SurfaceFlinger.cpp revision 692c723e84e6f2747447d871d468ff50e5c73f19
1/*
2 * Copyright (C) 2007 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#define ATRACE_TAG ATRACE_TAG_GRAPHICS
18
19#include <stdint.h>
20#include <sys/types.h>
21#include <errno.h>
22#include <math.h>
23#include <dlfcn.h>
24
25#include <EGL/egl.h>
26#include <GLES/gl.h>
27
28#include <cutils/log.h>
29#include <cutils/properties.h>
30
31#include <binder/IPCThreadState.h>
32#include <binder/IServiceManager.h>
33#include <binder/MemoryHeapBase.h>
34#include <binder/PermissionCache.h>
35
36#include <ui/DisplayInfo.h>
37
38#include <gui/BitTube.h>
39#include <gui/BufferQueue.h>
40#include <gui/GuiConfig.h>
41#include <gui/IDisplayEventConnection.h>
42#include <gui/SurfaceTextureClient.h>
43
44#include <ui/GraphicBufferAllocator.h>
45#include <ui/PixelFormat.h>
46#include <ui/UiConfig.h>
47
48#include <utils/misc.h>
49#include <utils/String8.h>
50#include <utils/String16.h>
51#include <utils/StopWatch.h>
52#include <utils/Trace.h>
53
54#include <private/android_filesystem_config.h>
55
56#include "clz.h"
57#include "DdmConnection.h"
58#include "DisplayDevice.h"
59#include "Client.h"
60#include "EventThread.h"
61#include "GLExtensions.h"
62#include "Layer.h"
63#include "LayerDim.h"
64#include "LayerScreenshot.h"
65#include "SurfaceFlinger.h"
66
67#include "DisplayHardware/FramebufferSurface.h"
68#include "DisplayHardware/GraphicBufferAlloc.h"
69#include "DisplayHardware/HWComposer.h"
70
71
72#define EGL_VERSION_HW_ANDROID  0x3143
73
74#define DISPLAY_COUNT       1
75
76namespace android {
77// ---------------------------------------------------------------------------
78
79const String16 sHardwareTest("android.permission.HARDWARE_TEST");
80const String16 sAccessSurfaceFlinger("android.permission.ACCESS_SURFACE_FLINGER");
81const String16 sReadFramebuffer("android.permission.READ_FRAME_BUFFER");
82const String16 sDump("android.permission.DUMP");
83
84// ---------------------------------------------------------------------------
85
86SurfaceFlinger::SurfaceFlinger()
87    :   BnSurfaceComposer(), Thread(false),
88        mTransactionFlags(0),
89        mTransactionPending(false),
90        mAnimTransactionPending(false),
91        mLayersRemoved(false),
92        mRepaintEverything(0),
93        mBootTime(systemTime()),
94        mVisibleRegionsDirty(false),
95        mHwWorkListDirty(false),
96        mDebugRegion(0),
97        mDebugDDMS(0),
98        mDebugDisableHWC(0),
99        mDebugDisableTransformHint(0),
100        mDebugInSwapBuffers(0),
101        mLastSwapBufferTime(0),
102        mDebugInTransaction(0),
103        mLastTransactionTime(0),
104        mBootFinished(false)
105{
106    ALOGI("SurfaceFlinger is starting");
107
108    // debugging stuff...
109    char value[PROPERTY_VALUE_MAX];
110
111    property_get("debug.sf.showupdates", value, "0");
112    mDebugRegion = atoi(value);
113
114    property_get("debug.sf.ddms", value, "0");
115    mDebugDDMS = atoi(value);
116    if (mDebugDDMS) {
117        if (!startDdmConnection()) {
118            // start failed, and DDMS debugging not enabled
119            mDebugDDMS = 0;
120        }
121    }
122    ALOGI_IF(mDebugRegion, "showupdates enabled");
123    ALOGI_IF(mDebugDDMS, "DDMS debugging enabled");
124}
125
126void SurfaceFlinger::onFirstRef()
127{
128    mEventQueue.init(this);
129
130    run("SurfaceFlinger", PRIORITY_URGENT_DISPLAY);
131
132    // Wait for the main thread to be done with its initialization
133    mReadyToRunBarrier.wait();
134}
135
136
137SurfaceFlinger::~SurfaceFlinger()
138{
139    EGLDisplay display = eglGetDisplay(EGL_DEFAULT_DISPLAY);
140    eglMakeCurrent(display, EGL_NO_SURFACE, EGL_NO_SURFACE, EGL_NO_CONTEXT);
141    eglTerminate(display);
142}
143
144void SurfaceFlinger::binderDied(const wp<IBinder>& who)
145{
146    // the window manager died on us. prepare its eulogy.
147
148    // restore initial conditions (default device unblank, etc)
149    initializeDisplays();
150
151    // restart the boot-animation
152    startBootAnim();
153}
154
155sp<ISurfaceComposerClient> SurfaceFlinger::createConnection()
156{
157    sp<ISurfaceComposerClient> bclient;
158    sp<Client> client(new Client(this));
159    status_t err = client->initCheck();
160    if (err == NO_ERROR) {
161        bclient = client;
162    }
163    return bclient;
164}
165
166sp<IBinder> SurfaceFlinger::createDisplay(const String8& displayName,
167        bool secure)
168{
169    class DisplayToken : public BBinder {
170        sp<SurfaceFlinger> flinger;
171        virtual ~DisplayToken() {
172             // no more references, this display must be terminated
173             Mutex::Autolock _l(flinger->mStateLock);
174             flinger->mCurrentState.displays.removeItem(this);
175             flinger->setTransactionFlags(eDisplayTransactionNeeded);
176         }
177     public:
178        DisplayToken(const sp<SurfaceFlinger>& flinger)
179            : flinger(flinger) {
180        }
181    };
182
183    sp<BBinder> token = new DisplayToken(this);
184
185    Mutex::Autolock _l(mStateLock);
186    DisplayDeviceState info(DisplayDevice::DISPLAY_VIRTUAL);
187    info.displayName = displayName;
188    info.isSecure = secure;
189    mCurrentState.displays.add(token, info);
190
191    return token;
192}
193
194void SurfaceFlinger::createBuiltinDisplayLocked(DisplayDevice::DisplayType type) {
195    ALOGW_IF(mBuiltinDisplays[type],
196            "Overwriting display token for display type %d", type);
197    mBuiltinDisplays[type] = new BBinder();
198    DisplayDeviceState info(type);
199    // All non-virtual displays are currently considered secure.
200    info.isSecure = true;
201    mCurrentState.displays.add(mBuiltinDisplays[type], info);
202}
203
204sp<IBinder> SurfaceFlinger::getBuiltInDisplay(int32_t id) {
205    if (uint32_t(id) >= DisplayDevice::NUM_DISPLAY_TYPES) {
206        ALOGE("getDefaultDisplay: id=%d is not a valid default display id", id);
207        return NULL;
208    }
209    return mBuiltinDisplays[id];
210}
211
212sp<IGraphicBufferAlloc> SurfaceFlinger::createGraphicBufferAlloc()
213{
214    sp<GraphicBufferAlloc> gba(new GraphicBufferAlloc());
215    return gba;
216}
217
218void SurfaceFlinger::bootFinished()
219{
220    const nsecs_t now = systemTime();
221    const nsecs_t duration = now - mBootTime;
222    ALOGI("Boot is finished (%ld ms)", long(ns2ms(duration)) );
223    mBootFinished = true;
224
225    // wait patiently for the window manager death
226    const String16 name("window");
227    sp<IBinder> window(defaultServiceManager()->getService(name));
228    if (window != 0) {
229        window->linkToDeath(static_cast<IBinder::DeathRecipient*>(this));
230    }
231
232    // stop boot animation
233    // formerly we would just kill the process, but we now ask it to exit so it
234    // can choose where to stop the animation.
235    property_set("service.bootanim.exit", "1");
236}
237
238void SurfaceFlinger::deleteTextureAsync(GLuint texture) {
239    class MessageDestroyGLTexture : public MessageBase {
240        GLuint texture;
241    public:
242        MessageDestroyGLTexture(GLuint texture)
243            : texture(texture) {
244        }
245        virtual bool handler() {
246            glDeleteTextures(1, &texture);
247            return true;
248        }
249    };
250    postMessageAsync(new MessageDestroyGLTexture(texture));
251}
252
253status_t SurfaceFlinger::selectConfigForAttribute(
254        EGLDisplay dpy,
255        EGLint const* attrs,
256        EGLint attribute, EGLint wanted,
257        EGLConfig* outConfig)
258{
259    EGLConfig config = NULL;
260    EGLint numConfigs = -1, n=0;
261    eglGetConfigs(dpy, NULL, 0, &numConfigs);
262    EGLConfig* const configs = new EGLConfig[numConfigs];
263    eglChooseConfig(dpy, attrs, configs, numConfigs, &n);
264
265    if (n) {
266        if (attribute != EGL_NONE) {
267            for (int i=0 ; i<n ; i++) {
268                EGLint value = 0;
269                eglGetConfigAttrib(dpy, configs[i], attribute, &value);
270                if (wanted == value) {
271                    *outConfig = configs[i];
272                    delete [] configs;
273                    return NO_ERROR;
274                }
275            }
276        } else {
277            // just pick the first one
278            *outConfig = configs[0];
279            delete [] configs;
280            return NO_ERROR;
281        }
282    }
283    delete [] configs;
284    return NAME_NOT_FOUND;
285}
286
287class EGLAttributeVector {
288    struct Attribute;
289    class Adder;
290    friend class Adder;
291    KeyedVector<Attribute, EGLint> mList;
292    struct Attribute {
293        Attribute() {};
294        Attribute(EGLint v) : v(v) { }
295        EGLint v;
296        bool operator < (const Attribute& other) const {
297            // this places EGL_NONE at the end
298            EGLint lhs(v);
299            EGLint rhs(other.v);
300            if (lhs == EGL_NONE) lhs = 0x7FFFFFFF;
301            if (rhs == EGL_NONE) rhs = 0x7FFFFFFF;
302            return lhs < rhs;
303        }
304    };
305    class Adder {
306        friend class EGLAttributeVector;
307        EGLAttributeVector& v;
308        EGLint attribute;
309        Adder(EGLAttributeVector& v, EGLint attribute)
310            : v(v), attribute(attribute) {
311        }
312    public:
313        void operator = (EGLint value) {
314            if (attribute != EGL_NONE) {
315                v.mList.add(attribute, value);
316            }
317        }
318        operator EGLint () const { return v.mList[attribute]; }
319    };
320public:
321    EGLAttributeVector() {
322        mList.add(EGL_NONE, EGL_NONE);
323    }
324    void remove(EGLint attribute) {
325        if (attribute != EGL_NONE) {
326            mList.removeItem(attribute);
327        }
328    }
329    Adder operator [] (EGLint attribute) {
330        return Adder(*this, attribute);
331    }
332    EGLint operator [] (EGLint attribute) const {
333       return mList[attribute];
334    }
335    // cast-operator to (EGLint const*)
336    operator EGLint const* () const { return &mList.keyAt(0).v; }
337};
338
339EGLConfig SurfaceFlinger::selectEGLConfig(EGLDisplay display, EGLint nativeVisualId) {
340    // select our EGLConfig. It must support EGL_RECORDABLE_ANDROID if
341    // it is to be used with WIFI displays
342    EGLConfig config;
343    EGLint dummy;
344    status_t err;
345
346    EGLAttributeVector attribs;
347    attribs[EGL_SURFACE_TYPE]               = EGL_WINDOW_BIT;
348    attribs[EGL_RECORDABLE_ANDROID]         = EGL_TRUE;
349    attribs[EGL_FRAMEBUFFER_TARGET_ANDROID] = EGL_TRUE;
350    attribs[EGL_RED_SIZE]                   = 8;
351    attribs[EGL_GREEN_SIZE]                 = 8;
352    attribs[EGL_BLUE_SIZE]                  = 8;
353
354    err = selectConfigForAttribute(display, attribs, EGL_NONE, EGL_NONE, &config);
355    if (!err)
356        goto success;
357
358    // maybe we failed because of EGL_FRAMEBUFFER_TARGET_ANDROID
359    ALOGW("no suitable EGLConfig found, trying without EGL_FRAMEBUFFER_TARGET_ANDROID");
360    attribs.remove(EGL_FRAMEBUFFER_TARGET_ANDROID);
361    err = selectConfigForAttribute(display, attribs,
362            EGL_NATIVE_VISUAL_ID, nativeVisualId, &config);
363    if (!err)
364        goto success;
365
366    // maybe we failed because of EGL_RECORDABLE_ANDROID
367    ALOGW("no suitable EGLConfig found, trying without EGL_RECORDABLE_ANDROID");
368    attribs.remove(EGL_RECORDABLE_ANDROID);
369    err = selectConfigForAttribute(display, attribs,
370            EGL_NATIVE_VISUAL_ID, nativeVisualId, &config);
371    if (!err)
372        goto success;
373
374    // allow less than 24-bit color; the non-gpu-accelerated emulator only
375    // supports 16-bit color
376    ALOGW("no suitable EGLConfig found, trying with 16-bit color allowed");
377    attribs.remove(EGL_RED_SIZE);
378    attribs.remove(EGL_GREEN_SIZE);
379    attribs.remove(EGL_BLUE_SIZE);
380    err = selectConfigForAttribute(display, attribs,
381            EGL_NATIVE_VISUAL_ID, nativeVisualId, &config);
382    if (!err)
383        goto success;
384
385    // this EGL is too lame for Android
386    ALOGE("no suitable EGLConfig found, giving up");
387
388    return 0;
389
390success:
391    if (eglGetConfigAttrib(display, config, EGL_CONFIG_CAVEAT, &dummy))
392        ALOGW_IF(dummy == EGL_SLOW_CONFIG, "EGL_SLOW_CONFIG selected!");
393    return config;
394}
395
396EGLContext SurfaceFlinger::createGLContext(EGLDisplay display, EGLConfig config) {
397    // Also create our EGLContext
398    EGLint contextAttributes[] = {
399#ifdef EGL_IMG_context_priority
400#ifdef HAS_CONTEXT_PRIORITY
401#warning "using EGL_IMG_context_priority"
402            EGL_CONTEXT_PRIORITY_LEVEL_IMG, EGL_CONTEXT_PRIORITY_HIGH_IMG,
403#endif
404#endif
405            EGL_NONE, EGL_NONE
406    };
407    EGLContext ctxt = eglCreateContext(display, config, NULL, contextAttributes);
408    ALOGE_IF(ctxt==EGL_NO_CONTEXT, "EGLContext creation failed");
409    return ctxt;
410}
411
412void SurfaceFlinger::initializeGL(EGLDisplay display) {
413    GLExtensions& extensions(GLExtensions::getInstance());
414    extensions.initWithGLStrings(
415            glGetString(GL_VENDOR),
416            glGetString(GL_RENDERER),
417            glGetString(GL_VERSION),
418            glGetString(GL_EXTENSIONS),
419            eglQueryString(display, EGL_VENDOR),
420            eglQueryString(display, EGL_VERSION),
421            eglQueryString(display, EGL_EXTENSIONS));
422
423    glGetIntegerv(GL_MAX_TEXTURE_SIZE, &mMaxTextureSize);
424    glGetIntegerv(GL_MAX_VIEWPORT_DIMS, mMaxViewportDims);
425
426    glPixelStorei(GL_UNPACK_ALIGNMENT, 4);
427    glPixelStorei(GL_PACK_ALIGNMENT, 4);
428    glEnableClientState(GL_VERTEX_ARRAY);
429    glShadeModel(GL_FLAT);
430    glDisable(GL_DITHER);
431    glDisable(GL_CULL_FACE);
432
433    struct pack565 {
434        inline uint16_t operator() (int r, int g, int b) const {
435            return (r<<11)|(g<<5)|b;
436        }
437    } pack565;
438
439    const uint16_t protTexData[] = { pack565(0x03, 0x03, 0x03) };
440    glGenTextures(1, &mProtectedTexName);
441    glBindTexture(GL_TEXTURE_2D, mProtectedTexName);
442    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
443    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
444    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
445    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
446    glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, 1, 1, 0,
447            GL_RGB, GL_UNSIGNED_SHORT_5_6_5, protTexData);
448
449    // print some debugging info
450    EGLint r,g,b,a;
451    eglGetConfigAttrib(display, mEGLConfig, EGL_RED_SIZE,   &r);
452    eglGetConfigAttrib(display, mEGLConfig, EGL_GREEN_SIZE, &g);
453    eglGetConfigAttrib(display, mEGLConfig, EGL_BLUE_SIZE,  &b);
454    eglGetConfigAttrib(display, mEGLConfig, EGL_ALPHA_SIZE, &a);
455    ALOGI("EGL informations:");
456    ALOGI("vendor    : %s", extensions.getEglVendor());
457    ALOGI("version   : %s", extensions.getEglVersion());
458    ALOGI("extensions: %s", extensions.getEglExtension());
459    ALOGI("Client API: %s", eglQueryString(display, EGL_CLIENT_APIS)?:"Not Supported");
460    ALOGI("EGLSurface: %d-%d-%d-%d, config=%p", r, g, b, a, mEGLConfig);
461    ALOGI("OpenGL ES informations:");
462    ALOGI("vendor    : %s", extensions.getVendor());
463    ALOGI("renderer  : %s", extensions.getRenderer());
464    ALOGI("version   : %s", extensions.getVersion());
465    ALOGI("extensions: %s", extensions.getExtension());
466    ALOGI("GL_MAX_TEXTURE_SIZE = %d", mMaxTextureSize);
467    ALOGI("GL_MAX_VIEWPORT_DIMS = %d x %d", mMaxViewportDims[0], mMaxViewportDims[1]);
468}
469
470status_t SurfaceFlinger::readyToRun()
471{
472    ALOGI(  "SurfaceFlinger's main thread ready to run. "
473            "Initializing graphics H/W...");
474
475    Mutex::Autolock _l(mStateLock);
476
477    // initialize EGL for the default display
478    mEGLDisplay = eglGetDisplay(EGL_DEFAULT_DISPLAY);
479    eglInitialize(mEGLDisplay, NULL, NULL);
480
481    // Initialize the H/W composer object.  There may or may not be an
482    // actual hardware composer underneath.
483    mHwc = new HWComposer(this,
484            *static_cast<HWComposer::EventHandler *>(this));
485
486    // initialize the config and context
487    EGLint format = mHwc->getVisualID();
488    mEGLConfig  = selectEGLConfig(mEGLDisplay, format);
489    mEGLContext = createGLContext(mEGLDisplay, mEGLConfig);
490
491    LOG_ALWAYS_FATAL_IF(mEGLContext == EGL_NO_CONTEXT,
492            "couldn't create EGLContext");
493
494    // initialize our non-virtual displays
495    for (size_t i=0 ; i<DisplayDevice::NUM_DISPLAY_TYPES ; i++) {
496        DisplayDevice::DisplayType type((DisplayDevice::DisplayType)i);
497        // set-up the displays that are already connected
498        if (mHwc->isConnected(i) || type==DisplayDevice::DISPLAY_PRIMARY) {
499            // All non-virtual displays are currently considered secure.
500            bool isSecure = true;
501            createBuiltinDisplayLocked(type);
502            wp<IBinder> token = mBuiltinDisplays[i];
503
504            sp<FramebufferSurface> fbs = new FramebufferSurface(*mHwc, i);
505            sp<SurfaceTextureClient> stc = new SurfaceTextureClient(
506                        static_cast< sp<ISurfaceTexture> >(fbs->getBufferQueue()));
507            sp<DisplayDevice> hw = new DisplayDevice(this,
508                    type, isSecure, token, stc, fbs, mEGLConfig);
509            if (i > DisplayDevice::DISPLAY_PRIMARY) {
510                // FIXME: currently we don't get blank/unblank requests
511                // for displays other than the main display, so we always
512                // assume a connected display is unblanked.
513                ALOGD("marking display %d as acquired/unblanked", i);
514                hw->acquireScreen();
515            }
516            mDisplays.add(token, hw);
517        }
518    }
519
520    //  we need a GL context current in a few places, when initializing
521    //  OpenGL ES (see below), or creating a layer,
522    //  or when a texture is (asynchronously) destroyed, and for that
523    //  we need a valid surface, so it's convenient to use the main display
524    //  for that.
525    sp<const DisplayDevice> hw(getDefaultDisplayDevice());
526
527    //  initialize OpenGL ES
528    DisplayDevice::makeCurrent(mEGLDisplay, hw, mEGLContext);
529    initializeGL(mEGLDisplay);
530
531    // start the EventThread
532    mEventThread = new EventThread(this);
533    mEventQueue.setEventThread(mEventThread);
534
535    // initialize our drawing state
536    mDrawingState = mCurrentState;
537
538
539    // We're now ready to accept clients...
540    mReadyToRunBarrier.open();
541
542    // set initial conditions (e.g. unblank default device)
543    initializeDisplays();
544
545    // start boot animation
546    startBootAnim();
547
548    return NO_ERROR;
549}
550
551int32_t SurfaceFlinger::allocateHwcDisplayId(DisplayDevice::DisplayType type) {
552    return (uint32_t(type) < DisplayDevice::NUM_DISPLAY_TYPES) ?
553            type : mHwc->allocateDisplayId();
554}
555
556void SurfaceFlinger::startBootAnim() {
557    // start boot animation
558    property_set("service.bootanim.exit", "0");
559    property_set("ctl.start", "bootanim");
560}
561
562uint32_t SurfaceFlinger::getMaxTextureSize() const {
563    return mMaxTextureSize;
564}
565
566uint32_t SurfaceFlinger::getMaxViewportDims() const {
567    return mMaxViewportDims[0] < mMaxViewportDims[1] ?
568            mMaxViewportDims[0] : mMaxViewportDims[1];
569}
570
571// ----------------------------------------------------------------------------
572
573bool SurfaceFlinger::authenticateSurfaceTexture(
574        const sp<ISurfaceTexture>& surfaceTexture) const {
575    Mutex::Autolock _l(mStateLock);
576    sp<IBinder> surfaceTextureBinder(surfaceTexture->asBinder());
577
578    // Check the visible layer list for the ISurface
579    const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
580    size_t count = currentLayers.size();
581    for (size_t i=0 ; i<count ; i++) {
582        const sp<LayerBase>& layer(currentLayers[i]);
583        sp<LayerBaseClient> lbc(layer->getLayerBaseClient());
584        if (lbc != NULL) {
585            wp<IBinder> lbcBinder = lbc->getSurfaceTextureBinder();
586            if (lbcBinder == surfaceTextureBinder) {
587                return true;
588            }
589        }
590    }
591
592    // Check the layers in the purgatory.  This check is here so that if a
593    // SurfaceTexture gets destroyed before all the clients are done using it,
594    // the error will not be reported as "surface XYZ is not authenticated", but
595    // will instead fail later on when the client tries to use the surface,
596    // which should be reported as "surface XYZ returned an -ENODEV".  The
597    // purgatorized layers are no less authentic than the visible ones, so this
598    // should not cause any harm.
599    size_t purgatorySize =  mLayerPurgatory.size();
600    for (size_t i=0 ; i<purgatorySize ; i++) {
601        const sp<LayerBase>& layer(mLayerPurgatory.itemAt(i));
602        sp<LayerBaseClient> lbc(layer->getLayerBaseClient());
603        if (lbc != NULL) {
604            wp<IBinder> lbcBinder = lbc->getSurfaceTextureBinder();
605            if (lbcBinder == surfaceTextureBinder) {
606                return true;
607            }
608        }
609    }
610
611    return false;
612}
613
614status_t SurfaceFlinger::getDisplayInfo(const sp<IBinder>& display, DisplayInfo* info) {
615    int32_t type = NAME_NOT_FOUND;
616    for (int i=0 ; i<DisplayDevice::NUM_DISPLAY_TYPES ; i++) {
617        if (display == mBuiltinDisplays[i]) {
618            type = i;
619            break;
620        }
621    }
622
623    if (type < 0) {
624        return type;
625    }
626
627    const HWComposer& hwc(getHwComposer());
628    float xdpi = hwc.getDpiX(type);
629    float ydpi = hwc.getDpiY(type);
630
631    // TODO: Not sure if display density should handled by SF any longer
632    class Density {
633        static int getDensityFromProperty(char const* propName) {
634            char property[PROPERTY_VALUE_MAX];
635            int density = 0;
636            if (property_get(propName, property, NULL) > 0) {
637                density = atoi(property);
638            }
639            return density;
640        }
641    public:
642        static int getEmuDensity() {
643            return getDensityFromProperty("qemu.sf.lcd_density"); }
644        static int getBuildDensity()  {
645            return getDensityFromProperty("ro.sf.lcd_density"); }
646    };
647
648    if (type == DisplayDevice::DISPLAY_PRIMARY) {
649        // The density of the device is provided by a build property
650        float density = Density::getBuildDensity() / 160.0f;
651        if (density == 0) {
652            // the build doesn't provide a density -- this is wrong!
653            // use xdpi instead
654            ALOGE("ro.sf.lcd_density must be defined as a build property");
655            density = xdpi / 160.0f;
656        }
657        if (Density::getEmuDensity()) {
658            // if "qemu.sf.lcd_density" is specified, it overrides everything
659            xdpi = ydpi = density = Density::getEmuDensity();
660            density /= 160.0f;
661        }
662        info->density = density;
663
664        // TODO: this needs to go away (currently needed only by webkit)
665        sp<const DisplayDevice> hw(getDefaultDisplayDevice());
666        info->orientation = hw->getOrientation();
667        getPixelFormatInfo(hw->getFormat(), &info->pixelFormatInfo);
668    } else {
669        // TODO: where should this value come from?
670        static const int TV_DENSITY = 213;
671        info->density = TV_DENSITY / 160.0f;
672        info->orientation = 0;
673    }
674
675    info->w = hwc.getWidth(type);
676    info->h = hwc.getHeight(type);
677    info->xdpi = xdpi;
678    info->ydpi = ydpi;
679    info->fps = float(1e9 / hwc.getRefreshPeriod(type));
680
681    // All non-virtual displays are currently considered secure.
682    info->secure = true;
683
684    return NO_ERROR;
685}
686
687// ----------------------------------------------------------------------------
688
689sp<IDisplayEventConnection> SurfaceFlinger::createDisplayEventConnection() {
690    return mEventThread->createEventConnection();
691}
692
693// ----------------------------------------------------------------------------
694
695void SurfaceFlinger::waitForEvent() {
696    mEventQueue.waitMessage();
697}
698
699void SurfaceFlinger::signalTransaction() {
700    mEventQueue.invalidate();
701}
702
703void SurfaceFlinger::signalLayerUpdate() {
704    mEventQueue.invalidate();
705}
706
707void SurfaceFlinger::signalRefresh() {
708    mEventQueue.refresh();
709}
710
711status_t SurfaceFlinger::postMessageAsync(const sp<MessageBase>& msg,
712        nsecs_t reltime, uint32_t flags) {
713    return mEventQueue.postMessage(msg, reltime);
714}
715
716status_t SurfaceFlinger::postMessageSync(const sp<MessageBase>& msg,
717        nsecs_t reltime, uint32_t flags) {
718    status_t res = mEventQueue.postMessage(msg, reltime);
719    if (res == NO_ERROR) {
720        msg->wait();
721    }
722    return res;
723}
724
725bool SurfaceFlinger::threadLoop() {
726    waitForEvent();
727    return true;
728}
729
730void SurfaceFlinger::onVSyncReceived(int type, nsecs_t timestamp) {
731    if (mEventThread == NULL) {
732        // This is a temporary workaround for b/7145521.  A non-null pointer
733        // does not mean EventThread has finished initializing, so this
734        // is not a correct fix.
735        ALOGW("WARNING: EventThread not started, ignoring vsync");
736        return;
737    }
738    if (uint32_t(type) < DisplayDevice::NUM_DISPLAY_TYPES) {
739        // we should only receive DisplayDevice::DisplayType from the vsync callback
740        mEventThread->onVSyncReceived(type, timestamp);
741    }
742}
743
744void SurfaceFlinger::onHotplugReceived(int type, bool connected) {
745    if (mEventThread == NULL) {
746        // This is a temporary workaround for b/7145521.  A non-null pointer
747        // does not mean EventThread has finished initializing, so this
748        // is not a correct fix.
749        ALOGW("WARNING: EventThread not started, ignoring hotplug");
750        return;
751    }
752
753    if (uint32_t(type) < DisplayDevice::NUM_DISPLAY_TYPES) {
754        Mutex::Autolock _l(mStateLock);
755        if (connected) {
756            createBuiltinDisplayLocked((DisplayDevice::DisplayType)type);
757        } else {
758            mCurrentState.displays.removeItem(mBuiltinDisplays[type]);
759            mBuiltinDisplays[type].clear();
760        }
761        setTransactionFlags(eDisplayTransactionNeeded);
762
763        // Defer EventThread notification until SF has updated mDisplays.
764    }
765}
766
767void SurfaceFlinger::eventControl(int disp, int event, int enabled) {
768    getHwComposer().eventControl(disp, event, enabled);
769}
770
771void SurfaceFlinger::onMessageReceived(int32_t what) {
772    ATRACE_CALL();
773    switch (what) {
774    case MessageQueue::INVALIDATE:
775        handleMessageTransaction();
776        handleMessageInvalidate();
777        signalRefresh();
778        break;
779    case MessageQueue::REFRESH:
780        handleMessageRefresh();
781        break;
782    }
783}
784
785void SurfaceFlinger::handleMessageTransaction() {
786    uint32_t transactionFlags = peekTransactionFlags(eTransactionMask);
787    if (transactionFlags) {
788        handleTransaction(transactionFlags);
789    }
790}
791
792void SurfaceFlinger::handleMessageInvalidate() {
793    ATRACE_CALL();
794    handlePageFlip();
795}
796
797void SurfaceFlinger::handleMessageRefresh() {
798    ATRACE_CALL();
799    preComposition();
800    rebuildLayerStacks();
801    setUpHWComposer();
802    doDebugFlashRegions();
803    doComposition();
804    postComposition();
805}
806
807void SurfaceFlinger::doDebugFlashRegions()
808{
809    // is debugging enabled
810    if (CC_LIKELY(!mDebugRegion))
811        return;
812
813    const bool repaintEverything = mRepaintEverything;
814    for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
815        const sp<DisplayDevice>& hw(mDisplays[dpy]);
816        if (hw->canDraw()) {
817            // transform the dirty region into this screen's coordinate space
818            const Region dirtyRegion(hw->getDirtyRegion(repaintEverything));
819            if (!dirtyRegion.isEmpty()) {
820                // redraw the whole screen
821                doComposeSurfaces(hw, Region(hw->bounds()));
822
823                // and draw the dirty region
824                glDisable(GL_TEXTURE_EXTERNAL_OES);
825                glDisable(GL_TEXTURE_2D);
826                glDisable(GL_BLEND);
827                glColor4f(1, 0, 1, 1);
828                const int32_t height = hw->getHeight();
829                Region::const_iterator it = dirtyRegion.begin();
830                Region::const_iterator const end = dirtyRegion.end();
831                while (it != end) {
832                    const Rect& r = *it++;
833                    GLfloat vertices[][2] = {
834                            { r.left,  height - r.top },
835                            { r.left,  height - r.bottom },
836                            { r.right, height - r.bottom },
837                            { r.right, height - r.top }
838                    };
839                    glVertexPointer(2, GL_FLOAT, 0, vertices);
840                    glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
841                }
842                hw->compositionComplete();
843                hw->swapBuffers(getHwComposer());
844            }
845        }
846    }
847
848    postFramebuffer();
849
850    if (mDebugRegion > 1) {
851        usleep(mDebugRegion * 1000);
852    }
853
854    HWComposer& hwc(getHwComposer());
855    if (hwc.initCheck() == NO_ERROR) {
856        status_t err = hwc.prepare();
857        ALOGE_IF(err, "HWComposer::prepare failed (%s)", strerror(-err));
858    }
859}
860
861void SurfaceFlinger::preComposition()
862{
863    bool needExtraInvalidate = false;
864    const LayerVector& currentLayers(mDrawingState.layersSortedByZ);
865    const size_t count = currentLayers.size();
866    for (size_t i=0 ; i<count ; i++) {
867        if (currentLayers[i]->onPreComposition()) {
868            needExtraInvalidate = true;
869        }
870    }
871    if (needExtraInvalidate) {
872        signalLayerUpdate();
873    }
874}
875
876void SurfaceFlinger::postComposition()
877{
878    const LayerVector& currentLayers(mDrawingState.layersSortedByZ);
879    const size_t count = currentLayers.size();
880    for (size_t i=0 ; i<count ; i++) {
881        currentLayers[i]->onPostComposition();
882    }
883}
884
885void SurfaceFlinger::rebuildLayerStacks() {
886    // rebuild the visible layer list per screen
887    if (CC_UNLIKELY(mVisibleRegionsDirty)) {
888        ATRACE_CALL();
889        mVisibleRegionsDirty = false;
890        invalidateHwcGeometry();
891
892        const LayerVector& currentLayers(mDrawingState.layersSortedByZ);
893        for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
894            Region opaqueRegion;
895            Region dirtyRegion;
896            Vector< sp<LayerBase> > layersSortedByZ;
897            const sp<DisplayDevice>& hw(mDisplays[dpy]);
898            const Transform& tr(hw->getTransform());
899            const Rect bounds(hw->getBounds());
900            if (hw->canDraw()) {
901                SurfaceFlinger::computeVisibleRegions(currentLayers,
902                        hw->getLayerStack(), dirtyRegion, opaqueRegion);
903
904                const size_t count = currentLayers.size();
905                for (size_t i=0 ; i<count ; i++) {
906                    const sp<LayerBase>& layer(currentLayers[i]);
907                    const Layer::State& s(layer->drawingState());
908                    if (s.layerStack == hw->getLayerStack()) {
909                        Region drawRegion(tr.transform(
910                                layer->visibleNonTransparentRegion));
911                        drawRegion.andSelf(bounds);
912                        if (!drawRegion.isEmpty()) {
913                            layersSortedByZ.add(layer);
914                        }
915                    }
916                }
917            }
918            hw->setVisibleLayersSortedByZ(layersSortedByZ);
919            hw->undefinedRegion.set(bounds);
920            hw->undefinedRegion.subtractSelf(tr.transform(opaqueRegion));
921            hw->dirtyRegion.orSelf(dirtyRegion);
922        }
923    }
924}
925
926void SurfaceFlinger::setUpHWComposer() {
927    HWComposer& hwc(getHwComposer());
928    if (hwc.initCheck() == NO_ERROR) {
929        // build the h/w work list
930        if (CC_UNLIKELY(mHwWorkListDirty)) {
931            mHwWorkListDirty = false;
932            for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
933                sp<const DisplayDevice> hw(mDisplays[dpy]);
934                const int32_t id = hw->getHwcDisplayId();
935                if (id >= 0) {
936                    const Vector< sp<LayerBase> >& currentLayers(
937                        hw->getVisibleLayersSortedByZ());
938                    const size_t count = currentLayers.size();
939                    if (hwc.createWorkList(id, count) == NO_ERROR) {
940                        HWComposer::LayerListIterator cur = hwc.begin(id);
941                        const HWComposer::LayerListIterator end = hwc.end(id);
942                        for (size_t i=0 ; cur!=end && i<count ; ++i, ++cur) {
943                            const sp<LayerBase>& layer(currentLayers[i]);
944                            layer->setGeometry(hw, *cur);
945                            if (mDebugDisableHWC || mDebugRegion) {
946                                cur->setSkip(true);
947                            }
948                        }
949                    }
950                }
951            }
952        }
953
954        // set the per-frame data
955        for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
956            sp<const DisplayDevice> hw(mDisplays[dpy]);
957            const int32_t id = hw->getHwcDisplayId();
958            if (id >= 0) {
959                const Vector< sp<LayerBase> >& currentLayers(
960                    hw->getVisibleLayersSortedByZ());
961                const size_t count = currentLayers.size();
962                HWComposer::LayerListIterator cur = hwc.begin(id);
963                const HWComposer::LayerListIterator end = hwc.end(id);
964                for (size_t i=0 ; cur!=end && i<count ; ++i, ++cur) {
965                    /*
966                     * update the per-frame h/w composer data for each layer
967                     * and build the transparent region of the FB
968                     */
969                    const sp<LayerBase>& layer(currentLayers[i]);
970                    layer->setPerFrameData(hw, *cur);
971                }
972            }
973        }
974
975        status_t err = hwc.prepare();
976        ALOGE_IF(err, "HWComposer::prepare failed (%s)", strerror(-err));
977    }
978}
979
980void SurfaceFlinger::doComposition() {
981    ATRACE_CALL();
982    const bool repaintEverything = android_atomic_and(0, &mRepaintEverything);
983    for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
984        const sp<DisplayDevice>& hw(mDisplays[dpy]);
985        if (hw->canDraw()) {
986            // transform the dirty region into this screen's coordinate space
987            const Region dirtyRegion(hw->getDirtyRegion(repaintEverything));
988
989            // repaint the framebuffer (if needed)
990            doDisplayComposition(hw, dirtyRegion);
991
992            hw->dirtyRegion.clear();
993            hw->flip(hw->swapRegion);
994            hw->swapRegion.clear();
995        }
996        // inform the h/w that we're done compositing
997        hw->compositionComplete();
998    }
999    postFramebuffer();
1000}
1001
1002void SurfaceFlinger::postFramebuffer()
1003{
1004    ATRACE_CALL();
1005
1006    const nsecs_t now = systemTime();
1007    mDebugInSwapBuffers = now;
1008
1009    HWComposer& hwc(getHwComposer());
1010    if (hwc.initCheck() == NO_ERROR) {
1011        if (!hwc.supportsFramebufferTarget()) {
1012            // EGL spec says:
1013            //   "surface must be bound to the calling thread's current context,
1014            //    for the current rendering API."
1015            DisplayDevice::makeCurrent(mEGLDisplay,
1016                    getDefaultDisplayDevice(), mEGLContext);
1017        }
1018        hwc.commit();
1019    }
1020
1021    for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
1022        sp<const DisplayDevice> hw(mDisplays[dpy]);
1023        const Vector< sp<LayerBase> >& currentLayers(hw->getVisibleLayersSortedByZ());
1024        hw->onSwapBuffersCompleted(hwc);
1025        const size_t count = currentLayers.size();
1026        int32_t id = hw->getHwcDisplayId();
1027        if (id >=0 && hwc.initCheck() == NO_ERROR) {
1028            HWComposer::LayerListIterator cur = hwc.begin(id);
1029            const HWComposer::LayerListIterator end = hwc.end(id);
1030            for (size_t i = 0; cur != end && i < count; ++i, ++cur) {
1031                currentLayers[i]->onLayerDisplayed(hw, &*cur);
1032            }
1033        } else {
1034            for (size_t i = 0; i < count; i++) {
1035                currentLayers[i]->onLayerDisplayed(hw, NULL);
1036            }
1037        }
1038    }
1039
1040    mLastSwapBufferTime = systemTime() - now;
1041    mDebugInSwapBuffers = 0;
1042}
1043
1044void SurfaceFlinger::handleTransaction(uint32_t transactionFlags)
1045{
1046    ATRACE_CALL();
1047
1048    Mutex::Autolock _l(mStateLock);
1049    const nsecs_t now = systemTime();
1050    mDebugInTransaction = now;
1051
1052    // Here we're guaranteed that some transaction flags are set
1053    // so we can call handleTransactionLocked() unconditionally.
1054    // We call getTransactionFlags(), which will also clear the flags,
1055    // with mStateLock held to guarantee that mCurrentState won't change
1056    // until the transaction is committed.
1057
1058    transactionFlags = getTransactionFlags(eTransactionMask);
1059    handleTransactionLocked(transactionFlags);
1060
1061    mLastTransactionTime = systemTime() - now;
1062    mDebugInTransaction = 0;
1063    invalidateHwcGeometry();
1064    // here the transaction has been committed
1065}
1066
1067void SurfaceFlinger::handleTransactionLocked(uint32_t transactionFlags)
1068{
1069    const LayerVector& currentLayers(mCurrentState.layersSortedByZ);
1070    const size_t count = currentLayers.size();
1071
1072    /*
1073     * Traversal of the children
1074     * (perform the transaction for each of them if needed)
1075     */
1076
1077    if (transactionFlags & eTraversalNeeded) {
1078        for (size_t i=0 ; i<count ; i++) {
1079            const sp<LayerBase>& layer = currentLayers[i];
1080            uint32_t trFlags = layer->getTransactionFlags(eTransactionNeeded);
1081            if (!trFlags) continue;
1082
1083            const uint32_t flags = layer->doTransaction(0);
1084            if (flags & Layer::eVisibleRegion)
1085                mVisibleRegionsDirty = true;
1086        }
1087    }
1088
1089    /*
1090     * Perform display own transactions if needed
1091     */
1092
1093    if (transactionFlags & eDisplayTransactionNeeded) {
1094        // here we take advantage of Vector's copy-on-write semantics to
1095        // improve performance by skipping the transaction entirely when
1096        // know that the lists are identical
1097        const KeyedVector<  wp<IBinder>, DisplayDeviceState>& curr(mCurrentState.displays);
1098        const KeyedVector<  wp<IBinder>, DisplayDeviceState>& draw(mDrawingState.displays);
1099        if (!curr.isIdenticalTo(draw)) {
1100            mVisibleRegionsDirty = true;
1101            const size_t cc = curr.size();
1102                  size_t dc = draw.size();
1103
1104            // find the displays that were removed
1105            // (ie: in drawing state but not in current state)
1106            // also handle displays that changed
1107            // (ie: displays that are in both lists)
1108            for (size_t i=0 ; i<dc ; i++) {
1109                const ssize_t j = curr.indexOfKey(draw.keyAt(i));
1110                if (j < 0) {
1111                    // in drawing state but not in current state
1112                    if (!draw[i].isMainDisplay()) {
1113                        // Call makeCurrent() on the primary display so we can
1114                        // be sure that nothing associated with this display
1115                        // is current.
1116                        const sp<const DisplayDevice> hw(getDefaultDisplayDevice());
1117                        DisplayDevice::makeCurrent(mEGLDisplay, hw, mEGLContext);
1118                        mDisplays.removeItem(draw.keyAt(i));
1119                        getHwComposer().disconnectDisplay(draw[i].type);
1120                        mEventThread->onHotplugReceived(draw[i].type, false);
1121                    } else {
1122                        ALOGW("trying to remove the main display");
1123                    }
1124                } else {
1125                    // this display is in both lists. see if something changed.
1126                    const DisplayDeviceState& state(curr[j]);
1127                    const wp<IBinder>& display(curr.keyAt(j));
1128                    if (state.surface->asBinder() != draw[i].surface->asBinder()) {
1129                        // changing the surface is like destroying and
1130                        // recreating the DisplayDevice, so we just remove it
1131                        // from the drawing state, so that it get re-added
1132                        // below.
1133                        mDisplays.removeItem(display);
1134                        mDrawingState.displays.removeItemsAt(i);
1135                        dc--; i--;
1136                        // at this point we must loop to the next item
1137                        continue;
1138                    }
1139
1140                    const sp<DisplayDevice> disp(getDisplayDevice(display));
1141                    if (disp != NULL) {
1142                        if (state.layerStack != draw[i].layerStack) {
1143                            disp->setLayerStack(state.layerStack);
1144                        }
1145                        if ((state.orientation != draw[i].orientation)
1146                                || (state.viewport != draw[i].viewport)
1147                                || (state.frame != draw[i].frame))
1148                        {
1149                            disp->setProjection(state.orientation,
1150                                    state.viewport, state.frame);
1151                        }
1152
1153                        // Walk through all the layers in currentLayers,
1154                        // and update their transform hint.
1155                        //
1156                        // TODO: we could be much more clever about which
1157                        // layers we touch and how often we do these updates
1158                        // (e.g. only touch the layers associated with this
1159                        // display, and only on a rotation).
1160                        for (size_t i = 0; i < count; i++) {
1161                            const sp<LayerBase>& layerBase = currentLayers[i];
1162                            layerBase->updateTransformHint();
1163                        }
1164                    }
1165                }
1166            }
1167
1168            // find displays that were added
1169            // (ie: in current state but not in drawing state)
1170            for (size_t i=0 ; i<cc ; i++) {
1171                if (draw.indexOfKey(curr.keyAt(i)) < 0) {
1172                    const DisplayDeviceState& state(curr[i]);
1173
1174                    sp<FramebufferSurface> fbs;
1175                    sp<SurfaceTextureClient> stc;
1176                    if (!state.isVirtualDisplay()) {
1177
1178                        ALOGE_IF(state.surface!=NULL,
1179                                "adding a supported display, but rendering "
1180                                "surface is provided (%p), ignoring it",
1181                                state.surface.get());
1182
1183                        // for supported (by hwc) displays we provide our
1184                        // own rendering surface
1185                        fbs = new FramebufferSurface(*mHwc, state.type);
1186                        stc = new SurfaceTextureClient(
1187                                static_cast< sp<ISurfaceTexture> >(
1188                                        fbs->getBufferQueue()));
1189                    } else {
1190                        if (state.surface != NULL) {
1191                            stc = new SurfaceTextureClient(state.surface);
1192                        }
1193                    }
1194
1195                    const wp<IBinder>& display(curr.keyAt(i));
1196                    if (stc != NULL) {
1197                        sp<DisplayDevice> hw = new DisplayDevice(this,
1198                                state.type, state.isSecure, display, stc, fbs,
1199                                mEGLConfig);
1200                        hw->setLayerStack(state.layerStack);
1201                        hw->setProjection(state.orientation,
1202                                state.viewport, state.frame);
1203                        hw->setDisplayName(state.displayName);
1204                        mDisplays.add(display, hw);
1205                        mEventThread->onHotplugReceived(state.type, true);
1206                    }
1207                }
1208            }
1209        }
1210    }
1211
1212    /*
1213     * Perform our own transaction if needed
1214     */
1215
1216    const LayerVector& previousLayers(mDrawingState.layersSortedByZ);
1217    if (currentLayers.size() > previousLayers.size()) {
1218        // layers have been added
1219        mVisibleRegionsDirty = true;
1220    }
1221
1222    // some layers might have been removed, so
1223    // we need to update the regions they're exposing.
1224    if (mLayersRemoved) {
1225        mLayersRemoved = false;
1226        mVisibleRegionsDirty = true;
1227        const size_t count = previousLayers.size();
1228        for (size_t i=0 ; i<count ; i++) {
1229            const sp<LayerBase>& layer(previousLayers[i]);
1230            if (currentLayers.indexOf(layer) < 0) {
1231                // this layer is not visible anymore
1232                // TODO: we could traverse the tree from front to back and
1233                //       compute the actual visible region
1234                // TODO: we could cache the transformed region
1235                const Layer::State& s(layer->drawingState());
1236                Region visibleReg = s.transform.transform(
1237                        Region(Rect(s.active.w, s.active.h)));
1238                invalidateLayerStack(s.layerStack, visibleReg);
1239            }
1240        }
1241    }
1242
1243    commitTransaction();
1244}
1245
1246void SurfaceFlinger::commitTransaction()
1247{
1248    if (!mLayersPendingRemoval.isEmpty()) {
1249        // Notify removed layers now that they can't be drawn from
1250        for (size_t i = 0; i < mLayersPendingRemoval.size(); i++) {
1251            mLayersPendingRemoval[i]->onRemoved();
1252        }
1253        mLayersPendingRemoval.clear();
1254    }
1255
1256    mDrawingState = mCurrentState;
1257    mTransactionPending = false;
1258    mAnimTransactionPending = false;
1259    mTransactionCV.broadcast();
1260}
1261
1262void SurfaceFlinger::computeVisibleRegions(
1263        const LayerVector& currentLayers, uint32_t layerStack,
1264        Region& outDirtyRegion, Region& outOpaqueRegion)
1265{
1266    ATRACE_CALL();
1267
1268    Region aboveOpaqueLayers;
1269    Region aboveCoveredLayers;
1270    Region dirty;
1271
1272    outDirtyRegion.clear();
1273
1274    size_t i = currentLayers.size();
1275    while (i--) {
1276        const sp<LayerBase>& layer = currentLayers[i];
1277
1278        // start with the whole surface at its current location
1279        const Layer::State& s(layer->drawingState());
1280
1281        // only consider the layers on the given later stack
1282        if (s.layerStack != layerStack)
1283            continue;
1284
1285        /*
1286         * opaqueRegion: area of a surface that is fully opaque.
1287         */
1288        Region opaqueRegion;
1289
1290        /*
1291         * visibleRegion: area of a surface that is visible on screen
1292         * and not fully transparent. This is essentially the layer's
1293         * footprint minus the opaque regions above it.
1294         * Areas covered by a translucent surface are considered visible.
1295         */
1296        Region visibleRegion;
1297
1298        /*
1299         * coveredRegion: area of a surface that is covered by all
1300         * visible regions above it (which includes the translucent areas).
1301         */
1302        Region coveredRegion;
1303
1304        /*
1305         * transparentRegion: area of a surface that is hinted to be completely
1306         * transparent. This is only used to tell when the layer has no visible
1307         * non-transparent regions and can be removed from the layer list. It
1308         * does not affect the visibleRegion of this layer or any layers
1309         * beneath it. The hint may not be correct if apps don't respect the
1310         * SurfaceView restrictions (which, sadly, some don't).
1311         */
1312        Region transparentRegion;
1313
1314
1315        // handle hidden surfaces by setting the visible region to empty
1316        if (CC_LIKELY(layer->isVisible())) {
1317            const bool translucent = !layer->isOpaque();
1318            Rect bounds(layer->computeBounds());
1319            visibleRegion.set(bounds);
1320            if (!visibleRegion.isEmpty()) {
1321                // Remove the transparent area from the visible region
1322                if (translucent) {
1323                    const Transform tr(s.transform);
1324                    if (tr.transformed()) {
1325                        if (tr.preserveRects()) {
1326                            // transform the transparent region
1327                            transparentRegion = tr.transform(s.transparentRegion);
1328                        } else {
1329                            // transformation too complex, can't do the
1330                            // transparent region optimization.
1331                            transparentRegion.clear();
1332                        }
1333                    } else {
1334                        transparentRegion = s.transparentRegion;
1335                    }
1336                }
1337
1338                // compute the opaque region
1339                const int32_t layerOrientation = s.transform.getOrientation();
1340                if (s.alpha==255 && !translucent &&
1341                        ((layerOrientation & Transform::ROT_INVALID) == false)) {
1342                    // the opaque region is the layer's footprint
1343                    opaqueRegion = visibleRegion;
1344                }
1345            }
1346        }
1347
1348        // Clip the covered region to the visible region
1349        coveredRegion = aboveCoveredLayers.intersect(visibleRegion);
1350
1351        // Update aboveCoveredLayers for next (lower) layer
1352        aboveCoveredLayers.orSelf(visibleRegion);
1353
1354        // subtract the opaque region covered by the layers above us
1355        visibleRegion.subtractSelf(aboveOpaqueLayers);
1356
1357        // compute this layer's dirty region
1358        if (layer->contentDirty) {
1359            // we need to invalidate the whole region
1360            dirty = visibleRegion;
1361            // as well, as the old visible region
1362            dirty.orSelf(layer->visibleRegion);
1363            layer->contentDirty = false;
1364        } else {
1365            /* compute the exposed region:
1366             *   the exposed region consists of two components:
1367             *   1) what's VISIBLE now and was COVERED before
1368             *   2) what's EXPOSED now less what was EXPOSED before
1369             *
1370             * note that (1) is conservative, we start with the whole
1371             * visible region but only keep what used to be covered by
1372             * something -- which mean it may have been exposed.
1373             *
1374             * (2) handles areas that were not covered by anything but got
1375             * exposed because of a resize.
1376             */
1377            const Region newExposed = visibleRegion - coveredRegion;
1378            const Region oldVisibleRegion = layer->visibleRegion;
1379            const Region oldCoveredRegion = layer->coveredRegion;
1380            const Region oldExposed = oldVisibleRegion - oldCoveredRegion;
1381            dirty = (visibleRegion&oldCoveredRegion) | (newExposed-oldExposed);
1382        }
1383        dirty.subtractSelf(aboveOpaqueLayers);
1384
1385        // accumulate to the screen dirty region
1386        outDirtyRegion.orSelf(dirty);
1387
1388        // Update aboveOpaqueLayers for next (lower) layer
1389        aboveOpaqueLayers.orSelf(opaqueRegion);
1390
1391        // Store the visible region in screen space
1392        layer->setVisibleRegion(visibleRegion);
1393        layer->setCoveredRegion(coveredRegion);
1394        layer->setVisibleNonTransparentRegion(
1395                visibleRegion.subtract(transparentRegion));
1396    }
1397
1398    outOpaqueRegion = aboveOpaqueLayers;
1399}
1400
1401void SurfaceFlinger::invalidateLayerStack(uint32_t layerStack,
1402        const Region& dirty) {
1403    for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
1404        const sp<DisplayDevice>& hw(mDisplays[dpy]);
1405        if (hw->getLayerStack() == layerStack) {
1406            hw->dirtyRegion.orSelf(dirty);
1407        }
1408    }
1409}
1410
1411void SurfaceFlinger::handlePageFlip()
1412{
1413    Region dirtyRegion;
1414
1415    bool visibleRegions = false;
1416    const LayerVector& currentLayers(mDrawingState.layersSortedByZ);
1417    const size_t count = currentLayers.size();
1418    for (size_t i=0 ; i<count ; i++) {
1419        const sp<LayerBase>& layer(currentLayers[i]);
1420        const Region dirty(layer->latchBuffer(visibleRegions));
1421        const Layer::State& s(layer->drawingState());
1422        invalidateLayerStack(s.layerStack, dirty);
1423    }
1424
1425    mVisibleRegionsDirty |= visibleRegions;
1426}
1427
1428void SurfaceFlinger::invalidateHwcGeometry()
1429{
1430    mHwWorkListDirty = true;
1431}
1432
1433
1434void SurfaceFlinger::doDisplayComposition(const sp<const DisplayDevice>& hw,
1435        const Region& inDirtyRegion)
1436{
1437    Region dirtyRegion(inDirtyRegion);
1438
1439    // compute the invalid region
1440    hw->swapRegion.orSelf(dirtyRegion);
1441
1442    uint32_t flags = hw->getFlags();
1443    if (flags & DisplayDevice::SWAP_RECTANGLE) {
1444        // we can redraw only what's dirty, but since SWAP_RECTANGLE only
1445        // takes a rectangle, we must make sure to update that whole
1446        // rectangle in that case
1447        dirtyRegion.set(hw->swapRegion.bounds());
1448    } else {
1449        if (flags & DisplayDevice::PARTIAL_UPDATES) {
1450            // We need to redraw the rectangle that will be updated
1451            // (pushed to the framebuffer).
1452            // This is needed because PARTIAL_UPDATES only takes one
1453            // rectangle instead of a region (see DisplayDevice::flip())
1454            dirtyRegion.set(hw->swapRegion.bounds());
1455        } else {
1456            // we need to redraw everything (the whole screen)
1457            dirtyRegion.set(hw->bounds());
1458            hw->swapRegion = dirtyRegion;
1459        }
1460    }
1461
1462    doComposeSurfaces(hw, dirtyRegion);
1463
1464    // update the swap region and clear the dirty region
1465    hw->swapRegion.orSelf(dirtyRegion);
1466
1467    // swap buffers (presentation)
1468    hw->swapBuffers(getHwComposer());
1469}
1470
1471void SurfaceFlinger::doComposeSurfaces(const sp<const DisplayDevice>& hw, const Region& dirty)
1472{
1473    const int32_t id = hw->getHwcDisplayId();
1474    HWComposer& hwc(getHwComposer());
1475    HWComposer::LayerListIterator cur = hwc.begin(id);
1476    const HWComposer::LayerListIterator end = hwc.end(id);
1477
1478    const bool hasGlesComposition = hwc.hasGlesComposition(id) || (cur==end);
1479    if (hasGlesComposition) {
1480        DisplayDevice::makeCurrent(mEGLDisplay, hw, mEGLContext);
1481
1482        // set the frame buffer
1483        glMatrixMode(GL_MODELVIEW);
1484        glLoadIdentity();
1485
1486        // Never touch the framebuffer if we don't have any framebuffer layers
1487        const bool hasHwcComposition = hwc.hasHwcComposition(id);
1488        if (hasHwcComposition) {
1489            // when using overlays, we assume a fully transparent framebuffer
1490            // NOTE: we could reduce how much we need to clear, for instance
1491            // remove where there are opaque FB layers. however, on some
1492            // GPUs doing a "clean slate" glClear might be more efficient.
1493            // We'll revisit later if needed.
1494            glClearColor(0, 0, 0, 0);
1495            glClear(GL_COLOR_BUFFER_BIT);
1496        } else {
1497            // we start with the whole screen area
1498            const Region bounds(hw->getBounds());
1499
1500            // we remove the scissor part
1501            // we're left with the letterbox region
1502            // (common case is that letterbox ends-up being empty)
1503            const Region letterbox(bounds.subtract(hw->getScissor()));
1504
1505            // compute the area to clear
1506            Region region(hw->undefinedRegion.merge(letterbox));
1507
1508            // but limit it to the dirty region
1509            region.andSelf(dirty);
1510
1511            // screen is already cleared here
1512            if (!region.isEmpty()) {
1513                // can happen with SurfaceView
1514                drawWormhole(hw, region);
1515            }
1516        }
1517
1518        if (hw->getDisplayType() != DisplayDevice::DISPLAY_PRIMARY) {
1519            // just to be on the safe side, we don't set the
1520            // scissor on the main display. It should never be needed
1521            // anyways (though in theory it could since the API allows it).
1522            const Rect& bounds(hw->getBounds());
1523            const Rect& scissor(hw->getScissor());
1524            if (scissor != bounds) {
1525                // scissor doesn't match the screen's dimensions, so we
1526                // need to clear everything outside of it and enable
1527                // the GL scissor so we don't draw anything where we shouldn't
1528                const GLint height = hw->getHeight();
1529                glScissor(scissor.left, height - scissor.bottom,
1530                        scissor.getWidth(), scissor.getHeight());
1531                // enable scissor for this frame
1532                glEnable(GL_SCISSOR_TEST);
1533            }
1534        }
1535    }
1536
1537    /*
1538     * and then, render the layers targeted at the framebuffer
1539     */
1540
1541    const Vector< sp<LayerBase> >& layers(hw->getVisibleLayersSortedByZ());
1542    const size_t count = layers.size();
1543    const Transform& tr = hw->getTransform();
1544    if (cur != end) {
1545        // we're using h/w composer
1546        for (size_t i=0 ; i<count && cur!=end ; ++i, ++cur) {
1547            const sp<LayerBase>& layer(layers[i]);
1548            const Region clip(dirty.intersect(tr.transform(layer->visibleRegion)));
1549            if (!clip.isEmpty()) {
1550                switch (cur->getCompositionType()) {
1551                    case HWC_OVERLAY: {
1552                        if ((cur->getHints() & HWC_HINT_CLEAR_FB)
1553                                && i
1554                                && layer->isOpaque()
1555                                && hasGlesComposition) {
1556                            // never clear the very first layer since we're
1557                            // guaranteed the FB is already cleared
1558                            layer->clearWithOpenGL(hw, clip);
1559                        }
1560                        break;
1561                    }
1562                    case HWC_FRAMEBUFFER: {
1563                        layer->draw(hw, clip);
1564                        break;
1565                    }
1566                    case HWC_FRAMEBUFFER_TARGET: {
1567                        // this should not happen as the iterator shouldn't
1568                        // let us get there.
1569                        ALOGW("HWC_FRAMEBUFFER_TARGET found in hwc list (index=%d)", i);
1570                        break;
1571                    }
1572                }
1573            }
1574            layer->setAcquireFence(hw, *cur);
1575        }
1576    } else {
1577        // we're not using h/w composer
1578        for (size_t i=0 ; i<count ; ++i) {
1579            const sp<LayerBase>& layer(layers[i]);
1580            const Region clip(dirty.intersect(
1581                    tr.transform(layer->visibleRegion)));
1582            if (!clip.isEmpty()) {
1583                layer->draw(hw, clip);
1584            }
1585        }
1586    }
1587
1588    // disable scissor at the end of the frame
1589    glDisable(GL_SCISSOR_TEST);
1590}
1591
1592void SurfaceFlinger::drawWormhole(const sp<const DisplayDevice>& hw,
1593        const Region& region) const
1594{
1595    glDisable(GL_TEXTURE_EXTERNAL_OES);
1596    glDisable(GL_TEXTURE_2D);
1597    glDisable(GL_BLEND);
1598    glColor4f(0,0,0,0);
1599
1600    const int32_t height = hw->getHeight();
1601    Region::const_iterator it = region.begin();
1602    Region::const_iterator const end = region.end();
1603    while (it != end) {
1604        const Rect& r = *it++;
1605        GLfloat vertices[][2] = {
1606                { r.left,  height - r.top },
1607                { r.left,  height - r.bottom },
1608                { r.right, height - r.bottom },
1609                { r.right, height - r.top }
1610        };
1611        glVertexPointer(2, GL_FLOAT, 0, vertices);
1612        glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
1613    }
1614}
1615
1616ssize_t SurfaceFlinger::addClientLayer(const sp<Client>& client,
1617        const sp<LayerBaseClient>& lbc)
1618{
1619    // attach this layer to the client
1620    size_t name = client->attachLayer(lbc);
1621
1622    // add this layer to the current state list
1623    Mutex::Autolock _l(mStateLock);
1624    mCurrentState.layersSortedByZ.add(lbc);
1625
1626    return ssize_t(name);
1627}
1628
1629status_t SurfaceFlinger::removeLayer(const sp<LayerBase>& layer)
1630{
1631    Mutex::Autolock _l(mStateLock);
1632    status_t err = purgatorizeLayer_l(layer);
1633    if (err == NO_ERROR)
1634        setTransactionFlags(eTransactionNeeded);
1635    return err;
1636}
1637
1638status_t SurfaceFlinger::removeLayer_l(const sp<LayerBase>& layerBase)
1639{
1640    ssize_t index = mCurrentState.layersSortedByZ.remove(layerBase);
1641    if (index >= 0) {
1642        mLayersRemoved = true;
1643        return NO_ERROR;
1644    }
1645    return status_t(index);
1646}
1647
1648status_t SurfaceFlinger::purgatorizeLayer_l(const sp<LayerBase>& layerBase)
1649{
1650    // First add the layer to the purgatory list, which makes sure it won't
1651    // go away, then remove it from the main list (through a transaction).
1652    ssize_t err = removeLayer_l(layerBase);
1653    if (err >= 0) {
1654        mLayerPurgatory.add(layerBase);
1655    }
1656
1657    mLayersPendingRemoval.push(layerBase);
1658
1659    // it's possible that we don't find a layer, because it might
1660    // have been destroyed already -- this is not technically an error
1661    // from the user because there is a race between Client::destroySurface(),
1662    // ~Client() and ~ISurface().
1663    return (err == NAME_NOT_FOUND) ? status_t(NO_ERROR) : err;
1664}
1665
1666uint32_t SurfaceFlinger::peekTransactionFlags(uint32_t flags)
1667{
1668    return android_atomic_release_load(&mTransactionFlags);
1669}
1670
1671uint32_t SurfaceFlinger::getTransactionFlags(uint32_t flags)
1672{
1673    return android_atomic_and(~flags, &mTransactionFlags) & flags;
1674}
1675
1676uint32_t SurfaceFlinger::setTransactionFlags(uint32_t flags)
1677{
1678    uint32_t old = android_atomic_or(flags, &mTransactionFlags);
1679    if ((old & flags)==0) { // wake the server up
1680        signalTransaction();
1681    }
1682    return old;
1683}
1684
1685void SurfaceFlinger::setTransactionState(
1686        const Vector<ComposerState>& state,
1687        const Vector<DisplayState>& displays,
1688        uint32_t flags)
1689{
1690    ATRACE_CALL();
1691    Mutex::Autolock _l(mStateLock);
1692    uint32_t transactionFlags = 0;
1693
1694    if (flags & eAnimation) {
1695        // For window updates that are part of an animation we must wait for
1696        // previous animation "frames" to be handled.
1697        while (mAnimTransactionPending) {
1698            status_t err = mTransactionCV.waitRelative(mStateLock, s2ns(5));
1699            if (CC_UNLIKELY(err != NO_ERROR)) {
1700                // just in case something goes wrong in SF, return to the
1701                // caller after a few seconds.
1702                ALOGW_IF(err == TIMED_OUT, "setTransactionState timed out "
1703                        "waiting for previous animation frame");
1704                mAnimTransactionPending = false;
1705                break;
1706            }
1707        }
1708    }
1709
1710    size_t count = displays.size();
1711    for (size_t i=0 ; i<count ; i++) {
1712        const DisplayState& s(displays[i]);
1713        transactionFlags |= setDisplayStateLocked(s);
1714    }
1715
1716    count = state.size();
1717    for (size_t i=0 ; i<count ; i++) {
1718        const ComposerState& s(state[i]);
1719        // Here we need to check that the interface we're given is indeed
1720        // one of our own. A malicious client could give us a NULL
1721        // IInterface, or one of its own or even one of our own but a
1722        // different type. All these situations would cause us to crash.
1723        //
1724        // NOTE: it would be better to use RTTI as we could directly check
1725        // that we have a Client*. however, RTTI is disabled in Android.
1726        if (s.client != NULL) {
1727            sp<IBinder> binder = s.client->asBinder();
1728            if (binder != NULL) {
1729                String16 desc(binder->getInterfaceDescriptor());
1730                if (desc == ISurfaceComposerClient::descriptor) {
1731                    sp<Client> client( static_cast<Client *>(s.client.get()) );
1732                    transactionFlags |= setClientStateLocked(client, s.state);
1733                }
1734            }
1735        }
1736    }
1737
1738    if (transactionFlags) {
1739        // this triggers the transaction
1740        setTransactionFlags(transactionFlags);
1741
1742        // if this is a synchronous transaction, wait for it to take effect
1743        // before returning.
1744        if (flags & eSynchronous) {
1745            mTransactionPending = true;
1746        }
1747        if (flags & eAnimation) {
1748            mAnimTransactionPending = true;
1749        }
1750        while (mTransactionPending) {
1751            status_t err = mTransactionCV.waitRelative(mStateLock, s2ns(5));
1752            if (CC_UNLIKELY(err != NO_ERROR)) {
1753                // just in case something goes wrong in SF, return to the
1754                // called after a few seconds.
1755                ALOGW_IF(err == TIMED_OUT, "setTransactionState timed out!");
1756                mTransactionPending = false;
1757                break;
1758            }
1759        }
1760    }
1761}
1762
1763uint32_t SurfaceFlinger::setDisplayStateLocked(const DisplayState& s)
1764{
1765    ssize_t dpyIdx = mCurrentState.displays.indexOfKey(s.token);
1766    if (dpyIdx < 0)
1767        return 0;
1768
1769    uint32_t flags = 0;
1770    DisplayDeviceState& disp(mCurrentState.displays.editValueAt(dpyIdx));
1771    if (disp.isValid()) {
1772        const uint32_t what = s.what;
1773        if (what & DisplayState::eSurfaceChanged) {
1774            if (disp.surface->asBinder() != s.surface->asBinder()) {
1775                disp.surface = s.surface;
1776                flags |= eDisplayTransactionNeeded;
1777            }
1778        }
1779        if (what & DisplayState::eLayerStackChanged) {
1780            if (disp.layerStack != s.layerStack) {
1781                disp.layerStack = s.layerStack;
1782                flags |= eDisplayTransactionNeeded;
1783            }
1784        }
1785        if (what & DisplayState::eDisplayProjectionChanged) {
1786            if (disp.orientation != s.orientation) {
1787                disp.orientation = s.orientation;
1788                flags |= eDisplayTransactionNeeded;
1789            }
1790            if (disp.frame != s.frame) {
1791                disp.frame = s.frame;
1792                flags |= eDisplayTransactionNeeded;
1793            }
1794            if (disp.viewport != s.viewport) {
1795                disp.viewport = s.viewport;
1796                flags |= eDisplayTransactionNeeded;
1797            }
1798        }
1799    }
1800    return flags;
1801}
1802
1803uint32_t SurfaceFlinger::setClientStateLocked(
1804        const sp<Client>& client,
1805        const layer_state_t& s)
1806{
1807    uint32_t flags = 0;
1808    sp<LayerBaseClient> layer(client->getLayerUser(s.surface));
1809    if (layer != 0) {
1810        const uint32_t what = s.what;
1811        if (what & layer_state_t::ePositionChanged) {
1812            if (layer->setPosition(s.x, s.y))
1813                flags |= eTraversalNeeded;
1814        }
1815        if (what & layer_state_t::eLayerChanged) {
1816            // NOTE: index needs to be calculated before we update the state
1817            ssize_t idx = mCurrentState.layersSortedByZ.indexOf(layer);
1818            if (layer->setLayer(s.z)) {
1819                mCurrentState.layersSortedByZ.removeAt(idx);
1820                mCurrentState.layersSortedByZ.add(layer);
1821                // we need traversal (state changed)
1822                // AND transaction (list changed)
1823                flags |= eTransactionNeeded|eTraversalNeeded;
1824            }
1825        }
1826        if (what & layer_state_t::eSizeChanged) {
1827            if (layer->setSize(s.w, s.h)) {
1828                flags |= eTraversalNeeded;
1829            }
1830        }
1831        if (what & layer_state_t::eAlphaChanged) {
1832            if (layer->setAlpha(uint8_t(255.0f*s.alpha+0.5f)))
1833                flags |= eTraversalNeeded;
1834        }
1835        if (what & layer_state_t::eMatrixChanged) {
1836            if (layer->setMatrix(s.matrix))
1837                flags |= eTraversalNeeded;
1838        }
1839        if (what & layer_state_t::eTransparentRegionChanged) {
1840            if (layer->setTransparentRegionHint(s.transparentRegion))
1841                flags |= eTraversalNeeded;
1842        }
1843        if (what & layer_state_t::eVisibilityChanged) {
1844            if (layer->setFlags(s.flags, s.mask))
1845                flags |= eTraversalNeeded;
1846        }
1847        if (what & layer_state_t::eCropChanged) {
1848            if (layer->setCrop(s.crop))
1849                flags |= eTraversalNeeded;
1850        }
1851        if (what & layer_state_t::eLayerStackChanged) {
1852            // NOTE: index needs to be calculated before we update the state
1853            ssize_t idx = mCurrentState.layersSortedByZ.indexOf(layer);
1854            if (layer->setLayerStack(s.layerStack)) {
1855                mCurrentState.layersSortedByZ.removeAt(idx);
1856                mCurrentState.layersSortedByZ.add(layer);
1857                // we need traversal (state changed)
1858                // AND transaction (list changed)
1859                flags |= eTransactionNeeded|eTraversalNeeded;
1860            }
1861        }
1862    }
1863    return flags;
1864}
1865
1866sp<ISurface> SurfaceFlinger::createLayer(
1867        ISurfaceComposerClient::surface_data_t* params,
1868        const String8& name,
1869        const sp<Client>& client,
1870       uint32_t w, uint32_t h, PixelFormat format,
1871        uint32_t flags)
1872{
1873    sp<LayerBaseClient> layer;
1874    sp<ISurface> surfaceHandle;
1875
1876    if (int32_t(w|h) < 0) {
1877        ALOGE("createLayer() failed, w or h is negative (w=%d, h=%d)",
1878                int(w), int(h));
1879        return surfaceHandle;
1880    }
1881
1882    //ALOGD("createLayer for (%d x %d), name=%s", w, h, name.string());
1883    switch (flags & ISurfaceComposerClient::eFXSurfaceMask) {
1884        case ISurfaceComposerClient::eFXSurfaceNormal:
1885            layer = createNormalLayer(client, w, h, flags, format);
1886            break;
1887        case ISurfaceComposerClient::eFXSurfaceBlur:
1888        case ISurfaceComposerClient::eFXSurfaceDim:
1889            layer = createDimLayer(client, w, h, flags);
1890            break;
1891        case ISurfaceComposerClient::eFXSurfaceScreenshot:
1892            layer = createScreenshotLayer(client, w, h, flags);
1893            break;
1894    }
1895
1896    if (layer != 0) {
1897        layer->initStates(w, h, flags);
1898        layer->setName(name);
1899        ssize_t token = addClientLayer(client, layer);
1900        surfaceHandle = layer->getSurface();
1901        if (surfaceHandle != 0) {
1902            params->token = token;
1903            params->identity = layer->getIdentity();
1904        }
1905        setTransactionFlags(eTransactionNeeded);
1906    }
1907
1908    return surfaceHandle;
1909}
1910
1911sp<Layer> SurfaceFlinger::createNormalLayer(
1912        const sp<Client>& client,
1913        uint32_t w, uint32_t h, uint32_t flags,
1914        PixelFormat& format)
1915{
1916    // initialize the surfaces
1917    switch (format) {
1918    case PIXEL_FORMAT_TRANSPARENT:
1919    case PIXEL_FORMAT_TRANSLUCENT:
1920        format = PIXEL_FORMAT_RGBA_8888;
1921        break;
1922    case PIXEL_FORMAT_OPAQUE:
1923#ifdef NO_RGBX_8888
1924        format = PIXEL_FORMAT_RGB_565;
1925#else
1926        format = PIXEL_FORMAT_RGBX_8888;
1927#endif
1928        break;
1929    }
1930
1931#ifdef NO_RGBX_8888
1932    if (format == PIXEL_FORMAT_RGBX_8888)
1933        format = PIXEL_FORMAT_RGBA_8888;
1934#endif
1935
1936    sp<Layer> layer = new Layer(this, client);
1937    status_t err = layer->setBuffers(w, h, format, flags);
1938    if (CC_LIKELY(err != NO_ERROR)) {
1939        ALOGE("createNormalLayer() failed (%s)", strerror(-err));
1940        layer.clear();
1941    }
1942    return layer;
1943}
1944
1945sp<LayerDim> SurfaceFlinger::createDimLayer(
1946        const sp<Client>& client,
1947        uint32_t w, uint32_t h, uint32_t flags)
1948{
1949    sp<LayerDim> layer = new LayerDim(this, client);
1950    return layer;
1951}
1952
1953sp<LayerScreenshot> SurfaceFlinger::createScreenshotLayer(
1954        const sp<Client>& client,
1955        uint32_t w, uint32_t h, uint32_t flags)
1956{
1957    sp<LayerScreenshot> layer = new LayerScreenshot(this, client);
1958    return layer;
1959}
1960
1961status_t SurfaceFlinger::onLayerRemoved(const sp<Client>& client, SurfaceID sid)
1962{
1963    /*
1964     * called by the window manager, when a surface should be marked for
1965     * destruction.
1966     *
1967     * The surface is removed from the current and drawing lists, but placed
1968     * in the purgatory queue, so it's not destroyed right-away (we need
1969     * to wait for all client's references to go away first).
1970     */
1971
1972    status_t err = NAME_NOT_FOUND;
1973    Mutex::Autolock _l(mStateLock);
1974    sp<LayerBaseClient> layer = client->getLayerUser(sid);
1975
1976    if (layer != 0) {
1977        err = purgatorizeLayer_l(layer);
1978        if (err == NO_ERROR) {
1979            setTransactionFlags(eTransactionNeeded);
1980        }
1981    }
1982    return err;
1983}
1984
1985status_t SurfaceFlinger::onLayerDestroyed(const wp<LayerBaseClient>& layer)
1986{
1987    // called by ~ISurface() when all references are gone
1988    status_t err = NO_ERROR;
1989    sp<LayerBaseClient> l(layer.promote());
1990    if (l != NULL) {
1991        Mutex::Autolock _l(mStateLock);
1992        err = removeLayer_l(l);
1993        if (err == NAME_NOT_FOUND) {
1994            // The surface wasn't in the current list, which means it was
1995            // removed already, which means it is in the purgatory,
1996            // and need to be removed from there.
1997            ssize_t idx = mLayerPurgatory.remove(l);
1998            ALOGE_IF(idx < 0,
1999                    "layer=%p is not in the purgatory list", l.get());
2000        }
2001        ALOGE_IF(err<0 && err != NAME_NOT_FOUND,
2002                "error removing layer=%p (%s)", l.get(), strerror(-err));
2003    }
2004    return err;
2005}
2006
2007// ---------------------------------------------------------------------------
2008
2009void SurfaceFlinger::onInitializeDisplays() {
2010    // reset screen orientation
2011    Vector<ComposerState> state;
2012    Vector<DisplayState> displays;
2013    DisplayState d;
2014    d.what = DisplayState::eDisplayProjectionChanged;
2015    d.token = mBuiltinDisplays[DisplayDevice::DISPLAY_PRIMARY];
2016    d.orientation = DisplayState::eOrientationDefault;
2017    d.frame.makeInvalid();
2018    d.viewport.makeInvalid();
2019    displays.add(d);
2020    setTransactionState(state, displays, 0);
2021    onScreenAcquired(getDefaultDisplayDevice());
2022}
2023
2024void SurfaceFlinger::initializeDisplays() {
2025    class MessageScreenInitialized : public MessageBase {
2026        SurfaceFlinger* flinger;
2027    public:
2028        MessageScreenInitialized(SurfaceFlinger* flinger) : flinger(flinger) { }
2029        virtual bool handler() {
2030            flinger->onInitializeDisplays();
2031            return true;
2032        }
2033    };
2034    sp<MessageBase> msg = new MessageScreenInitialized(this);
2035    postMessageAsync(msg);  // we may be called from main thread, use async message
2036}
2037
2038
2039void SurfaceFlinger::onScreenAcquired(const sp<const DisplayDevice>& hw) {
2040    ALOGD("Screen acquired, type=%d flinger=%p", hw->getDisplayType(), this);
2041    if (hw->isScreenAcquired()) {
2042        // this is expected, e.g. when power manager wakes up during boot
2043        ALOGD(" screen was previously acquired");
2044        return;
2045    }
2046
2047    hw->acquireScreen();
2048    int32_t type = hw->getDisplayType();
2049    if (type < DisplayDevice::NUM_DISPLAY_TYPES) {
2050        // built-in display, tell the HWC
2051        getHwComposer().acquire(type);
2052
2053        if (type == DisplayDevice::DISPLAY_PRIMARY) {
2054            // FIXME: eventthread only knows about the main display right now
2055            mEventThread->onScreenAcquired();
2056        }
2057    }
2058    mVisibleRegionsDirty = true;
2059    repaintEverything();
2060}
2061
2062void SurfaceFlinger::onScreenReleased(const sp<const DisplayDevice>& hw) {
2063    ALOGD("Screen released, type=%d flinger=%p", hw->getDisplayType(), this);
2064    if (!hw->isScreenAcquired()) {
2065        ALOGD(" screen was previously released");
2066        return;
2067    }
2068
2069    hw->releaseScreen();
2070    int32_t type = hw->getDisplayType();
2071    if (type < DisplayDevice::NUM_DISPLAY_TYPES) {
2072        if (type == DisplayDevice::DISPLAY_PRIMARY) {
2073            // FIXME: eventthread only knows about the main display right now
2074            mEventThread->onScreenReleased();
2075        }
2076
2077        // built-in display, tell the HWC
2078        getHwComposer().release(type);
2079    }
2080    mVisibleRegionsDirty = true;
2081    // from this point on, SF will stop drawing on this display
2082}
2083
2084void SurfaceFlinger::unblank(const sp<IBinder>& display) {
2085    class MessageScreenAcquired : public MessageBase {
2086        SurfaceFlinger& mFlinger;
2087        sp<IBinder> mDisplay;
2088    public:
2089        MessageScreenAcquired(SurfaceFlinger& flinger,
2090                const sp<IBinder>& disp) : mFlinger(flinger), mDisplay(disp) { }
2091        virtual bool handler() {
2092            const sp<DisplayDevice> hw(mFlinger.getDisplayDevice(mDisplay));
2093            if (hw == NULL) {
2094                ALOGE("Attempt to unblank null display %p", mDisplay.get());
2095            } else if (hw->getDisplayType() >= DisplayDevice::NUM_DISPLAY_TYPES) {
2096                ALOGW("Attempt to unblank virtual display");
2097            } else {
2098                mFlinger.onScreenAcquired(hw);
2099            }
2100            return true;
2101        }
2102    };
2103    sp<MessageBase> msg = new MessageScreenAcquired(*this, display);
2104    postMessageSync(msg);
2105}
2106
2107void SurfaceFlinger::blank(const sp<IBinder>& display) {
2108    class MessageScreenReleased : public MessageBase {
2109        SurfaceFlinger& mFlinger;
2110        sp<IBinder> mDisplay;
2111    public:
2112        MessageScreenReleased(SurfaceFlinger& flinger,
2113                const sp<IBinder>& disp) : mFlinger(flinger), mDisplay(disp) { }
2114        virtual bool handler() {
2115            const sp<DisplayDevice> hw(mFlinger.getDisplayDevice(mDisplay));
2116            if (hw == NULL) {
2117                ALOGE("Attempt to blank null display %p", mDisplay.get());
2118            } else if (hw->getDisplayType() >= DisplayDevice::NUM_DISPLAY_TYPES) {
2119                ALOGW("Attempt to blank virtual display");
2120            } else {
2121                mFlinger.onScreenReleased(hw);
2122            }
2123            return true;
2124        }
2125    };
2126    sp<MessageBase> msg = new MessageScreenReleased(*this, display);
2127    postMessageSync(msg);
2128}
2129
2130// ---------------------------------------------------------------------------
2131
2132status_t SurfaceFlinger::dump(int fd, const Vector<String16>& args)
2133{
2134    const size_t SIZE = 4096;
2135    char buffer[SIZE];
2136    String8 result;
2137
2138    if (!PermissionCache::checkCallingPermission(sDump)) {
2139        snprintf(buffer, SIZE, "Permission Denial: "
2140                "can't dump SurfaceFlinger from pid=%d, uid=%d\n",
2141                IPCThreadState::self()->getCallingPid(),
2142                IPCThreadState::self()->getCallingUid());
2143        result.append(buffer);
2144    } else {
2145        // Try to get the main lock, but don't insist if we can't
2146        // (this would indicate SF is stuck, but we want to be able to
2147        // print something in dumpsys).
2148        int retry = 3;
2149        while (mStateLock.tryLock()<0 && --retry>=0) {
2150            usleep(1000000);
2151        }
2152        const bool locked(retry >= 0);
2153        if (!locked) {
2154            snprintf(buffer, SIZE,
2155                    "SurfaceFlinger appears to be unresponsive, "
2156                    "dumping anyways (no locks held)\n");
2157            result.append(buffer);
2158        }
2159
2160        bool dumpAll = true;
2161        size_t index = 0;
2162        size_t numArgs = args.size();
2163        if (numArgs) {
2164            if ((index < numArgs) &&
2165                    (args[index] == String16("--list"))) {
2166                index++;
2167                listLayersLocked(args, index, result, buffer, SIZE);
2168                dumpAll = false;
2169            }
2170
2171            if ((index < numArgs) &&
2172                    (args[index] == String16("--latency"))) {
2173                index++;
2174                dumpStatsLocked(args, index, result, buffer, SIZE);
2175                dumpAll = false;
2176            }
2177
2178            if ((index < numArgs) &&
2179                    (args[index] == String16("--latency-clear"))) {
2180                index++;
2181                clearStatsLocked(args, index, result, buffer, SIZE);
2182                dumpAll = false;
2183            }
2184        }
2185
2186        if (dumpAll) {
2187            dumpAllLocked(result, buffer, SIZE);
2188        }
2189
2190        if (locked) {
2191            mStateLock.unlock();
2192        }
2193    }
2194    write(fd, result.string(), result.size());
2195    return NO_ERROR;
2196}
2197
2198void SurfaceFlinger::listLayersLocked(const Vector<String16>& args, size_t& index,
2199        String8& result, char* buffer, size_t SIZE) const
2200{
2201    const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
2202    const size_t count = currentLayers.size();
2203    for (size_t i=0 ; i<count ; i++) {
2204        const sp<LayerBase>& layer(currentLayers[i]);
2205        snprintf(buffer, SIZE, "%s\n", layer->getName().string());
2206        result.append(buffer);
2207    }
2208}
2209
2210void SurfaceFlinger::dumpStatsLocked(const Vector<String16>& args, size_t& index,
2211        String8& result, char* buffer, size_t SIZE) const
2212{
2213    String8 name;
2214    if (index < args.size()) {
2215        name = String8(args[index]);
2216        index++;
2217    }
2218
2219    const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
2220    const size_t count = currentLayers.size();
2221    for (size_t i=0 ; i<count ; i++) {
2222        const sp<LayerBase>& layer(currentLayers[i]);
2223        if (name.isEmpty()) {
2224            snprintf(buffer, SIZE, "%s\n", layer->getName().string());
2225            result.append(buffer);
2226        }
2227        if (name.isEmpty() || (name == layer->getName())) {
2228            layer->dumpStats(result, buffer, SIZE);
2229        }
2230    }
2231}
2232
2233void SurfaceFlinger::clearStatsLocked(const Vector<String16>& args, size_t& index,
2234        String8& result, char* buffer, size_t SIZE) const
2235{
2236    String8 name;
2237    if (index < args.size()) {
2238        name = String8(args[index]);
2239        index++;
2240    }
2241
2242    const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
2243    const size_t count = currentLayers.size();
2244    for (size_t i=0 ; i<count ; i++) {
2245        const sp<LayerBase>& layer(currentLayers[i]);
2246        if (name.isEmpty() || (name == layer->getName())) {
2247            layer->clearStats();
2248        }
2249    }
2250}
2251
2252/*static*/ void SurfaceFlinger::appendSfConfigString(String8& result)
2253{
2254    static const char* config =
2255            " [sf"
2256#ifdef NO_RGBX_8888
2257            " NO_RGBX_8888"
2258#endif
2259#ifdef HAS_CONTEXT_PRIORITY
2260            " HAS_CONTEXT_PRIORITY"
2261#endif
2262#ifdef NEVER_DEFAULT_TO_ASYNC_MODE
2263            " NEVER_DEFAULT_TO_ASYNC_MODE"
2264#endif
2265#ifdef TARGET_DISABLE_TRIPLE_BUFFERING
2266            " TARGET_DISABLE_TRIPLE_BUFFERING"
2267#endif
2268            "]";
2269    result.append(config);
2270}
2271
2272void SurfaceFlinger::dumpAllLocked(
2273        String8& result, char* buffer, size_t SIZE) const
2274{
2275    // figure out if we're stuck somewhere
2276    const nsecs_t now = systemTime();
2277    const nsecs_t inSwapBuffers(mDebugInSwapBuffers);
2278    const nsecs_t inTransaction(mDebugInTransaction);
2279    nsecs_t inSwapBuffersDuration = (inSwapBuffers) ? now-inSwapBuffers : 0;
2280    nsecs_t inTransactionDuration = (inTransaction) ? now-inTransaction : 0;
2281
2282    /*
2283     * Dump library configuration.
2284     */
2285    result.append("Build configuration:");
2286    appendSfConfigString(result);
2287    appendUiConfigString(result);
2288    appendGuiConfigString(result);
2289    result.append("\n");
2290
2291    /*
2292     * Dump the visible layer list
2293     */
2294    const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
2295    const size_t count = currentLayers.size();
2296    snprintf(buffer, SIZE, "Visible layers (count = %d)\n", count);
2297    result.append(buffer);
2298    for (size_t i=0 ; i<count ; i++) {
2299        const sp<LayerBase>& layer(currentLayers[i]);
2300        layer->dump(result, buffer, SIZE);
2301    }
2302
2303    /*
2304     * Dump the layers in the purgatory
2305     */
2306
2307    const size_t purgatorySize = mLayerPurgatory.size();
2308    snprintf(buffer, SIZE, "Purgatory state (%d entries)\n", purgatorySize);
2309    result.append(buffer);
2310    for (size_t i=0 ; i<purgatorySize ; i++) {
2311        const sp<LayerBase>& layer(mLayerPurgatory.itemAt(i));
2312        layer->shortDump(result, buffer, SIZE);
2313    }
2314
2315    /*
2316     * Dump Display state
2317     */
2318
2319    snprintf(buffer, SIZE, "Displays (%d entries)\n", mDisplays.size());
2320    result.append(buffer);
2321    for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
2322        const sp<const DisplayDevice>& hw(mDisplays[dpy]);
2323        hw->dump(result, buffer, SIZE);
2324    }
2325
2326    /*
2327     * Dump SurfaceFlinger global state
2328     */
2329
2330    snprintf(buffer, SIZE, "SurfaceFlinger global state:\n");
2331    result.append(buffer);
2332
2333    HWComposer& hwc(getHwComposer());
2334    sp<const DisplayDevice> hw(getDefaultDisplayDevice());
2335    const GLExtensions& extensions(GLExtensions::getInstance());
2336    snprintf(buffer, SIZE, "GLES: %s, %s, %s\n",
2337            extensions.getVendor(),
2338            extensions.getRenderer(),
2339            extensions.getVersion());
2340    result.append(buffer);
2341
2342    snprintf(buffer, SIZE, "EGL : %s\n",
2343            eglQueryString(mEGLDisplay, EGL_VERSION_HW_ANDROID));
2344    result.append(buffer);
2345
2346    snprintf(buffer, SIZE, "EXTS: %s\n", extensions.getExtension());
2347    result.append(buffer);
2348
2349    hw->undefinedRegion.dump(result, "undefinedRegion");
2350    snprintf(buffer, SIZE,
2351            "  orientation=%d, canDraw=%d\n",
2352            hw->getOrientation(), hw->canDraw());
2353    result.append(buffer);
2354    snprintf(buffer, SIZE,
2355            "  last eglSwapBuffers() time: %f us\n"
2356            "  last transaction time     : %f us\n"
2357            "  transaction-flags         : %08x\n"
2358            "  refresh-rate              : %f fps\n"
2359            "  x-dpi                     : %f\n"
2360            "  y-dpi                     : %f\n",
2361            mLastSwapBufferTime/1000.0,
2362            mLastTransactionTime/1000.0,
2363            mTransactionFlags,
2364            1e9 / hwc.getRefreshPeriod(HWC_DISPLAY_PRIMARY),
2365            hwc.getDpiX(HWC_DISPLAY_PRIMARY),
2366            hwc.getDpiY(HWC_DISPLAY_PRIMARY));
2367    result.append(buffer);
2368
2369    snprintf(buffer, SIZE, "  eglSwapBuffers time: %f us\n",
2370            inSwapBuffersDuration/1000.0);
2371    result.append(buffer);
2372
2373    snprintf(buffer, SIZE, "  transaction time: %f us\n",
2374            inTransactionDuration/1000.0);
2375    result.append(buffer);
2376
2377    /*
2378     * VSYNC state
2379     */
2380    mEventThread->dump(result, buffer, SIZE);
2381
2382    /*
2383     * Dump HWComposer state
2384     */
2385    snprintf(buffer, SIZE, "h/w composer state:\n");
2386    result.append(buffer);
2387    snprintf(buffer, SIZE, "  h/w composer %s and %s\n",
2388            hwc.initCheck()==NO_ERROR ? "present" : "not present",
2389                    (mDebugDisableHWC || mDebugRegion) ? "disabled" : "enabled");
2390    result.append(buffer);
2391    hwc.dump(result, buffer, SIZE);
2392
2393    /*
2394     * Dump gralloc state
2395     */
2396    const GraphicBufferAllocator& alloc(GraphicBufferAllocator::get());
2397    alloc.dump(result);
2398}
2399
2400const Vector< sp<LayerBase> >&
2401SurfaceFlinger::getLayerSortedByZForHwcDisplay(int disp) {
2402    // Note: mStateLock is held here
2403    return getDisplayDevice( getBuiltInDisplay(disp) )->getVisibleLayersSortedByZ();
2404}
2405
2406bool SurfaceFlinger::startDdmConnection()
2407{
2408    void* libddmconnection_dso =
2409            dlopen("libsurfaceflinger_ddmconnection.so", RTLD_NOW);
2410    if (!libddmconnection_dso) {
2411        return false;
2412    }
2413    void (*DdmConnection_start)(const char* name);
2414    DdmConnection_start =
2415            (typeof DdmConnection_start)dlsym(libddmconnection_dso, "DdmConnection_start");
2416    if (!DdmConnection_start) {
2417        dlclose(libddmconnection_dso);
2418        return false;
2419    }
2420    (*DdmConnection_start)(getServiceName());
2421    return true;
2422}
2423
2424status_t SurfaceFlinger::onTransact(
2425    uint32_t code, const Parcel& data, Parcel* reply, uint32_t flags)
2426{
2427    switch (code) {
2428        case CREATE_CONNECTION:
2429        case SET_TRANSACTION_STATE:
2430        case BOOT_FINISHED:
2431        case BLANK:
2432        case UNBLANK:
2433        {
2434            // codes that require permission check
2435            IPCThreadState* ipc = IPCThreadState::self();
2436            const int pid = ipc->getCallingPid();
2437            const int uid = ipc->getCallingUid();
2438            if ((uid != AID_GRAPHICS) &&
2439                    !PermissionCache::checkPermission(sAccessSurfaceFlinger, pid, uid)) {
2440                ALOGE("Permission Denial: "
2441                        "can't access SurfaceFlinger pid=%d, uid=%d", pid, uid);
2442                return PERMISSION_DENIED;
2443            }
2444            break;
2445        }
2446        case CAPTURE_SCREEN:
2447        {
2448            // codes that require permission check
2449            IPCThreadState* ipc = IPCThreadState::self();
2450            const int pid = ipc->getCallingPid();
2451            const int uid = ipc->getCallingUid();
2452            if ((uid != AID_GRAPHICS) &&
2453                    !PermissionCache::checkPermission(sReadFramebuffer, pid, uid)) {
2454                ALOGE("Permission Denial: "
2455                        "can't read framebuffer pid=%d, uid=%d", pid, uid);
2456                return PERMISSION_DENIED;
2457            }
2458            break;
2459        }
2460    }
2461
2462    status_t err = BnSurfaceComposer::onTransact(code, data, reply, flags);
2463    if (err == UNKNOWN_TRANSACTION || err == PERMISSION_DENIED) {
2464        CHECK_INTERFACE(ISurfaceComposer, data, reply);
2465        if (CC_UNLIKELY(!PermissionCache::checkCallingPermission(sHardwareTest))) {
2466            IPCThreadState* ipc = IPCThreadState::self();
2467            const int pid = ipc->getCallingPid();
2468            const int uid = ipc->getCallingUid();
2469            ALOGE("Permission Denial: "
2470                    "can't access SurfaceFlinger pid=%d, uid=%d", pid, uid);
2471            return PERMISSION_DENIED;
2472        }
2473        int n;
2474        switch (code) {
2475            case 1000: // SHOW_CPU, NOT SUPPORTED ANYMORE
2476            case 1001: // SHOW_FPS, NOT SUPPORTED ANYMORE
2477                return NO_ERROR;
2478            case 1002:  // SHOW_UPDATES
2479                n = data.readInt32();
2480                mDebugRegion = n ? n : (mDebugRegion ? 0 : 1);
2481                invalidateHwcGeometry();
2482                repaintEverything();
2483                return NO_ERROR;
2484            case 1004:{ // repaint everything
2485                repaintEverything();
2486                return NO_ERROR;
2487            }
2488            case 1005:{ // force transaction
2489                setTransactionFlags(
2490                        eTransactionNeeded|
2491                        eDisplayTransactionNeeded|
2492                        eTraversalNeeded);
2493                return NO_ERROR;
2494            }
2495            case 1006:{ // send empty update
2496                signalRefresh();
2497                return NO_ERROR;
2498            }
2499            case 1008:  // toggle use of hw composer
2500                n = data.readInt32();
2501                mDebugDisableHWC = n ? 1 : 0;
2502                invalidateHwcGeometry();
2503                repaintEverything();
2504                return NO_ERROR;
2505            case 1009:  // toggle use of transform hint
2506                n = data.readInt32();
2507                mDebugDisableTransformHint = n ? 1 : 0;
2508                invalidateHwcGeometry();
2509                repaintEverything();
2510                return NO_ERROR;
2511            case 1010:  // interrogate.
2512                reply->writeInt32(0);
2513                reply->writeInt32(0);
2514                reply->writeInt32(mDebugRegion);
2515                reply->writeInt32(0);
2516                reply->writeInt32(mDebugDisableHWC);
2517                return NO_ERROR;
2518            case 1013: {
2519                Mutex::Autolock _l(mStateLock);
2520                sp<const DisplayDevice> hw(getDefaultDisplayDevice());
2521                reply->writeInt32(hw->getPageFlipCount());
2522            }
2523            return NO_ERROR;
2524        }
2525    }
2526    return err;
2527}
2528
2529void SurfaceFlinger::repaintEverything() {
2530    android_atomic_or(1, &mRepaintEverything);
2531    signalTransaction();
2532}
2533
2534// ---------------------------------------------------------------------------
2535
2536status_t SurfaceFlinger::renderScreenToTexture(uint32_t layerStack,
2537        GLuint* textureName, GLfloat* uOut, GLfloat* vOut)
2538{
2539    Mutex::Autolock _l(mStateLock);
2540    return renderScreenToTextureLocked(layerStack, textureName, uOut, vOut);
2541}
2542
2543status_t SurfaceFlinger::renderScreenToTextureLocked(uint32_t layerStack,
2544        GLuint* textureName, GLfloat* uOut, GLfloat* vOut)
2545{
2546    ATRACE_CALL();
2547
2548    if (!GLExtensions::getInstance().haveFramebufferObject())
2549        return INVALID_OPERATION;
2550
2551    // get screen geometry
2552    // FIXME: figure out what it means to have a screenshot texture w/ multi-display
2553    sp<const DisplayDevice> hw(getDefaultDisplayDevice());
2554    const uint32_t hw_w = hw->getWidth();
2555    const uint32_t hw_h = hw->getHeight();
2556    GLfloat u = 1;
2557    GLfloat v = 1;
2558
2559    // make sure to clear all GL error flags
2560    while ( glGetError() != GL_NO_ERROR ) ;
2561
2562    // create a FBO
2563    GLuint name, tname;
2564    glGenTextures(1, &tname);
2565    glBindTexture(GL_TEXTURE_2D, tname);
2566    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
2567    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
2568    glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB,
2569            hw_w, hw_h, 0, GL_RGB, GL_UNSIGNED_BYTE, 0);
2570    if (glGetError() != GL_NO_ERROR) {
2571        while ( glGetError() != GL_NO_ERROR ) ;
2572        GLint tw = (2 << (31 - clz(hw_w)));
2573        GLint th = (2 << (31 - clz(hw_h)));
2574        glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB,
2575                tw, th, 0, GL_RGB, GL_UNSIGNED_BYTE, 0);
2576        u = GLfloat(hw_w) / tw;
2577        v = GLfloat(hw_h) / th;
2578    }
2579    glGenFramebuffersOES(1, &name);
2580    glBindFramebufferOES(GL_FRAMEBUFFER_OES, name);
2581    glFramebufferTexture2DOES(GL_FRAMEBUFFER_OES,
2582            GL_COLOR_ATTACHMENT0_OES, GL_TEXTURE_2D, tname, 0);
2583
2584    DisplayDevice::setViewportAndProjection(hw);
2585
2586    // redraw the screen entirely...
2587    glDisable(GL_TEXTURE_EXTERNAL_OES);
2588    glDisable(GL_TEXTURE_2D);
2589    glClearColor(0,0,0,1);
2590    glClear(GL_COLOR_BUFFER_BIT);
2591    glMatrixMode(GL_MODELVIEW);
2592    glLoadIdentity();
2593    const Vector< sp<LayerBase> >& layers(hw->getVisibleLayersSortedByZ());
2594    const size_t count = layers.size();
2595    for (size_t i=0 ; i<count ; ++i) {
2596        const sp<LayerBase>& layer(layers[i]);
2597        layer->draw(hw);
2598    }
2599
2600    hw->compositionComplete();
2601
2602    // back to main framebuffer
2603    glBindFramebufferOES(GL_FRAMEBUFFER_OES, 0);
2604    glDeleteFramebuffersOES(1, &name);
2605
2606    *textureName = tname;
2607    *uOut = u;
2608    *vOut = v;
2609    return NO_ERROR;
2610}
2611
2612// ---------------------------------------------------------------------------
2613
2614status_t SurfaceFlinger::captureScreenImplLocked(const sp<IBinder>& display,
2615        sp<IMemoryHeap>* heap,
2616        uint32_t* w, uint32_t* h, PixelFormat* f,
2617        uint32_t sw, uint32_t sh,
2618        uint32_t minLayerZ, uint32_t maxLayerZ)
2619{
2620    ATRACE_CALL();
2621
2622    status_t result = PERMISSION_DENIED;
2623
2624    if (!GLExtensions::getInstance().haveFramebufferObject()) {
2625        return INVALID_OPERATION;
2626    }
2627
2628    // get screen geometry
2629    sp<const DisplayDevice> hw(getDisplayDevice(display));
2630    const uint32_t hw_w = hw->getWidth();
2631    const uint32_t hw_h = hw->getHeight();
2632
2633    // if we have secure windows on this display, never allow the screen capture
2634    if (hw->getSecureLayerVisible()) {
2635        ALOGW("FB is protected: PERMISSION_DENIED");
2636        return PERMISSION_DENIED;
2637    }
2638
2639    if ((sw > hw_w) || (sh > hw_h)) {
2640        ALOGE("size mismatch (%d, %d) > (%d, %d)", sw, sh, hw_w, hw_h);
2641        return BAD_VALUE;
2642    }
2643
2644    sw = (!sw) ? hw_w : sw;
2645    sh = (!sh) ? hw_h : sh;
2646    const size_t size = sw * sh * 4;
2647    const bool filtering = sw != hw_w || sh != hw_h;
2648
2649//    ALOGD("screenshot: sw=%d, sh=%d, minZ=%d, maxZ=%d",
2650//            sw, sh, minLayerZ, maxLayerZ);
2651
2652    // make sure to clear all GL error flags
2653    while ( glGetError() != GL_NO_ERROR ) ;
2654
2655    // create a FBO
2656    GLuint name, tname;
2657    glGenRenderbuffersOES(1, &tname);
2658    glBindRenderbufferOES(GL_RENDERBUFFER_OES, tname);
2659    glRenderbufferStorageOES(GL_RENDERBUFFER_OES, GL_RGBA8_OES, sw, sh);
2660
2661    glGenFramebuffersOES(1, &name);
2662    glBindFramebufferOES(GL_FRAMEBUFFER_OES, name);
2663    glFramebufferRenderbufferOES(GL_FRAMEBUFFER_OES,
2664            GL_COLOR_ATTACHMENT0_OES, GL_RENDERBUFFER_OES, tname);
2665
2666    GLenum status = glCheckFramebufferStatusOES(GL_FRAMEBUFFER_OES);
2667
2668    if (status == GL_FRAMEBUFFER_COMPLETE_OES) {
2669
2670        // invert everything, b/c glReadPixel() below will invert the FB
2671        GLint  viewport[4];
2672        glGetIntegerv(GL_VIEWPORT, viewport);
2673        glViewport(0, 0, sw, sh);
2674        glMatrixMode(GL_PROJECTION);
2675        glPushMatrix();
2676        glLoadIdentity();
2677        glOrthof(0, hw_w, hw_h, 0, 0, 1);
2678        glMatrixMode(GL_MODELVIEW);
2679
2680        // redraw the screen entirely...
2681        glClearColor(0,0,0,1);
2682        glClear(GL_COLOR_BUFFER_BIT);
2683
2684        const Vector< sp<LayerBase> >& layers(hw->getVisibleLayersSortedByZ());
2685        const size_t count = layers.size();
2686        for (size_t i=0 ; i<count ; ++i) {
2687            const sp<LayerBase>& layer(layers[i]);
2688            const uint32_t z = layer->drawingState().z;
2689            if (z >= minLayerZ && z <= maxLayerZ) {
2690                if (filtering) layer->setFiltering(true);
2691                layer->draw(hw);
2692                if (filtering) layer->setFiltering(false);
2693            }
2694        }
2695
2696        // check for errors and return screen capture
2697        if (glGetError() != GL_NO_ERROR) {
2698            // error while rendering
2699            result = INVALID_OPERATION;
2700        } else {
2701            // allocate shared memory large enough to hold the
2702            // screen capture
2703            sp<MemoryHeapBase> base(
2704                    new MemoryHeapBase(size, 0, "screen-capture") );
2705            void* const ptr = base->getBase();
2706            if (ptr != MAP_FAILED) {
2707                // capture the screen with glReadPixels()
2708                ScopedTrace _t(ATRACE_TAG, "glReadPixels");
2709                glReadPixels(0, 0, sw, sh, GL_RGBA, GL_UNSIGNED_BYTE, ptr);
2710                if (glGetError() == GL_NO_ERROR) {
2711                    *heap = base;
2712                    *w = sw;
2713                    *h = sh;
2714                    *f = PIXEL_FORMAT_RGBA_8888;
2715                    result = NO_ERROR;
2716                }
2717            } else {
2718                result = NO_MEMORY;
2719            }
2720        }
2721        glViewport(viewport[0], viewport[1], viewport[2], viewport[3]);
2722        glMatrixMode(GL_PROJECTION);
2723        glPopMatrix();
2724        glMatrixMode(GL_MODELVIEW);
2725    } else {
2726        result = BAD_VALUE;
2727    }
2728
2729    // release FBO resources
2730    glBindFramebufferOES(GL_FRAMEBUFFER_OES, 0);
2731    glDeleteRenderbuffersOES(1, &tname);
2732    glDeleteFramebuffersOES(1, &name);
2733
2734    hw->compositionComplete();
2735
2736//    ALOGD("screenshot: result = %s", result<0 ? strerror(result) : "OK");
2737
2738    return result;
2739}
2740
2741
2742status_t SurfaceFlinger::captureScreen(const sp<IBinder>& display,
2743        sp<IMemoryHeap>* heap,
2744        uint32_t* width, uint32_t* height, PixelFormat* format,
2745        uint32_t sw, uint32_t sh,
2746        uint32_t minLayerZ, uint32_t maxLayerZ)
2747{
2748    if (CC_UNLIKELY(display == 0))
2749        return BAD_VALUE;
2750
2751    if (!GLExtensions::getInstance().haveFramebufferObject())
2752        return INVALID_OPERATION;
2753
2754    class MessageCaptureScreen : public MessageBase {
2755        SurfaceFlinger* flinger;
2756        sp<IBinder> display;
2757        sp<IMemoryHeap>* heap;
2758        uint32_t* w;
2759        uint32_t* h;
2760        PixelFormat* f;
2761        uint32_t sw;
2762        uint32_t sh;
2763        uint32_t minLayerZ;
2764        uint32_t maxLayerZ;
2765        status_t result;
2766    public:
2767        MessageCaptureScreen(SurfaceFlinger* flinger, const sp<IBinder>& display,
2768                sp<IMemoryHeap>* heap, uint32_t* w, uint32_t* h, PixelFormat* f,
2769                uint32_t sw, uint32_t sh,
2770                uint32_t minLayerZ, uint32_t maxLayerZ)
2771            : flinger(flinger), display(display),
2772              heap(heap), w(w), h(h), f(f), sw(sw), sh(sh),
2773              minLayerZ(minLayerZ), maxLayerZ(maxLayerZ),
2774              result(PERMISSION_DENIED)
2775        {
2776        }
2777        status_t getResult() const {
2778            return result;
2779        }
2780        virtual bool handler() {
2781            Mutex::Autolock _l(flinger->mStateLock);
2782            result = flinger->captureScreenImplLocked(display,
2783                    heap, w, h, f, sw, sh, minLayerZ, maxLayerZ);
2784            return true;
2785        }
2786    };
2787
2788    sp<MessageBase> msg = new MessageCaptureScreen(this,
2789            display, heap, width, height, format, sw, sh, minLayerZ, maxLayerZ);
2790    status_t res = postMessageSync(msg);
2791    if (res == NO_ERROR) {
2792        res = static_cast<MessageCaptureScreen*>( msg.get() )->getResult();
2793    }
2794    return res;
2795}
2796
2797// ---------------------------------------------------------------------------
2798
2799SurfaceFlinger::LayerVector::LayerVector() {
2800}
2801
2802SurfaceFlinger::LayerVector::LayerVector(const LayerVector& rhs)
2803    : SortedVector<sp<LayerBase> >(rhs) {
2804}
2805
2806int SurfaceFlinger::LayerVector::do_compare(const void* lhs,
2807    const void* rhs) const
2808{
2809    // sort layers per layer-stack, then by z-order and finally by sequence
2810    const sp<LayerBase>& l(*reinterpret_cast<const sp<LayerBase>*>(lhs));
2811    const sp<LayerBase>& r(*reinterpret_cast<const sp<LayerBase>*>(rhs));
2812
2813    uint32_t ls = l->currentState().layerStack;
2814    uint32_t rs = r->currentState().layerStack;
2815    if (ls != rs)
2816        return ls - rs;
2817
2818    uint32_t lz = l->currentState().z;
2819    uint32_t rz = r->currentState().z;
2820    if (lz != rz)
2821        return lz - rz;
2822
2823    return l->sequence - r->sequence;
2824}
2825
2826// ---------------------------------------------------------------------------
2827
2828SurfaceFlinger::DisplayDeviceState::DisplayDeviceState()
2829    : type(DisplayDevice::DISPLAY_ID_INVALID) {
2830}
2831
2832SurfaceFlinger::DisplayDeviceState::DisplayDeviceState(DisplayDevice::DisplayType type)
2833    : type(type), layerStack(0), orientation(0) {
2834    viewport.makeInvalid();
2835    frame.makeInvalid();
2836}
2837
2838// ---------------------------------------------------------------------------
2839
2840}; // namespace android
2841