686    return layer;
1687}
1688
1689status_t SurfaceFlinger::onLayerRemoved(const sp<Client>& client, SurfaceID sid)
1690{
1691    /*
1692     * called by the window manager, when a surface should be marked for
1693     * destruction.
1694     *
1695     * The surface is removed from the current and drawing lists, but placed
1696     * in the purgatory queue, so it's not destroyed right-away (we need
1697     * to wait for all client's references to go away first).
1698     */
1699
1700    status_t err = NAME_NOT_FOUND;
1701    Mutex::Autolock _l(mStateLock);
1702    sp<LayerBaseClient> layer = client->getLayerUser(sid);
1703
1704    if (layer != 0) {
1705        err = purgatorizeLayer_l(layer);
1706        if (err == NO_ERROR) {
1707            setTransactionFlags(eTransactionNeeded);
1708        }
1709    }
1710    return err;
1711}
1712
1713status_t SurfaceFlinger::onLayerDestroyed(const wp<LayerBaseClient>& layer)
1714{
1715    // called by ~ISurface() when all references are gone
1716    status_t err = NO_ERROR;
1717    sp<LayerBaseClient> l(layer.promote());
1718    if (l != NULL) {
1719        Mutex::Autolock _l(mStateLock);
1720        err = removeLayer_l(l);
1721        if (err == NAME_NOT_FOUND) {
1722            // The surface wasn't in the current list, which means it was
1723            // removed already, which means it is in the purgatory,
1724            // and need to be removed from there.
1725            ssize_t idx = mLayerPurgatory.remove(l);
1726            ALOGE_IF(idx < 0,
1727                    "layer=%p is not in the purgatory list", l.get());
1728        }
1729        ALOGE_IF(err<0 && err != NAME_NOT_FOUND,
1730                "error removing layer=%p (%s)", l.get(), strerror(-err));
1731    }
1732    return err;
1733}
1734
1735// ---------------------------------------------------------------------------
1736
1737void SurfaceFlinger::onInitializeDisplays() {
1738    // reset screen orientation
1739    Vector<ComposerState> state;
1740    Vector<DisplayState> displays;
1741    DisplayState d;
1742    d.what = DisplayState::eOrientationChanged;
1743    d.token = mDefaultDisplays[DisplayDevice::DISPLAY_PRIMARY];
1744    d.orientation = DisplayState::eOrientationDefault;
1745    displays.add(d);
1746    setTransactionState(state, displays, 0);
1747
1748    // XXX: this should init default device to "unblank" and all other devices to "blank"
1749    onScreenAcquired();
1750}
1751
1752void SurfaceFlinger::initializeDisplays() {
1753    class MessageScreenInitialized : public MessageBase {
1754        SurfaceFlinger* flinger;
1755    public:
1756        MessageScreenInitialized(SurfaceFlinger* flinger) : flinger(flinger) { }
1757        virtual bool handler() {
1758            flinger->onInitializeDisplays();
1759            return true;
1760        }
1761    };
1762    sp<MessageBase> msg = new MessageScreenInitialized(this);
1763    postMessageAsync(msg);  // we may be called from main thread, use async message
1764}
1765
1766
1767void SurfaceFlinger::onScreenAcquired() {
1768    ALOGD("Screen about to return, flinger = %p", this);
1769    sp<const DisplayDevice> hw(getDefaultDisplayDevice()); // XXX: this should be per DisplayDevice
1770    getHwComposer().acquire();
1771    hw->acquireScreen();
1772    mEventThread->onScreenAcquired();
1773    mVisibleRegionsDirty = true;
1774    repaintEverything();
1775}
1776
1777void SurfaceFlinger::onScreenReleased() {
1778    ALOGD("About to give-up screen, flinger = %p", this);
1779    sp<const DisplayDevice> hw(getDefaultDisplayDevice()); // XXX: this should be per DisplayDevice
1780    if (hw->isScreenAcquired()) {
1781        mEventThread->onScreenReleased();
1782        hw->releaseScreen();
1783        getHwComposer().release();
1784        // from this point on, SF will stop drawing
1785    }
1786}
1787
1788void SurfaceFlinger::unblank() {
1789    class MessageScreenAcquired : public MessageBase {
1790        SurfaceFlinger* flinger;
1791    public:
1792        MessageScreenAcquired(SurfaceFlinger* flinger) : flinger(flinger) { }
1793        virtual bool handler() {
1794            flinger->onScreenAcquired();
1795            return true;
1796        }
1797    };
1798    sp<MessageBase> msg = new MessageScreenAcquired(this);
1799    postMessageSync(msg);
1800}
1801
1802void SurfaceFlinger::blank() {
1803    class MessageScreenReleased : public MessageBase {
1804        SurfaceFlinger* flinger;
1805    public:
1806        MessageScreenReleased(SurfaceFlinger* flinger) : flinger(flinger) { }
1807        virtual bool handler() {
1808            flinger->onScreenReleased();
1809            return true;
1810        }
1811    };
1812    sp<MessageBase> msg = new MessageScreenReleased(this);
1813    postMessageSync(msg);
1814}
1815
1816// ---------------------------------------------------------------------------
1817
1818status_t SurfaceFlinger::dump(int fd, const Vector<String16>& args)
1819{
1820    const size_t SIZE = 4096;
1821    char buffer[SIZE];
1822    String8 result;
1823
1824    if (!PermissionCache::checkCallingPermission(sDump)) {
1825        snprintf(buffer, SIZE, "Permission Denial: "
1826                "can't dump SurfaceFlinger from pid=%d, uid=%d\n",
1827                IPCThreadState::self()->getCallingPid(),
1828                IPCThreadState::self()->getCallingUid());
1829        result.append(buffer);
1830    } else {
1831        // Try to get the main lock, but don't insist if we can't
1832        // (this would indicate SF is stuck, but we want to be able to
1833        // print something in dumpsys).
1834        int retry = 3;
1835        while (mStateLock.tryLock()<0 && --retry>=0) {
1836            usleep(1000000);
1837        }
1838        const bool locked(retry >= 0);
1839        if (!locked) {
1840            snprintf(buffer, SIZE,
1841                    "SurfaceFlinger appears to be unresponsive, "
1842                    "dumping anyways (no locks held)\n");
1843            result.append(buffer);
1844        }
1845
1846        bool dumpAll = true;
1847        size_t index = 0;
1848        size_t numArgs = args.size();
1849        if (numArgs) {
1850            if ((index < numArgs) &&
1851                    (args[index] == String16("--list"))) {
1852                index++;
1853                listLayersLocked(args, index, result, buffer, SIZE);
1854                dumpAll = false;
1855            }
1856
1857            if ((index < numArgs) &&
1858                    (args[index] == String16("--latency"))) {
1859                index++;
1860                dumpStatsLocked(args, index, result, buffer, SIZE);
1861                dumpAll = false;
1862            }
1863
1864            if ((index < numArgs) &&
1865                    (args[index] == String16("--latency-clear"))) {
1866                index++;
1867                clearStatsLocked(args, index, result, buffer, SIZE);
1868                dumpAll = false;
1869            }
1870        }
1871
1872        if (dumpAll) {
1873            dumpAllLocked(result, buffer, SIZE);
1874        }
1875
1876        if (locked) {
1877            mStateLock.unlock();
1878        }
1879    }
1880    write(fd, result.string(), result.size());
1881    return NO_ERROR;
1882}
1883
1884void SurfaceFlinger::listLayersLocked(const Vector<String16>& args, size_t& index,
1885        String8& result, char* buffer, size_t SIZE) const
1886{
1887    const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
1888    const size_t count = currentLayers.size();
1889    for (size_t i=0 ; i<count ; i++) {
1890        const sp<LayerBase>& layer(currentLayers[i]);
1891        snprintf(buffer, SIZE, "%s\n", layer->getName().string());
1892        result.append(buffer);
1893    }
1894}
1895
1896void SurfaceFlinger::dumpStatsLocked(const Vector<String16>& args, size_t& index,
1897        String8& result, char* buffer, size_t SIZE) const
1898{
1899    String8 name;
1900    if (index < args.size()) {
1901        name = String8(args[index]);
1902        index++;
1903    }
1904
1905    const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
1906    const size_t count = currentLayers.size();
1907    for (size_t i=0 ; i<count ; i++) {
1908        const sp<LayerBase>& layer(currentLayers[i]);
1909        if (name.isEmpty()) {
1910            snprintf(buffer, SIZE, "%s\n", layer->getName().string());
1911            result.append(buffer);
1912        }
1913        if (name.isEmpty() || (name == layer->getName())) {
1914            layer->dumpStats(result, buffer, SIZE);
1915        }
1916    }
1917}
1918
1919void SurfaceFlinger::clearStatsLocked(const Vector<String16>& args, size_t& index,
1920        String8& result, char* buffer, size_t SIZE) const
1921{
1922    String8 name;
1923    if (index < args.size()) {
1924        name = String8(args[index]);
1925        index++;
1926    }
1927
1928    const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
1929    const size_t count = currentLayers.size();
1930    for (size_t i=0 ; i<count ; i++) {
1931        const sp<LayerBase>& layer(currentLayers[i]);
1932        if (name.isEmpty() || (name == layer->getName())) {
1933            layer->clearStats();
1934        }
1935    }
1936}
1937
1938void SurfaceFlinger::dumpAllLocked(
1939        String8& result, char* buffer, size_t SIZE) const
1940{
1941    // figure out if we're stuck somewhere
1942    const nsecs_t now = systemTime();
1943    const nsecs_t inSwapBuffers(mDebugInSwapBuffers);
1944    const nsecs_t inTransaction(mDebugInTransaction);
1945    nsecs_t inSwapBuffersDuration = (inSwapBuffers) ? now-inSwapBuffers : 0;
1946    nsecs_t inTransactionDuration = (inTransaction) ? now-inTransaction : 0;
1947
1948    /*
1949     * Dump the visible layer list
1950     */
1951    const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
1952    const size_t count = currentLayers.size();
1953    snprintf(buffer, SIZE, "Visible layers (count = %d)\n", count);
1954    result.append(buffer);
1955    for (size_t i=0 ; i<count ; i++) {
1956        const sp<LayerBase>& layer(currentLayers[i]);
1957        layer->dump(result, buffer, SIZE);
1958    }
1959
1960    /*
1961     * Dump the layers in the purgatory
1962     */
1963
1964    const size_t purgatorySize = mLayerPurgatory.size();
1965    snprintf(buffer, SIZE, "Purgatory state (%d entries)\n", purgatorySize);
1966    result.append(buffer);
1967    for (size_t i=0 ; i<purgatorySize ; i++) {
1968        const sp<LayerBase>& layer(mLayerPurgatory.itemAt(i));
1969        layer->shortDump(result, buffer, SIZE);
1970    }
1971
1972    /*
1973     * Dump Display state
1974     */
1975
1976    for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
1977        const sp<const DisplayDevice>& hw(mDisplays[dpy]);
1978        snprintf(buffer, SIZE,
1979                "+ DisplayDevice[%u]\n"
1980                "   id=%x, layerStack=%u, (%4dx%4d), orient=%2d, tr=%08x, "
1981                "flips=%u, secure=%d, numLayers=%u\n",
1982                dpy,
1983                hw->getDisplayType(), hw->getLayerStack(),
1984                hw->getWidth(), hw->getHeight(),
1985                hw->getOrientation(), hw->getTransform().getType(),
1986                hw->getPageFlipCount(),
1987                hw->getSecureLayerVisible(),
1988                hw->getVisibleLayersSortedByZ().size());
1989        result.append(buffer);
1990    }
1991
1992    /*
1993     * Dump SurfaceFlinger global state
1994     */
1995
1996    snprintf(buffer, SIZE, "SurfaceFlinger global state:\n");
1997    result.append(buffer);
1998
1999    HWComposer& hwc(getHwComposer());
2000    sp<const DisplayDevice> hw(getDefaultDisplayDevice());
2001    const GLExtensions& extensions(GLExtensions::getInstance());
2002    snprintf(buffer, SIZE, "GLES: %s, %s, %s\n",
2003            extensions.getVendor(),
2004            extensions.getRenderer(),
2005            extensions.getVersion());
2006    result.append(buffer);
2007
2008    snprintf(buffer, SIZE, "EGL : %s\n",
2009            eglQueryString(mEGLDisplay, EGL_VERSION_HW_ANDROID));
2010    result.append(buffer);
2011
2012    snprintf(buffer, SIZE, "EXTS: %s\n", extensions.getExtension());
2013    result.append(buffer);
2014
2015    hw->undefinedRegion.dump(result, "undefinedRegion");
2016    snprintf(buffer, SIZE,
2017            "  orientation=%d, canDraw=%d\n",
2018            hw->getOrientation(), hw->canDraw());
2019    result.append(buffer);
2020    snprintf(buffer, SIZE,
2021            "  last eglSwapBuffers() time: %f us\n"
2022            "  last transaction time     : %f us\n"
2023            "  transaction-flags         : %08x\n"
2024            "  refresh-rate              : %f fps\n"
2025            "  x-dpi                     : %f\n"
2026            "  y-dpi                     : %f\n",
2027            mLastSwapBufferTime/1000.0,
2028            mLastTransactionTime/1000.0,
2029            mTransactionFlags,
2030            1e9 / hwc.getRefreshPeriod(),
2031            hwc.getDpiX(),
2032            hwc.getDpiY());
2033    result.append(buffer);
2034
2035    snprintf(buffer, SIZE, "  eglSwapBuffers time: %f us\n",
2036            inSwapBuffersDuration/1000.0);
2037    result.append(buffer);
2038
2039    snprintf(buffer, SIZE, "  transaction time: %f us\n",
2040            inTransactionDuration/1000.0);
2041    result.append(buffer);
2042
2043    /*
2044     * VSYNC state
2045     */
2046    mEventThread->dump(result, buffer, SIZE);
2047
2048    /*
2049     * Dump HWComposer state
2050     */
2051    snprintf(buffer, SIZE, "h/w composer state:\n");
2052    result.append(buffer);
2053    snprintf(buffer, SIZE, "  h/w composer %s and %s\n",
2054            hwc.initCheck()==NO_ERROR ? "present" : "not present",
2055                    (mDebugDisableHWC || mDebugRegion) ? "disabled" : "enabled");
2056    result.append(buffer);
2057    hwc.dump(result, buffer, SIZE, hw->getVisibleLayersSortedByZ());
2058
2059    /*
2060     * Dump gralloc state
2061     */
2062    const GraphicBufferAllocator& alloc(GraphicBufferAllocator::get());
2063    alloc.dump(result);
2064    hw->dump(result);
2065}
2066
2067bool SurfaceFlinger::startDdmConnection()
2068{
2069    void* libddmconnection_dso =
2070            dlopen("libsurfaceflinger_ddmconnection.so", RTLD_NOW);
2071    if (!libddmconnection_dso) {
2072        return false;
2073    }
2074    void (*DdmConnection_start)(const char* name);
2075    DdmConnection_start =
2076            (typeof DdmConnection_start)dlsym(libddmconnection_dso, "DdmConnection_start");
2077    if (!DdmConnection_start) {
2078        dlclose(libddmconnection_dso);
2079        return false;
2080    }
2081    (*DdmConnection_start)(getServiceName());
2082    return true;
2083}
2084
2085status_t SurfaceFlinger::onTransact(
2086    uint32_t code, const Parcel& data, Parcel* reply, uint32_t flags)
2087{
2088    switch (code) {
2089        case CREATE_CONNECTION:
2090        case SET_TRANSACTION_STATE:
2091        case BOOT_FINISHED:
2092        case BLANK:
2093        case UNBLANK:
2094        {
2095            // codes that require permission check
2096            IPCThreadState* ipc = IPCThreadState::self();
2097            const int pid = ipc->getCallingPid();
2098            const int uid = ipc->getCallingUid();
2099            if ((uid != AID_GRAPHICS) &&
2100                    !PermissionCache::checkPermission(sAccessSurfaceFlinger, pid, uid)) {
2101                ALOGE("Permission Denial: "
2102                        "can't access SurfaceFlinger pid=%d, uid=%d", pid, uid);
2103                return PERMISSION_DENIED;
2104            }
2105            break;
2106        }
2107        case CAPTURE_SCREEN:
2108        {
2109            // codes that require permission check
2110            IPCThreadState* ipc = IPCThreadState::self();
2111            const int pid = ipc->getCallingPid();
2112            const int uid = ipc->getCallingUid();
2113            if ((uid != AID_GRAPHICS) &&
2114                    !PermissionCache::checkPermission(sReadFramebuffer, pid, uid)) {
2115                ALOGE("Permission Denial: "
2116                        "can't read framebuffer pid=%d, uid=%d", pid, uid);
2117                return PERMISSION_DENIED;
2118            }
2119            break;
2120        }
2121    }
2122
2123    status_t err = BnSurfaceComposer::onTransact(code, data, reply, flags);
2124    if (err == UNKNOWN_TRANSACTION || err == PERMISSION_DENIED) {
2125        CHECK_INTERFACE(ISurfaceComposer, data, reply);
2126        if (CC_UNLIKELY(!PermissionCache::checkCallingPermission(sHardwareTest))) {
2127            IPCThreadState* ipc = IPCThreadState::self();
2128            const int pid = ipc->getCallingPid();
2129            const int uid = ipc->getCallingUid();
2130            ALOGE("Permission Denial: "
2131                    "can't access SurfaceFlinger pid=%d, uid=%d", pid, uid);
2132            return PERMISSION_DENIED;
2133        }
2134        int n;
2135        switch (code) {
2136            case 1000: // SHOW_CPU, NOT SUPPORTED ANYMORE
2137            case 1001: // SHOW_FPS, NOT SUPPORTED ANYMORE
2138                return NO_ERROR;
2139            case 1002:  // SHOW_UPDATES
2140                n = data.readInt32();
2141                mDebugRegion = n ? n : (mDebugRegion ? 0 : 1);
2142                invalidateHwcGeometry();
2143                repaintEverything();
2144                return NO_ERROR;
2145            case 1004:{ // repaint everything
2146                repaintEverything();
2147                return NO_ERROR;
2148            }
2149            case 1005:{ // force transaction
2150                setTransactionFlags(
2151                        eTransactionNeeded|
2152                        eDisplayTransactionNeeded|
2153                        eTraversalNeeded);
2154                return NO_ERROR;
2155            }
2156            case 1006:{ // send empty update
2157                signalRefresh();
2158                return NO_ERROR;
2159            }
2160            case 1008:  // toggle use of hw composer
2161                n = data.readInt32();
2162                mDebugDisableHWC = n ? 1 : 0;
2163                invalidateHwcGeometry();
2164                repaintEverything();
2165                return NO_ERROR;
2166            case 1009:  // toggle use of transform hint
2167                n = data.readInt32();
2168                mDebugDisableTransformHint = n ? 1 : 0;
2169                invalidateHwcGeometry();
2170                repaintEverything();
2171                return NO_ERROR;
2172            case 1010:  // interrogate.
2173                reply->writeInt32(0);
2174                reply->writeInt32(0);
2175                reply->writeInt32(mDebugRegion);
2176                reply->writeInt32(0);
2177                reply->writeInt32(mDebugDisableHWC);
2178                return NO_ERROR;
2179            case 1013: {
2180                Mutex::Autolock _l(mStateLock);
2181                sp<const DisplayDevice> hw(getDefaultDisplayDevice());
2182                reply->writeInt32(hw->getPageFlipCount());
2183            }
2184            return NO_ERROR;
2185        }
2186    }
2187    return err;
2188}
2189
2190void SurfaceFlinger::repaintEverything() {
2191    android_atomic_or(1, &mRepaintEverything);
2192    signalTransaction();
2193}
2194
2195// ---------------------------------------------------------------------------
2196
2197status_t SurfaceFlinger::renderScreenToTexture(uint32_t layerStack,
2198        GLuint* textureName, GLfloat* uOut, GLfloat* vOut)
2199{
2200    Mutex::Autolock _l(mStateLock);
2201    return renderScreenToTextureLocked(layerStack, textureName, uOut, vOut);
2202}
2203
2204status_t SurfaceFlinger::renderScreenToTextureLocked(uint32_t layerStack,
2205        GLuint* textureName, GLfloat* uOut, GLfloat* vOut)
2206{
2207    ATRACE_CALL();
2208
2209    if (!GLExtensions::getInstance().haveFramebufferObject())
2210        return INVALID_OPERATION;
2211
2212    // get screen geometry
2213    // FIXME: figure out what it means to have a screenshot texture w/ multi-display
2214    sp<const DisplayDevice> hw(getDefaultDisplayDevice());
2215    const uint32_t hw_w = hw->getWidth();
2216    const uint32_t hw_h = hw->getHeight();
2217    GLfloat u = 1;
2218    GLfloat v = 1;
2219
2220    // make sure to clear all GL error flags
2221    while ( glGetError() != GL_NO_ERROR ) ;
2222
2223    // create a FBO
2224    GLuint name, tname;
2225    glGenTextures(1, &tname);
2226    glBindTexture(GL_TEXTURE_2D, tname);
2227    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
2228    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
2229    glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB,
2230            hw_w, hw_h, 0, GL_RGB, GL_UNSIGNED_BYTE, 0);
2231    if (glGetError() != GL_NO_ERROR) {
2232        while ( glGetError() != GL_NO_ERROR ) ;
2233        GLint tw = (2 << (31 - clz(hw_w)));
2234        GLint th = (2 << (31 - clz(hw_h)));
2235        glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB,
2236                tw, th, 0, GL_RGB, GL_UNSIGNED_BYTE, 0);
2237        u = GLfloat(hw_w) / tw;
2238        v = GLfloat(hw_h) / th;
2239    }
2240    glGenFramebuffersOES(1, &name);
2241    glBindFramebufferOES(GL_FRAMEBUFFER_OES, name);
2242    glFramebufferTexture2DOES(GL_FRAMEBUFFER_OES,
2243            GL_COLOR_ATTACHMENT0_OES, GL_TEXTURE_2D, tname, 0);
2244
2245    // redraw the screen entirely...
2246    glDisable(GL_TEXTURE_EXTERNAL_OES);
2247    glDisable(GL_TEXTURE_2D);
2248    glClearColor(0,0,0,1);
2249    glClear(GL_COLOR_BUFFER_BIT);
2250    glMatrixMode(GL_MODELVIEW);
2251    glLoadIdentity();
2252    const Vector< sp<LayerBase> >& layers(hw->getVisibleLayersSortedByZ());
2253    const size_t count = layers.size();
2254    for (size_t i=0 ; i<count ; ++i) {
2255        const sp<LayerBase>& layer(layers[i]);
2256        layer->draw(hw);
2257    }
2258
2259    hw->compositionComplete();
2260
2261    // back to main framebuffer
2262    glBindFramebufferOES(GL_FRAMEBUFFER_OES, 0);
2263    glDeleteFramebuffersOES(1, &name);
2264
2265    *textureName = tname;
2266    *uOut = u;
2267    *vOut = v;
2268    return NO_ERROR;
2269}
2270
2271// ---------------------------------------------------------------------------
2272
2273status_t SurfaceFlinger::captureScreenImplLocked(const sp<IBinder>& display,
2274        sp<IMemoryHeap>* heap,
2275        uint32_t* w, uint32_t* h, PixelFormat* f,
2276        uint32_t sw, uint32_t sh,
2277        uint32_t minLayerZ, uint32_t maxLayerZ)
2278{
2279    ATRACE_CALL();
2280
2281    status_t result = PERMISSION_DENIED;
2282
2283    if (!GLExtensions::getInstance().haveFramebufferObject()) {
2284        return INVALID_OPERATION;
2285    }
2286
2287    // get screen geometry
2288    sp<const DisplayDevice> hw(getDisplayDevice(display));
2289    const uint32_t hw_w = hw->getWidth();
2290    const uint32_t hw_h = hw->getHeight();
2291
2292    // if we have secure windows on this display, never allow the screen capture
2293    if (hw->getSecureLayerVisible()) {
2294        ALOGW("FB is protected: PERMISSION_DENIED");
2295        return PERMISSION_DENIED;
2296    }
2297
2298    if ((sw > hw_w) || (sh > hw_h)) {
2299        ALOGE("size mismatch (%d, %d) > (%d, %d)", sw, sh, hw_w, hw_h);
2300        return BAD_VALUE;
2301    }
2302
2303    sw = (!sw) ? hw_w : sw;
2304    sh = (!sh) ? hw_h : sh;
2305    const size_t size = sw * sh * 4;
2306    const bool filtering = sw != hw_w || sh != hw_h;
2307
2308//    ALOGD("screenshot: sw=%d, sh=%d, minZ=%d, maxZ=%d",
2309//            sw, sh, minLayerZ, maxLayerZ);
2310
2311    // make sure to clear all GL error flags
2312    while ( glGetError() != GL_NO_ERROR ) ;
2313
2314    // create a FBO
2315    GLuint name, tname;
2316    glGenRenderbuffersOES(1, &tname);
2317    glBindRenderbufferOES(GL_RENDERBUFFER_OES, tname);
2318    glRenderbufferStorageOES(GL_RENDERBUFFER_OES, GL_RGBA8_OES, sw, sh);
2319
2320    glGenFramebuffersOES(1, &name);
2321    glBindFramebufferOES(GL_FRAMEBUFFER_OES, name);
2322    glFramebufferRenderbufferOES(GL_FRAMEBUFFER_OES,
2323            GL_COLOR_ATTACHMENT0_OES, GL_RENDERBUFFER_OES, tname);
2324
2325    GLenum status = glCheckFramebufferStatusOES(GL_FRAMEBUFFER_OES);
2326
2327    if (status == GL_FRAMEBUFFER_COMPLETE_OES) {
2328
2329        // invert everything, b/c glReadPixel() below will invert the FB
2330        glViewport(0, 0, sw, sh);
2331        glMatrixMode(GL_PROJECTION);
2332        glPushMatrix();
2333        glLoadIdentity();
2334        glOrthof(0, hw_w, hw_h, 0, 0, 1);
2335        glMatrixMode(GL_MODELVIEW);
2336
2337        // redraw the screen entirely...
2338        glClearColor(0,0,0,1);
2339        glClear(GL_COLOR_BUFFER_BIT);
2340
2341        const Vector< sp<LayerBase> >& layers(hw->getVisibleLayersSortedByZ());
2342        const size_t count = layers.size();
2343        for (size_t i=0 ; i<count ; ++i) {
2344            const sp<LayerBase>& layer(layers[i]);
2345            const uint32_t z = layer->drawingState().z;
2346            if (z >= minLayerZ && z <= maxLayerZ) {
2347                if (filtering) layer->setFiltering(true);
2348                layer->draw(hw);
2349                if (filtering) layer->setFiltering(false);
2350            }
2351        }
2352
2353        // check for errors and return screen capture
2354        if (glGetError() != GL_NO_ERROR) {
2355            // error while rendering
2356            result = INVALID_OPERATION;
2357        } else {
2358            // allocate shared memory large enough to hold the
2359            // screen capture
2360            sp<MemoryHeapBase> base(
2361                    new MemoryHeapBase(size, 0, "screen-capture") );
2362            void* const ptr = base->getBase();
2363            if (ptr) {
2364                // capture the screen with glReadPixels()
2365                ScopedTrace _t(ATRACE_TAG, "glReadPixels");
2366                glReadPixels(0, 0, sw, sh, GL_RGBA, GL_UNSIGNED_BYTE, ptr);
2367                if (glGetError() == GL_NO_ERROR) {
2368                    *heap = base;
2369                    *w = sw;
2370                    *h = sh;
2371                    *f = PIXEL_FORMAT_RGBA_8888;
2372                    result = NO_ERROR;
2373                }
2374            } else {
2375                result = NO_MEMORY;
2376            }
2377        }
2378        glViewport(0, 0, hw_w, hw_h);
2379        glMatrixMode(GL_PROJECTION);
2380        glPopMatrix();
2381        glMatrixMode(GL_MODELVIEW);
2382    } else {
2383        result = BAD_VALUE;
2384    }
2385
2386    // release FBO resources
2387    glBindFramebufferOES(GL_FRAMEBUFFER_OES, 0);
2388    glDeleteRenderbuffersOES(1, &tname);
2389    glDeleteFramebuffersOES(1, &name);
2390
2391    hw->compositionComplete();
2392
2393//    ALOGD("screenshot: result = %s", result<0 ? strerror(result) : "OK");
2394
2395    return result;
2396}
2397
2398
2399status_t SurfaceFlinger::captureScreen(const sp<IBinder>& display,
2400        sp<IMemoryHeap>* heap,
2401        uint32_t* width, uint32_t* height, PixelFormat* format,
2402        uint32_t sw, uint32_t sh,
2403        uint32_t minLayerZ, uint32_t maxLayerZ)
2404{
2405    if (CC_UNLIKELY(display == 0))
2406        return BAD_VALUE;
2407
2408    if (!GLExtensions::getInstance().haveFramebufferObject())
2409        return INVALID_OPERATION;
2410
2411    class MessageCaptureScreen : public MessageBase {
2412        SurfaceFlinger* flinger;
2413        sp<IBinder> display;
2414        sp<IMemoryHeap>* heap;
2415        uint32_t* w;
2416        uint32_t* h;
2417        PixelFormat* f;
2418        uint32_t sw;
2419        uint32_t sh;
2420        uint32_t minLayerZ;
2421        uint32_t maxLayerZ;
2422        status_t result;
2423    public:
2424        MessageCaptureScreen(SurfaceFlinger* flinger, const sp<IBinder>& display,
2425                sp<IMemoryHeap>* heap, uint32_t* w, uint32_t* h, PixelFormat* f,
2426                uint32_t sw, uint32_t sh,
2427                uint32_t minLayerZ, uint32_t maxLayerZ)
2428            : flinger(flinger), display(display),
2429              heap(heap), w(w), h(h), f(f), sw(sw), sh(sh),
2430              minLayerZ(minLayerZ), maxLayerZ(maxLayerZ),
2431              result(PERMISSION_DENIED)
2432        {
2433        }
2434        status_t getResult() const {
2435            return result;
2436        }
2437        virtual bool handler() {
2438            Mutex::Autolock _l(flinger->mStateLock);
2439            result = flinger->captureScreenImplLocked(display,
2440                    heap, w, h, f, sw, sh, minLayerZ, maxLayerZ);
2441            return true;
2442        }
2443    };
2444
2445    sp<MessageBase> msg = new MessageCaptureScreen(this,
2446            display, heap, width, height, format, sw, sh, minLayerZ, maxLayerZ);
2447    status_t res = postMessageSync(msg);
2448    if (res == NO_ERROR) {
2449        res = static_cast<MessageCaptureScreen*>( msg.get() )->getResult();
2450    }
2451    return res;
2452}
2453
2454// ---------------------------------------------------------------------------
2455
2456SurfaceFlinger::LayerVector::LayerVector() {
2457}
2458
2459SurfaceFlinger::LayerVector::LayerVector(const LayerVector& rhs)
2460    : SortedVector<sp<LayerBase> >(rhs) {
2461}
2462
2463int SurfaceFlinger::LayerVector::do_compare(const void* lhs,
2464    const void* rhs) const
2465{
2466    // sort layers per layer-stack, then by z-order and finally by sequence
2467    const sp<LayerBase>& l(*reinterpret_cast<const sp<LayerBase>*>(lhs));
2468    const sp<LayerBase>& r(*reinterpret_cast<const sp<LayerBase>*>(rhs));
2469
2470    uint32_t ls = l->currentState().layerStack;
2471    uint32_t rs = r->currentState().layerStack;
2472    if (ls != rs)
2473        return ls - rs;
2474
2475    uint32_t lz = l->currentState().z;
2476    uint32_t rz = r->currentState().z;
2477    if (lz != rz)
2478        return lz - rz;
2479
2480    return l->sequence - r->sequence;
2481}
2482
2483// ---------------------------------------------------------------------------
2484
2485SurfaceFlinger::DisplayDeviceState::DisplayDeviceState()
2486    : type(DisplayDevice::DISPLAY_ID_INVALID) {
2487}
2488
2489SurfaceFlinger::DisplayDeviceState::DisplayDeviceState(DisplayDevice::DisplayType type)
2490    : type(type), layerStack(0), orientation(0) {
2491}
2492
2493// ---------------------------------------------------------------------------
2494
2495GraphicBufferAlloc::GraphicBufferAlloc() {}
2496
2497GraphicBufferAlloc::~GraphicBufferAlloc() {}
2498
2499sp<GraphicBuffer> GraphicBufferAlloc::createGraphicBuffer(uint32_t w, uint32_t h,
2500        PixelFormat format, uint32_t usage, status_t* error) {
2501    sp<GraphicBuffer> graphicBuffer(new GraphicBuffer(w, h, format, usage));
2502    status_t err = graphicBuffer->initCheck();
2503    *error = err;
2504    if (err != 0 || graphicBuffer->handle == 0) {
2505        if (err == NO_MEMORY) {
2506            GraphicBuffer::dumpAllocationsToSystemLog();
2507        }
2508        ALOGE("GraphicBufferAlloc::createGraphicBuffer(w=%d, h=%d) "
2509             "failed (%s), handle=%p",
2510                w, h, strerror(-err), graphicBuffer->handle);
2511        return 0;
2512    }
2513    return graphicBuffer;
2514}
2515
2516// ---------------------------------------------------------------------------
2517
2518}; // namespace android
2519