SurfaceFlinger.cpp revision cde87a3b9d3f8dc15232d927b56ee9e5e520f58d
1/*
2 * Copyright (C) 2007 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#define ATRACE_TAG ATRACE_TAG_GRAPHICS
18
19#include <stdint.h>
20#include <sys/types.h>
21#include <errno.h>
22#include <math.h>
23#include <dlfcn.h>
24
25#include <EGL/egl.h>
26#include <GLES/gl.h>
27
28#include <cutils/log.h>
29#include <cutils/properties.h>
30
31#include <binder/IPCThreadState.h>
32#include <binder/IServiceManager.h>
33#include <binder/MemoryHeapBase.h>
34#include <binder/PermissionCache.h>
35
36#include <ui/DisplayInfo.h>
37
38#include <gui/BitTube.h>
39#include <gui/BufferQueue.h>
40#include <gui/IDisplayEventConnection.h>
41#include <gui/SurfaceTextureClient.h>
42
43#include <ui/GraphicBufferAllocator.h>
44#include <ui/PixelFormat.h>
45
46#include <utils/misc.h>
47#include <utils/String8.h>
48#include <utils/String16.h>
49#include <utils/StopWatch.h>
50#include <utils/Trace.h>
51
52#include <private/android_filesystem_config.h>
53
54#include "clz.h"
55#include "DdmConnection.h"
56#include "DisplayDevice.h"
57#include "Client.h"
58#include "EventThread.h"
59#include "GLExtensions.h"
60#include "Layer.h"
61#include "LayerDim.h"
62#include "LayerScreenshot.h"
63#include "SurfaceFlinger.h"
64
65#include "DisplayHardware/FramebufferSurface.h"
66#include "DisplayHardware/HWComposer.h"
67
68
69#define EGL_VERSION_HW_ANDROID  0x3143
70
71#define DISPLAY_COUNT       1
72
73namespace android {
74// ---------------------------------------------------------------------------
75
76const String16 sHardwareTest("android.permission.HARDWARE_TEST");
77const String16 sAccessSurfaceFlinger("android.permission.ACCESS_SURFACE_FLINGER");
78const String16 sReadFramebuffer("android.permission.READ_FRAME_BUFFER");
79const String16 sDump("android.permission.DUMP");
80
81// ---------------------------------------------------------------------------
82
83SurfaceFlinger::SurfaceFlinger()
84    :   BnSurfaceComposer(), Thread(false),
85        mTransactionFlags(0),
86        mTransationPending(false),
87        mLayersRemoved(false),
88        mRepaintEverything(0),
89        mBootTime(systemTime()),
90        mVisibleRegionsDirty(false),
91        mHwWorkListDirty(false),
92        mDebugRegion(0),
93        mDebugDDMS(0),
94        mDebugDisableHWC(0),
95        mDebugDisableTransformHint(0),
96        mDebugInSwapBuffers(0),
97        mLastSwapBufferTime(0),
98        mDebugInTransaction(0),
99        mLastTransactionTime(0),
100        mBootFinished(false)
101{
102    ALOGI("SurfaceFlinger is starting");
103
104    // debugging stuff...
105    char value[PROPERTY_VALUE_MAX];
106
107    property_get("debug.sf.showupdates", value, "0");
108    mDebugRegion = atoi(value);
109
110    property_get("debug.sf.ddms", value, "0");
111    mDebugDDMS = atoi(value);
112    if (mDebugDDMS) {
113        if (!startDdmConnection()) {
114            // start failed, and DDMS debugging not enabled
115            mDebugDDMS = 0;
116        }
117    }
118    ALOGI_IF(mDebugRegion, "showupdates enabled");
119    ALOGI_IF(mDebugDDMS, "DDMS debugging enabled");
120}
121
122void SurfaceFlinger::onFirstRef()
123{
124    mEventQueue.init(this);
125
126    run("SurfaceFlinger", PRIORITY_URGENT_DISPLAY);
127
128    // Wait for the main thread to be done with its initialization
129    mReadyToRunBarrier.wait();
130}
131
132
133SurfaceFlinger::~SurfaceFlinger()
134{
135    EGLDisplay display = eglGetDisplay(EGL_DEFAULT_DISPLAY);
136    eglMakeCurrent(display, EGL_NO_SURFACE, EGL_NO_SURFACE, EGL_NO_CONTEXT);
137    eglTerminate(display);
138}
139
140void SurfaceFlinger::binderDied(const wp<IBinder>& who)
141{
142    // the window manager died on us. prepare its eulogy.
143
144    // restore initial conditions (default device unblank, etc)
145    initializeDisplays();
146
147    // restart the boot-animation
148    startBootAnim();
149}
150
151sp<ISurfaceComposerClient> SurfaceFlinger::createConnection()
152{
153    sp<ISurfaceComposerClient> bclient;
154    sp<Client> client(new Client(this));
155    status_t err = client->initCheck();
156    if (err == NO_ERROR) {
157        bclient = client;
158    }
159    return bclient;
160}
161
162sp<IBinder> SurfaceFlinger::createDisplay()
163{
164    class DisplayToken : public BBinder {
165        sp<SurfaceFlinger> flinger;
166        virtual ~DisplayToken() {
167             // no more references, this display must be terminated
168             Mutex::Autolock _l(flinger->mStateLock);
169             flinger->mCurrentState.displays.removeItem(this);
170             flinger->setTransactionFlags(eDisplayTransactionNeeded);
171         }
172     public:
173        DisplayToken(const sp<SurfaceFlinger>& flinger)
174            : flinger(flinger) {
175        }
176    };
177
178    sp<BBinder> token = new DisplayToken(this);
179
180    Mutex::Autolock _l(mStateLock);
181    DisplayDeviceState info(DisplayDevice::DISPLAY_VIRTUAL);
182    mCurrentState.displays.add(token, info);
183
184    return token;
185}
186
187sp<IBinder> SurfaceFlinger::getBuiltInDisplay(int32_t id) {
188    if (uint32_t(id) >= DisplayDevice::NUM_DISPLAY_TYPES) {
189        ALOGE("getDefaultDisplay: id=%d is not a valid default display id", id);
190        return NULL;
191    }
192    return mDefaultDisplays[id];
193}
194
195sp<IGraphicBufferAlloc> SurfaceFlinger::createGraphicBufferAlloc()
196{
197    sp<GraphicBufferAlloc> gba(new GraphicBufferAlloc());
198    return gba;
199}
200
201void SurfaceFlinger::bootFinished()
202{
203    const nsecs_t now = systemTime();
204    const nsecs_t duration = now - mBootTime;
205    ALOGI("Boot is finished (%ld ms)", long(ns2ms(duration)) );
206    mBootFinished = true;
207
208    // wait patiently for the window manager death
209    const String16 name("window");
210    sp<IBinder> window(defaultServiceManager()->getService(name));
211    if (window != 0) {
212        window->linkToDeath(static_cast<IBinder::DeathRecipient*>(this));
213    }
214
215    // stop boot animation
216    // formerly we would just kill the process, but we now ask it to exit so it
217    // can choose where to stop the animation.
218    property_set("service.bootanim.exit", "1");
219}
220
221void SurfaceFlinger::deleteTextureAsync(GLuint texture) {
222    class MessageDestroyGLTexture : public MessageBase {
223        GLuint texture;
224    public:
225        MessageDestroyGLTexture(GLuint texture)
226            : texture(texture) {
227        }
228        virtual bool handler() {
229            glDeleteTextures(1, &texture);
230            return true;
231        }
232    };
233    postMessageAsync(new MessageDestroyGLTexture(texture));
234}
235
236status_t SurfaceFlinger::selectConfigForPixelFormat(
237        EGLDisplay dpy,
238        EGLint const* attrs,
239        PixelFormat format,
240        EGLConfig* outConfig)
241{
242    EGLConfig config = NULL;
243    EGLint numConfigs = -1, n=0;
244    eglGetConfigs(dpy, NULL, 0, &numConfigs);
245    EGLConfig* const configs = new EGLConfig[numConfigs];
246    eglChooseConfig(dpy, attrs, configs, numConfigs, &n);
247
248    if (format == HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED) {
249        // FIXME: temporary hack until HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED
250        // is supported by the implementation. we can only be in this case
251        // if we have HWC 1.1
252        *outConfig = configs[0];
253        delete [] configs;
254        return NO_ERROR;
255    }
256
257    for (int i=0 ; i<n ; i++) {
258        EGLint nativeVisualId = 0;
259        eglGetConfigAttrib(dpy, configs[i], EGL_NATIVE_VISUAL_ID, &nativeVisualId);
260        if (nativeVisualId>0 && format == nativeVisualId) {
261            *outConfig = configs[i];
262            delete [] configs;
263            return NO_ERROR;
264        }
265    }
266    delete [] configs;
267    return NAME_NOT_FOUND;
268}
269
270EGLConfig SurfaceFlinger::selectEGLConfig(EGLDisplay display, EGLint nativeVisualId) {
271    // select our EGLConfig. It must support EGL_RECORDABLE_ANDROID if
272    // it is to be used with WIFI displays
273    EGLConfig config;
274    EGLint dummy;
275    status_t err;
276    EGLint attribs[] = {
277            EGL_SURFACE_TYPE,           EGL_WINDOW_BIT,
278            EGL_RED_SIZE,               8,
279            EGL_GREEN_SIZE,             8,
280            EGL_BLUE_SIZE,              8,
281            // EGL_RECORDABLE_ANDROID must be last so that we can retry
282            // without it easily (see below)
283            EGL_RECORDABLE_ANDROID,     EGL_TRUE,
284            EGL_NONE
285    };
286    err = selectConfigForPixelFormat(display, attribs, nativeVisualId, &config);
287    if (err) {
288        // maybe we failed because of EGL_RECORDABLE_ANDROID
289        ALOGW("couldn't find an EGLConfig with EGL_RECORDABLE_ANDROID");
290        attribs[NELEM(attribs) - 3] = EGL_NONE;
291        err = selectConfigForPixelFormat(display, attribs, nativeVisualId, &config);
292    }
293    ALOGE_IF(err, "couldn't find an EGLConfig matching the screen format");
294    if (eglGetConfigAttrib(display, config, EGL_CONFIG_CAVEAT, &dummy) == EGL_TRUE) {
295        ALOGW_IF(dummy == EGL_SLOW_CONFIG, "EGL_SLOW_CONFIG selected!");
296    }
297    return config;
298}
299
300EGLContext SurfaceFlinger::createGLContext(EGLDisplay display, EGLConfig config) {
301    // Also create our EGLContext
302    EGLint contextAttributes[] = {
303#ifdef EGL_IMG_context_priority
304#ifdef HAS_CONTEXT_PRIORITY
305#warning "using EGL_IMG_context_priority"
306            EGL_CONTEXT_PRIORITY_LEVEL_IMG, EGL_CONTEXT_PRIORITY_HIGH_IMG,
307#endif
308#endif
309            EGL_NONE, EGL_NONE
310    };
311    EGLContext ctxt = eglCreateContext(display, config, NULL, contextAttributes);
312    ALOGE_IF(ctxt==EGL_NO_CONTEXT, "EGLContext creation failed");
313    return ctxt;
314}
315
316void SurfaceFlinger::initializeGL(EGLDisplay display) {
317    GLExtensions& extensions(GLExtensions::getInstance());
318    extensions.initWithGLStrings(
319            glGetString(GL_VENDOR),
320            glGetString(GL_RENDERER),
321            glGetString(GL_VERSION),
322            glGetString(GL_EXTENSIONS),
323            eglQueryString(display, EGL_VENDOR),
324            eglQueryString(display, EGL_VERSION),
325            eglQueryString(display, EGL_EXTENSIONS));
326
327    glGetIntegerv(GL_MAX_TEXTURE_SIZE, &mMaxTextureSize);
328    glGetIntegerv(GL_MAX_VIEWPORT_DIMS, mMaxViewportDims);
329
330    glPixelStorei(GL_UNPACK_ALIGNMENT, 4);
331    glPixelStorei(GL_PACK_ALIGNMENT, 4);
332    glEnableClientState(GL_VERTEX_ARRAY);
333    glShadeModel(GL_FLAT);
334    glDisable(GL_DITHER);
335    glDisable(GL_CULL_FACE);
336
337    struct pack565 {
338        inline uint16_t operator() (int r, int g, int b) const {
339            return (r<<11)|(g<<5)|b;
340        }
341    } pack565;
342
343    const uint16_t protTexData[] = { pack565(0x03, 0x03, 0x03) };
344    glGenTextures(1, &mProtectedTexName);
345    glBindTexture(GL_TEXTURE_2D, mProtectedTexName);
346    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
347    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
348    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
349    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
350    glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, 1, 1, 0,
351            GL_RGB, GL_UNSIGNED_SHORT_5_6_5, protTexData);
352
353    // print some debugging info
354    EGLint r,g,b,a;
355    eglGetConfigAttrib(display, mEGLConfig, EGL_RED_SIZE,   &r);
356    eglGetConfigAttrib(display, mEGLConfig, EGL_GREEN_SIZE, &g);
357    eglGetConfigAttrib(display, mEGLConfig, EGL_BLUE_SIZE,  &b);
358    eglGetConfigAttrib(display, mEGLConfig, EGL_ALPHA_SIZE, &a);
359    ALOGI("EGL informations:");
360    ALOGI("vendor    : %s", extensions.getEglVendor());
361    ALOGI("version   : %s", extensions.getEglVersion());
362    ALOGI("extensions: %s", extensions.getEglExtension());
363    ALOGI("Client API: %s", eglQueryString(display, EGL_CLIENT_APIS)?:"Not Supported");
364    ALOGI("EGLSurface: %d-%d-%d-%d, config=%p", r, g, b, a, mEGLConfig);
365    ALOGI("OpenGL ES informations:");
366    ALOGI("vendor    : %s", extensions.getVendor());
367    ALOGI("renderer  : %s", extensions.getRenderer());
368    ALOGI("version   : %s", extensions.getVersion());
369    ALOGI("extensions: %s", extensions.getExtension());
370    ALOGI("GL_MAX_TEXTURE_SIZE = %d", mMaxTextureSize);
371    ALOGI("GL_MAX_VIEWPORT_DIMS = %d x %d", mMaxViewportDims[0], mMaxViewportDims[1]);
372}
373
374status_t SurfaceFlinger::readyToRun()
375{
376    ALOGI(  "SurfaceFlinger's main thread ready to run. "
377            "Initializing graphics H/W...");
378
379    // initialize EGL for the default display
380    mEGLDisplay = eglGetDisplay(EGL_DEFAULT_DISPLAY);
381    eglInitialize(mEGLDisplay, NULL, NULL);
382
383    // Initialize the H/W composer object.  There may or may not be an
384    // actual hardware composer underneath.
385    mHwc = new HWComposer(this,
386            *static_cast<HWComposer::EventHandler *>(this));
387
388    // initialize the config and context
389    EGLint format = mHwc->getVisualID();
390    mEGLConfig  = selectEGLConfig(mEGLDisplay, format);
391    mEGLContext = createGLContext(mEGLDisplay, mEGLConfig);
392
393    // initialize our non-virtual displays
394    for (size_t i=0 ; i<DisplayDevice::NUM_DISPLAY_TYPES ; i++) {
395        mDefaultDisplays[i] = new BBinder();
396        mCurrentState.displays.add(mDefaultDisplays[i],
397                DisplayDeviceState(DisplayDevice::DisplayType(i)));
398    }
399
400    // The main display is a bit special and always exists
401    //
402    // if we didn't add it here, it would be added automatically during the
403    // first transaction, however this would also create some difficulties:
404    //
405    // - there would be a race where a client could call getDisplayInfo(),
406    //   for instance before the DisplayDevice is created.
407    //
408    // - we need a GL context current in a few places, when initializing
409    //   OpenGL ES (see below), or creating a layer,
410    //   or when a texture is (asynchronously) destroyed, and for that
411    //   we need a valid surface, so it's conveniant to use the main display
412    //   for that.
413
414    sp<FramebufferSurface> fbs = new FramebufferSurface(*mHwc);
415    sp<SurfaceTextureClient> stc = new SurfaceTextureClient(
416                static_cast< sp<ISurfaceTexture> >(fbs->getBufferQueue()));
417    sp<DisplayDevice> hw = new DisplayDevice(this,
418            DisplayDevice::DISPLAY_PRIMARY,
419            mDefaultDisplays[DisplayDevice::DISPLAY_PRIMARY],
420            stc, fbs, mEGLConfig);
421    mDisplays.add(mDefaultDisplays[DisplayDevice::DISPLAY_PRIMARY], hw);
422
423
424    //  initialize OpenGL ES
425    DisplayDevice::makeCurrent(mEGLDisplay, hw, mEGLContext);
426    initializeGL(mEGLDisplay);
427
428    // start the EventThread
429    mEventThread = new EventThread(this);
430    mEventQueue.setEventThread(mEventThread);
431
432    // initialize our drawing state
433    mDrawingState = mCurrentState;
434
435
436    // We're now ready to accept clients...
437    mReadyToRunBarrier.open();
438
439    // set initial conditions (e.g. unblank default device)
440    initializeDisplays();
441
442    // start boot animation
443    startBootAnim();
444
445    return NO_ERROR;
446}
447
448int32_t SurfaceFlinger::allocateHwcDisplayId(DisplayDevice::DisplayType type) {
449    return (uint32_t(type) < DisplayDevice::NUM_DISPLAY_TYPES) ?
450            type : mHwc->allocateDisplayId();
451}
452
453void SurfaceFlinger::startBootAnim() {
454    // start boot animation
455    property_set("service.bootanim.exit", "0");
456    property_set("ctl.start", "bootanim");
457}
458
459uint32_t SurfaceFlinger::getMaxTextureSize() const {
460    return mMaxTextureSize;
461}
462
463uint32_t SurfaceFlinger::getMaxViewportDims() const {
464    return mMaxViewportDims[0] < mMaxViewportDims[1] ?
465            mMaxViewportDims[0] : mMaxViewportDims[1];
466}
467
468// ----------------------------------------------------------------------------
469
470bool SurfaceFlinger::authenticateSurfaceTexture(
471        const sp<ISurfaceTexture>& surfaceTexture) const {
472    Mutex::Autolock _l(mStateLock);
473    sp<IBinder> surfaceTextureBinder(surfaceTexture->asBinder());
474
475    // Check the visible layer list for the ISurface
476    const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
477    size_t count = currentLayers.size();
478    for (size_t i=0 ; i<count ; i++) {
479        const sp<LayerBase>& layer(currentLayers[i]);
480        sp<LayerBaseClient> lbc(layer->getLayerBaseClient());
481        if (lbc != NULL) {
482            wp<IBinder> lbcBinder = lbc->getSurfaceTextureBinder();
483            if (lbcBinder == surfaceTextureBinder) {
484                return true;
485            }
486        }
487    }
488
489    // Check the layers in the purgatory.  This check is here so that if a
490    // SurfaceTexture gets destroyed before all the clients are done using it,
491    // the error will not be reported as "surface XYZ is not authenticated", but
492    // will instead fail later on when the client tries to use the surface,
493    // which should be reported as "surface XYZ returned an -ENODEV".  The
494    // purgatorized layers are no less authentic than the visible ones, so this
495    // should not cause any harm.
496    size_t purgatorySize =  mLayerPurgatory.size();
497    for (size_t i=0 ; i<purgatorySize ; i++) {
498        const sp<LayerBase>& layer(mLayerPurgatory.itemAt(i));
499        sp<LayerBaseClient> lbc(layer->getLayerBaseClient());
500        if (lbc != NULL) {
501            wp<IBinder> lbcBinder = lbc->getSurfaceTextureBinder();
502            if (lbcBinder == surfaceTextureBinder) {
503                return true;
504            }
505        }
506    }
507
508    return false;
509}
510
511status_t SurfaceFlinger::getDisplayInfo(const sp<IBinder>& display, DisplayInfo* info) {
512    // TODO: this is mostly here only for compatibility
513    //       the display size is needed but the display metrics should come from elsewhere
514    if (display != mDefaultDisplays[ISurfaceComposer::eDisplayIdMain]) {
515        // TODO: additional displays not yet supported
516        return BAD_INDEX;
517    }
518
519    const HWComposer& hwc(getHwComposer());
520    float xdpi = hwc.getDpiX(HWC_DISPLAY_PRIMARY);
521    float ydpi = hwc.getDpiY(HWC_DISPLAY_PRIMARY);
522
523    // TODO: Not sure if display density should handled by SF any longer
524    class Density {
525        static int getDensityFromProperty(char const* propName) {
526            char property[PROPERTY_VALUE_MAX];
527            int density = 0;
528            if (property_get(propName, property, NULL) > 0) {
529                density = atoi(property);
530            }
531            return density;
532        }
533    public:
534        static int getEmuDensity() {
535            return getDensityFromProperty("qemu.sf.lcd_density"); }
536        static int getBuildDensity()  {
537            return getDensityFromProperty("ro.sf.lcd_density"); }
538    };
539    // The density of the device is provided by a build property
540    float density = Density::getBuildDensity() / 160.0f;
541    if (density == 0) {
542        // the build doesn't provide a density -- this is wrong!
543        // use xdpi instead
544        ALOGE("ro.sf.lcd_density must be defined as a build property");
545        density = xdpi / 160.0f;
546    }
547    if (Density::getEmuDensity()) {
548        // if "qemu.sf.lcd_density" is specified, it overrides everything
549        xdpi = ydpi = density = Density::getEmuDensity();
550        density /= 160.0f;
551    }
552
553    sp<const DisplayDevice> hw(getDefaultDisplayDevice());
554    info->w = hw->getWidth();
555    info->h = hw->getHeight();
556    info->xdpi = xdpi;
557    info->ydpi = ydpi;
558    info->fps = float(1e9 / hwc.getRefreshPeriod(HWC_DISPLAY_PRIMARY));
559    info->density = density;
560    info->orientation = hw->getOrientation();
561    // TODO: this needs to go away (currently needed only by webkit)
562    getPixelFormatInfo(hw->getFormat(), &info->pixelFormatInfo);
563    return NO_ERROR;
564}
565
566// ----------------------------------------------------------------------------
567
568sp<IDisplayEventConnection> SurfaceFlinger::createDisplayEventConnection() {
569    return mEventThread->createEventConnection();
570}
571
572void SurfaceFlinger::connectDisplay(const sp<ISurfaceTexture>& surface) {
573
574    sp<IBinder> token;
575    { // scope for the lock
576        Mutex::Autolock _l(mStateLock);
577        token = mExtDisplayToken;
578    }
579
580    if (token == 0) {
581        token = createDisplay();
582    }
583
584    { // scope for the lock
585        Mutex::Autolock _l(mStateLock);
586        if (surface == 0) {
587            // release our current display. we're guarantee to have
588            // a reference to it (token), while we hold the lock
589            mExtDisplayToken = 0;
590        } else {
591            mExtDisplayToken = token;
592        }
593
594        DisplayDeviceState& info(mCurrentState.displays.editValueFor(token));
595        info.surface = surface;
596        setTransactionFlags(eDisplayTransactionNeeded);
597    }
598}
599
600// ----------------------------------------------------------------------------
601
602void SurfaceFlinger::waitForEvent() {
603    mEventQueue.waitMessage();
604}
605
606void SurfaceFlinger::signalTransaction() {
607    mEventQueue.invalidate();
608}
609
610void SurfaceFlinger::signalLayerUpdate() {
611    mEventQueue.invalidate();
612}
613
614void SurfaceFlinger::signalRefresh() {
615    mEventQueue.refresh();
616}
617
618status_t SurfaceFlinger::postMessageAsync(const sp<MessageBase>& msg,
619        nsecs_t reltime, uint32_t flags) {
620    return mEventQueue.postMessage(msg, reltime);
621}
622
623status_t SurfaceFlinger::postMessageSync(const sp<MessageBase>& msg,
624        nsecs_t reltime, uint32_t flags) {
625    status_t res = mEventQueue.postMessage(msg, reltime);
626    if (res == NO_ERROR) {
627        msg->wait();
628    }
629    return res;
630}
631
632bool SurfaceFlinger::threadLoop() {
633    waitForEvent();
634    return true;
635}
636
637void SurfaceFlinger::onVSyncReceived(int type, nsecs_t timestamp) {
638    if (mEventThread == NULL) {
639        // This is a temporary workaround for b/7145521.  A non-null pointer
640        // does not mean EventThread has finished initializing, so this
641        // is not a correct fix.
642        ALOGW("WARNING: EventThread not started, ignoring vsync");
643        return;
644    }
645    if (uint32_t(type) < DisplayDevice::NUM_DISPLAY_TYPES) {
646        // we should only receive DisplayDevice::DisplayType from the vsync callback
647        const wp<IBinder>& token(mDefaultDisplays[type]);
648        mEventThread->onVSyncReceived(token, timestamp);
649    }
650}
651
652void SurfaceFlinger::eventControl(int event, int enabled) {
653    getHwComposer().eventControl(event, enabled);
654}
655
656void SurfaceFlinger::onMessageReceived(int32_t what) {
657    ATRACE_CALL();
658    switch (what) {
659    case MessageQueue::INVALIDATE:
660        handleMessageTransaction();
661        handleMessageInvalidate();
662        signalRefresh();
663        break;
664    case MessageQueue::REFRESH:
665        handleMessageRefresh();
666        break;
667    }
668}
669
670void SurfaceFlinger::handleMessageTransaction() {
671    uint32_t transactionFlags = peekTransactionFlags(eTransactionMask);
672    if (transactionFlags) {
673        handleTransaction(transactionFlags);
674    }
675}
676
677void SurfaceFlinger::handleMessageInvalidate() {
678    ATRACE_CALL();
679    handlePageFlip();
680}
681
682void SurfaceFlinger::handleMessageRefresh() {
683    ATRACE_CALL();
684    preComposition();
685    rebuildLayerStacks();
686    setUpHWComposer();
687    doDebugFlashRegions();
688    doComposition();
689    postComposition();
690}
691
692void SurfaceFlinger::doDebugFlashRegions()
693{
694    // is debugging enabled
695    if (CC_LIKELY(!mDebugRegion))
696        return;
697
698    const bool repaintEverything = mRepaintEverything;
699    for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
700        const sp<DisplayDevice>& hw(mDisplays[dpy]);
701        if (hw->canDraw()) {
702            // transform the dirty region into this screen's coordinate space
703            const Region dirtyRegion(hw->getDirtyRegion(repaintEverything));
704            if (!dirtyRegion.isEmpty()) {
705                // redraw the whole screen
706                doComposeSurfaces(hw, Region(hw->bounds()));
707
708                // and draw the dirty region
709                glDisable(GL_TEXTURE_EXTERNAL_OES);
710                glDisable(GL_TEXTURE_2D);
711                glDisable(GL_BLEND);
712                glColor4f(1, 0, 1, 1);
713                const int32_t height = hw->getHeight();
714                Region::const_iterator it = dirtyRegion.begin();
715                Region::const_iterator const end = dirtyRegion.end();
716                while (it != end) {
717                    const Rect& r = *it++;
718                    GLfloat vertices[][2] = {
719                            { r.left,  height - r.top },
720                            { r.left,  height - r.bottom },
721                            { r.right, height - r.bottom },
722                            { r.right, height - r.top }
723                    };
724                    glVertexPointer(2, GL_FLOAT, 0, vertices);
725                    glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
726                }
727                hw->compositionComplete();
728                // FIXME
729                if (hw->getDisplayType() >= DisplayDevice::DISPLAY_VIRTUAL) {
730                    eglSwapBuffers(mEGLDisplay, hw->getEGLSurface());
731                }
732            }
733        }
734    }
735
736    postFramebuffer();
737
738    if (mDebugRegion > 1) {
739        usleep(mDebugRegion * 1000);
740    }
741}
742
743void SurfaceFlinger::preComposition()
744{
745    bool needExtraInvalidate = false;
746    const LayerVector& currentLayers(mDrawingState.layersSortedByZ);
747    const size_t count = currentLayers.size();
748    for (size_t i=0 ; i<count ; i++) {
749        if (currentLayers[i]->onPreComposition()) {
750            needExtraInvalidate = true;
751        }
752    }
753    if (needExtraInvalidate) {
754        signalLayerUpdate();
755    }
756}
757
758void SurfaceFlinger::postComposition()
759{
760    const LayerVector& currentLayers(mDrawingState.layersSortedByZ);
761    const size_t count = currentLayers.size();
762    for (size_t i=0 ; i<count ; i++) {
763        currentLayers[i]->onPostComposition();
764    }
765}
766
767void SurfaceFlinger::rebuildLayerStacks() {
768    // rebuild the visible layer list per screen
769    if (CC_UNLIKELY(mVisibleRegionsDirty)) {
770        ATRACE_CALL();
771        mVisibleRegionsDirty = false;
772        invalidateHwcGeometry();
773
774        const LayerVector& currentLayers(mDrawingState.layersSortedByZ);
775        for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
776            Region opaqueRegion;
777            Region dirtyRegion;
778            Vector< sp<LayerBase> > layersSortedByZ;
779            const sp<DisplayDevice>& hw(mDisplays[dpy]);
780            const Transform& tr(hw->getTransform());
781            const Rect bounds(hw->getBounds());
782            if (hw->canDraw()) {
783                SurfaceFlinger::computeVisibleRegions(currentLayers,
784                        hw->getLayerStack(), dirtyRegion, opaqueRegion);
785
786                const size_t count = currentLayers.size();
787                for (size_t i=0 ; i<count ; i++) {
788                    const sp<LayerBase>& layer(currentLayers[i]);
789                    const Layer::State& s(layer->drawingState());
790                    if (s.layerStack == hw->getLayerStack()) {
791                        Region visibleRegion(tr.transform(layer->visibleRegion));
792                        visibleRegion.andSelf(bounds);
793                        if (!visibleRegion.isEmpty()) {
794                            layersSortedByZ.add(layer);
795                        }
796                    }
797                }
798            }
799            hw->setVisibleLayersSortedByZ(layersSortedByZ);
800            hw->undefinedRegion.set(bounds);
801            hw->undefinedRegion.subtractSelf(tr.transform(opaqueRegion));
802            hw->dirtyRegion.orSelf(dirtyRegion);
803        }
804    }
805}
806
807void SurfaceFlinger::setUpHWComposer() {
808    HWComposer& hwc(getHwComposer());
809    if (hwc.initCheck() == NO_ERROR) {
810        // build the h/w work list
811        const bool workListsDirty = mHwWorkListDirty;
812        mHwWorkListDirty = false;
813        for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
814            sp<const DisplayDevice> hw(mDisplays[dpy]);
815            const int32_t id = hw->getHwcDisplayId();
816            if (id >= 0) {
817                const Vector< sp<LayerBase> >& currentLayers(
818                    hw->getVisibleLayersSortedByZ());
819                const size_t count = currentLayers.size();
820                if (hwc.createWorkList(id, count) >= 0) {
821                    HWComposer::LayerListIterator cur = hwc.begin(id);
822                    const HWComposer::LayerListIterator end = hwc.end(id);
823                    for (size_t i=0 ; cur!=end && i<count ; ++i, ++cur) {
824                        const sp<LayerBase>& layer(currentLayers[i]);
825
826                        if (CC_UNLIKELY(workListsDirty)) {
827                            layer->setGeometry(hw, *cur);
828                            if (mDebugDisableHWC || mDebugRegion) {
829                                cur->setSkip(true);
830                            }
831                        }
832
833                        /*
834                         * update the per-frame h/w composer data for each layer
835                         * and build the transparent region of the FB
836                         */
837                        layer->setPerFrameData(hw, *cur);
838                    }
839                }
840            }
841        }
842        status_t err = hwc.prepare();
843        ALOGE_IF(err, "HWComposer::prepare failed (%s)", strerror(-err));
844    }
845}
846
847void SurfaceFlinger::doComposition() {
848    ATRACE_CALL();
849    const bool repaintEverything = android_atomic_and(0, &mRepaintEverything);
850    for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
851        const sp<DisplayDevice>& hw(mDisplays[dpy]);
852        if (hw->canDraw()) {
853            // transform the dirty region into this screen's coordinate space
854            const Region dirtyRegion(hw->getDirtyRegion(repaintEverything));
855            if (!dirtyRegion.isEmpty()) {
856                // repaint the framebuffer (if needed)
857                doDisplayComposition(hw, dirtyRegion);
858            }
859            hw->dirtyRegion.clear();
860            hw->flip(hw->swapRegion);
861            hw->swapRegion.clear();
862        }
863        // inform the h/w that we're done compositing
864        hw->compositionComplete();
865    }
866    postFramebuffer();
867}
868
869void SurfaceFlinger::postFramebuffer()
870{
871    ATRACE_CALL();
872
873    const nsecs_t now = systemTime();
874    mDebugInSwapBuffers = now;
875
876    HWComposer& hwc(getHwComposer());
877    if (hwc.initCheck() == NO_ERROR) {
878        // FIXME: EGL spec says:
879        //   "surface must be bound to the calling thread's current context,
880        //    for the current rendering API."
881        DisplayDevice::makeCurrent(mEGLDisplay, getDefaultDisplayDevice(), mEGLContext);
882        hwc.commit();
883    }
884
885    for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
886        sp<const DisplayDevice> hw(mDisplays[dpy]);
887        const Vector< sp<LayerBase> >& currentLayers(hw->getVisibleLayersSortedByZ());
888        const size_t count = currentLayers.size();
889        int32_t id = hw->getHwcDisplayId();
890        if (id >=0 && hwc.initCheck() == NO_ERROR) {
891            HWComposer::LayerListIterator cur = hwc.begin(id);
892            const HWComposer::LayerListIterator end = hwc.end(id);
893            for (size_t i = 0; cur != end && i < count; ++i, ++cur) {
894                currentLayers[i]->onLayerDisplayed(hw, &*cur);
895            }
896        } else {
897            for (size_t i = 0; i < count; i++) {
898                currentLayers[i]->onLayerDisplayed(hw, NULL);
899            }
900        }
901    }
902
903    mLastSwapBufferTime = systemTime() - now;
904    mDebugInSwapBuffers = 0;
905}
906
907void SurfaceFlinger::handleTransaction(uint32_t transactionFlags)
908{
909    ATRACE_CALL();
910
911    Mutex::Autolock _l(mStateLock);
912    const nsecs_t now = systemTime();
913    mDebugInTransaction = now;
914
915    // Here we're guaranteed that some transaction flags are set
916    // so we can call handleTransactionLocked() unconditionally.
917    // We call getTransactionFlags(), which will also clear the flags,
918    // with mStateLock held to guarantee that mCurrentState won't change
919    // until the transaction is committed.
920
921    transactionFlags = getTransactionFlags(eTransactionMask);
922    handleTransactionLocked(transactionFlags);
923
924    mLastTransactionTime = systemTime() - now;
925    mDebugInTransaction = 0;
926    invalidateHwcGeometry();
927    // here the transaction has been committed
928}
929
930void SurfaceFlinger::handleTransactionLocked(uint32_t transactionFlags)
931{
932    const LayerVector& currentLayers(mCurrentState.layersSortedByZ);
933    const size_t count = currentLayers.size();
934
935    /*
936     * Traversal of the children
937     * (perform the transaction for each of them if needed)
938     */
939
940    if (transactionFlags & eTraversalNeeded) {
941        for (size_t i=0 ; i<count ; i++) {
942            const sp<LayerBase>& layer = currentLayers[i];
943            uint32_t trFlags = layer->getTransactionFlags(eTransactionNeeded);
944            if (!trFlags) continue;
945
946            const uint32_t flags = layer->doTransaction(0);
947            if (flags & Layer::eVisibleRegion)
948                mVisibleRegionsDirty = true;
949        }
950    }
951
952    /*
953     * Perform display own transactions if needed
954     */
955
956    if (transactionFlags & eDisplayTransactionNeeded) {
957        // here we take advantage of Vector's copy-on-write semantics to
958        // improve performance by skipping the transaction entirely when
959        // know that the lists are identical
960        const KeyedVector<  wp<IBinder>, DisplayDeviceState>& curr(mCurrentState.displays);
961        const KeyedVector<  wp<IBinder>, DisplayDeviceState>& draw(mDrawingState.displays);
962        if (!curr.isIdenticalTo(draw)) {
963            mVisibleRegionsDirty = true;
964            const size_t cc = curr.size();
965                  size_t dc = draw.size();
966
967            // find the displays that were removed
968            // (ie: in drawing state but not in current state)
969            // also handle displays that changed
970            // (ie: displays that are in both lists)
971            for (size_t i=0 ; i<dc ; i++) {
972                const ssize_t j = curr.indexOfKey(draw.keyAt(i));
973                if (j < 0) {
974                    // in drawing state but not in current state
975                    if (!draw[i].isMainDisplay()) {
976                        mDisplays.removeItem(draw.keyAt(i));
977                    } else {
978                        ALOGW("trying to remove the main display");
979                    }
980                } else {
981                    // this display is in both lists. see if something changed.
982                    const DisplayDeviceState& state(curr[j]);
983                    const wp<IBinder>& display(curr.keyAt(j));
984                    if (state.surface->asBinder() != draw[i].surface->asBinder()) {
985                        // changing the surface is like destroying and
986                        // recreating the DisplayDevice, so we just remove it
987                        // from the drawing state, so that it get re-added
988                        // below.
989                        mDisplays.removeItem(display);
990                        mDrawingState.displays.removeItemsAt(i);
991                        dc--; i--;
992                        // at this point we must loop to the next item
993                        continue;
994                    }
995
996                    const sp<DisplayDevice>& disp(getDisplayDevice(display));
997                    if (disp != NULL) {
998                        if (state.layerStack != draw[i].layerStack) {
999                            disp->setLayerStack(state.layerStack);
1000                        }
1001                        if ((state.orientation != draw[i].orientation)
1002                                || (state.viewport != draw[i].viewport)
1003                                || (state.frame != draw[i].frame))
1004                        {
1005                            disp->setProjection(state.orientation,
1006                                    state.viewport, state.frame);
1007                        }
1008
1009                        // Walk through all the layers in currentLayers,
1010                        // and update their transform hint.
1011                        //
1012                        // TODO: we could be much more clever about which
1013                        // layers we touch and how often we do these updates
1014                        // (e.g. only touch the layers associated with this
1015                        // display, and only on a rotation).
1016                        for (size_t i = 0; i < count; i++) {
1017                            const sp<LayerBase>& layerBase = currentLayers[i];
1018                            layerBase->updateTransformHint();
1019                        }
1020                    }
1021                }
1022            }
1023
1024            // find displays that were added
1025            // (ie: in current state but not in drawing state)
1026            for (size_t i=0 ; i<cc ; i++) {
1027                if (draw.indexOfKey(curr.keyAt(i)) < 0) {
1028                    const DisplayDeviceState& state(curr[i]);
1029
1030                    sp<FramebufferSurface> fbs;
1031                    sp<SurfaceTextureClient> stc;
1032                    if (!state.isVirtualDisplay()) {
1033
1034                        ALOGE_IF(state.surface!=NULL,
1035                                "adding a supported display, but rendering "
1036                                "surface is provided (%p), ignoring it",
1037                                state.surface.get());
1038
1039                        // for supported (by hwc) displays we provide our
1040                        // own rendering surface
1041                        fbs = new FramebufferSurface(*mHwc);
1042                        stc = new SurfaceTextureClient(
1043                                static_cast< sp<ISurfaceTexture> >(fbs->getBufferQueue()));
1044                    } else {
1045                        if (state.surface != NULL) {
1046                            stc = new SurfaceTextureClient(state.surface);
1047                        }
1048                    }
1049
1050                    const wp<IBinder>& display(curr.keyAt(i));
1051                    if (stc != NULL) {
1052                        sp<DisplayDevice> hw = new DisplayDevice(this,
1053                                state.type, display, stc, fbs, mEGLConfig);
1054                        hw->setLayerStack(state.layerStack);
1055                        hw->setProjection(state.orientation,
1056                                state.viewport, state.frame);
1057                        mDisplays.add(display, hw);
1058                        if (hw->getDisplayType() < DisplayDevice::NUM_DISPLAY_TYPES) {
1059                            // notify the system that this display is now up
1060                            // (note onScreenAcquired() is safe to call from
1061                            // here because we're in the main thread)
1062                            onScreenAcquired(hw);
1063                        }
1064                    }
1065                }
1066            }
1067        }
1068    }
1069
1070    /*
1071     * Perform our own transaction if needed
1072     */
1073
1074    const LayerVector& previousLayers(mDrawingState.layersSortedByZ);
1075    if (currentLayers.size() > previousLayers.size()) {
1076        // layers have been added
1077        mVisibleRegionsDirty = true;
1078    }
1079
1080    // some layers might have been removed, so
1081    // we need to update the regions they're exposing.
1082    if (mLayersRemoved) {
1083        mLayersRemoved = false;
1084        mVisibleRegionsDirty = true;
1085        const size_t count = previousLayers.size();
1086        for (size_t i=0 ; i<count ; i++) {
1087            const sp<LayerBase>& layer(previousLayers[i]);
1088            if (currentLayers.indexOf(layer) < 0) {
1089                // this layer is not visible anymore
1090                // TODO: we could traverse the tree from front to back and
1091                //       compute the actual visible region
1092                // TODO: we could cache the transformed region
1093                const Layer::State& s(layer->drawingState());
1094                Region visibleReg = s.transform.transform(
1095                        Region(Rect(s.active.w, s.active.h)));
1096                invalidateLayerStack(s.layerStack, visibleReg);
1097            }
1098        }
1099    }
1100
1101    commitTransaction();
1102}
1103
1104void SurfaceFlinger::commitTransaction()
1105{
1106    if (!mLayersPendingRemoval.isEmpty()) {
1107        // Notify removed layers now that they can't be drawn from
1108        for (size_t i = 0; i < mLayersPendingRemoval.size(); i++) {
1109            mLayersPendingRemoval[i]->onRemoved();
1110        }
1111        mLayersPendingRemoval.clear();
1112    }
1113
1114    mDrawingState = mCurrentState;
1115    mTransationPending = false;
1116    mTransactionCV.broadcast();
1117}
1118
1119void SurfaceFlinger::computeVisibleRegions(
1120        const LayerVector& currentLayers, uint32_t layerStack,
1121        Region& outDirtyRegion, Region& outOpaqueRegion)
1122{
1123    ATRACE_CALL();
1124
1125    Region aboveOpaqueLayers;
1126    Region aboveCoveredLayers;
1127    Region dirty;
1128
1129    outDirtyRegion.clear();
1130
1131    size_t i = currentLayers.size();
1132    while (i--) {
1133        const sp<LayerBase>& layer = currentLayers[i];
1134
1135        // start with the whole surface at its current location
1136        const Layer::State& s(layer->drawingState());
1137
1138        // only consider the layers on the given later stack
1139        if (s.layerStack != layerStack)
1140            continue;
1141
1142        /*
1143         * opaqueRegion: area of a surface that is fully opaque.
1144         */
1145        Region opaqueRegion;
1146
1147        /*
1148         * visibleRegion: area of a surface that is visible on screen
1149         * and not fully transparent. This is essentially the layer's
1150         * footprint minus the opaque regions above it.
1151         * Areas covered by a translucent surface are considered visible.
1152         */
1153        Region visibleRegion;
1154
1155        /*
1156         * coveredRegion: area of a surface that is covered by all
1157         * visible regions above it (which includes the translucent areas).
1158         */
1159        Region coveredRegion;
1160
1161
1162        // handle hidden surfaces by setting the visible region to empty
1163        if (CC_LIKELY(!(s.flags & layer_state_t::eLayerHidden) && s.alpha)) {
1164            const bool translucent = !layer->isOpaque();
1165            Rect bounds(layer->computeBounds());
1166            visibleRegion.set(bounds);
1167            if (!visibleRegion.isEmpty()) {
1168                // Remove the transparent area from the visible region
1169                if (translucent) {
1170                    Region transparentRegionScreen;
1171                    const Transform tr(s.transform);
1172                    if (tr.transformed()) {
1173                        if (tr.preserveRects()) {
1174                            // transform the transparent region
1175                            transparentRegionScreen = tr.transform(s.transparentRegion);
1176                        } else {
1177                            // transformation too complex, can't do the
1178                            // transparent region optimization.
1179                            transparentRegionScreen.clear();
1180                        }
1181                    } else {
1182                        transparentRegionScreen = s.transparentRegion;
1183                    }
1184                    visibleRegion.subtractSelf(transparentRegionScreen);
1185                }
1186
1187                // compute the opaque region
1188                const int32_t layerOrientation = s.transform.getOrientation();
1189                if (s.alpha==255 && !translucent &&
1190                        ((layerOrientation & Transform::ROT_INVALID) == false)) {
1191                    // the opaque region is the layer's footprint
1192                    opaqueRegion = visibleRegion;
1193                }
1194            }
1195        }
1196
1197        // Clip the covered region to the visible region
1198        coveredRegion = aboveCoveredLayers.intersect(visibleRegion);
1199
1200        // Update aboveCoveredLayers for next (lower) layer
1201        aboveCoveredLayers.orSelf(visibleRegion);
1202
1203        // subtract the opaque region covered by the layers above us
1204        visibleRegion.subtractSelf(aboveOpaqueLayers);
1205
1206        // compute this layer's dirty region
1207        if (layer->contentDirty) {
1208            // we need to invalidate the whole region
1209            dirty = visibleRegion;
1210            // as well, as the old visible region
1211            dirty.orSelf(layer->visibleRegion);
1212            layer->contentDirty = false;
1213        } else {
1214            /* compute the exposed region:
1215             *   the exposed region consists of two components:
1216             *   1) what's VISIBLE now and was COVERED before
1217             *   2) what's EXPOSED now less what was EXPOSED before
1218             *
1219             * note that (1) is conservative, we start with the whole
1220             * visible region but only keep what used to be covered by
1221             * something -- which mean it may have been exposed.
1222             *
1223             * (2) handles areas that were not covered by anything but got
1224             * exposed because of a resize.
1225             */
1226            const Region newExposed = visibleRegion - coveredRegion;
1227            const Region oldVisibleRegion = layer->visibleRegion;
1228            const Region oldCoveredRegion = layer->coveredRegion;
1229            const Region oldExposed = oldVisibleRegion - oldCoveredRegion;
1230            dirty = (visibleRegion&oldCoveredRegion) | (newExposed-oldExposed);
1231        }
1232        dirty.subtractSelf(aboveOpaqueLayers);
1233
1234        // accumulate to the screen dirty region
1235        outDirtyRegion.orSelf(dirty);
1236
1237        // Update aboveOpaqueLayers for next (lower) layer
1238        aboveOpaqueLayers.orSelf(opaqueRegion);
1239
1240        // Store the visible region is screen space
1241        layer->setVisibleRegion(visibleRegion);
1242        layer->setCoveredRegion(coveredRegion);
1243    }
1244
1245    outOpaqueRegion = aboveOpaqueLayers;
1246}
1247
1248void SurfaceFlinger::invalidateLayerStack(uint32_t layerStack,
1249        const Region& dirty) {
1250    for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
1251        const sp<DisplayDevice>& hw(mDisplays[dpy]);
1252        if (hw->getLayerStack() == layerStack) {
1253            hw->dirtyRegion.orSelf(dirty);
1254        }
1255    }
1256}
1257
1258void SurfaceFlinger::handlePageFlip()
1259{
1260    Region dirtyRegion;
1261
1262    bool visibleRegions = false;
1263    const LayerVector& currentLayers(mDrawingState.layersSortedByZ);
1264    const size_t count = currentLayers.size();
1265    for (size_t i=0 ; i<count ; i++) {
1266        const sp<LayerBase>& layer(currentLayers[i]);
1267        const Region dirty(layer->latchBuffer(visibleRegions));
1268        const Layer::State& s(layer->drawingState());
1269        invalidateLayerStack(s.layerStack, dirty);
1270    }
1271
1272    mVisibleRegionsDirty |= visibleRegions;
1273}
1274
1275void SurfaceFlinger::invalidateHwcGeometry()
1276{
1277    mHwWorkListDirty = true;
1278}
1279
1280
1281void SurfaceFlinger::doDisplayComposition(const sp<const DisplayDevice>& hw,
1282        const Region& inDirtyRegion)
1283{
1284    Region dirtyRegion(inDirtyRegion);
1285
1286    // compute the invalid region
1287    hw->swapRegion.orSelf(dirtyRegion);
1288
1289    uint32_t flags = hw->getFlags();
1290    if (flags & DisplayDevice::SWAP_RECTANGLE) {
1291        // we can redraw only what's dirty, but since SWAP_RECTANGLE only
1292        // takes a rectangle, we must make sure to update that whole
1293        // rectangle in that case
1294        dirtyRegion.set(hw->swapRegion.bounds());
1295    } else {
1296        if (flags & DisplayDevice::PARTIAL_UPDATES) {
1297            // We need to redraw the rectangle that will be updated
1298            // (pushed to the framebuffer).
1299            // This is needed because PARTIAL_UPDATES only takes one
1300            // rectangle instead of a region (see DisplayDevice::flip())
1301            dirtyRegion.set(hw->swapRegion.bounds());
1302        } else {
1303            // we need to redraw everything (the whole screen)
1304            dirtyRegion.set(hw->bounds());
1305            hw->swapRegion = dirtyRegion;
1306        }
1307    }
1308
1309    doComposeSurfaces(hw, dirtyRegion);
1310
1311    // FIXME: we need to call eglSwapBuffers() on displays that have
1312    // GL composition and only on those.
1313    // however, currently hwc.commit() already does that for the main
1314    // display (if there is a hwc) and never for the other ones
1315    if (hw->getDisplayType() >= DisplayDevice::DISPLAY_VIRTUAL ||
1316            getHwComposer().initCheck() != NO_ERROR) {
1317        // FIXME: EGL spec says:
1318        //   "surface must be bound to the calling thread's current context,
1319        //    for the current rendering API."
1320        eglSwapBuffers(mEGLDisplay, hw->getEGLSurface());
1321    }
1322
1323    // update the swap region and clear the dirty region
1324    hw->swapRegion.orSelf(dirtyRegion);
1325}
1326
1327void SurfaceFlinger::doComposeSurfaces(const sp<const DisplayDevice>& hw, const Region& dirty)
1328{
1329    const int32_t id = hw->getHwcDisplayId();
1330    HWComposer& hwc(getHwComposer());
1331    HWComposer::LayerListIterator cur = hwc.begin(id);
1332    const HWComposer::LayerListIterator end = hwc.end(id);
1333
1334    const bool hasGlesComposition = hwc.hasGlesComposition(id) || (cur==end);
1335    if (hasGlesComposition) {
1336        DisplayDevice::makeCurrent(mEGLDisplay, hw, mEGLContext);
1337
1338        // set the frame buffer
1339        glMatrixMode(GL_MODELVIEW);
1340        glLoadIdentity();
1341
1342        // Never touch the framebuffer if we don't have any framebuffer layers
1343        const bool hasHwcComposition = hwc.hasHwcComposition(id);
1344        if (hasHwcComposition) {
1345            // when using overlays, we assume a fully transparent framebuffer
1346            // NOTE: we could reduce how much we need to clear, for instance
1347            // remove where there are opaque FB layers. however, on some
1348            // GPUs doing a "clean slate" glClear might be more efficient.
1349            // We'll revisit later if needed.
1350            glClearColor(0, 0, 0, 0);
1351            glClear(GL_COLOR_BUFFER_BIT);
1352        } else {
1353            const Region region(hw->undefinedRegion.intersect(dirty));
1354            // screen is already cleared here
1355            if (!region.isEmpty()) {
1356                // can happen with SurfaceView
1357                drawWormhole(hw, region);
1358            }
1359        }
1360    }
1361
1362    /*
1363     * and then, render the layers targeted at the framebuffer
1364     */
1365
1366    const Vector< sp<LayerBase> >& layers(hw->getVisibleLayersSortedByZ());
1367    const size_t count = layers.size();
1368    const Transform& tr = hw->getTransform();
1369    if (cur != end) {
1370        // we're using h/w composer
1371        for (size_t i=0 ; i<count && cur!=end ; ++i, ++cur) {
1372            const sp<LayerBase>& layer(layers[i]);
1373            const Region clip(dirty.intersect(tr.transform(layer->visibleRegion)));
1374            if (!clip.isEmpty()) {
1375                switch (cur->getCompositionType()) {
1376                    case HWC_OVERLAY: {
1377                        if ((cur->getHints() & HWC_HINT_CLEAR_FB)
1378                                && i
1379                                && layer->isOpaque()
1380                                && hasGlesComposition) {
1381                            // never clear the very first layer since we're
1382                            // guaranteed the FB is already cleared
1383                            layer->clearWithOpenGL(hw, clip);
1384                        }
1385                        break;
1386                    }
1387                    case HWC_FRAMEBUFFER: {
1388                        layer->draw(hw, clip);
1389                        break;
1390                    }
1391                }
1392            }
1393            layer->setAcquireFence(hw, *cur);
1394        }
1395    } else {
1396        // we're not using h/w composer
1397        for (size_t i=0 ; i<count ; ++i) {
1398            const sp<LayerBase>& layer(layers[i]);
1399            const Region clip(dirty.intersect(
1400                    tr.transform(layer->visibleRegion)));
1401            if (!clip.isEmpty()) {
1402                layer->draw(hw, clip);
1403            }
1404        }
1405    }
1406}
1407
1408void SurfaceFlinger::drawWormhole(const sp<const DisplayDevice>& hw,
1409        const Region& region) const
1410{
1411    glDisable(GL_TEXTURE_EXTERNAL_OES);
1412    glDisable(GL_TEXTURE_2D);
1413    glDisable(GL_BLEND);
1414    glColor4f(0,0,0,0);
1415
1416    const int32_t height = hw->getHeight();
1417    Region::const_iterator it = region.begin();
1418    Region::const_iterator const end = region.end();
1419    while (it != end) {
1420        const Rect& r = *it++;
1421        GLfloat vertices[][2] = {
1422                { r.left,  height - r.top },
1423                { r.left,  height - r.bottom },
1424                { r.right, height - r.bottom },
1425                { r.right, height - r.top }
1426        };
1427        glVertexPointer(2, GL_FLOAT, 0, vertices);
1428        glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
1429    }
1430}
1431
1432ssize_t SurfaceFlinger::addClientLayer(const sp<Client>& client,
1433        const sp<LayerBaseClient>& lbc)
1434{
1435    // attach this layer to the client
1436    size_t name = client->attachLayer(lbc);
1437
1438    // add this layer to the current state list
1439    Mutex::Autolock _l(mStateLock);
1440    mCurrentState.layersSortedByZ.add(lbc);
1441
1442    return ssize_t(name);
1443}
1444
1445status_t SurfaceFlinger::removeLayer(const sp<LayerBase>& layer)
1446{
1447    Mutex::Autolock _l(mStateLock);
1448    status_t err = purgatorizeLayer_l(layer);
1449    if (err == NO_ERROR)
1450        setTransactionFlags(eTransactionNeeded);
1451    return err;
1452}
1453
1454status_t SurfaceFlinger::removeLayer_l(const sp<LayerBase>& layerBase)
1455{
1456    ssize_t index = mCurrentState.layersSortedByZ.remove(layerBase);
1457    if (index >= 0) {
1458        mLayersRemoved = true;
1459        return NO_ERROR;
1460    }
1461    return status_t(index);
1462}
1463
1464status_t SurfaceFlinger::purgatorizeLayer_l(const sp<LayerBase>& layerBase)
1465{
1466    // First add the layer to the purgatory list, which makes sure it won't
1467    // go away, then remove it from the main list (through a transaction).
1468    ssize_t err = removeLayer_l(layerBase);
1469    if (err >= 0) {
1470        mLayerPurgatory.add(layerBase);
1471    }
1472
1473    mLayersPendingRemoval.push(layerBase);
1474
1475    // it's possible that we don't find a layer, because it might
1476    // have been destroyed already -- this is not technically an error
1477    // from the user because there is a race between Client::destroySurface(),
1478    // ~Client() and ~ISurface().
1479    return (err == NAME_NOT_FOUND) ? status_t(NO_ERROR) : err;
1480}
1481
1482uint32_t SurfaceFlinger::peekTransactionFlags(uint32_t flags)
1483{
1484    return android_atomic_release_load(&mTransactionFlags);
1485}
1486
1487uint32_t SurfaceFlinger::getTransactionFlags(uint32_t flags)
1488{
1489    return android_atomic_and(~flags, &mTransactionFlags) & flags;
1490}
1491
1492uint32_t SurfaceFlinger::setTransactionFlags(uint32_t flags)
1493{
1494    uint32_t old = android_atomic_or(flags, &mTransactionFlags);
1495    if ((old & flags)==0) { // wake the server up
1496        signalTransaction();
1497    }
1498    return old;
1499}
1500
1501void SurfaceFlinger::setTransactionState(
1502        const Vector<ComposerState>& state,
1503        const Vector<DisplayState>& displays,
1504        uint32_t flags)
1505{
1506    Mutex::Autolock _l(mStateLock);
1507    uint32_t transactionFlags = 0;
1508
1509    size_t count = displays.size();
1510    for (size_t i=0 ; i<count ; i++) {
1511        const DisplayState& s(displays[i]);
1512        transactionFlags |= setDisplayStateLocked(s);
1513    }
1514
1515    count = state.size();
1516    for (size_t i=0 ; i<count ; i++) {
1517        const ComposerState& s(state[i]);
1518        sp<Client> client( static_cast<Client *>(s.client.get()) );
1519        transactionFlags |= setClientStateLocked(client, s.state);
1520    }
1521
1522    if (transactionFlags) {
1523        // this triggers the transaction
1524        setTransactionFlags(transactionFlags);
1525
1526        // if this is a synchronous transaction, wait for it to take effect
1527        // before returning.
1528        if (flags & eSynchronous) {
1529            mTransationPending = true;
1530        }
1531        while (mTransationPending) {
1532            status_t err = mTransactionCV.waitRelative(mStateLock, s2ns(5));
1533            if (CC_UNLIKELY(err != NO_ERROR)) {
1534                // just in case something goes wrong in SF, return to the
1535                // called after a few seconds.
1536                ALOGW_IF(err == TIMED_OUT, "closeGlobalTransaction timed out!");
1537                mTransationPending = false;
1538                break;
1539            }
1540        }
1541    }
1542}
1543
1544uint32_t SurfaceFlinger::setDisplayStateLocked(const DisplayState& s)
1545{
1546    uint32_t flags = 0;
1547    DisplayDeviceState& disp(mCurrentState.displays.editValueFor(s.token));
1548    if (disp.isValid()) {
1549        const uint32_t what = s.what;
1550        if (what & DisplayState::eSurfaceChanged) {
1551            if (disp.surface->asBinder() != s.surface->asBinder()) {
1552                disp.surface = s.surface;
1553                flags |= eDisplayTransactionNeeded;
1554            }
1555        }
1556        if (what & DisplayState::eLayerStackChanged) {
1557            if (disp.layerStack != s.layerStack) {
1558                disp.layerStack = s.layerStack;
1559                flags |= eDisplayTransactionNeeded;
1560            }
1561        }
1562        if (what & DisplayState::eDisplayProjectionChanged) {
1563            if (disp.orientation != s.orientation) {
1564                disp.orientation = s.orientation;
1565                flags |= eDisplayTransactionNeeded;
1566            }
1567            if (disp.frame != s.frame) {
1568                disp.frame = s.frame;
1569                flags |= eDisplayTransactionNeeded;
1570            }
1571            if (disp.viewport != s.viewport) {
1572                disp.viewport = s.viewport;
1573                flags |= eDisplayTransactionNeeded;
1574            }
1575        }
1576    }
1577    return flags;
1578}
1579
1580uint32_t SurfaceFlinger::setClientStateLocked(
1581        const sp<Client>& client,
1582        const layer_state_t& s)
1583{
1584    uint32_t flags = 0;
1585    sp<LayerBaseClient> layer(client->getLayerUser(s.surface));
1586    if (layer != 0) {
1587        const uint32_t what = s.what;
1588        if (what & layer_state_t::ePositionChanged) {
1589            if (layer->setPosition(s.x, s.y))
1590                flags |= eTraversalNeeded;
1591        }
1592        if (what & layer_state_t::eLayerChanged) {
1593            // NOTE: index needs to be calculated before we update the state
1594            ssize_t idx = mCurrentState.layersSortedByZ.indexOf(layer);
1595            if (layer->setLayer(s.z)) {
1596                mCurrentState.layersSortedByZ.removeAt(idx);
1597                mCurrentState.layersSortedByZ.add(layer);
1598                // we need traversal (state changed)
1599                // AND transaction (list changed)
1600                flags |= eTransactionNeeded|eTraversalNeeded;
1601            }
1602        }
1603        if (what & layer_state_t::eSizeChanged) {
1604            if (layer->setSize(s.w, s.h)) {
1605                flags |= eTraversalNeeded;
1606            }
1607        }
1608        if (what & layer_state_t::eAlphaChanged) {
1609            if (layer->setAlpha(uint8_t(255.0f*s.alpha+0.5f)))
1610                flags |= eTraversalNeeded;
1611        }
1612        if (what & layer_state_t::eMatrixChanged) {
1613            if (layer->setMatrix(s.matrix))
1614                flags |= eTraversalNeeded;
1615        }
1616        if (what & layer_state_t::eTransparentRegionChanged) {
1617            if (layer->setTransparentRegionHint(s.transparentRegion))
1618                flags |= eTraversalNeeded;
1619        }
1620        if (what & layer_state_t::eVisibilityChanged) {
1621            if (layer->setFlags(s.flags, s.mask))
1622                flags |= eTraversalNeeded;
1623        }
1624        if (what & layer_state_t::eCropChanged) {
1625            if (layer->setCrop(s.crop))
1626                flags |= eTraversalNeeded;
1627        }
1628        if (what & layer_state_t::eLayerStackChanged) {
1629            // NOTE: index needs to be calculated before we update the state
1630            ssize_t idx = mCurrentState.layersSortedByZ.indexOf(layer);
1631            if (layer->setLayerStack(s.layerStack)) {
1632                mCurrentState.layersSortedByZ.removeAt(idx);
1633                mCurrentState.layersSortedByZ.add(layer);
1634                // we need traversal (state changed)
1635                // AND transaction (list changed)
1636                flags |= eTransactionNeeded|eTraversalNeeded;
1637            }
1638        }
1639    }
1640    return flags;
1641}
1642
1643sp<ISurface> SurfaceFlinger::createLayer(
1644        ISurfaceComposerClient::surface_data_t* params,
1645        const String8& name,
1646        const sp<Client>& client,
1647       uint32_t w, uint32_t h, PixelFormat format,
1648        uint32_t flags)
1649{
1650    sp<LayerBaseClient> layer;
1651    sp<ISurface> surfaceHandle;
1652
1653    if (int32_t(w|h) < 0) {
1654        ALOGE("createLayer() failed, w or h is negative (w=%d, h=%d)",
1655                int(w), int(h));
1656        return surfaceHandle;
1657    }
1658
1659    //ALOGD("createLayer for (%d x %d), name=%s", w, h, name.string());
1660    switch (flags & ISurfaceComposerClient::eFXSurfaceMask) {
1661        case ISurfaceComposerClient::eFXSurfaceNormal:
1662            layer = createNormalLayer(client, w, h, flags, format);
1663            break;
1664        case ISurfaceComposerClient::eFXSurfaceBlur:
1665        case ISurfaceComposerClient::eFXSurfaceDim:
1666            layer = createDimLayer(client, w, h, flags);
1667            break;
1668        case ISurfaceComposerClient::eFXSurfaceScreenshot:
1669            layer = createScreenshotLayer(client, w, h, flags);
1670            break;
1671    }
1672
1673    if (layer != 0) {
1674        layer->initStates(w, h, flags);
1675        layer->setName(name);
1676        ssize_t token = addClientLayer(client, layer);
1677        surfaceHandle = layer->getSurface();
1678        if (surfaceHandle != 0) {
1679            params->token = token;
1680            params->identity = layer->getIdentity();
1681        }
1682        setTransactionFlags(eTransactionNeeded);
1683    }
1684
1685    return surfaceHandle;
1686}
1687
1688sp<Layer> SurfaceFlinger::createNormalLayer(
1689        const sp<Client>& client,
1690        uint32_t w, uint32_t h, uint32_t flags,
1691        PixelFormat& format)
1692{
1693    // initialize the surfaces
1694    switch (format) {
1695    case PIXEL_FORMAT_TRANSPARENT:
1696    case PIXEL_FORMAT_TRANSLUCENT:
1697        format = PIXEL_FORMAT_RGBA_8888;
1698        break;
1699    case PIXEL_FORMAT_OPAQUE:
1700#ifdef NO_RGBX_8888
1701        format = PIXEL_FORMAT_RGB_565;
1702#else
1703        format = PIXEL_FORMAT_RGBX_8888;
1704#endif
1705        break;
1706    }
1707
1708#ifdef NO_RGBX_8888
1709    if (format == PIXEL_FORMAT_RGBX_8888)
1710        format = PIXEL_FORMAT_RGBA_8888;
1711#endif
1712
1713    sp<Layer> layer = new Layer(this, client);
1714    status_t err = layer->setBuffers(w, h, format, flags);
1715    if (CC_LIKELY(err != NO_ERROR)) {
1716        ALOGE("createNormalLayer() failed (%s)", strerror(-err));
1717        layer.clear();
1718    }
1719    return layer;
1720}
1721
1722sp<LayerDim> SurfaceFlinger::createDimLayer(
1723        const sp<Client>& client,
1724        uint32_t w, uint32_t h, uint32_t flags)
1725{
1726    sp<LayerDim> layer = new LayerDim(this, client);
1727    return layer;
1728}
1729
1730sp<LayerScreenshot> SurfaceFlinger::createScreenshotLayer(
1731        const sp<Client>& client,
1732        uint32_t w, uint32_t h, uint32_t flags)
1733{
1734    sp<LayerScreenshot> layer = new LayerScreenshot(this, client);
1735    return layer;
1736}
1737
1738status_t SurfaceFlinger::onLayerRemoved(const sp<Client>& client, SurfaceID sid)
1739{
1740    /*
1741     * called by the window manager, when a surface should be marked for
1742     * destruction.
1743     *
1744     * The surface is removed from the current and drawing lists, but placed
1745     * in the purgatory queue, so it's not destroyed right-away (we need
1746     * to wait for all client's references to go away first).
1747     */
1748
1749    status_t err = NAME_NOT_FOUND;
1750    Mutex::Autolock _l(mStateLock);
1751    sp<LayerBaseClient> layer = client->getLayerUser(sid);
1752
1753    if (layer != 0) {
1754        err = purgatorizeLayer_l(layer);
1755        if (err == NO_ERROR) {
1756            setTransactionFlags(eTransactionNeeded);
1757        }
1758    }
1759    return err;
1760}
1761
1762status_t SurfaceFlinger::onLayerDestroyed(const wp<LayerBaseClient>& layer)
1763{
1764    // called by ~ISurface() when all references are gone
1765    status_t err = NO_ERROR;
1766    sp<LayerBaseClient> l(layer.promote());
1767    if (l != NULL) {
1768        Mutex::Autolock _l(mStateLock);
1769        err = removeLayer_l(l);
1770        if (err == NAME_NOT_FOUND) {
1771            // The surface wasn't in the current list, which means it was
1772            // removed already, which means it is in the purgatory,
1773            // and need to be removed from there.
1774            ssize_t idx = mLayerPurgatory.remove(l);
1775            ALOGE_IF(idx < 0,
1776                    "layer=%p is not in the purgatory list", l.get());
1777        }
1778        ALOGE_IF(err<0 && err != NAME_NOT_FOUND,
1779                "error removing layer=%p (%s)", l.get(), strerror(-err));
1780    }
1781    return err;
1782}
1783
1784// ---------------------------------------------------------------------------
1785
1786void SurfaceFlinger::onInitializeDisplays() {
1787    // reset screen orientation
1788    Vector<ComposerState> state;
1789    Vector<DisplayState> displays;
1790    DisplayState d;
1791    d.what = DisplayState::eDisplayProjectionChanged;
1792    d.token = mDefaultDisplays[DisplayDevice::DISPLAY_PRIMARY];
1793    d.orientation = DisplayState::eOrientationDefault;
1794    d.frame.makeInvalid();
1795    d.viewport.makeInvalid();
1796    displays.add(d);
1797    setTransactionState(state, displays, 0);
1798    onScreenAcquired(getDefaultDisplayDevice());
1799}
1800
1801void SurfaceFlinger::initializeDisplays() {
1802    class MessageScreenInitialized : public MessageBase {
1803        SurfaceFlinger* flinger;
1804    public:
1805        MessageScreenInitialized(SurfaceFlinger* flinger) : flinger(flinger) { }
1806        virtual bool handler() {
1807            flinger->onInitializeDisplays();
1808            return true;
1809        }
1810    };
1811    sp<MessageBase> msg = new MessageScreenInitialized(this);
1812    postMessageAsync(msg);  // we may be called from main thread, use async message
1813}
1814
1815
1816void SurfaceFlinger::onScreenAcquired(const sp<const DisplayDevice>& hw) {
1817    ALOGD("Screen about to return, flinger = %p", this);
1818    getHwComposer().acquire();
1819    hw->acquireScreen();
1820    if (hw->getDisplayType() == DisplayDevice::DISPLAY_PRIMARY) {
1821        // FIXME: eventthread only knows about the main display right now
1822        mEventThread->onScreenAcquired();
1823    }
1824    mVisibleRegionsDirty = true;
1825    repaintEverything();
1826}
1827
1828void SurfaceFlinger::onScreenReleased(const sp<const DisplayDevice>& hw) {
1829    ALOGD("About to give-up screen, flinger = %p", this);
1830    if (hw->isScreenAcquired()) {
1831        if (hw->getDisplayType() == DisplayDevice::DISPLAY_PRIMARY) {
1832            // FIXME: eventthread only knows about the main display right now
1833            mEventThread->onScreenReleased();
1834        }
1835        hw->releaseScreen();
1836        getHwComposer().release();
1837        mVisibleRegionsDirty = true;
1838        // from this point on, SF will stop drawing
1839    }
1840}
1841
1842void SurfaceFlinger::unblank() {
1843    class MessageScreenAcquired : public MessageBase {
1844        SurfaceFlinger* flinger;
1845    public:
1846        MessageScreenAcquired(SurfaceFlinger* flinger) : flinger(flinger) { }
1847        virtual bool handler() {
1848            // FIXME: should this be per-display?
1849            flinger->onScreenAcquired(flinger->getDefaultDisplayDevice());
1850            return true;
1851        }
1852    };
1853    sp<MessageBase> msg = new MessageScreenAcquired(this);
1854    postMessageSync(msg);
1855}
1856
1857void SurfaceFlinger::blank() {
1858    class MessageScreenReleased : public MessageBase {
1859        SurfaceFlinger* flinger;
1860    public:
1861        MessageScreenReleased(SurfaceFlinger* flinger) : flinger(flinger) { }
1862        virtual bool handler() {
1863            // FIXME: should this be per-display?
1864            flinger->onScreenReleased(flinger->getDefaultDisplayDevice());
1865            return true;
1866        }
1867    };
1868    sp<MessageBase> msg = new MessageScreenReleased(this);
1869    postMessageSync(msg);
1870}
1871
1872// ---------------------------------------------------------------------------
1873
1874status_t SurfaceFlinger::dump(int fd, const Vector<String16>& args)
1875{
1876    const size_t SIZE = 4096;
1877    char buffer[SIZE];
1878    String8 result;
1879
1880    if (!PermissionCache::checkCallingPermission(sDump)) {
1881        snprintf(buffer, SIZE, "Permission Denial: "
1882                "can't dump SurfaceFlinger from pid=%d, uid=%d\n",
1883                IPCThreadState::self()->getCallingPid(),
1884                IPCThreadState::self()->getCallingUid());
1885        result.append(buffer);
1886    } else {
1887        // Try to get the main lock, but don't insist if we can't
1888        // (this would indicate SF is stuck, but we want to be able to
1889        // print something in dumpsys).
1890        int retry = 3;
1891        while (mStateLock.tryLock()<0 && --retry>=0) {
1892            usleep(1000000);
1893        }
1894        const bool locked(retry >= 0);
1895        if (!locked) {
1896            snprintf(buffer, SIZE,
1897                    "SurfaceFlinger appears to be unresponsive, "
1898                    "dumping anyways (no locks held)\n");
1899            result.append(buffer);
1900        }
1901
1902        bool dumpAll = true;
1903        size_t index = 0;
1904        size_t numArgs = args.size();
1905        if (numArgs) {
1906            if ((index < numArgs) &&
1907                    (args[index] == String16("--list"))) {
1908                index++;
1909                listLayersLocked(args, index, result, buffer, SIZE);
1910                dumpAll = false;
1911            }
1912
1913            if ((index < numArgs) &&
1914                    (args[index] == String16("--latency"))) {
1915                index++;
1916                dumpStatsLocked(args, index, result, buffer, SIZE);
1917                dumpAll = false;
1918            }
1919
1920            if ((index < numArgs) &&
1921                    (args[index] == String16("--latency-clear"))) {
1922                index++;
1923                clearStatsLocked(args, index, result, buffer, SIZE);
1924                dumpAll = false;
1925            }
1926        }
1927
1928        if (dumpAll) {
1929            dumpAllLocked(result, buffer, SIZE);
1930        }
1931
1932        if (locked) {
1933            mStateLock.unlock();
1934        }
1935    }
1936    write(fd, result.string(), result.size());
1937    return NO_ERROR;
1938}
1939
1940void SurfaceFlinger::listLayersLocked(const Vector<String16>& args, size_t& index,
1941        String8& result, char* buffer, size_t SIZE) const
1942{
1943    const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
1944    const size_t count = currentLayers.size();
1945    for (size_t i=0 ; i<count ; i++) {
1946        const sp<LayerBase>& layer(currentLayers[i]);
1947        snprintf(buffer, SIZE, "%s\n", layer->getName().string());
1948        result.append(buffer);
1949    }
1950}
1951
1952void SurfaceFlinger::dumpStatsLocked(const Vector<String16>& args, size_t& index,
1953        String8& result, char* buffer, size_t SIZE) const
1954{
1955    String8 name;
1956    if (index < args.size()) {
1957        name = String8(args[index]);
1958        index++;
1959    }
1960
1961    const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
1962    const size_t count = currentLayers.size();
1963    for (size_t i=0 ; i<count ; i++) {
1964        const sp<LayerBase>& layer(currentLayers[i]);
1965        if (name.isEmpty()) {
1966            snprintf(buffer, SIZE, "%s\n", layer->getName().string());
1967            result.append(buffer);
1968        }
1969        if (name.isEmpty() || (name == layer->getName())) {
1970            layer->dumpStats(result, buffer, SIZE);
1971        }
1972    }
1973}
1974
1975void SurfaceFlinger::clearStatsLocked(const Vector<String16>& args, size_t& index,
1976        String8& result, char* buffer, size_t SIZE) const
1977{
1978    String8 name;
1979    if (index < args.size()) {
1980        name = String8(args[index]);
1981        index++;
1982    }
1983
1984    const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
1985    const size_t count = currentLayers.size();
1986    for (size_t i=0 ; i<count ; i++) {
1987        const sp<LayerBase>& layer(currentLayers[i]);
1988        if (name.isEmpty() || (name == layer->getName())) {
1989            layer->clearStats();
1990        }
1991    }
1992}
1993
1994void SurfaceFlinger::dumpAllLocked(
1995        String8& result, char* buffer, size_t SIZE) const
1996{
1997    // figure out if we're stuck somewhere
1998    const nsecs_t now = systemTime();
1999    const nsecs_t inSwapBuffers(mDebugInSwapBuffers);
2000    const nsecs_t inTransaction(mDebugInTransaction);
2001    nsecs_t inSwapBuffersDuration = (inSwapBuffers) ? now-inSwapBuffers : 0;
2002    nsecs_t inTransactionDuration = (inTransaction) ? now-inTransaction : 0;
2003
2004    /*
2005     * Dump the visible layer list
2006     */
2007    const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
2008    const size_t count = currentLayers.size();
2009    snprintf(buffer, SIZE, "Visible layers (count = %d)\n", count);
2010    result.append(buffer);
2011    for (size_t i=0 ; i<count ; i++) {
2012        const sp<LayerBase>& layer(currentLayers[i]);
2013        layer->dump(result, buffer, SIZE);
2014    }
2015
2016    /*
2017     * Dump the layers in the purgatory
2018     */
2019
2020    const size_t purgatorySize = mLayerPurgatory.size();
2021    snprintf(buffer, SIZE, "Purgatory state (%d entries)\n", purgatorySize);
2022    result.append(buffer);
2023    for (size_t i=0 ; i<purgatorySize ; i++) {
2024        const sp<LayerBase>& layer(mLayerPurgatory.itemAt(i));
2025        layer->shortDump(result, buffer, SIZE);
2026    }
2027
2028    /*
2029     * Dump Display state
2030     */
2031
2032    for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
2033        const sp<const DisplayDevice>& hw(mDisplays[dpy]);
2034        snprintf(buffer, SIZE,
2035                "+ DisplayDevice[%u]\n"
2036                "   type=%x, layerStack=%u, (%4dx%4d), orient=%2d (type=%08x), "
2037                "flips=%u, secure=%d, numLayers=%u, v:[%d,%d,%d,%d], f:[%d,%d,%d,%d], "
2038                "transform:[[%0.3f,%0.3f,%0.3f][%0.3f,%0.3f,%0.3f][%0.3f,%0.3f,%0.3f]]\n",
2039                dpy,
2040                hw->getDisplayType(), hw->getLayerStack(),
2041                hw->getWidth(), hw->getHeight(),
2042                hw->getOrientation(), hw->getTransform().getType(),
2043                hw->getPageFlipCount(),
2044                hw->getSecureLayerVisible(),
2045                hw->getVisibleLayersSortedByZ().size(),
2046                hw->getViewport().left, hw->getViewport().top, hw->getViewport().right, hw->getViewport().bottom,
2047                hw->getFrame().left, hw->getFrame().top, hw->getFrame().right, hw->getFrame().bottom,
2048                hw->getTransform()[0][0], hw->getTransform()[1][0], hw->getTransform()[2][0],
2049                hw->getTransform()[0][1], hw->getTransform()[1][1], hw->getTransform()[2][1],
2050                hw->getTransform()[0][2], hw->getTransform()[1][2], hw->getTransform()[2][2]);
2051
2052        result.append(buffer);
2053    }
2054
2055    /*
2056     * Dump SurfaceFlinger global state
2057     */
2058
2059    snprintf(buffer, SIZE, "SurfaceFlinger global state:\n");
2060    result.append(buffer);
2061
2062    HWComposer& hwc(getHwComposer());
2063    sp<const DisplayDevice> hw(getDefaultDisplayDevice());
2064    const GLExtensions& extensions(GLExtensions::getInstance());
2065    snprintf(buffer, SIZE, "GLES: %s, %s, %s\n",
2066            extensions.getVendor(),
2067            extensions.getRenderer(),
2068            extensions.getVersion());
2069    result.append(buffer);
2070
2071    snprintf(buffer, SIZE, "EGL : %s\n",
2072            eglQueryString(mEGLDisplay, EGL_VERSION_HW_ANDROID));
2073    result.append(buffer);
2074
2075    snprintf(buffer, SIZE, "EXTS: %s\n", extensions.getExtension());
2076    result.append(buffer);
2077
2078    hw->undefinedRegion.dump(result, "undefinedRegion");
2079    snprintf(buffer, SIZE,
2080            "  orientation=%d, canDraw=%d\n",
2081            hw->getOrientation(), hw->canDraw());
2082    result.append(buffer);
2083    snprintf(buffer, SIZE,
2084            "  last eglSwapBuffers() time: %f us\n"
2085            "  last transaction time     : %f us\n"
2086            "  transaction-flags         : %08x\n"
2087            "  refresh-rate              : %f fps\n"
2088            "  x-dpi                     : %f\n"
2089            "  y-dpi                     : %f\n",
2090            mLastSwapBufferTime/1000.0,
2091            mLastTransactionTime/1000.0,
2092            mTransactionFlags,
2093            1e9 / hwc.getRefreshPeriod(HWC_DISPLAY_PRIMARY),
2094            hwc.getDpiX(HWC_DISPLAY_PRIMARY),
2095            hwc.getDpiY(HWC_DISPLAY_PRIMARY));
2096    result.append(buffer);
2097
2098    snprintf(buffer, SIZE, "  eglSwapBuffers time: %f us\n",
2099            inSwapBuffersDuration/1000.0);
2100    result.append(buffer);
2101
2102    snprintf(buffer, SIZE, "  transaction time: %f us\n",
2103            inTransactionDuration/1000.0);
2104    result.append(buffer);
2105
2106    /*
2107     * VSYNC state
2108     */
2109    mEventThread->dump(result, buffer, SIZE);
2110
2111    /*
2112     * Dump HWComposer state
2113     */
2114    snprintf(buffer, SIZE, "h/w composer state:\n");
2115    result.append(buffer);
2116    snprintf(buffer, SIZE, "  h/w composer %s and %s\n",
2117            hwc.initCheck()==NO_ERROR ? "present" : "not present",
2118                    (mDebugDisableHWC || mDebugRegion) ? "disabled" : "enabled");
2119    result.append(buffer);
2120    hwc.dump(result, buffer, SIZE, hw->getVisibleLayersSortedByZ());
2121
2122    /*
2123     * Dump gralloc state
2124     */
2125    const GraphicBufferAllocator& alloc(GraphicBufferAllocator::get());
2126    alloc.dump(result);
2127    hw->dump(result);
2128}
2129
2130bool SurfaceFlinger::startDdmConnection()
2131{
2132    void* libddmconnection_dso =
2133            dlopen("libsurfaceflinger_ddmconnection.so", RTLD_NOW);
2134    if (!libddmconnection_dso) {
2135        return false;
2136    }
2137    void (*DdmConnection_start)(const char* name);
2138    DdmConnection_start =
2139            (typeof DdmConnection_start)dlsym(libddmconnection_dso, "DdmConnection_start");
2140    if (!DdmConnection_start) {
2141        dlclose(libddmconnection_dso);
2142        return false;
2143    }
2144    (*DdmConnection_start)(getServiceName());
2145    return true;
2146}
2147
2148status_t SurfaceFlinger::onTransact(
2149    uint32_t code, const Parcel& data, Parcel* reply, uint32_t flags)
2150{
2151    switch (code) {
2152        case CREATE_CONNECTION:
2153        case SET_TRANSACTION_STATE:
2154        case BOOT_FINISHED:
2155        case BLANK:
2156        case UNBLANK:
2157        {
2158            // codes that require permission check
2159            IPCThreadState* ipc = IPCThreadState::self();
2160            const int pid = ipc->getCallingPid();
2161            const int uid = ipc->getCallingUid();
2162            if ((uid != AID_GRAPHICS) &&
2163                    !PermissionCache::checkPermission(sAccessSurfaceFlinger, pid, uid)) {
2164                ALOGE("Permission Denial: "
2165                        "can't access SurfaceFlinger pid=%d, uid=%d", pid, uid);
2166                return PERMISSION_DENIED;
2167            }
2168            break;
2169        }
2170        case CAPTURE_SCREEN:
2171        {
2172            // codes that require permission check
2173            IPCThreadState* ipc = IPCThreadState::self();
2174            const int pid = ipc->getCallingPid();
2175            const int uid = ipc->getCallingUid();
2176            if ((uid != AID_GRAPHICS) &&
2177                    !PermissionCache::checkPermission(sReadFramebuffer, pid, uid)) {
2178                ALOGE("Permission Denial: "
2179                        "can't read framebuffer pid=%d, uid=%d", pid, uid);
2180                return PERMISSION_DENIED;
2181            }
2182            break;
2183        }
2184    }
2185
2186    status_t err = BnSurfaceComposer::onTransact(code, data, reply, flags);
2187    if (err == UNKNOWN_TRANSACTION || err == PERMISSION_DENIED) {
2188        CHECK_INTERFACE(ISurfaceComposer, data, reply);
2189        if (CC_UNLIKELY(!PermissionCache::checkCallingPermission(sHardwareTest))) {
2190            IPCThreadState* ipc = IPCThreadState::self();
2191            const int pid = ipc->getCallingPid();
2192            const int uid = ipc->getCallingUid();
2193            ALOGE("Permission Denial: "
2194                    "can't access SurfaceFlinger pid=%d, uid=%d", pid, uid);
2195            return PERMISSION_DENIED;
2196        }
2197        int n;
2198        switch (code) {
2199            case 1000: // SHOW_CPU, NOT SUPPORTED ANYMORE
2200            case 1001: // SHOW_FPS, NOT SUPPORTED ANYMORE
2201                return NO_ERROR;
2202            case 1002:  // SHOW_UPDATES
2203                n = data.readInt32();
2204                mDebugRegion = n ? n : (mDebugRegion ? 0 : 1);
2205                invalidateHwcGeometry();
2206                repaintEverything();
2207                return NO_ERROR;
2208            case 1004:{ // repaint everything
2209                repaintEverything();
2210                return NO_ERROR;
2211            }
2212            case 1005:{ // force transaction
2213                setTransactionFlags(
2214                        eTransactionNeeded|
2215                        eDisplayTransactionNeeded|
2216                        eTraversalNeeded);
2217                return NO_ERROR;
2218            }
2219            case 1006:{ // send empty update
2220                signalRefresh();
2221                return NO_ERROR;
2222            }
2223            case 1008:  // toggle use of hw composer
2224                n = data.readInt32();
2225                mDebugDisableHWC = n ? 1 : 0;
2226                invalidateHwcGeometry();
2227                repaintEverything();
2228                return NO_ERROR;
2229            case 1009:  // toggle use of transform hint
2230                n = data.readInt32();
2231                mDebugDisableTransformHint = n ? 1 : 0;
2232                invalidateHwcGeometry();
2233                repaintEverything();
2234                return NO_ERROR;
2235            case 1010:  // interrogate.
2236                reply->writeInt32(0);
2237                reply->writeInt32(0);
2238                reply->writeInt32(mDebugRegion);
2239                reply->writeInt32(0);
2240                reply->writeInt32(mDebugDisableHWC);
2241                return NO_ERROR;
2242            case 1013: {
2243                Mutex::Autolock _l(mStateLock);
2244                sp<const DisplayDevice> hw(getDefaultDisplayDevice());
2245                reply->writeInt32(hw->getPageFlipCount());
2246            }
2247            return NO_ERROR;
2248        }
2249    }
2250    return err;
2251}
2252
2253void SurfaceFlinger::repaintEverything() {
2254    android_atomic_or(1, &mRepaintEverything);
2255    signalTransaction();
2256}
2257
2258// ---------------------------------------------------------------------------
2259
2260status_t SurfaceFlinger::renderScreenToTexture(uint32_t layerStack,
2261        GLuint* textureName, GLfloat* uOut, GLfloat* vOut)
2262{
2263    Mutex::Autolock _l(mStateLock);
2264    return renderScreenToTextureLocked(layerStack, textureName, uOut, vOut);
2265}
2266
2267status_t SurfaceFlinger::renderScreenToTextureLocked(uint32_t layerStack,
2268        GLuint* textureName, GLfloat* uOut, GLfloat* vOut)
2269{
2270    ATRACE_CALL();
2271
2272    if (!GLExtensions::getInstance().haveFramebufferObject())
2273        return INVALID_OPERATION;
2274
2275    // get screen geometry
2276    // FIXME: figure out what it means to have a screenshot texture w/ multi-display
2277    sp<const DisplayDevice> hw(getDefaultDisplayDevice());
2278    const uint32_t hw_w = hw->getWidth();
2279    const uint32_t hw_h = hw->getHeight();
2280    GLfloat u = 1;
2281    GLfloat v = 1;
2282
2283    // make sure to clear all GL error flags
2284    while ( glGetError() != GL_NO_ERROR ) ;
2285
2286    // create a FBO
2287    GLuint name, tname;
2288    glGenTextures(1, &tname);
2289    glBindTexture(GL_TEXTURE_2D, tname);
2290    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
2291    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
2292    glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB,
2293            hw_w, hw_h, 0, GL_RGB, GL_UNSIGNED_BYTE, 0);
2294    if (glGetError() != GL_NO_ERROR) {
2295        while ( glGetError() != GL_NO_ERROR ) ;
2296        GLint tw = (2 << (31 - clz(hw_w)));
2297        GLint th = (2 << (31 - clz(hw_h)));
2298        glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB,
2299                tw, th, 0, GL_RGB, GL_UNSIGNED_BYTE, 0);
2300        u = GLfloat(hw_w) / tw;
2301        v = GLfloat(hw_h) / th;
2302    }
2303    glGenFramebuffersOES(1, &name);
2304    glBindFramebufferOES(GL_FRAMEBUFFER_OES, name);
2305    glFramebufferTexture2DOES(GL_FRAMEBUFFER_OES,
2306            GL_COLOR_ATTACHMENT0_OES, GL_TEXTURE_2D, tname, 0);
2307
2308    // redraw the screen entirely...
2309    glDisable(GL_TEXTURE_EXTERNAL_OES);
2310    glDisable(GL_TEXTURE_2D);
2311    glClearColor(0,0,0,1);
2312    glClear(GL_COLOR_BUFFER_BIT);
2313    glMatrixMode(GL_MODELVIEW);
2314    glLoadIdentity();
2315    const Vector< sp<LayerBase> >& layers(hw->getVisibleLayersSortedByZ());
2316    const size_t count = layers.size();
2317    for (size_t i=0 ; i<count ; ++i) {
2318        const sp<LayerBase>& layer(layers[i]);
2319        layer->draw(hw);
2320    }
2321
2322    hw->compositionComplete();
2323
2324    // back to main framebuffer
2325    glBindFramebufferOES(GL_FRAMEBUFFER_OES, 0);
2326    glDeleteFramebuffersOES(1, &name);
2327
2328    *textureName = tname;
2329    *uOut = u;
2330    *vOut = v;
2331    return NO_ERROR;
2332}
2333
2334// ---------------------------------------------------------------------------
2335
2336status_t SurfaceFlinger::captureScreenImplLocked(const sp<IBinder>& display,
2337        sp<IMemoryHeap>* heap,
2338        uint32_t* w, uint32_t* h, PixelFormat* f,
2339        uint32_t sw, uint32_t sh,
2340        uint32_t minLayerZ, uint32_t maxLayerZ)
2341{
2342    ATRACE_CALL();
2343
2344    status_t result = PERMISSION_DENIED;
2345
2346    if (!GLExtensions::getInstance().haveFramebufferObject()) {
2347        return INVALID_OPERATION;
2348    }
2349
2350    // get screen geometry
2351    sp<const DisplayDevice> hw(getDisplayDevice(display));
2352    const uint32_t hw_w = hw->getWidth();
2353    const uint32_t hw_h = hw->getHeight();
2354
2355    // if we have secure windows on this display, never allow the screen capture
2356    if (hw->getSecureLayerVisible()) {
2357        ALOGW("FB is protected: PERMISSION_DENIED");
2358        return PERMISSION_DENIED;
2359    }
2360
2361    if ((sw > hw_w) || (sh > hw_h)) {
2362        ALOGE("size mismatch (%d, %d) > (%d, %d)", sw, sh, hw_w, hw_h);
2363        return BAD_VALUE;
2364    }
2365
2366    sw = (!sw) ? hw_w : sw;
2367    sh = (!sh) ? hw_h : sh;
2368    const size_t size = sw * sh * 4;
2369    const bool filtering = sw != hw_w || sh != hw_h;
2370
2371//    ALOGD("screenshot: sw=%d, sh=%d, minZ=%d, maxZ=%d",
2372//            sw, sh, minLayerZ, maxLayerZ);
2373
2374    // make sure to clear all GL error flags
2375    while ( glGetError() != GL_NO_ERROR ) ;
2376
2377    // create a FBO
2378    GLuint name, tname;
2379    glGenRenderbuffersOES(1, &tname);
2380    glBindRenderbufferOES(GL_RENDERBUFFER_OES, tname);
2381    glRenderbufferStorageOES(GL_RENDERBUFFER_OES, GL_RGBA8_OES, sw, sh);
2382
2383    glGenFramebuffersOES(1, &name);
2384    glBindFramebufferOES(GL_FRAMEBUFFER_OES, name);
2385    glFramebufferRenderbufferOES(GL_FRAMEBUFFER_OES,
2386            GL_COLOR_ATTACHMENT0_OES, GL_RENDERBUFFER_OES, tname);
2387
2388    GLenum status = glCheckFramebufferStatusOES(GL_FRAMEBUFFER_OES);
2389
2390    if (status == GL_FRAMEBUFFER_COMPLETE_OES) {
2391
2392        // invert everything, b/c glReadPixel() below will invert the FB
2393        glViewport(0, 0, sw, sh);
2394        glMatrixMode(GL_PROJECTION);
2395        glPushMatrix();
2396        glLoadIdentity();
2397        glOrthof(0, hw_w, hw_h, 0, 0, 1);
2398        glMatrixMode(GL_MODELVIEW);
2399
2400        // redraw the screen entirely...
2401        glClearColor(0,0,0,1);
2402        glClear(GL_COLOR_BUFFER_BIT);
2403
2404        const Vector< sp<LayerBase> >& layers(hw->getVisibleLayersSortedByZ());
2405        const size_t count = layers.size();
2406        for (size_t i=0 ; i<count ; ++i) {
2407            const sp<LayerBase>& layer(layers[i]);
2408            const uint32_t z = layer->drawingState().z;
2409            if (z >= minLayerZ && z <= maxLayerZ) {
2410                if (filtering) layer->setFiltering(true);
2411                layer->draw(hw);
2412                if (filtering) layer->setFiltering(false);
2413            }
2414        }
2415
2416        // check for errors and return screen capture
2417        if (glGetError() != GL_NO_ERROR) {
2418            // error while rendering
2419            result = INVALID_OPERATION;
2420        } else {
2421            // allocate shared memory large enough to hold the
2422            // screen capture
2423            sp<MemoryHeapBase> base(
2424                    new MemoryHeapBase(size, 0, "screen-capture") );
2425            void* const ptr = base->getBase();
2426            if (ptr) {
2427                // capture the screen with glReadPixels()
2428                ScopedTrace _t(ATRACE_TAG, "glReadPixels");
2429                glReadPixels(0, 0, sw, sh, GL_RGBA, GL_UNSIGNED_BYTE, ptr);
2430                if (glGetError() == GL_NO_ERROR) {
2431                    *heap = base;
2432                    *w = sw;
2433                    *h = sh;
2434                    *f = PIXEL_FORMAT_RGBA_8888;
2435                    result = NO_ERROR;
2436                }
2437            } else {
2438                result = NO_MEMORY;
2439            }
2440        }
2441        glViewport(0, 0, hw_w, hw_h);
2442        glMatrixMode(GL_PROJECTION);
2443        glPopMatrix();
2444        glMatrixMode(GL_MODELVIEW);
2445    } else {
2446        result = BAD_VALUE;
2447    }
2448
2449    // release FBO resources
2450    glBindFramebufferOES(GL_FRAMEBUFFER_OES, 0);
2451    glDeleteRenderbuffersOES(1, &tname);
2452    glDeleteFramebuffersOES(1, &name);
2453
2454    hw->compositionComplete();
2455
2456//    ALOGD("screenshot: result = %s", result<0 ? strerror(result) : "OK");
2457
2458    return result;
2459}
2460
2461
2462status_t SurfaceFlinger::captureScreen(const sp<IBinder>& display,
2463        sp<IMemoryHeap>* heap,
2464        uint32_t* width, uint32_t* height, PixelFormat* format,
2465        uint32_t sw, uint32_t sh,
2466        uint32_t minLayerZ, uint32_t maxLayerZ)
2467{
2468    if (CC_UNLIKELY(display == 0))
2469        return BAD_VALUE;
2470
2471    if (!GLExtensions::getInstance().haveFramebufferObject())
2472        return INVALID_OPERATION;
2473
2474    class MessageCaptureScreen : public MessageBase {
2475        SurfaceFlinger* flinger;
2476        sp<IBinder> display;
2477        sp<IMemoryHeap>* heap;
2478        uint32_t* w;
2479        uint32_t* h;
2480        PixelFormat* f;
2481        uint32_t sw;
2482        uint32_t sh;
2483        uint32_t minLayerZ;
2484        uint32_t maxLayerZ;
2485        status_t result;
2486    public:
2487        MessageCaptureScreen(SurfaceFlinger* flinger, const sp<IBinder>& display,
2488                sp<IMemoryHeap>* heap, uint32_t* w, uint32_t* h, PixelFormat* f,
2489                uint32_t sw, uint32_t sh,
2490                uint32_t minLayerZ, uint32_t maxLayerZ)
2491            : flinger(flinger), display(display),
2492              heap(heap), w(w), h(h), f(f), sw(sw), sh(sh),
2493              minLayerZ(minLayerZ), maxLayerZ(maxLayerZ),
2494              result(PERMISSION_DENIED)
2495        {
2496        }
2497        status_t getResult() const {
2498            return result;
2499        }
2500        virtual bool handler() {
2501            Mutex::Autolock _l(flinger->mStateLock);
2502            result = flinger->captureScreenImplLocked(display,
2503                    heap, w, h, f, sw, sh, minLayerZ, maxLayerZ);
2504            return true;
2505        }
2506    };
2507
2508    sp<MessageBase> msg = new MessageCaptureScreen(this,
2509            display, heap, width, height, format, sw, sh, minLayerZ, maxLayerZ);
2510    status_t res = postMessageSync(msg);
2511    if (res == NO_ERROR) {
2512        res = static_cast<MessageCaptureScreen*>( msg.get() )->getResult();
2513    }
2514    return res;
2515}
2516
2517// ---------------------------------------------------------------------------
2518
2519SurfaceFlinger::LayerVector::LayerVector() {
2520}
2521
2522SurfaceFlinger::LayerVector::LayerVector(const LayerVector& rhs)
2523    : SortedVector<sp<LayerBase> >(rhs) {
2524}
2525
2526int SurfaceFlinger::LayerVector::do_compare(const void* lhs,
2527    const void* rhs) const
2528{
2529    // sort layers per layer-stack, then by z-order and finally by sequence
2530    const sp<LayerBase>& l(*reinterpret_cast<const sp<LayerBase>*>(lhs));
2531    const sp<LayerBase>& r(*reinterpret_cast<const sp<LayerBase>*>(rhs));
2532
2533    uint32_t ls = l->currentState().layerStack;
2534    uint32_t rs = r->currentState().layerStack;
2535    if (ls != rs)
2536        return ls - rs;
2537
2538    uint32_t lz = l->currentState().z;
2539    uint32_t rz = r->currentState().z;
2540    if (lz != rz)
2541        return lz - rz;
2542
2543    return l->sequence - r->sequence;
2544}
2545
2546// ---------------------------------------------------------------------------
2547
2548SurfaceFlinger::DisplayDeviceState::DisplayDeviceState()
2549    : type(DisplayDevice::DISPLAY_ID_INVALID) {
2550}
2551
2552SurfaceFlinger::DisplayDeviceState::DisplayDeviceState(DisplayDevice::DisplayType type)
2553    : type(type), layerStack(0), orientation(0) {
2554    viewport.makeInvalid();
2555    frame.makeInvalid();
2556}
2557
2558// ---------------------------------------------------------------------------
2559
2560GraphicBufferAlloc::GraphicBufferAlloc() {}
2561
2562GraphicBufferAlloc::~GraphicBufferAlloc() {}
2563
2564sp<GraphicBuffer> GraphicBufferAlloc::createGraphicBuffer(uint32_t w, uint32_t h,
2565        PixelFormat format, uint32_t usage, status_t* error) {
2566    sp<GraphicBuffer> graphicBuffer(new GraphicBuffer(w, h, format, usage));
2567    status_t err = graphicBuffer->initCheck();
2568    *error = err;
2569    if (err != 0 || graphicBuffer->handle == 0) {
2570        if (err == NO_MEMORY) {
2571            GraphicBuffer::dumpAllocationsToSystemLog();
2572        }
2573        ALOGE("GraphicBufferAlloc::createGraphicBuffer(w=%d, h=%d) "
2574             "failed (%s), handle=%p",
2575                w, h, strerror(-err), graphicBuffer->handle);
2576        return 0;
2577    }
2578    return graphicBuffer;
2579}
2580
2581// ---------------------------------------------------------------------------
2582
2583}; // namespace android
2584