Searched refs:m_U (Results 1 - 2 of 2) sorted by relevance

/external/eigen/unsupported/Eigen/src/MatrixFunctions/
H A DMatrixExponential.h113 * Computes \c m_U, \c m_V and \c m_squarings such that
146 MatrixType m_U; member in class:Eigen::MatrixExponential
170 m_U(M.rows(),M.cols()),
192 m_tmp1 = m_U + m_V; // numerator of Pade approximant
193 m_tmp2 = -m_U + m_V; // denominator of Pade approximant
205 m_U.noalias() = A * m_tmp2;
216 m_U.noalias() = A * m_tmp2;
228 m_U.noalias() = A * m_tmp2;
242 m_U.noalias() = A * m_tmp2;
258 m_U
[all...]
H A DMatrixFunction.h164 MatrixType m_U; /**< \brief Unitary part of Schur decomposition */ member in class:Eigen::MatrixFunction
212 result = m_U * m_fT * m_U.adjoint();
215 /** \brief Store the Schur decomposition of #m_A in #m_T and #m_U */
221 m_U = schurOfA.matrixU();
330 /** \brief Permute Schur decomposition in #m_U and #m_T according to #m_permutation */
348 /** \brief Swap rows \a index and \a index+1 in Schur decomposition in #m_U and #m_T */
356 m_U.applyOnTheRight(index, index+1, rotation);

Completed in 83 milliseconds