SurfaceFlinger.cpp revision 92efd84f37ce5a8aae74dc9086f825a67b6894e9
1/*
2 * Copyright (C) 2007 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#define ATRACE_TAG ATRACE_TAG_GRAPHICS
18
19#include <stdint.h>
20#include <sys/types.h>
21#include <errno.h>
22#include <math.h>
23
24#include <EGL/egl.h>
25#include <GLES/gl.h>
26
27#include <cutils/log.h>
28#include <cutils/properties.h>
29
30#include <binder/IPCThreadState.h>
31#include <binder/IServiceManager.h>
32#include <binder/MemoryHeapBase.h>
33#include <binder/PermissionCache.h>
34
35#include <ui/DisplayInfo.h>
36
37#include <gui/IDisplayEventConnection.h>
38#include <gui/BitTube.h>
39#include <gui/SurfaceTextureClient.h>
40
41#include <ui/GraphicBufferAllocator.h>
42#include <ui/PixelFormat.h>
43
44#include <utils/String8.h>
45#include <utils/String16.h>
46#include <utils/StopWatch.h>
47#include <utils/Trace.h>
48
49#include <private/android_filesystem_config.h>
50
51#include "clz.h"
52#include "DdmConnection.h"
53#include "DisplayDevice.h"
54#include "Client.h"
55#include "EventThread.h"
56#include "GLExtensions.h"
57#include "Layer.h"
58#include "LayerDim.h"
59#include "LayerScreenshot.h"
60#include "SurfaceFlinger.h"
61
62#include "DisplayHardware/FramebufferSurface.h"
63#include "DisplayHardware/HWComposer.h"
64
65
66#define EGL_VERSION_HW_ANDROID  0x3143
67
68#define DISPLAY_COUNT       1
69
70namespace android {
71// ---------------------------------------------------------------------------
72
73const String16 sHardwareTest("android.permission.HARDWARE_TEST");
74const String16 sAccessSurfaceFlinger("android.permission.ACCESS_SURFACE_FLINGER");
75const String16 sReadFramebuffer("android.permission.READ_FRAME_BUFFER");
76const String16 sDump("android.permission.DUMP");
77
78// ---------------------------------------------------------------------------
79
80SurfaceFlinger::SurfaceFlinger()
81    :   BnSurfaceComposer(), Thread(false),
82        mTransactionFlags(0),
83        mTransationPending(false),
84        mLayersRemoved(false),
85        mRepaintEverything(0),
86        mBootTime(systemTime()),
87        mVisibleRegionsDirty(false),
88        mHwWorkListDirty(false),
89        mDebugRegion(0),
90        mDebugDDMS(0),
91        mDebugDisableHWC(0),
92        mDebugDisableTransformHint(0),
93        mDebugInSwapBuffers(0),
94        mLastSwapBufferTime(0),
95        mDebugInTransaction(0),
96        mLastTransactionTime(0),
97        mBootFinished(false),
98        mExternalDisplaySurface(EGL_NO_SURFACE)
99{
100    ALOGI("SurfaceFlinger is starting");
101
102    // debugging stuff...
103    char value[PROPERTY_VALUE_MAX];
104
105    property_get("debug.sf.showupdates", value, "0");
106    mDebugRegion = atoi(value);
107
108#ifdef DDMS_DEBUGGING
109    property_get("debug.sf.ddms", value, "0");
110    mDebugDDMS = atoi(value);
111    if (mDebugDDMS) {
112        DdmConnection::start(getServiceName());
113    }
114#else
115#warning "DDMS_DEBUGGING disabled"
116#endif
117
118    ALOGI_IF(mDebugRegion,       "showupdates enabled");
119    ALOGI_IF(mDebugDDMS,         "DDMS debugging enabled");
120}
121
122void SurfaceFlinger::onFirstRef()
123{
124    mEventQueue.init(this);
125
126    run("SurfaceFlinger", PRIORITY_URGENT_DISPLAY);
127
128    // Wait for the main thread to be done with its initialization
129    mReadyToRunBarrier.wait();
130}
131
132
133SurfaceFlinger::~SurfaceFlinger()
134{
135    EGLDisplay display = eglGetDisplay(EGL_DEFAULT_DISPLAY);
136    eglMakeCurrent(display, EGL_NO_SURFACE, EGL_NO_SURFACE, EGL_NO_CONTEXT);
137    eglTerminate(display);
138}
139
140void SurfaceFlinger::binderDied(const wp<IBinder>& who)
141{
142    // the window manager died on us. prepare its eulogy.
143
144    // reset screen orientation
145    Vector<ComposerState> state;
146    Vector<DisplayState> displays;
147    DisplayState d;
148    d.orientation = eOrientationDefault;
149    displays.add(d);
150    setTransactionState(state, displays, 0);
151
152    // restart the boot-animation
153    startBootAnim();
154}
155
156sp<ISurfaceComposerClient> SurfaceFlinger::createConnection()
157{
158    sp<ISurfaceComposerClient> bclient;
159    sp<Client> client(new Client(this));
160    status_t err = client->initCheck();
161    if (err == NO_ERROR) {
162        bclient = client;
163    }
164    return bclient;
165}
166
167sp<IGraphicBufferAlloc> SurfaceFlinger::createGraphicBufferAlloc()
168{
169    sp<GraphicBufferAlloc> gba(new GraphicBufferAlloc());
170    return gba;
171}
172
173void SurfaceFlinger::bootFinished()
174{
175    const nsecs_t now = systemTime();
176    const nsecs_t duration = now - mBootTime;
177    ALOGI("Boot is finished (%ld ms)", long(ns2ms(duration)) );
178    mBootFinished = true;
179
180    // wait patiently for the window manager death
181    const String16 name("window");
182    sp<IBinder> window(defaultServiceManager()->getService(name));
183    if (window != 0) {
184        window->linkToDeath(static_cast<IBinder::DeathRecipient*>(this));
185    }
186
187    // stop boot animation
188    // formerly we would just kill the process, but we now ask it to exit so it
189    // can choose where to stop the animation.
190    property_set("service.bootanim.exit", "1");
191}
192
193void SurfaceFlinger::deleteTextureAsync(GLuint texture) {
194    class MessageDestroyGLTexture : public MessageBase {
195        GLuint texture;
196    public:
197        MessageDestroyGLTexture(GLuint texture)
198            : texture(texture) {
199        }
200        virtual bool handler() {
201            glDeleteTextures(1, &texture);
202            return true;
203        }
204    };
205    postMessageAsync(new MessageDestroyGLTexture(texture));
206}
207
208status_t SurfaceFlinger::selectConfigForPixelFormat(
209        EGLDisplay dpy,
210        EGLint const* attrs,
211        PixelFormat format,
212        EGLConfig* outConfig)
213{
214    EGLConfig config = NULL;
215    EGLint numConfigs = -1, n=0;
216    eglGetConfigs(dpy, NULL, 0, &numConfigs);
217    EGLConfig* const configs = new EGLConfig[numConfigs];
218    eglChooseConfig(dpy, attrs, configs, numConfigs, &n);
219    for (int i=0 ; i<n ; i++) {
220        EGLint nativeVisualId = 0;
221        eglGetConfigAttrib(dpy, configs[i], EGL_NATIVE_VISUAL_ID, &nativeVisualId);
222        if (nativeVisualId>0 && format == nativeVisualId) {
223            *outConfig = configs[i];
224            delete [] configs;
225            return NO_ERROR;
226        }
227    }
228    delete [] configs;
229    return NAME_NOT_FOUND;
230}
231
232EGLConfig SurfaceFlinger::selectEGLConfig(EGLDisplay display, EGLint nativeVisualId) {
233    // select our EGLConfig. It must support EGL_RECORDABLE_ANDROID if
234    // it is to be used with WIFI displays
235    EGLConfig config;
236    EGLint dummy;
237    status_t err;
238    EGLint attribs[] = {
239            EGL_SURFACE_TYPE,           EGL_WINDOW_BIT,
240            EGL_RECORDABLE_ANDROID,     EGL_TRUE,
241            EGL_NONE
242    };
243    err = selectConfigForPixelFormat(display, attribs, nativeVisualId, &config);
244    if (err) {
245        // maybe we failed because of EGL_RECORDABLE_ANDROID
246        ALOGW("couldn't find an EGLConfig with EGL_RECORDABLE_ANDROID");
247        attribs[2] = EGL_NONE;
248        err = selectConfigForPixelFormat(display, attribs, nativeVisualId, &config);
249    }
250    ALOGE_IF(err, "couldn't find an EGLConfig matching the screen format");
251    if (eglGetConfigAttrib(display, config, EGL_CONFIG_CAVEAT, &dummy) == EGL_TRUE) {
252        ALOGW_IF(dummy == EGL_SLOW_CONFIG, "EGL_SLOW_CONFIG selected!");
253    }
254    return config;
255}
256
257EGLContext SurfaceFlinger::createGLContext(EGLDisplay display, EGLConfig config) {
258    // Also create our EGLContext
259    EGLint contextAttributes[] = {
260#ifdef EGL_IMG_context_priority
261#ifdef HAS_CONTEXT_PRIORITY
262#warning "using EGL_IMG_context_priority"
263            EGL_CONTEXT_PRIORITY_LEVEL_IMG, EGL_CONTEXT_PRIORITY_HIGH_IMG,
264#endif
265#endif
266            EGL_NONE, EGL_NONE
267    };
268    EGLContext ctxt = eglCreateContext(display, config, NULL, contextAttributes);
269    ALOGE_IF(ctxt==EGL_NO_CONTEXT, "EGLContext creation failed");
270    return ctxt;
271}
272
273void SurfaceFlinger::initializeGL(EGLDisplay display, EGLSurface surface) {
274    EGLBoolean result = eglMakeCurrent(display, surface, surface, mEGLContext);
275    if (!result) {
276        ALOGE("Couldn't create a working GLES context. check logs. exiting...");
277        exit(0);
278    }
279
280    GLExtensions& extensions(GLExtensions::getInstance());
281    extensions.initWithGLStrings(
282            glGetString(GL_VENDOR),
283            glGetString(GL_RENDERER),
284            glGetString(GL_VERSION),
285            glGetString(GL_EXTENSIONS),
286            eglQueryString(display, EGL_VENDOR),
287            eglQueryString(display, EGL_VERSION),
288            eglQueryString(display, EGL_EXTENSIONS));
289
290    EGLint w, h;
291    eglQuerySurface(display, surface, EGL_WIDTH,  &w);
292    eglQuerySurface(display, surface, EGL_HEIGHT, &h);
293
294    glGetIntegerv(GL_MAX_TEXTURE_SIZE, &mMaxTextureSize);
295    glGetIntegerv(GL_MAX_VIEWPORT_DIMS, mMaxViewportDims);
296
297    glPixelStorei(GL_UNPACK_ALIGNMENT, 4);
298    glPixelStorei(GL_PACK_ALIGNMENT, 4);
299    glEnableClientState(GL_VERTEX_ARRAY);
300    glShadeModel(GL_FLAT);
301    glDisable(GL_DITHER);
302    glDisable(GL_CULL_FACE);
303
304    struct pack565 {
305        inline uint16_t operator() (int r, int g, int b) const {
306            return (r<<11)|(g<<5)|b;
307        }
308    } pack565;
309
310    const uint16_t protTexData[] = { pack565(0x03, 0x03, 0x03) };
311    glGenTextures(1, &mProtectedTexName);
312    glBindTexture(GL_TEXTURE_2D, mProtectedTexName);
313    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
314    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
315    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
316    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
317    glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, 1, 1, 0,
318            GL_RGB, GL_UNSIGNED_SHORT_5_6_5, protTexData);
319
320    glViewport(0, 0, w, h);
321    glMatrixMode(GL_PROJECTION);
322    glLoadIdentity();
323    // put the origin in the left-bottom corner
324    glOrthof(0, w, 0, h, 0, 1); // l=0, r=w ; b=0, t=h
325
326    // print some debugging info
327    EGLint r,g,b,a;
328    eglGetConfigAttrib(display, mEGLConfig, EGL_RED_SIZE,   &r);
329    eglGetConfigAttrib(display, mEGLConfig, EGL_GREEN_SIZE, &g);
330    eglGetConfigAttrib(display, mEGLConfig, EGL_BLUE_SIZE,  &b);
331    eglGetConfigAttrib(display, mEGLConfig, EGL_ALPHA_SIZE, &a);
332    ALOGI("EGL informations:");
333    ALOGI("vendor    : %s", extensions.getEglVendor());
334    ALOGI("version   : %s", extensions.getEglVersion());
335    ALOGI("extensions: %s", extensions.getEglExtension());
336    ALOGI("Client API: %s", eglQueryString(display, EGL_CLIENT_APIS)?:"Not Supported");
337    ALOGI("EGLSurface: %d-%d-%d-%d, config=%p", r, g, b, a, mEGLConfig);
338    ALOGI("OpenGL ES informations:");
339    ALOGI("vendor    : %s", extensions.getVendor());
340    ALOGI("renderer  : %s", extensions.getRenderer());
341    ALOGI("version   : %s", extensions.getVersion());
342    ALOGI("extensions: %s", extensions.getExtension());
343    ALOGI("GL_MAX_TEXTURE_SIZE = %d", mMaxTextureSize);
344    ALOGI("GL_MAX_VIEWPORT_DIMS = %d x %d", mMaxViewportDims[0], mMaxViewportDims[1]);
345}
346
347status_t SurfaceFlinger::readyToRun()
348{
349    ALOGI(  "SurfaceFlinger's main thread ready to run. "
350            "Initializing graphics H/W...");
351
352    // initialize EGL
353    mEGLDisplay = eglGetDisplay(EGL_DEFAULT_DISPLAY);
354    eglInitialize(mEGLDisplay, NULL, NULL);
355
356    // Initialize the main display
357    // create native window to main display
358    sp<FramebufferSurface> anw = FramebufferSurface::create();
359    ANativeWindow* const window = anw.get();
360    if (!window) {
361        ALOGE("Display subsystem failed to initialize. check logs. exiting...");
362        exit(0);
363    }
364
365    // initialize the config and context
366    int format;
367    window->query(window, NATIVE_WINDOW_FORMAT, &format);
368    mEGLConfig  = selectEGLConfig(mEGLDisplay, format);
369    mEGLContext = createGLContext(mEGLDisplay, mEGLConfig);
370
371    // initialize our main display hardware
372    mCurrentState.displays.add(DisplayDevice::DISPLAY_ID_MAIN, DisplayDeviceState());
373    DisplayDevice hw(this, DisplayDevice::DISPLAY_ID_MAIN, anw, mEGLConfig);
374    mDisplays.add(DisplayDevice::DISPLAY_ID_MAIN, hw);
375
376    //  initialize OpenGL ES
377    EGLSurface surface = hw.getEGLSurface();
378    initializeGL(mEGLDisplay, surface);
379
380    // start the EventThread
381    mEventThread = new EventThread(this);
382    mEventQueue.setEventThread(mEventThread);
383
384    // initialize the H/W composer
385    mHwc = new HWComposer(this,
386            *static_cast<HWComposer::EventHandler *>(this),
387            hw.getRefreshPeriod());
388
389    // initialize our drawing state
390    mDrawingState = mCurrentState;
391
392    // We're now ready to accept clients...
393    mReadyToRunBarrier.open();
394
395    // start boot animation
396    startBootAnim();
397
398    return NO_ERROR;
399}
400
401void SurfaceFlinger::startBootAnim() {
402    // start boot animation
403    property_set("service.bootanim.exit", "0");
404    property_set("ctl.start", "bootanim");
405}
406
407uint32_t SurfaceFlinger::getMaxTextureSize() const {
408    return mMaxTextureSize;
409}
410
411uint32_t SurfaceFlinger::getMaxViewportDims() const {
412    return mMaxViewportDims[0] < mMaxViewportDims[1] ?
413            mMaxViewportDims[0] : mMaxViewportDims[1];
414}
415
416// ----------------------------------------------------------------------------
417
418bool SurfaceFlinger::authenticateSurfaceTexture(
419        const sp<ISurfaceTexture>& surfaceTexture) const {
420    Mutex::Autolock _l(mStateLock);
421    sp<IBinder> surfaceTextureBinder(surfaceTexture->asBinder());
422
423    // Check the visible layer list for the ISurface
424    const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
425    size_t count = currentLayers.size();
426    for (size_t i=0 ; i<count ; i++) {
427        const sp<LayerBase>& layer(currentLayers[i]);
428        sp<LayerBaseClient> lbc(layer->getLayerBaseClient());
429        if (lbc != NULL) {
430            wp<IBinder> lbcBinder = lbc->getSurfaceTextureBinder();
431            if (lbcBinder == surfaceTextureBinder) {
432                return true;
433            }
434        }
435    }
436
437    // Check the layers in the purgatory.  This check is here so that if a
438    // SurfaceTexture gets destroyed before all the clients are done using it,
439    // the error will not be reported as "surface XYZ is not authenticated", but
440    // will instead fail later on when the client tries to use the surface,
441    // which should be reported as "surface XYZ returned an -ENODEV".  The
442    // purgatorized layers are no less authentic than the visible ones, so this
443    // should not cause any harm.
444    size_t purgatorySize =  mLayerPurgatory.size();
445    for (size_t i=0 ; i<purgatorySize ; i++) {
446        const sp<LayerBase>& layer(mLayerPurgatory.itemAt(i));
447        sp<LayerBaseClient> lbc(layer->getLayerBaseClient());
448        if (lbc != NULL) {
449            wp<IBinder> lbcBinder = lbc->getSurfaceTextureBinder();
450            if (lbcBinder == surfaceTextureBinder) {
451                return true;
452            }
453        }
454    }
455
456    return false;
457}
458
459status_t SurfaceFlinger::getDisplayInfo(DisplayID dpy, DisplayInfo* info) {
460    if (uint32_t(dpy) >= 2) {
461        return BAD_INDEX;
462    }
463    const DisplayDevice& hw(getDefaultDisplayDevice());
464    return hw.getInfo(info);
465}
466
467// ----------------------------------------------------------------------------
468
469sp<IDisplayEventConnection> SurfaceFlinger::createDisplayEventConnection() {
470    return mEventThread->createEventConnection();
471}
472
473void SurfaceFlinger::connectDisplay(const sp<ISurfaceTexture> display) {
474    const DisplayDevice& hw(getDefaultDisplayDevice());
475    EGLSurface result = EGL_NO_SURFACE;
476    EGLSurface old_surface = EGL_NO_SURFACE;
477    sp<SurfaceTextureClient> stc;
478
479    if (display != NULL) {
480        stc = new SurfaceTextureClient(display);
481        result = eglCreateWindowSurface(mEGLDisplay,
482                mEGLConfig, (EGLNativeWindowType)stc.get(), NULL);
483        ALOGE_IF(result == EGL_NO_SURFACE,
484                "eglCreateWindowSurface failed (ISurfaceTexture=%p)",
485                display.get());
486    }
487
488    { // scope for the lock
489        Mutex::Autolock _l(mStateLock);
490        old_surface = mExternalDisplaySurface;
491        mExternalDisplayNativeWindow = stc;
492        mExternalDisplaySurface = result;
493        ALOGD("mExternalDisplaySurface = %p", result);
494    }
495
496    if (old_surface != EGL_NO_SURFACE) {
497        // Note: EGL allows to destroy an object while its current
498        // it will fail to become current next time though.
499        eglDestroySurface(mEGLDisplay, old_surface);
500    }
501}
502
503EGLSurface SurfaceFlinger::getExternalDisplaySurface() const {
504    Mutex::Autolock _l(mStateLock);
505    return mExternalDisplaySurface;
506}
507
508// ----------------------------------------------------------------------------
509
510void SurfaceFlinger::waitForEvent() {
511    mEventQueue.waitMessage();
512}
513
514void SurfaceFlinger::signalTransaction() {
515    mEventQueue.invalidate();
516}
517
518void SurfaceFlinger::signalLayerUpdate() {
519    mEventQueue.invalidate();
520}
521
522void SurfaceFlinger::signalRefresh() {
523    mEventQueue.refresh();
524}
525
526status_t SurfaceFlinger::postMessageAsync(const sp<MessageBase>& msg,
527        nsecs_t reltime, uint32_t flags) {
528    return mEventQueue.postMessage(msg, reltime);
529}
530
531status_t SurfaceFlinger::postMessageSync(const sp<MessageBase>& msg,
532        nsecs_t reltime, uint32_t flags) {
533    status_t res = mEventQueue.postMessage(msg, reltime);
534    if (res == NO_ERROR) {
535        msg->wait();
536    }
537    return res;
538}
539
540bool SurfaceFlinger::threadLoop() {
541    waitForEvent();
542    return true;
543}
544
545void SurfaceFlinger::onVSyncReceived(int dpy, nsecs_t timestamp) {
546    mEventThread->onVSyncReceived(dpy, timestamp);
547}
548
549void SurfaceFlinger::eventControl(int event, int enabled) {
550    getHwComposer().eventControl(event, enabled);
551}
552
553void SurfaceFlinger::onMessageReceived(int32_t what) {
554    ATRACE_CALL();
555    switch (what) {
556    case MessageQueue::INVALIDATE:
557        handleMessageTransaction();
558        handleMessageInvalidate();
559        signalRefresh();
560        break;
561    case MessageQueue::REFRESH:
562        handleMessageRefresh();
563        break;
564    }
565}
566
567void SurfaceFlinger::handleMessageTransaction() {
568    const uint32_t mask = eTransactionNeeded | eTraversalNeeded;
569    uint32_t transactionFlags = peekTransactionFlags(mask);
570    if (transactionFlags) {
571        handleTransaction(transactionFlags);
572    }
573}
574
575void SurfaceFlinger::handleMessageInvalidate() {
576    handlePageFlip();
577}
578
579void SurfaceFlinger::handleMessageRefresh() {
580    handleRefresh();
581
582    if (CC_UNLIKELY(mVisibleRegionsDirty)) {
583        mVisibleRegionsDirty = false;
584        invalidateHwcGeometry();
585
586        /*
587         *  rebuild the visible layer list per screen
588         */
589
590        const LayerVector& currentLayers(mDrawingState.layersSortedByZ);
591        for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
592            DisplayDevice& hw(mDisplays.editValueAt(dpy));
593            Region opaqueRegion;
594            Region dirtyRegion;
595            computeVisibleRegions(currentLayers,
596                    hw.getLayerStack(), dirtyRegion, opaqueRegion);
597            hw.dirtyRegion.orSelf(dirtyRegion);
598
599            Vector< sp<LayerBase> > layersSortedByZ;
600            const size_t count = currentLayers.size();
601            for (size_t i=0 ; i<count ; i++) {
602                const Layer::State& s(currentLayers[i]->drawingState());
603                if (s.layerStack == hw.getLayerStack()) {
604                    if (!currentLayers[i]->visibleRegion.isEmpty()) {
605                        layersSortedByZ.add(currentLayers[i]);
606                    }
607                }
608            }
609            hw.setVisibleLayersSortedByZ(layersSortedByZ);
610            hw.undefinedRegion.set(hw.getBounds());
611            hw.undefinedRegion.subtractSelf(hw.getTransform().transform(opaqueRegion));
612        }
613    }
614
615    HWComposer& hwc(getHwComposer());
616    if (hwc.initCheck() == NO_ERROR) {
617        // build the h/w work list
618        const bool workListsDirty = mHwWorkListDirty;
619        mHwWorkListDirty = false;
620        for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
621            const DisplayDevice& hw(mDisplays[dpy]);
622            const Vector< sp<LayerBase> >& currentLayers(hw.getVisibleLayersSortedByZ());
623            const size_t count = currentLayers.size();
624
625            hwc.createWorkList(count); // FIXME: the worklist should include enough space for all layer of all displays
626
627            HWComposer::LayerListIterator cur = hwc.begin();
628            const HWComposer::LayerListIterator end = hwc.end();
629            for (size_t i=0 ; cur!=end && i<count ; ++i, ++cur) {
630                const sp<LayerBase>& layer(currentLayers[i]);
631
632                if (CC_UNLIKELY(workListsDirty)) {
633                    layer->setGeometry(hw, *cur);
634                    if (mDebugDisableHWC || mDebugRegion) {
635                        cur->setSkip(true);
636                    }
637                }
638
639                /*
640                 * update the per-frame h/w composer data for each layer
641                 * and build the transparent region of the FB
642                 */
643                layer->setPerFrameData(hw, *cur);
644            }
645        }
646        status_t err = hwc.prepare();
647        ALOGE_IF(err, "HWComposer::prepare failed (%s)", strerror(-err));
648    }
649
650    const bool repaintEverything = android_atomic_and(0, &mRepaintEverything);
651    for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
652        DisplayDevice& hw(mDisplays.editValueAt(dpy));
653
654        // transform the dirty region into this screen's coordinate space
655        const Transform& planeTransform(hw.getTransform());
656        Region dirtyRegion;
657        if (repaintEverything) {
658            dirtyRegion.set(hw.bounds());
659        } else {
660            dirtyRegion = planeTransform.transform(hw.dirtyRegion);
661            dirtyRegion.andSelf(hw.bounds());
662        }
663        hw.dirtyRegion.clear();
664
665        if (!dirtyRegion.isEmpty()) {
666            if (hw.canDraw()) {
667                // repaint the framebuffer (if needed)
668                handleRepaint(hw, dirtyRegion);
669            }
670        }
671        // inform the h/w that we're done compositing
672        hw.compositionComplete();
673    }
674
675    postFramebuffer();
676
677
678#if 1
679    // render to the external display if we have one
680    EGLSurface externalDisplaySurface = getExternalDisplaySurface();
681    if (externalDisplaySurface != EGL_NO_SURFACE) {
682        EGLSurface cur = eglGetCurrentSurface(EGL_DRAW);
683        EGLBoolean success = eglMakeCurrent(eglGetCurrentDisplay(),
684                externalDisplaySurface, externalDisplaySurface,
685                eglGetCurrentContext());
686
687        ALOGE_IF(!success, "eglMakeCurrent -> external failed");
688
689        if (success) {
690            // redraw the screen entirely...
691            glDisable(GL_TEXTURE_EXTERNAL_OES);
692            glDisable(GL_TEXTURE_2D);
693            glClearColor(0,0,0,1);
694            glClear(GL_COLOR_BUFFER_BIT);
695            glMatrixMode(GL_MODELVIEW);
696            glLoadIdentity();
697
698            DisplayDevice& hw(const_cast<DisplayDevice&>(getDefaultDisplayDevice()));
699            const Vector< sp<LayerBase> >& layers( hw.getVisibleLayersSortedByZ() );
700            const size_t count = layers.size();
701            for (size_t i=0 ; i<count ; ++i) {
702                const sp<LayerBase>& layer(layers[i]);
703                layer->draw(hw);
704            }
705
706            success = eglSwapBuffers(eglGetCurrentDisplay(), externalDisplaySurface);
707            ALOGE_IF(!success, "external display eglSwapBuffers failed");
708
709            hw.compositionComplete();
710        }
711
712        success = eglMakeCurrent(eglGetCurrentDisplay(),
713                cur, cur, eglGetCurrentContext());
714
715        ALOGE_IF(!success, "eglMakeCurrent -> internal failed");
716    }
717#endif
718
719}
720
721void SurfaceFlinger::postFramebuffer()
722{
723    ATRACE_CALL();
724
725    const nsecs_t now = systemTime();
726    mDebugInSwapBuffers = now;
727
728    HWComposer& hwc(getHwComposer());
729
730    for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
731        DisplayDevice& hw(mDisplays.editValueAt(dpy));
732        if (hwc.initCheck() == NO_ERROR) {
733            const Vector< sp<LayerBase> >& currentLayers(hw.getVisibleLayersSortedByZ());
734            const size_t count = currentLayers.size();
735            HWComposer::LayerListIterator cur = hwc.begin();
736            const HWComposer::LayerListIterator end = hwc.end();
737            for (size_t i=0 ; cur!=end && i<count ; ++i, ++cur) {
738                const sp<LayerBase>& layer(currentLayers[i]);
739                layer->setAcquireFence(hw, *cur);
740            }
741        }
742        hw.flip(hw.swapRegion);
743        hw.swapRegion.clear();
744    }
745
746    if (hwc.initCheck() == NO_ERROR) {
747        // FIXME: eventually commit() won't take arguments
748        hwc.commit(mEGLDisplay, getDefaultDisplayDevice().getEGLSurface());
749    }
750
751    for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
752        const DisplayDevice& hw(mDisplays[dpy]);
753        const Vector< sp<LayerBase> >& currentLayers(hw.getVisibleLayersSortedByZ());
754        const size_t count = currentLayers.size();
755        if (hwc.initCheck() == NO_ERROR) {
756            HWComposer::LayerListIterator cur = hwc.begin();
757            const HWComposer::LayerListIterator end = hwc.end();
758            for (size_t i = 0; cur != end && i < count; ++i, ++cur) {
759                currentLayers[i]->onLayerDisplayed(hw, &*cur);
760            }
761        } else {
762            eglSwapBuffers(mEGLDisplay, hw.getEGLSurface());
763            for (size_t i = 0; i < count; i++) {
764                currentLayers[i]->onLayerDisplayed(hw, NULL);
765            }
766        }
767
768        // FIXME: we need to call eglSwapBuffers() on displays that have GL composition
769    }
770
771    mLastSwapBufferTime = systemTime() - now;
772    mDebugInSwapBuffers = 0;
773}
774
775void SurfaceFlinger::handleTransaction(uint32_t transactionFlags)
776{
777    ATRACE_CALL();
778
779    Mutex::Autolock _l(mStateLock);
780    const nsecs_t now = systemTime();
781    mDebugInTransaction = now;
782
783    // Here we're guaranteed that some transaction flags are set
784    // so we can call handleTransactionLocked() unconditionally.
785    // We call getTransactionFlags(), which will also clear the flags,
786    // with mStateLock held to guarantee that mCurrentState won't change
787    // until the transaction is committed.
788
789    const uint32_t mask = eTransactionNeeded | eTraversalNeeded;
790    transactionFlags = getTransactionFlags(mask);
791    handleTransactionLocked(transactionFlags);
792
793    mLastTransactionTime = systemTime() - now;
794    mDebugInTransaction = 0;
795    invalidateHwcGeometry();
796    // here the transaction has been committed
797}
798
799void SurfaceFlinger::handleTransactionLocked(uint32_t transactionFlags)
800{
801    const LayerVector& currentLayers(mCurrentState.layersSortedByZ);
802    const size_t count = currentLayers.size();
803
804    /*
805     * Traversal of the children
806     * (perform the transaction for each of them if needed)
807     */
808
809    const bool layersNeedTransaction = transactionFlags & eTraversalNeeded;
810    if (layersNeedTransaction) {
811        for (size_t i=0 ; i<count ; i++) {
812            const sp<LayerBase>& layer = currentLayers[i];
813            uint32_t trFlags = layer->getTransactionFlags(eTransactionNeeded);
814            if (!trFlags) continue;
815
816            const uint32_t flags = layer->doTransaction(0);
817            if (flags & Layer::eVisibleRegion)
818                mVisibleRegionsDirty = true;
819        }
820    }
821
822    /*
823     * Perform our own transaction if needed
824     */
825
826    if (transactionFlags & eTransactionNeeded) {
827        // here we take advantage of Vector's copy-on-write semantics to
828        // improve performance by skipping the transaction entirely when
829        // know that the lists are identical
830        const KeyedVector<int32_t, DisplayDeviceState>& curr(mCurrentState.displays);
831        const KeyedVector<int32_t, DisplayDeviceState>& draw(mDrawingState.displays);
832        if (!curr.isIdenticalTo(draw)) {
833            mVisibleRegionsDirty = true;
834            const size_t cc = curr.size();
835            const size_t dc = draw.size();
836
837            // find the displays that were removed
838            // (ie: in drawing state but not in current state)
839            // also handle displays that changed
840            // (ie: displays that are in both lists)
841            for (size_t i=0 ; i<dc ; i++) {
842                if (curr.indexOfKey(draw[i].id) < 0) {
843                    // in drawing state but not in current state
844                    if (draw[i].id != DisplayDevice::DISPLAY_ID_MAIN) {
845                        mDisplays.editValueFor(draw[i].id).terminate();
846                        mDisplays.removeItem(draw[i].id);
847                    } else {
848                        ALOGW("trying to remove the main display");
849                    }
850                } else {
851                    // this display is in both lists. see if something changed.
852                    const DisplayDeviceState& state(curr[i]);
853                    if (state.layerStack != draw[i].layerStack) {
854                        DisplayDevice& disp(mDisplays.editValueFor(state.id));
855                        //disp.setLayerStack(state.layerStack);
856                    }
857                    if (curr[i].orientation != draw[i].orientation) {
858                        DisplayDevice& disp(mDisplays.editValueFor(state.id));
859                        disp.setOrientation(state.orientation);
860                    }
861                }
862            }
863
864            // find displays that were added
865            // (ie: in current state but not in drawing state)
866            for (size_t i=0 ; i<cc ; i++) {
867                if (mDrawingState.displays.indexOfKey(curr[i].id) < 0) {
868                    // FIXME: we need to pass the surface here
869                    DisplayDevice disp(this, curr[i].id, 0, mEGLConfig);
870                    mDisplays.add(curr[i].id, disp);
871                }
872            }
873        }
874
875        if (currentLayers.size() > mDrawingState.layersSortedByZ.size()) {
876            // layers have been added
877            mVisibleRegionsDirty = true;
878        }
879
880        // some layers might have been removed, so
881        // we need to update the regions they're exposing.
882        if (mLayersRemoved) {
883            mLayersRemoved = false;
884            mVisibleRegionsDirty = true;
885            const LayerVector& previousLayers(mDrawingState.layersSortedByZ);
886            const size_t count = previousLayers.size();
887            for (size_t i=0 ; i<count ; i++) {
888                const sp<LayerBase>& layer(previousLayers[i]);
889                if (currentLayers.indexOf(layer) < 0) {
890                    // this layer is not visible anymore
891                    // TODO: we could traverse the tree from front to back and
892                    //       compute the actual visible region
893                    // TODO: we could cache the transformed region
894                    Layer::State front(layer->drawingState());
895                    Region visibleReg = front.transform.transform(
896                            Region(Rect(front.active.w, front.active.h)));
897                    invalidateLayerStack(front.layerStack, visibleReg);
898                }
899            }
900        }
901    }
902
903    commitTransaction();
904}
905
906void SurfaceFlinger::commitTransaction()
907{
908    if (!mLayersPendingRemoval.isEmpty()) {
909        // Notify removed layers now that they can't be drawn from
910        for (size_t i = 0; i < mLayersPendingRemoval.size(); i++) {
911            mLayersPendingRemoval[i]->onRemoved();
912        }
913        mLayersPendingRemoval.clear();
914    }
915
916    mDrawingState = mCurrentState;
917    mTransationPending = false;
918    mTransactionCV.broadcast();
919}
920
921void SurfaceFlinger::computeVisibleRegions(
922        const LayerVector& currentLayers, uint32_t layerStack,
923        Region& outDirtyRegion, Region& outOpaqueRegion)
924{
925    ATRACE_CALL();
926
927    Region aboveOpaqueLayers;
928    Region aboveCoveredLayers;
929    Region dirty;
930
931    outDirtyRegion.clear();
932
933    size_t i = currentLayers.size();
934    while (i--) {
935        const sp<LayerBase>& layer = currentLayers[i];
936
937        // start with the whole surface at its current location
938        const Layer::State& s(layer->drawingState());
939
940        // only consider the layers on the given later stack
941        if (s.layerStack != layerStack)
942            continue;
943
944        /*
945         * opaqueRegion: area of a surface that is fully opaque.
946         */
947        Region opaqueRegion;
948
949        /*
950         * visibleRegion: area of a surface that is visible on screen
951         * and not fully transparent. This is essentially the layer's
952         * footprint minus the opaque regions above it.
953         * Areas covered by a translucent surface are considered visible.
954         */
955        Region visibleRegion;
956
957        /*
958         * coveredRegion: area of a surface that is covered by all
959         * visible regions above it (which includes the translucent areas).
960         */
961        Region coveredRegion;
962
963
964        // handle hidden surfaces by setting the visible region to empty
965        if (CC_LIKELY(!(s.flags & ISurfaceComposer::eLayerHidden) && s.alpha)) {
966            const bool translucent = !layer->isOpaque();
967            Rect bounds(layer->computeBounds());
968            visibleRegion.set(bounds);
969            if (!visibleRegion.isEmpty()) {
970                // Remove the transparent area from the visible region
971                if (translucent) {
972                    Region transparentRegionScreen;
973                    const Transform tr(s.transform);
974                    if (tr.transformed()) {
975                        if (tr.preserveRects()) {
976                            // transform the transparent region
977                            transparentRegionScreen = tr.transform(s.transparentRegion);
978                        } else {
979                            // transformation too complex, can't do the
980                            // transparent region optimization.
981                            transparentRegionScreen.clear();
982                        }
983                    } else {
984                        transparentRegionScreen = s.transparentRegion;
985                    }
986                    visibleRegion.subtractSelf(transparentRegionScreen);
987                }
988
989                // compute the opaque region
990                const int32_t layerOrientation = s.transform.getOrientation();
991                if (s.alpha==255 && !translucent &&
992                        ((layerOrientation & Transform::ROT_INVALID) == false)) {
993                    // the opaque region is the layer's footprint
994                    opaqueRegion = visibleRegion;
995                }
996            }
997        }
998
999        // Clip the covered region to the visible region
1000        coveredRegion = aboveCoveredLayers.intersect(visibleRegion);
1001
1002        // Update aboveCoveredLayers for next (lower) layer
1003        aboveCoveredLayers.orSelf(visibleRegion);
1004
1005        // subtract the opaque region covered by the layers above us
1006        visibleRegion.subtractSelf(aboveOpaqueLayers);
1007
1008        // compute this layer's dirty region
1009        if (layer->contentDirty) {
1010            // we need to invalidate the whole region
1011            dirty = visibleRegion;
1012            // as well, as the old visible region
1013            dirty.orSelf(layer->visibleRegion);
1014            layer->contentDirty = false;
1015        } else {
1016            /* compute the exposed region:
1017             *   the exposed region consists of two components:
1018             *   1) what's VISIBLE now and was COVERED before
1019             *   2) what's EXPOSED now less what was EXPOSED before
1020             *
1021             * note that (1) is conservative, we start with the whole
1022             * visible region but only keep what used to be covered by
1023             * something -- which mean it may have been exposed.
1024             *
1025             * (2) handles areas that were not covered by anything but got
1026             * exposed because of a resize.
1027             */
1028            const Region newExposed = visibleRegion - coveredRegion;
1029            const Region oldVisibleRegion = layer->visibleRegion;
1030            const Region oldCoveredRegion = layer->coveredRegion;
1031            const Region oldExposed = oldVisibleRegion - oldCoveredRegion;
1032            dirty = (visibleRegion&oldCoveredRegion) | (newExposed-oldExposed);
1033        }
1034        dirty.subtractSelf(aboveOpaqueLayers);
1035
1036        // accumulate to the screen dirty region
1037        outDirtyRegion.orSelf(dirty);
1038
1039        // Update aboveOpaqueLayers for next (lower) layer
1040        aboveOpaqueLayers.orSelf(opaqueRegion);
1041
1042        // Store the visible region is screen space
1043        layer->setVisibleRegion(visibleRegion);
1044        layer->setCoveredRegion(coveredRegion);
1045    }
1046
1047    outOpaqueRegion = aboveOpaqueLayers;
1048}
1049
1050void SurfaceFlinger::invalidateLayerStack(uint32_t layerStack,
1051        const Region& dirty) {
1052    for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
1053        DisplayDevice& hw(mDisplays.editValueAt(dpy));
1054        if (hw.getLayerStack() == layerStack) {
1055            hw.dirtyRegion.orSelf(dirty);
1056        }
1057    }
1058}
1059
1060void SurfaceFlinger::handlePageFlip()
1061{
1062    ATRACE_CALL();
1063    Region dirtyRegion;
1064
1065    const LayerVector& currentLayers(mDrawingState.layersSortedByZ);
1066
1067    bool visibleRegions = false;
1068    const size_t count = currentLayers.size();
1069    sp<LayerBase> const* layers = currentLayers.array();
1070    for (size_t i=0 ; i<count ; i++) {
1071        const sp<LayerBase>& layer(layers[i]);
1072        const Region dirty(layer->latchBuffer(visibleRegions));
1073        Layer::State s(layer->drawingState());
1074        invalidateLayerStack(s.layerStack, dirty);
1075    }
1076
1077    mVisibleRegionsDirty |= visibleRegions;
1078}
1079
1080void SurfaceFlinger::invalidateHwcGeometry()
1081{
1082    mHwWorkListDirty = true;
1083}
1084
1085void SurfaceFlinger::handleRefresh()
1086{
1087    bool needInvalidate = false;
1088    const LayerVector& currentLayers(mDrawingState.layersSortedByZ);
1089    const size_t count = currentLayers.size();
1090    for (size_t i=0 ; i<count ; i++) {
1091        const sp<LayerBase>& layer(currentLayers[i]);
1092        if (layer->onPreComposition()) {
1093            needInvalidate = true;
1094        }
1095    }
1096    if (needInvalidate) {
1097        signalLayerUpdate();
1098    }
1099}
1100
1101void SurfaceFlinger::handleRepaint(const DisplayDevice& hw,
1102        const Region& inDirtyRegion)
1103{
1104    ATRACE_CALL();
1105
1106    Region dirtyRegion(inDirtyRegion);
1107
1108    // compute the invalid region
1109    hw.swapRegion.orSelf(dirtyRegion);
1110
1111    if (CC_UNLIKELY(mDebugRegion)) {
1112        debugFlashRegions(hw, dirtyRegion);
1113    }
1114
1115    uint32_t flags = hw.getFlags();
1116    if (flags & DisplayDevice::SWAP_RECTANGLE) {
1117        // we can redraw only what's dirty, but since SWAP_RECTANGLE only
1118        // takes a rectangle, we must make sure to update that whole
1119        // rectangle in that case
1120        dirtyRegion.set(hw.swapRegion.bounds());
1121    } else {
1122        if (flags & DisplayDevice::PARTIAL_UPDATES) {
1123            // We need to redraw the rectangle that will be updated
1124            // (pushed to the framebuffer).
1125            // This is needed because PARTIAL_UPDATES only takes one
1126            // rectangle instead of a region (see DisplayDevice::flip())
1127            dirtyRegion.set(hw.swapRegion.bounds());
1128        } else {
1129            // we need to redraw everything (the whole screen)
1130            dirtyRegion.set(hw.bounds());
1131            hw.swapRegion = dirtyRegion;
1132        }
1133    }
1134
1135    composeSurfaces(hw, dirtyRegion);
1136
1137    const LayerVector& currentLayers(mDrawingState.layersSortedByZ);
1138    const size_t count = currentLayers.size();
1139    for (size_t i=0 ; i<count ; i++) {
1140        currentLayers[i]->onPostComposition();
1141    }
1142
1143    // update the swap region and clear the dirty region
1144    hw.swapRegion.orSelf(dirtyRegion);
1145}
1146
1147void SurfaceFlinger::composeSurfaces(const DisplayDevice& hw, const Region& dirty)
1148{
1149    HWComposer& hwc(getHwComposer());
1150    HWComposer::LayerListIterator cur = hwc.begin();
1151    const HWComposer::LayerListIterator end = hwc.end();
1152
1153    const size_t fbLayerCount = hwc.getLayerCount(HWC_FRAMEBUFFER);  // FIXME: this should be per display
1154    if (cur==end || fbLayerCount) {
1155
1156        DisplayDevice::makeCurrent(hw, mEGLContext);
1157
1158        // set the frame buffer
1159        glMatrixMode(GL_MODELVIEW);
1160        glLoadIdentity();
1161
1162        // Never touch the framebuffer if we don't have any framebuffer layers
1163        if (hwc.getLayerCount(HWC_OVERLAY)) { // FIXME: this should be per display
1164            // when using overlays, we assume a fully transparent framebuffer
1165            // NOTE: we could reduce how much we need to clear, for instance
1166            // remove where there are opaque FB layers. however, on some
1167            // GPUs doing a "clean slate" glClear might be more efficient.
1168            // We'll revisit later if needed.
1169            glClearColor(0, 0, 0, 0);
1170            glClear(GL_COLOR_BUFFER_BIT);
1171        } else {
1172            const Region region(hw.undefinedRegion.intersect(dirty));
1173            // screen is already cleared here
1174            if (!region.isEmpty()) {
1175                // can happen with SurfaceView
1176                drawWormhole(region);
1177            }
1178        }
1179
1180        /*
1181         * and then, render the layers targeted at the framebuffer
1182         */
1183
1184        const Vector< sp<LayerBase> >& layers(hw.getVisibleLayersSortedByZ());
1185        const size_t count = layers.size();
1186        const Transform& tr = hw.getTransform();
1187        for (size_t i=0 ; i<count ; ++i) {
1188            const sp<LayerBase>& layer(layers[i]);
1189            const Region clip(dirty.intersect(tr.transform(layer->visibleRegion)));
1190            if (!clip.isEmpty()) {
1191                if (cur != end && cur->getCompositionType() == HWC_OVERLAY) {
1192                    if (i && (cur->getHints() & HWC_HINT_CLEAR_FB)
1193                            && layer->isOpaque()) {
1194                        // never clear the very first layer since we're
1195                        // guaranteed the FB is already cleared
1196                        layer->clearWithOpenGL(hw, clip);
1197                    }
1198                    ++cur;
1199                    continue;
1200                }
1201                // render the layer
1202                layer->draw(hw, clip);
1203            }
1204            if (cur != end) {
1205                ++cur;
1206            }
1207        }
1208    }
1209}
1210
1211void SurfaceFlinger::debugFlashRegions(const DisplayDevice& hw,
1212        const Region& dirtyRegion)
1213{
1214    const uint32_t flags = hw.getFlags();
1215    const int32_t height = hw.getHeight();
1216    if (hw.swapRegion.isEmpty()) {
1217        return;
1218    }
1219
1220    if (!(flags & DisplayDevice::SWAP_RECTANGLE)) {
1221        const Region repaint((flags & DisplayDevice::PARTIAL_UPDATES) ?
1222                dirtyRegion.bounds() : hw.bounds());
1223        composeSurfaces(hw, repaint);
1224    }
1225
1226    glDisable(GL_TEXTURE_EXTERNAL_OES);
1227    glDisable(GL_TEXTURE_2D);
1228    glDisable(GL_BLEND);
1229
1230    static int toggle = 0;
1231    toggle = 1 - toggle;
1232    if (toggle) {
1233        glColor4f(1, 0, 1, 1);
1234    } else {
1235        glColor4f(1, 1, 0, 1);
1236    }
1237
1238    Region::const_iterator it = dirtyRegion.begin();
1239    Region::const_iterator const end = dirtyRegion.end();
1240    while (it != end) {
1241        const Rect& r = *it++;
1242        GLfloat vertices[][2] = {
1243                { r.left,  height - r.top },
1244                { r.left,  height - r.bottom },
1245                { r.right, height - r.bottom },
1246                { r.right, height - r.top }
1247        };
1248        glVertexPointer(2, GL_FLOAT, 0, vertices);
1249        glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
1250    }
1251
1252    hw.flip(hw.swapRegion);
1253
1254    if (mDebugRegion > 1)
1255        usleep(mDebugRegion * 1000);
1256}
1257
1258void SurfaceFlinger::drawWormhole(const Region& region) const
1259{
1260    glDisable(GL_TEXTURE_EXTERNAL_OES);
1261    glDisable(GL_TEXTURE_2D);
1262    glDisable(GL_BLEND);
1263    glColor4f(0,0,0,0);
1264
1265    GLfloat vertices[4][2];
1266    glVertexPointer(2, GL_FLOAT, 0, vertices);
1267    Region::const_iterator it = region.begin();
1268    Region::const_iterator const end = region.end();
1269    while (it != end) {
1270        const Rect& r = *it++;
1271        vertices[0][0] = r.left;
1272        vertices[0][1] = r.top;
1273        vertices[1][0] = r.right;
1274        vertices[1][1] = r.top;
1275        vertices[2][0] = r.right;
1276        vertices[2][1] = r.bottom;
1277        vertices[3][0] = r.left;
1278        vertices[3][1] = r.bottom;
1279        glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
1280    }
1281}
1282
1283ssize_t SurfaceFlinger::addClientLayer(const sp<Client>& client,
1284        const sp<LayerBaseClient>& lbc)
1285{
1286    // attach this layer to the client
1287    size_t name = client->attachLayer(lbc);
1288
1289    // add this layer to the current state list
1290    Mutex::Autolock _l(mStateLock);
1291    mCurrentState.layersSortedByZ.add(lbc);
1292
1293    return ssize_t(name);
1294}
1295
1296status_t SurfaceFlinger::removeLayer(const sp<LayerBase>& layer)
1297{
1298    Mutex::Autolock _l(mStateLock);
1299    status_t err = purgatorizeLayer_l(layer);
1300    if (err == NO_ERROR)
1301        setTransactionFlags(eTransactionNeeded);
1302    return err;
1303}
1304
1305status_t SurfaceFlinger::removeLayer_l(const sp<LayerBase>& layerBase)
1306{
1307    ssize_t index = mCurrentState.layersSortedByZ.remove(layerBase);
1308    if (index >= 0) {
1309        mLayersRemoved = true;
1310        return NO_ERROR;
1311    }
1312    return status_t(index);
1313}
1314
1315status_t SurfaceFlinger::purgatorizeLayer_l(const sp<LayerBase>& layerBase)
1316{
1317    // First add the layer to the purgatory list, which makes sure it won't
1318    // go away, then remove it from the main list (through a transaction).
1319    ssize_t err = removeLayer_l(layerBase);
1320    if (err >= 0) {
1321        mLayerPurgatory.add(layerBase);
1322    }
1323
1324    mLayersPendingRemoval.push(layerBase);
1325
1326    // it's possible that we don't find a layer, because it might
1327    // have been destroyed already -- this is not technically an error
1328    // from the user because there is a race between Client::destroySurface(),
1329    // ~Client() and ~ISurface().
1330    return (err == NAME_NOT_FOUND) ? status_t(NO_ERROR) : err;
1331}
1332
1333uint32_t SurfaceFlinger::peekTransactionFlags(uint32_t flags)
1334{
1335    return android_atomic_release_load(&mTransactionFlags);
1336}
1337
1338uint32_t SurfaceFlinger::getTransactionFlags(uint32_t flags)
1339{
1340    return android_atomic_and(~flags, &mTransactionFlags) & flags;
1341}
1342
1343uint32_t SurfaceFlinger::setTransactionFlags(uint32_t flags)
1344{
1345    uint32_t old = android_atomic_or(flags, &mTransactionFlags);
1346    if ((old & flags)==0) { // wake the server up
1347        signalTransaction();
1348    }
1349    return old;
1350}
1351
1352
1353void SurfaceFlinger::setTransactionState(
1354        const Vector<ComposerState>& state,
1355        const Vector<DisplayState>& displays,
1356        uint32_t flags)
1357{
1358    Mutex::Autolock _l(mStateLock);
1359
1360    int orientation = eOrientationUnchanged;
1361    if (displays.size()) {
1362        // TODO: handle all displays
1363        orientation = displays[0].orientation;
1364    }
1365
1366    uint32_t transactionFlags = 0;
1367    // FIXME: don't hardcode display id here
1368    if (mCurrentState.displays.valueFor(0).orientation != orientation) {
1369        if (uint32_t(orientation)<=eOrientation270 || orientation==42) {
1370            mCurrentState.displays.editValueFor(0).orientation = orientation;
1371            transactionFlags |= eTransactionNeeded;
1372        } else if (orientation != eOrientationUnchanged) {
1373            ALOGW("setTransactionState: ignoring unrecognized orientation: %d",
1374                    orientation);
1375        }
1376    }
1377
1378    const size_t count = state.size();
1379    for (size_t i=0 ; i<count ; i++) {
1380        const ComposerState& s(state[i]);
1381        sp<Client> client( static_cast<Client *>(s.client.get()) );
1382        transactionFlags |= setClientStateLocked(client, s.state);
1383    }
1384
1385    if (transactionFlags) {
1386        // this triggers the transaction
1387        setTransactionFlags(transactionFlags);
1388
1389        // if this is a synchronous transaction, wait for it to take effect
1390        // before returning.
1391        if (flags & eSynchronous) {
1392            mTransationPending = true;
1393        }
1394        while (mTransationPending) {
1395            status_t err = mTransactionCV.waitRelative(mStateLock, s2ns(5));
1396            if (CC_UNLIKELY(err != NO_ERROR)) {
1397                // just in case something goes wrong in SF, return to the
1398                // called after a few seconds.
1399                ALOGW_IF(err == TIMED_OUT, "closeGlobalTransaction timed out!");
1400                mTransationPending = false;
1401                break;
1402            }
1403        }
1404    }
1405}
1406
1407sp<ISurface> SurfaceFlinger::createLayer(
1408        ISurfaceComposerClient::surface_data_t* params,
1409        const String8& name,
1410        const sp<Client>& client,
1411        DisplayID d, uint32_t w, uint32_t h, PixelFormat format,
1412        uint32_t flags)
1413{
1414    sp<LayerBaseClient> layer;
1415    sp<ISurface> surfaceHandle;
1416
1417    if (int32_t(w|h) < 0) {
1418        ALOGE("createLayer() failed, w or h is negative (w=%d, h=%d)",
1419                int(w), int(h));
1420        return surfaceHandle;
1421    }
1422
1423    //ALOGD("createLayer for (%d x %d), name=%s", w, h, name.string());
1424    switch (flags & eFXSurfaceMask) {
1425        case eFXSurfaceNormal:
1426            layer = createNormalLayer(client, d, w, h, flags, format);
1427            break;
1428        case eFXSurfaceBlur:
1429            // for now we treat Blur as Dim, until we can implement it
1430            // efficiently.
1431        case eFXSurfaceDim:
1432            layer = createDimLayer(client, d, w, h, flags);
1433            break;
1434        case eFXSurfaceScreenshot:
1435            layer = createScreenshotLayer(client, d, w, h, flags);
1436            break;
1437    }
1438
1439    if (layer != 0) {
1440        layer->initStates(w, h, flags);
1441        layer->setName(name);
1442        ssize_t token = addClientLayer(client, layer);
1443        surfaceHandle = layer->getSurface();
1444        if (surfaceHandle != 0) {
1445            params->token = token;
1446            params->identity = layer->getIdentity();
1447        }
1448        setTransactionFlags(eTransactionNeeded);
1449    }
1450
1451    return surfaceHandle;
1452}
1453
1454sp<Layer> SurfaceFlinger::createNormalLayer(
1455        const sp<Client>& client, DisplayID display,
1456        uint32_t w, uint32_t h, uint32_t flags,
1457        PixelFormat& format)
1458{
1459    // initialize the surfaces
1460    switch (format) {
1461    case PIXEL_FORMAT_TRANSPARENT:
1462    case PIXEL_FORMAT_TRANSLUCENT:
1463        format = PIXEL_FORMAT_RGBA_8888;
1464        break;
1465    case PIXEL_FORMAT_OPAQUE:
1466#ifdef NO_RGBX_8888
1467        format = PIXEL_FORMAT_RGB_565;
1468#else
1469        format = PIXEL_FORMAT_RGBX_8888;
1470#endif
1471        break;
1472    }
1473
1474#ifdef NO_RGBX_8888
1475    if (format == PIXEL_FORMAT_RGBX_8888)
1476        format = PIXEL_FORMAT_RGBA_8888;
1477#endif
1478
1479    sp<Layer> layer = new Layer(this, display, client);
1480    status_t err = layer->setBuffers(w, h, format, flags);
1481    if (CC_LIKELY(err != NO_ERROR)) {
1482        ALOGE("createNormalLayer() failed (%s)", strerror(-err));
1483        layer.clear();
1484    }
1485    return layer;
1486}
1487
1488sp<LayerDim> SurfaceFlinger::createDimLayer(
1489        const sp<Client>& client, DisplayID display,
1490        uint32_t w, uint32_t h, uint32_t flags)
1491{
1492    sp<LayerDim> layer = new LayerDim(this, display, client);
1493    return layer;
1494}
1495
1496sp<LayerScreenshot> SurfaceFlinger::createScreenshotLayer(
1497        const sp<Client>& client, DisplayID display,
1498        uint32_t w, uint32_t h, uint32_t flags)
1499{
1500    sp<LayerScreenshot> layer = new LayerScreenshot(this, display, client);
1501    return layer;
1502}
1503
1504status_t SurfaceFlinger::onLayerRemoved(const sp<Client>& client, SurfaceID sid)
1505{
1506    /*
1507     * called by the window manager, when a surface should be marked for
1508     * destruction.
1509     *
1510     * The surface is removed from the current and drawing lists, but placed
1511     * in the purgatory queue, so it's not destroyed right-away (we need
1512     * to wait for all client's references to go away first).
1513     */
1514
1515    status_t err = NAME_NOT_FOUND;
1516    Mutex::Autolock _l(mStateLock);
1517    sp<LayerBaseClient> layer = client->getLayerUser(sid);
1518
1519    if (layer != 0) {
1520        err = purgatorizeLayer_l(layer);
1521        if (err == NO_ERROR) {
1522            setTransactionFlags(eTransactionNeeded);
1523        }
1524    }
1525    return err;
1526}
1527
1528status_t SurfaceFlinger::onLayerDestroyed(const wp<LayerBaseClient>& layer)
1529{
1530    // called by ~ISurface() when all references are gone
1531    status_t err = NO_ERROR;
1532    sp<LayerBaseClient> l(layer.promote());
1533    if (l != NULL) {
1534        Mutex::Autolock _l(mStateLock);
1535        err = removeLayer_l(l);
1536        if (err == NAME_NOT_FOUND) {
1537            // The surface wasn't in the current list, which means it was
1538            // removed already, which means it is in the purgatory,
1539            // and need to be removed from there.
1540            ssize_t idx = mLayerPurgatory.remove(l);
1541            ALOGE_IF(idx < 0,
1542                    "layer=%p is not in the purgatory list", l.get());
1543        }
1544        ALOGE_IF(err<0 && err != NAME_NOT_FOUND,
1545                "error removing layer=%p (%s)", l.get(), strerror(-err));
1546    }
1547    return err;
1548}
1549
1550uint32_t SurfaceFlinger::setClientStateLocked(
1551        const sp<Client>& client,
1552        const layer_state_t& s)
1553{
1554    uint32_t flags = 0;
1555    sp<LayerBaseClient> layer(client->getLayerUser(s.surface));
1556    if (layer != 0) {
1557        const uint32_t what = s.what;
1558        if (what & ePositionChanged) {
1559            if (layer->setPosition(s.x, s.y))
1560                flags |= eTraversalNeeded;
1561        }
1562        if (what & eLayerChanged) {
1563            // NOTE: index needs to be calculated before we update the state
1564            ssize_t idx = mCurrentState.layersSortedByZ.indexOf(layer);
1565            if (layer->setLayer(s.z)) {
1566                mCurrentState.layersSortedByZ.removeAt(idx);
1567                mCurrentState.layersSortedByZ.add(layer);
1568                // we need traversal (state changed)
1569                // AND transaction (list changed)
1570                flags |= eTransactionNeeded|eTraversalNeeded;
1571            }
1572        }
1573        if (what & eSizeChanged) {
1574            if (layer->setSize(s.w, s.h)) {
1575                flags |= eTraversalNeeded;
1576            }
1577        }
1578        if (what & eAlphaChanged) {
1579            if (layer->setAlpha(uint8_t(255.0f*s.alpha+0.5f)))
1580                flags |= eTraversalNeeded;
1581        }
1582        if (what & eMatrixChanged) {
1583            if (layer->setMatrix(s.matrix))
1584                flags |= eTraversalNeeded;
1585        }
1586        if (what & eTransparentRegionChanged) {
1587            if (layer->setTransparentRegionHint(s.transparentRegion))
1588                flags |= eTraversalNeeded;
1589        }
1590        if (what & eVisibilityChanged) {
1591            if (layer->setFlags(s.flags, s.mask))
1592                flags |= eTraversalNeeded;
1593        }
1594        if (what & eCropChanged) {
1595            if (layer->setCrop(s.crop))
1596                flags |= eTraversalNeeded;
1597        }
1598        if (what & eLayerStackChanged) {
1599            // NOTE: index needs to be calculated before we update the state
1600            ssize_t idx = mCurrentState.layersSortedByZ.indexOf(layer);
1601            if (layer->setLayerStack(s.layerStack)) {
1602                mCurrentState.layersSortedByZ.removeAt(idx);
1603                mCurrentState.layersSortedByZ.add(layer);
1604                // we need traversal (state changed)
1605                // AND transaction (list changed)
1606                flags |= eTransactionNeeded|eTraversalNeeded;
1607            }
1608        }
1609    }
1610    return flags;
1611}
1612
1613// ---------------------------------------------------------------------------
1614
1615void SurfaceFlinger::onScreenAcquired() {
1616    ALOGD("Screen about to return, flinger = %p", this);
1617    const DisplayDevice& hw(getDefaultDisplayDevice()); // XXX: this should be per DisplayDevice
1618    getHwComposer().acquire();
1619    hw.acquireScreen();
1620    mEventThread->onScreenAcquired();
1621}
1622
1623void SurfaceFlinger::onScreenReleased() {
1624    ALOGD("About to give-up screen, flinger = %p", this);
1625    const DisplayDevice& hw(getDefaultDisplayDevice()); // XXX: this should be per DisplayDevice
1626    if (hw.isScreenAcquired()) {
1627        mEventThread->onScreenReleased();
1628        hw.releaseScreen();
1629        getHwComposer().release();
1630        // from this point on, SF will stop drawing
1631    }
1632}
1633
1634void SurfaceFlinger::unblank() {
1635    class MessageScreenAcquired : public MessageBase {
1636        SurfaceFlinger* flinger;
1637    public:
1638        MessageScreenAcquired(SurfaceFlinger* flinger) : flinger(flinger) { }
1639        virtual bool handler() {
1640            flinger->onScreenAcquired();
1641            return true;
1642        }
1643    };
1644    sp<MessageBase> msg = new MessageScreenAcquired(this);
1645    postMessageSync(msg);
1646}
1647
1648void SurfaceFlinger::blank() {
1649    class MessageScreenReleased : public MessageBase {
1650        SurfaceFlinger* flinger;
1651    public:
1652        MessageScreenReleased(SurfaceFlinger* flinger) : flinger(flinger) { }
1653        virtual bool handler() {
1654            flinger->onScreenReleased();
1655            return true;
1656        }
1657    };
1658    sp<MessageBase> msg = new MessageScreenReleased(this);
1659    postMessageSync(msg);
1660}
1661
1662// ---------------------------------------------------------------------------
1663
1664status_t SurfaceFlinger::dump(int fd, const Vector<String16>& args)
1665{
1666    const size_t SIZE = 4096;
1667    char buffer[SIZE];
1668    String8 result;
1669
1670    if (!PermissionCache::checkCallingPermission(sDump)) {
1671        snprintf(buffer, SIZE, "Permission Denial: "
1672                "can't dump SurfaceFlinger from pid=%d, uid=%d\n",
1673                IPCThreadState::self()->getCallingPid(),
1674                IPCThreadState::self()->getCallingUid());
1675        result.append(buffer);
1676    } else {
1677        // Try to get the main lock, but don't insist if we can't
1678        // (this would indicate SF is stuck, but we want to be able to
1679        // print something in dumpsys).
1680        int retry = 3;
1681        while (mStateLock.tryLock()<0 && --retry>=0) {
1682            usleep(1000000);
1683        }
1684        const bool locked(retry >= 0);
1685        if (!locked) {
1686            snprintf(buffer, SIZE,
1687                    "SurfaceFlinger appears to be unresponsive, "
1688                    "dumping anyways (no locks held)\n");
1689            result.append(buffer);
1690        }
1691
1692        bool dumpAll = true;
1693        size_t index = 0;
1694        size_t numArgs = args.size();
1695        if (numArgs) {
1696            if ((index < numArgs) &&
1697                    (args[index] == String16("--list"))) {
1698                index++;
1699                listLayersLocked(args, index, result, buffer, SIZE);
1700                dumpAll = false;
1701            }
1702
1703            if ((index < numArgs) &&
1704                    (args[index] == String16("--latency"))) {
1705                index++;
1706                dumpStatsLocked(args, index, result, buffer, SIZE);
1707                dumpAll = false;
1708            }
1709
1710            if ((index < numArgs) &&
1711                    (args[index] == String16("--latency-clear"))) {
1712                index++;
1713                clearStatsLocked(args, index, result, buffer, SIZE);
1714                dumpAll = false;
1715            }
1716        }
1717
1718        if (dumpAll) {
1719            dumpAllLocked(result, buffer, SIZE);
1720        }
1721
1722        if (locked) {
1723            mStateLock.unlock();
1724        }
1725    }
1726    write(fd, result.string(), result.size());
1727    return NO_ERROR;
1728}
1729
1730void SurfaceFlinger::listLayersLocked(const Vector<String16>& args, size_t& index,
1731        String8& result, char* buffer, size_t SIZE) const
1732{
1733    const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
1734    const size_t count = currentLayers.size();
1735    for (size_t i=0 ; i<count ; i++) {
1736        const sp<LayerBase>& layer(currentLayers[i]);
1737        snprintf(buffer, SIZE, "%s\n", layer->getName().string());
1738        result.append(buffer);
1739    }
1740}
1741
1742void SurfaceFlinger::dumpStatsLocked(const Vector<String16>& args, size_t& index,
1743        String8& result, char* buffer, size_t SIZE) const
1744{
1745    String8 name;
1746    if (index < args.size()) {
1747        name = String8(args[index]);
1748        index++;
1749    }
1750
1751    const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
1752    const size_t count = currentLayers.size();
1753    for (size_t i=0 ; i<count ; i++) {
1754        const sp<LayerBase>& layer(currentLayers[i]);
1755        if (name.isEmpty()) {
1756            snprintf(buffer, SIZE, "%s\n", layer->getName().string());
1757            result.append(buffer);
1758        }
1759        if (name.isEmpty() || (name == layer->getName())) {
1760            layer->dumpStats(result, buffer, SIZE);
1761        }
1762    }
1763}
1764
1765void SurfaceFlinger::clearStatsLocked(const Vector<String16>& args, size_t& index,
1766        String8& result, char* buffer, size_t SIZE) const
1767{
1768    String8 name;
1769    if (index < args.size()) {
1770        name = String8(args[index]);
1771        index++;
1772    }
1773
1774    const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
1775    const size_t count = currentLayers.size();
1776    for (size_t i=0 ; i<count ; i++) {
1777        const sp<LayerBase>& layer(currentLayers[i]);
1778        if (name.isEmpty() || (name == layer->getName())) {
1779            layer->clearStats();
1780        }
1781    }
1782}
1783
1784void SurfaceFlinger::dumpAllLocked(
1785        String8& result, char* buffer, size_t SIZE) const
1786{
1787    // figure out if we're stuck somewhere
1788    const nsecs_t now = systemTime();
1789    const nsecs_t inSwapBuffers(mDebugInSwapBuffers);
1790    const nsecs_t inTransaction(mDebugInTransaction);
1791    nsecs_t inSwapBuffersDuration = (inSwapBuffers) ? now-inSwapBuffers : 0;
1792    nsecs_t inTransactionDuration = (inTransaction) ? now-inTransaction : 0;
1793
1794    /*
1795     * Dump the visible layer list
1796     */
1797    const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
1798    const size_t count = currentLayers.size();
1799    snprintf(buffer, SIZE, "Visible layers (count = %d)\n", count);
1800    result.append(buffer);
1801    for (size_t i=0 ; i<count ; i++) {
1802        const sp<LayerBase>& layer(currentLayers[i]);
1803        layer->dump(result, buffer, SIZE);
1804    }
1805
1806    /*
1807     * Dump the layers in the purgatory
1808     */
1809
1810    const size_t purgatorySize = mLayerPurgatory.size();
1811    snprintf(buffer, SIZE, "Purgatory state (%d entries)\n", purgatorySize);
1812    result.append(buffer);
1813    for (size_t i=0 ; i<purgatorySize ; i++) {
1814        const sp<LayerBase>& layer(mLayerPurgatory.itemAt(i));
1815        layer->shortDump(result, buffer, SIZE);
1816    }
1817
1818    /*
1819     * Dump SurfaceFlinger global state
1820     */
1821
1822    snprintf(buffer, SIZE, "SurfaceFlinger global state:\n");
1823    result.append(buffer);
1824
1825    const DisplayDevice& hw(getDefaultDisplayDevice());
1826    const GLExtensions& extensions(GLExtensions::getInstance());
1827    snprintf(buffer, SIZE, "GLES: %s, %s, %s\n",
1828            extensions.getVendor(),
1829            extensions.getRenderer(),
1830            extensions.getVersion());
1831    result.append(buffer);
1832
1833    snprintf(buffer, SIZE, "EGL : %s\n",
1834            eglQueryString(mEGLDisplay, EGL_VERSION_HW_ANDROID));
1835    result.append(buffer);
1836
1837    snprintf(buffer, SIZE, "EXTS: %s\n", extensions.getExtension());
1838    result.append(buffer);
1839
1840    hw.undefinedRegion.dump(result, "undefinedRegion");
1841    snprintf(buffer, SIZE,
1842            "  orientation=%d, canDraw=%d\n",
1843            hw.getOrientation(), hw.canDraw());
1844    result.append(buffer);
1845    snprintf(buffer, SIZE,
1846            "  last eglSwapBuffers() time: %f us\n"
1847            "  last transaction time     : %f us\n"
1848            "  transaction-flags         : %08x\n"
1849            "  refresh-rate              : %f fps\n"
1850            "  x-dpi                     : %f\n"
1851            "  y-dpi                     : %f\n"
1852            "  density                   : %f\n",
1853            mLastSwapBufferTime/1000.0,
1854            mLastTransactionTime/1000.0,
1855            mTransactionFlags,
1856            hw.getRefreshRate(),
1857            hw.getDpiX(),
1858            hw.getDpiY(),
1859            hw.getDensity());
1860    result.append(buffer);
1861
1862    snprintf(buffer, SIZE, "  eglSwapBuffers time: %f us\n",
1863            inSwapBuffersDuration/1000.0);
1864    result.append(buffer);
1865
1866    snprintf(buffer, SIZE, "  transaction time: %f us\n",
1867            inTransactionDuration/1000.0);
1868    result.append(buffer);
1869
1870    /*
1871     * VSYNC state
1872     */
1873    mEventThread->dump(result, buffer, SIZE);
1874
1875    /*
1876     * Dump HWComposer state
1877     */
1878    HWComposer& hwc(getHwComposer());
1879    snprintf(buffer, SIZE, "h/w composer state:\n");
1880    result.append(buffer);
1881    snprintf(buffer, SIZE, "  h/w composer %s and %s\n",
1882            hwc.initCheck()==NO_ERROR ? "present" : "not present",
1883                    (mDebugDisableHWC || mDebugRegion) ? "disabled" : "enabled");
1884    result.append(buffer);
1885    hwc.dump(result, buffer, SIZE, hw.getVisibleLayersSortedByZ());
1886
1887    /*
1888     * Dump gralloc state
1889     */
1890    const GraphicBufferAllocator& alloc(GraphicBufferAllocator::get());
1891    alloc.dump(result);
1892    hw.dump(result);
1893}
1894
1895status_t SurfaceFlinger::onTransact(
1896    uint32_t code, const Parcel& data, Parcel* reply, uint32_t flags)
1897{
1898    switch (code) {
1899        case CREATE_CONNECTION:
1900        case SET_TRANSACTION_STATE:
1901        case SET_ORIENTATION:
1902        case BOOT_FINISHED:
1903        case BLANK:
1904        case UNBLANK:
1905        {
1906            // codes that require permission check
1907            IPCThreadState* ipc = IPCThreadState::self();
1908            const int pid = ipc->getCallingPid();
1909            const int uid = ipc->getCallingUid();
1910            if ((uid != AID_GRAPHICS) &&
1911                    !PermissionCache::checkPermission(sAccessSurfaceFlinger, pid, uid)) {
1912                ALOGE("Permission Denial: "
1913                        "can't access SurfaceFlinger pid=%d, uid=%d", pid, uid);
1914                return PERMISSION_DENIED;
1915            }
1916            break;
1917        }
1918        case CAPTURE_SCREEN:
1919        {
1920            // codes that require permission check
1921            IPCThreadState* ipc = IPCThreadState::self();
1922            const int pid = ipc->getCallingPid();
1923            const int uid = ipc->getCallingUid();
1924            if ((uid != AID_GRAPHICS) &&
1925                    !PermissionCache::checkPermission(sReadFramebuffer, pid, uid)) {
1926                ALOGE("Permission Denial: "
1927                        "can't read framebuffer pid=%d, uid=%d", pid, uid);
1928                return PERMISSION_DENIED;
1929            }
1930            break;
1931        }
1932    }
1933
1934    status_t err = BnSurfaceComposer::onTransact(code, data, reply, flags);
1935    if (err == UNKNOWN_TRANSACTION || err == PERMISSION_DENIED) {
1936        CHECK_INTERFACE(ISurfaceComposer, data, reply);
1937        if (CC_UNLIKELY(!PermissionCache::checkCallingPermission(sHardwareTest))) {
1938            IPCThreadState* ipc = IPCThreadState::self();
1939            const int pid = ipc->getCallingPid();
1940            const int uid = ipc->getCallingUid();
1941            ALOGE("Permission Denial: "
1942                    "can't access SurfaceFlinger pid=%d, uid=%d", pid, uid);
1943            return PERMISSION_DENIED;
1944        }
1945        int n;
1946        switch (code) {
1947            case 1000: // SHOW_CPU, NOT SUPPORTED ANYMORE
1948            case 1001: // SHOW_FPS, NOT SUPPORTED ANYMORE
1949                return NO_ERROR;
1950            case 1002:  // SHOW_UPDATES
1951                n = data.readInt32();
1952                mDebugRegion = n ? n : (mDebugRegion ? 0 : 1);
1953                invalidateHwcGeometry();
1954                repaintEverything();
1955                return NO_ERROR;
1956            case 1004:{ // repaint everything
1957                repaintEverything();
1958                return NO_ERROR;
1959            }
1960            case 1005:{ // force transaction
1961                setTransactionFlags(eTransactionNeeded|eTraversalNeeded);
1962                return NO_ERROR;
1963            }
1964            case 1006:{ // send empty update
1965                signalRefresh();
1966                return NO_ERROR;
1967            }
1968            case 1008:  // toggle use of hw composer
1969                n = data.readInt32();
1970                mDebugDisableHWC = n ? 1 : 0;
1971                invalidateHwcGeometry();
1972                repaintEverything();
1973                return NO_ERROR;
1974            case 1009:  // toggle use of transform hint
1975                n = data.readInt32();
1976                mDebugDisableTransformHint = n ? 1 : 0;
1977                invalidateHwcGeometry();
1978                repaintEverything();
1979                return NO_ERROR;
1980            case 1010:  // interrogate.
1981                reply->writeInt32(0);
1982                reply->writeInt32(0);
1983                reply->writeInt32(mDebugRegion);
1984                reply->writeInt32(0);
1985                reply->writeInt32(mDebugDisableHWC);
1986                return NO_ERROR;
1987            case 1013: {
1988                Mutex::Autolock _l(mStateLock);
1989                const DisplayDevice& hw(getDefaultDisplayDevice());
1990                reply->writeInt32(hw.getPageFlipCount());
1991            }
1992            return NO_ERROR;
1993        }
1994    }
1995    return err;
1996}
1997
1998void SurfaceFlinger::repaintEverything() {
1999    android_atomic_or(1, &mRepaintEverything);
2000    signalTransaction();
2001}
2002
2003// ---------------------------------------------------------------------------
2004
2005status_t SurfaceFlinger::renderScreenToTexture(DisplayID dpy,
2006        GLuint* textureName, GLfloat* uOut, GLfloat* vOut)
2007{
2008    Mutex::Autolock _l(mStateLock);
2009    return renderScreenToTextureLocked(dpy, textureName, uOut, vOut);
2010}
2011
2012status_t SurfaceFlinger::renderScreenToTextureLocked(DisplayID dpy,
2013        GLuint* textureName, GLfloat* uOut, GLfloat* vOut)
2014{
2015    ATRACE_CALL();
2016
2017    if (!GLExtensions::getInstance().haveFramebufferObject())
2018        return INVALID_OPERATION;
2019
2020    // get screen geometry
2021    const DisplayDevice& hw(getDisplayDevice(dpy));
2022    const uint32_t hw_w = hw.getWidth();
2023    const uint32_t hw_h = hw.getHeight();
2024    GLfloat u = 1;
2025    GLfloat v = 1;
2026
2027    // make sure to clear all GL error flags
2028    while ( glGetError() != GL_NO_ERROR ) ;
2029
2030    // create a FBO
2031    GLuint name, tname;
2032    glGenTextures(1, &tname);
2033    glBindTexture(GL_TEXTURE_2D, tname);
2034    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
2035    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
2036    glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB,
2037            hw_w, hw_h, 0, GL_RGB, GL_UNSIGNED_BYTE, 0);
2038    if (glGetError() != GL_NO_ERROR) {
2039        while ( glGetError() != GL_NO_ERROR ) ;
2040        GLint tw = (2 << (31 - clz(hw_w)));
2041        GLint th = (2 << (31 - clz(hw_h)));
2042        glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB,
2043                tw, th, 0, GL_RGB, GL_UNSIGNED_BYTE, 0);
2044        u = GLfloat(hw_w) / tw;
2045        v = GLfloat(hw_h) / th;
2046    }
2047    glGenFramebuffersOES(1, &name);
2048    glBindFramebufferOES(GL_FRAMEBUFFER_OES, name);
2049    glFramebufferTexture2DOES(GL_FRAMEBUFFER_OES,
2050            GL_COLOR_ATTACHMENT0_OES, GL_TEXTURE_2D, tname, 0);
2051
2052    // redraw the screen entirely...
2053    glDisable(GL_TEXTURE_EXTERNAL_OES);
2054    glDisable(GL_TEXTURE_2D);
2055    glClearColor(0,0,0,1);
2056    glClear(GL_COLOR_BUFFER_BIT);
2057    glMatrixMode(GL_MODELVIEW);
2058    glLoadIdentity();
2059    const Vector< sp<LayerBase> >& layers(hw.getVisibleLayersSortedByZ());
2060    const size_t count = layers.size();
2061    for (size_t i=0 ; i<count ; ++i) {
2062        const sp<LayerBase>& layer(layers[i]);
2063        layer->draw(hw);
2064    }
2065
2066    hw.compositionComplete();
2067
2068    // back to main framebuffer
2069    glBindFramebufferOES(GL_FRAMEBUFFER_OES, 0);
2070    glDeleteFramebuffersOES(1, &name);
2071
2072    *textureName = tname;
2073    *uOut = u;
2074    *vOut = v;
2075    return NO_ERROR;
2076}
2077
2078// ---------------------------------------------------------------------------
2079
2080status_t SurfaceFlinger::captureScreenImplLocked(DisplayID dpy,
2081        sp<IMemoryHeap>* heap,
2082        uint32_t* w, uint32_t* h, PixelFormat* f,
2083        uint32_t sw, uint32_t sh,
2084        uint32_t minLayerZ, uint32_t maxLayerZ)
2085{
2086    ATRACE_CALL();
2087
2088    status_t result = PERMISSION_DENIED;
2089
2090    // only one display supported for now
2091    if (CC_UNLIKELY(uint32_t(dpy) >= DISPLAY_COUNT)) {
2092        return BAD_VALUE;
2093    }
2094
2095    if (!GLExtensions::getInstance().haveFramebufferObject()) {
2096        return INVALID_OPERATION;
2097    }
2098
2099    // get screen geometry
2100    const DisplayDevice& hw(getDisplayDevice(dpy));
2101    const uint32_t hw_w = hw.getWidth();
2102    const uint32_t hw_h = hw.getHeight();
2103
2104    // if we have secure windows on this display, never allow the screen capture
2105    if (hw.getSecureLayerVisible()) {
2106        return PERMISSION_DENIED;
2107    }
2108
2109    if ((sw > hw_w) || (sh > hw_h)) {
2110        return BAD_VALUE;
2111    }
2112
2113    sw = (!sw) ? hw_w : sw;
2114    sh = (!sh) ? hw_h : sh;
2115    const size_t size = sw * sh * 4;
2116    const bool filtering = sw != hw_w || sh != hw_h;
2117
2118    //ALOGD("screenshot: sw=%d, sh=%d, minZ=%d, maxZ=%d",
2119    //        sw, sh, minLayerZ, maxLayerZ);
2120
2121    // make sure to clear all GL error flags
2122    while ( glGetError() != GL_NO_ERROR ) ;
2123
2124    // create a FBO
2125    GLuint name, tname;
2126    glGenRenderbuffersOES(1, &tname);
2127    glBindRenderbufferOES(GL_RENDERBUFFER_OES, tname);
2128    glRenderbufferStorageOES(GL_RENDERBUFFER_OES, GL_RGBA8_OES, sw, sh);
2129
2130    glGenFramebuffersOES(1, &name);
2131    glBindFramebufferOES(GL_FRAMEBUFFER_OES, name);
2132    glFramebufferRenderbufferOES(GL_FRAMEBUFFER_OES,
2133            GL_COLOR_ATTACHMENT0_OES, GL_RENDERBUFFER_OES, tname);
2134
2135    GLenum status = glCheckFramebufferStatusOES(GL_FRAMEBUFFER_OES);
2136
2137    if (status == GL_FRAMEBUFFER_COMPLETE_OES) {
2138
2139        // invert everything, b/c glReadPixel() below will invert the FB
2140        glViewport(0, 0, sw, sh);
2141        glMatrixMode(GL_PROJECTION);
2142        glPushMatrix();
2143        glLoadIdentity();
2144        glOrthof(0, hw_w, hw_h, 0, 0, 1);
2145        glMatrixMode(GL_MODELVIEW);
2146
2147        // redraw the screen entirely...
2148        glClearColor(0,0,0,1);
2149        glClear(GL_COLOR_BUFFER_BIT);
2150
2151        const LayerVector& layers(mDrawingState.layersSortedByZ);
2152        const size_t count = layers.size();
2153        for (size_t i=0 ; i<count ; ++i) {
2154            const sp<LayerBase>& layer(layers[i]);
2155            const uint32_t flags = layer->drawingState().flags;
2156            if (!(flags & ISurfaceComposer::eLayerHidden)) {
2157                const uint32_t z = layer->drawingState().z;
2158                if (z >= minLayerZ && z <= maxLayerZ) {
2159                    if (filtering) layer->setFiltering(true);
2160                    layer->draw(hw);
2161                    if (filtering) layer->setFiltering(false);
2162                }
2163            }
2164        }
2165
2166        // check for errors and return screen capture
2167        if (glGetError() != GL_NO_ERROR) {
2168            // error while rendering
2169            result = INVALID_OPERATION;
2170        } else {
2171            // allocate shared memory large enough to hold the
2172            // screen capture
2173            sp<MemoryHeapBase> base(
2174                    new MemoryHeapBase(size, 0, "screen-capture") );
2175            void* const ptr = base->getBase();
2176            if (ptr) {
2177                // capture the screen with glReadPixels()
2178                ScopedTrace _t(ATRACE_TAG, "glReadPixels");
2179                glReadPixels(0, 0, sw, sh, GL_RGBA, GL_UNSIGNED_BYTE, ptr);
2180                if (glGetError() == GL_NO_ERROR) {
2181                    *heap = base;
2182                    *w = sw;
2183                    *h = sh;
2184                    *f = PIXEL_FORMAT_RGBA_8888;
2185                    result = NO_ERROR;
2186                }
2187            } else {
2188                result = NO_MEMORY;
2189            }
2190        }
2191        glViewport(0, 0, hw_w, hw_h);
2192        glMatrixMode(GL_PROJECTION);
2193        glPopMatrix();
2194        glMatrixMode(GL_MODELVIEW);
2195    } else {
2196        result = BAD_VALUE;
2197    }
2198
2199    // release FBO resources
2200    glBindFramebufferOES(GL_FRAMEBUFFER_OES, 0);
2201    glDeleteRenderbuffersOES(1, &tname);
2202    glDeleteFramebuffersOES(1, &name);
2203
2204    hw.compositionComplete();
2205
2206    // ALOGD("screenshot: result = %s", result<0 ? strerror(result) : "OK");
2207
2208    return result;
2209}
2210
2211
2212status_t SurfaceFlinger::captureScreen(DisplayID dpy,
2213        sp<IMemoryHeap>* heap,
2214        uint32_t* width, uint32_t* height, PixelFormat* format,
2215        uint32_t sw, uint32_t sh,
2216        uint32_t minLayerZ, uint32_t maxLayerZ)
2217{
2218    // only one display supported for now
2219    if (CC_UNLIKELY(uint32_t(dpy) >= DISPLAY_COUNT))
2220        return BAD_VALUE;
2221
2222    if (!GLExtensions::getInstance().haveFramebufferObject())
2223        return INVALID_OPERATION;
2224
2225    class MessageCaptureScreen : public MessageBase {
2226        SurfaceFlinger* flinger;
2227        DisplayID dpy;
2228        sp<IMemoryHeap>* heap;
2229        uint32_t* w;
2230        uint32_t* h;
2231        PixelFormat* f;
2232        uint32_t sw;
2233        uint32_t sh;
2234        uint32_t minLayerZ;
2235        uint32_t maxLayerZ;
2236        status_t result;
2237    public:
2238        MessageCaptureScreen(SurfaceFlinger* flinger, DisplayID dpy,
2239                sp<IMemoryHeap>* heap, uint32_t* w, uint32_t* h, PixelFormat* f,
2240                uint32_t sw, uint32_t sh,
2241                uint32_t minLayerZ, uint32_t maxLayerZ)
2242            : flinger(flinger), dpy(dpy),
2243              heap(heap), w(w), h(h), f(f), sw(sw), sh(sh),
2244              minLayerZ(minLayerZ), maxLayerZ(maxLayerZ),
2245              result(PERMISSION_DENIED)
2246        {
2247        }
2248        status_t getResult() const {
2249            return result;
2250        }
2251        virtual bool handler() {
2252            Mutex::Autolock _l(flinger->mStateLock);
2253            result = flinger->captureScreenImplLocked(dpy,
2254                    heap, w, h, f, sw, sh, minLayerZ, maxLayerZ);
2255            return true;
2256        }
2257    };
2258
2259    sp<MessageBase> msg = new MessageCaptureScreen(this,
2260            dpy, heap, width, height, format, sw, sh, minLayerZ, maxLayerZ);
2261    status_t res = postMessageSync(msg);
2262    if (res == NO_ERROR) {
2263        res = static_cast<MessageCaptureScreen*>( msg.get() )->getResult();
2264    }
2265    return res;
2266}
2267
2268// ---------------------------------------------------------------------------
2269
2270SurfaceFlinger::LayerVector::LayerVector() {
2271}
2272
2273SurfaceFlinger::LayerVector::LayerVector(const LayerVector& rhs)
2274    : SortedVector<sp<LayerBase> >(rhs) {
2275}
2276
2277int SurfaceFlinger::LayerVector::do_compare(const void* lhs,
2278    const void* rhs) const
2279{
2280    // sort layers per layer-stack, then by z-order and finally by sequence
2281    const sp<LayerBase>& l(*reinterpret_cast<const sp<LayerBase>*>(lhs));
2282    const sp<LayerBase>& r(*reinterpret_cast<const sp<LayerBase>*>(rhs));
2283
2284    uint32_t ls = l->currentState().layerStack;
2285    uint32_t rs = r->currentState().layerStack;
2286    if (ls != rs)
2287        return ls - rs;
2288
2289    uint32_t lz = l->currentState().z;
2290    uint32_t rz = r->currentState().z;
2291    if (lz != rz)
2292        return lz - rz;
2293
2294    return l->sequence - r->sequence;
2295}
2296
2297// ---------------------------------------------------------------------------
2298
2299SurfaceFlinger::DisplayDeviceState::DisplayDeviceState()
2300    : id(DisplayDevice::DISPLAY_ID_MAIN), layerStack(0), orientation(0) {
2301}
2302
2303// ---------------------------------------------------------------------------
2304
2305GraphicBufferAlloc::GraphicBufferAlloc() {}
2306
2307GraphicBufferAlloc::~GraphicBufferAlloc() {}
2308
2309sp<GraphicBuffer> GraphicBufferAlloc::createGraphicBuffer(uint32_t w, uint32_t h,
2310        PixelFormat format, uint32_t usage, status_t* error) {
2311    sp<GraphicBuffer> graphicBuffer(new GraphicBuffer(w, h, format, usage));
2312    status_t err = graphicBuffer->initCheck();
2313    *error = err;
2314    if (err != 0 || graphicBuffer->handle == 0) {
2315        if (err == NO_MEMORY) {
2316            GraphicBuffer::dumpAllocationsToSystemLog();
2317        }
2318        ALOGE("GraphicBufferAlloc::createGraphicBuffer(w=%d, h=%d) "
2319             "failed (%s), handle=%p",
2320                w, h, strerror(-err), graphicBuffer->handle);
2321        return 0;
2322    }
2323    return graphicBuffer;
2324}
2325
2326// ---------------------------------------------------------------------------
2327
2328}; // namespace android
2329