expr.c revision 5821806d5e7f356e8fa4b058a389a808ea183019
1/*
2** 2001 September 15
3**
4** The author disclaims copyright to this source code.  In place of
5** a legal notice, here is a blessing:
6**
7**    May you do good and not evil.
8**    May you find forgiveness for yourself and forgive others.
9**    May you share freely, never taking more than you give.
10**
11*************************************************************************
12** This file contains routines used for analyzing expressions and
13** for generating VDBE code that evaluates expressions in SQLite.
14*/
15#include "sqliteInt.h"
16
17/*
18** Return the 'affinity' of the expression pExpr if any.
19**
20** If pExpr is a column, a reference to a column via an 'AS' alias,
21** or a sub-select with a column as the return value, then the
22** affinity of that column is returned. Otherwise, 0x00 is returned,
23** indicating no affinity for the expression.
24**
25** i.e. the WHERE clause expresssions in the following statements all
26** have an affinity:
27**
28** CREATE TABLE t1(a);
29** SELECT * FROM t1 WHERE a;
30** SELECT a AS b FROM t1 WHERE b;
31** SELECT * FROM t1 WHERE (select a from t1);
32*/
33char sqlite3ExprAffinity(Expr *pExpr){
34  int op = pExpr->op;
35  if( op==TK_SELECT ){
36    assert( pExpr->flags&EP_xIsSelect );
37    return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr);
38  }
39#ifndef SQLITE_OMIT_CAST
40  if( op==TK_CAST ){
41    assert( !ExprHasProperty(pExpr, EP_IntValue) );
42    return sqlite3AffinityType(pExpr->u.zToken);
43  }
44#endif
45  if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_REGISTER)
46   && pExpr->pTab!=0
47  ){
48    /* op==TK_REGISTER && pExpr->pTab!=0 happens when pExpr was originally
49    ** a TK_COLUMN but was previously evaluated and cached in a register */
50    int j = pExpr->iColumn;
51    if( j<0 ) return SQLITE_AFF_INTEGER;
52    assert( pExpr->pTab && j<pExpr->pTab->nCol );
53    return pExpr->pTab->aCol[j].affinity;
54  }
55  return pExpr->affinity;
56}
57
58/*
59** Set the explicit collating sequence for an expression to the
60** collating sequence supplied in the second argument.
61*/
62Expr *sqlite3ExprSetColl(Expr *pExpr, CollSeq *pColl){
63  if( pExpr && pColl ){
64    pExpr->pColl = pColl;
65    pExpr->flags |= EP_ExpCollate;
66  }
67  return pExpr;
68}
69
70/*
71** Set the collating sequence for expression pExpr to be the collating
72** sequence named by pToken.   Return a pointer to the revised expression.
73** The collating sequence is marked as "explicit" using the EP_ExpCollate
74** flag.  An explicit collating sequence will override implicit
75** collating sequences.
76*/
77Expr *sqlite3ExprSetCollByToken(Parse *pParse, Expr *pExpr, Token *pCollName){
78  char *zColl = 0;            /* Dequoted name of collation sequence */
79  CollSeq *pColl;
80  sqlite3 *db = pParse->db;
81  zColl = sqlite3NameFromToken(db, pCollName);
82  pColl = sqlite3LocateCollSeq(pParse, zColl);
83  sqlite3ExprSetColl(pExpr, pColl);
84  sqlite3DbFree(db, zColl);
85  return pExpr;
86}
87
88/*
89** Return the default collation sequence for the expression pExpr. If
90** there is no default collation type, return 0.
91*/
92CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){
93  CollSeq *pColl = 0;
94  Expr *p = pExpr;
95  while( p ){
96    int op;
97    pColl = p->pColl;
98    if( pColl ) break;
99    op = p->op;
100    if( p->pTab!=0 && (
101        op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_REGISTER || op==TK_TRIGGER
102    )){
103      /* op==TK_REGISTER && p->pTab!=0 happens when pExpr was originally
104      ** a TK_COLUMN but was previously evaluated and cached in a register */
105      const char *zColl;
106      int j = p->iColumn;
107      if( j>=0 ){
108        sqlite3 *db = pParse->db;
109        zColl = p->pTab->aCol[j].zColl;
110        pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
111        pExpr->pColl = pColl;
112      }
113      break;
114    }
115    if( op!=TK_CAST && op!=TK_UPLUS ){
116      break;
117    }
118    p = p->pLeft;
119  }
120  if( sqlite3CheckCollSeq(pParse, pColl) ){
121    pColl = 0;
122  }
123  return pColl;
124}
125
126/*
127** pExpr is an operand of a comparison operator.  aff2 is the
128** type affinity of the other operand.  This routine returns the
129** type affinity that should be used for the comparison operator.
130*/
131char sqlite3CompareAffinity(Expr *pExpr, char aff2){
132  char aff1 = sqlite3ExprAffinity(pExpr);
133  if( aff1 && aff2 ){
134    /* Both sides of the comparison are columns. If one has numeric
135    ** affinity, use that. Otherwise use no affinity.
136    */
137    if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){
138      return SQLITE_AFF_NUMERIC;
139    }else{
140      return SQLITE_AFF_NONE;
141    }
142  }else if( !aff1 && !aff2 ){
143    /* Neither side of the comparison is a column.  Compare the
144    ** results directly.
145    */
146    return SQLITE_AFF_NONE;
147  }else{
148    /* One side is a column, the other is not. Use the columns affinity. */
149    assert( aff1==0 || aff2==0 );
150    return (aff1 + aff2);
151  }
152}
153
154/*
155** pExpr is a comparison operator.  Return the type affinity that should
156** be applied to both operands prior to doing the comparison.
157*/
158static char comparisonAffinity(Expr *pExpr){
159  char aff;
160  assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT ||
161          pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE ||
162          pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT );
163  assert( pExpr->pLeft );
164  aff = sqlite3ExprAffinity(pExpr->pLeft);
165  if( pExpr->pRight ){
166    aff = sqlite3CompareAffinity(pExpr->pRight, aff);
167  }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){
168    aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff);
169  }else if( !aff ){
170    aff = SQLITE_AFF_NONE;
171  }
172  return aff;
173}
174
175/*
176** pExpr is a comparison expression, eg. '=', '<', IN(...) etc.
177** idx_affinity is the affinity of an indexed column. Return true
178** if the index with affinity idx_affinity may be used to implement
179** the comparison in pExpr.
180*/
181int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){
182  char aff = comparisonAffinity(pExpr);
183  switch( aff ){
184    case SQLITE_AFF_NONE:
185      return 1;
186    case SQLITE_AFF_TEXT:
187      return idx_affinity==SQLITE_AFF_TEXT;
188    default:
189      return sqlite3IsNumericAffinity(idx_affinity);
190  }
191}
192
193/*
194** Return the P5 value that should be used for a binary comparison
195** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2.
196*/
197static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){
198  u8 aff = (char)sqlite3ExprAffinity(pExpr2);
199  aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull;
200  return aff;
201}
202
203/*
204** Return a pointer to the collation sequence that should be used by
205** a binary comparison operator comparing pLeft and pRight.
206**
207** If the left hand expression has a collating sequence type, then it is
208** used. Otherwise the collation sequence for the right hand expression
209** is used, or the default (BINARY) if neither expression has a collating
210** type.
211**
212** Argument pRight (but not pLeft) may be a null pointer. In this case,
213** it is not considered.
214*/
215CollSeq *sqlite3BinaryCompareCollSeq(
216  Parse *pParse,
217  Expr *pLeft,
218  Expr *pRight
219){
220  CollSeq *pColl;
221  assert( pLeft );
222  if( pLeft->flags & EP_ExpCollate ){
223    assert( pLeft->pColl );
224    pColl = pLeft->pColl;
225  }else if( pRight && pRight->flags & EP_ExpCollate ){
226    assert( pRight->pColl );
227    pColl = pRight->pColl;
228  }else{
229    pColl = sqlite3ExprCollSeq(pParse, pLeft);
230    if( !pColl ){
231      pColl = sqlite3ExprCollSeq(pParse, pRight);
232    }
233  }
234  return pColl;
235}
236
237/*
238** Generate code for a comparison operator.
239*/
240static int codeCompare(
241  Parse *pParse,    /* The parsing (and code generating) context */
242  Expr *pLeft,      /* The left operand */
243  Expr *pRight,     /* The right operand */
244  int opcode,       /* The comparison opcode */
245  int in1, int in2, /* Register holding operands */
246  int dest,         /* Jump here if true.  */
247  int jumpIfNull    /* If true, jump if either operand is NULL */
248){
249  int p5;
250  int addr;
251  CollSeq *p4;
252
253  p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight);
254  p5 = binaryCompareP5(pLeft, pRight, jumpIfNull);
255  addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1,
256                           (void*)p4, P4_COLLSEQ);
257  sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5);
258  return addr;
259}
260
261#if SQLITE_MAX_EXPR_DEPTH>0
262/*
263** Check that argument nHeight is less than or equal to the maximum
264** expression depth allowed. If it is not, leave an error message in
265** pParse.
266*/
267int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){
268  int rc = SQLITE_OK;
269  int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH];
270  if( nHeight>mxHeight ){
271    sqlite3ErrorMsg(pParse,
272       "Expression tree is too large (maximum depth %d)", mxHeight
273    );
274    rc = SQLITE_ERROR;
275  }
276  return rc;
277}
278
279/* The following three functions, heightOfExpr(), heightOfExprList()
280** and heightOfSelect(), are used to determine the maximum height
281** of any expression tree referenced by the structure passed as the
282** first argument.
283**
284** If this maximum height is greater than the current value pointed
285** to by pnHeight, the second parameter, then set *pnHeight to that
286** value.
287*/
288static void heightOfExpr(Expr *p, int *pnHeight){
289  if( p ){
290    if( p->nHeight>*pnHeight ){
291      *pnHeight = p->nHeight;
292    }
293  }
294}
295static void heightOfExprList(ExprList *p, int *pnHeight){
296  if( p ){
297    int i;
298    for(i=0; i<p->nExpr; i++){
299      heightOfExpr(p->a[i].pExpr, pnHeight);
300    }
301  }
302}
303static void heightOfSelect(Select *p, int *pnHeight){
304  if( p ){
305    heightOfExpr(p->pWhere, pnHeight);
306    heightOfExpr(p->pHaving, pnHeight);
307    heightOfExpr(p->pLimit, pnHeight);
308    heightOfExpr(p->pOffset, pnHeight);
309    heightOfExprList(p->pEList, pnHeight);
310    heightOfExprList(p->pGroupBy, pnHeight);
311    heightOfExprList(p->pOrderBy, pnHeight);
312    heightOfSelect(p->pPrior, pnHeight);
313  }
314}
315
316/*
317** Set the Expr.nHeight variable in the structure passed as an
318** argument. An expression with no children, Expr.pList or
319** Expr.pSelect member has a height of 1. Any other expression
320** has a height equal to the maximum height of any other
321** referenced Expr plus one.
322*/
323static void exprSetHeight(Expr *p){
324  int nHeight = 0;
325  heightOfExpr(p->pLeft, &nHeight);
326  heightOfExpr(p->pRight, &nHeight);
327  if( ExprHasProperty(p, EP_xIsSelect) ){
328    heightOfSelect(p->x.pSelect, &nHeight);
329  }else{
330    heightOfExprList(p->x.pList, &nHeight);
331  }
332  p->nHeight = nHeight + 1;
333}
334
335/*
336** Set the Expr.nHeight variable using the exprSetHeight() function. If
337** the height is greater than the maximum allowed expression depth,
338** leave an error in pParse.
339*/
340void sqlite3ExprSetHeight(Parse *pParse, Expr *p){
341  exprSetHeight(p);
342  sqlite3ExprCheckHeight(pParse, p->nHeight);
343}
344
345/*
346** Return the maximum height of any expression tree referenced
347** by the select statement passed as an argument.
348*/
349int sqlite3SelectExprHeight(Select *p){
350  int nHeight = 0;
351  heightOfSelect(p, &nHeight);
352  return nHeight;
353}
354#else
355  #define exprSetHeight(y)
356#endif /* SQLITE_MAX_EXPR_DEPTH>0 */
357
358/*
359** This routine is the core allocator for Expr nodes.
360**
361** Construct a new expression node and return a pointer to it.  Memory
362** for this node and for the pToken argument is a single allocation
363** obtained from sqlite3DbMalloc().  The calling function
364** is responsible for making sure the node eventually gets freed.
365**
366** If dequote is true, then the token (if it exists) is dequoted.
367** If dequote is false, no dequoting is performance.  The deQuote
368** parameter is ignored if pToken is NULL or if the token does not
369** appear to be quoted.  If the quotes were of the form "..." (double-quotes)
370** then the EP_DblQuoted flag is set on the expression node.
371**
372** Special case:  If op==TK_INTEGER and pToken points to a string that
373** can be translated into a 32-bit integer, then the token is not
374** stored in u.zToken.  Instead, the integer values is written
375** into u.iValue and the EP_IntValue flag is set.  No extra storage
376** is allocated to hold the integer text and the dequote flag is ignored.
377*/
378Expr *sqlite3ExprAlloc(
379  sqlite3 *db,            /* Handle for sqlite3DbMallocZero() (may be null) */
380  int op,                 /* Expression opcode */
381  const Token *pToken,    /* Token argument.  Might be NULL */
382  int dequote             /* True to dequote */
383){
384  Expr *pNew;
385  int nExtra = 0;
386  int iValue = 0;
387
388  if( pToken ){
389    if( op!=TK_INTEGER || pToken->z==0
390          || sqlite3GetInt32(pToken->z, &iValue)==0 ){
391      nExtra = pToken->n+1;
392      assert( iValue>=0 );
393    }
394  }
395  pNew = sqlite3DbMallocZero(db, sizeof(Expr)+nExtra);
396  if( pNew ){
397    pNew->op = (u8)op;
398    pNew->iAgg = -1;
399    if( pToken ){
400      if( nExtra==0 ){
401        pNew->flags |= EP_IntValue;
402        pNew->u.iValue = iValue;
403      }else{
404        int c;
405        pNew->u.zToken = (char*)&pNew[1];
406        memcpy(pNew->u.zToken, pToken->z, pToken->n);
407        pNew->u.zToken[pToken->n] = 0;
408        if( dequote && nExtra>=3
409             && ((c = pToken->z[0])=='\'' || c=='"' || c=='[' || c=='`') ){
410          sqlite3Dequote(pNew->u.zToken);
411          if( c=='"' ) pNew->flags |= EP_DblQuoted;
412        }
413      }
414    }
415#if SQLITE_MAX_EXPR_DEPTH>0
416    pNew->nHeight = 1;
417#endif
418  }
419  return pNew;
420}
421
422/*
423** Allocate a new expression node from a zero-terminated token that has
424** already been dequoted.
425*/
426Expr *sqlite3Expr(
427  sqlite3 *db,            /* Handle for sqlite3DbMallocZero() (may be null) */
428  int op,                 /* Expression opcode */
429  const char *zToken      /* Token argument.  Might be NULL */
430){
431  Token x;
432  x.z = zToken;
433  x.n = zToken ? sqlite3Strlen30(zToken) : 0;
434  return sqlite3ExprAlloc(db, op, &x, 0);
435}
436
437/*
438** Attach subtrees pLeft and pRight to the Expr node pRoot.
439**
440** If pRoot==NULL that means that a memory allocation error has occurred.
441** In that case, delete the subtrees pLeft and pRight.
442*/
443void sqlite3ExprAttachSubtrees(
444  sqlite3 *db,
445  Expr *pRoot,
446  Expr *pLeft,
447  Expr *pRight
448){
449  if( pRoot==0 ){
450    assert( db->mallocFailed );
451    sqlite3ExprDelete(db, pLeft);
452    sqlite3ExprDelete(db, pRight);
453  }else{
454    if( pRight ){
455      pRoot->pRight = pRight;
456      if( pRight->flags & EP_ExpCollate ){
457        pRoot->flags |= EP_ExpCollate;
458        pRoot->pColl = pRight->pColl;
459      }
460    }
461    if( pLeft ){
462      pRoot->pLeft = pLeft;
463      if( pLeft->flags & EP_ExpCollate ){
464        pRoot->flags |= EP_ExpCollate;
465        pRoot->pColl = pLeft->pColl;
466      }
467    }
468    exprSetHeight(pRoot);
469  }
470}
471
472/*
473** Allocate a Expr node which joins as many as two subtrees.
474**
475** One or both of the subtrees can be NULL.  Return a pointer to the new
476** Expr node.  Or, if an OOM error occurs, set pParse->db->mallocFailed,
477** free the subtrees and return NULL.
478*/
479Expr *sqlite3PExpr(
480  Parse *pParse,          /* Parsing context */
481  int op,                 /* Expression opcode */
482  Expr *pLeft,            /* Left operand */
483  Expr *pRight,           /* Right operand */
484  const Token *pToken     /* Argument token */
485){
486  Expr *p = sqlite3ExprAlloc(pParse->db, op, pToken, 1);
487  sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight);
488  if( p ) {
489    sqlite3ExprCheckHeight(pParse, p->nHeight);
490  }
491  return p;
492}
493
494/*
495** Join two expressions using an AND operator.  If either expression is
496** NULL, then just return the other expression.
497*/
498Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){
499  if( pLeft==0 ){
500    return pRight;
501  }else if( pRight==0 ){
502    return pLeft;
503  }else{
504    Expr *pNew = sqlite3ExprAlloc(db, TK_AND, 0, 0);
505    sqlite3ExprAttachSubtrees(db, pNew, pLeft, pRight);
506    return pNew;
507  }
508}
509
510/*
511** Construct a new expression node for a function with multiple
512** arguments.
513*/
514Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){
515  Expr *pNew;
516  sqlite3 *db = pParse->db;
517  assert( pToken );
518  pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1);
519  if( pNew==0 ){
520    sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */
521    return 0;
522  }
523  pNew->x.pList = pList;
524  assert( !ExprHasProperty(pNew, EP_xIsSelect) );
525  sqlite3ExprSetHeight(pParse, pNew);
526  return pNew;
527}
528
529/*
530** Assign a variable number to an expression that encodes a wildcard
531** in the original SQL statement.
532**
533** Wildcards consisting of a single "?" are assigned the next sequential
534** variable number.
535**
536** Wildcards of the form "?nnn" are assigned the number "nnn".  We make
537** sure "nnn" is not too be to avoid a denial of service attack when
538** the SQL statement comes from an external source.
539**
540** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number
541** as the previous instance of the same wildcard.  Or if this is the first
542** instance of the wildcard, the next sequenial variable number is
543** assigned.
544*/
545void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){
546  sqlite3 *db = pParse->db;
547  const char *z;
548
549  if( pExpr==0 ) return;
550  assert( !ExprHasAnyProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) );
551  z = pExpr->u.zToken;
552  assert( z!=0 );
553  assert( z[0]!=0 );
554  if( z[1]==0 ){
555    /* Wildcard of the form "?".  Assign the next variable number */
556    assert( z[0]=='?' );
557    pExpr->iColumn = (ynVar)(++pParse->nVar);
558  }else if( z[0]=='?' ){
559    /* Wildcard of the form "?nnn".  Convert "nnn" to an integer and
560    ** use it as the variable number */
561    i64 i;
562    int bOk = 0==sqlite3Atoi64(&z[1], &i, sqlite3Strlen30(&z[1]), SQLITE_UTF8);
563    pExpr->iColumn = (ynVar)i;
564    testcase( i==0 );
565    testcase( i==1 );
566    testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 );
567    testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] );
568    if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
569      sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d",
570          db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]);
571    }
572    if( i>pParse->nVar ){
573      pParse->nVar = (int)i;
574    }
575  }else{
576    /* Wildcards like ":aaa", "$aaa" or "@aaa".  Reuse the same variable
577    ** number as the prior appearance of the same name, or if the name
578    ** has never appeared before, reuse the same variable number
579    */
580    int i;
581    u32 n;
582    n = sqlite3Strlen30(z);
583    for(i=0; i<pParse->nVarExpr; i++){
584      Expr *pE = pParse->apVarExpr[i];
585      assert( pE!=0 );
586      if( memcmp(pE->u.zToken, z, n)==0 && pE->u.zToken[n]==0 ){
587        pExpr->iColumn = pE->iColumn;
588        break;
589      }
590    }
591    if( i>=pParse->nVarExpr ){
592      pExpr->iColumn = (ynVar)(++pParse->nVar);
593      if( pParse->nVarExpr>=pParse->nVarExprAlloc-1 ){
594        pParse->nVarExprAlloc += pParse->nVarExprAlloc + 10;
595        pParse->apVarExpr =
596            sqlite3DbReallocOrFree(
597              db,
598              pParse->apVarExpr,
599              pParse->nVarExprAlloc*sizeof(pParse->apVarExpr[0])
600            );
601      }
602      if( !db->mallocFailed ){
603        assert( pParse->apVarExpr!=0 );
604        pParse->apVarExpr[pParse->nVarExpr++] = pExpr;
605      }
606    }
607  }
608  if( !pParse->nErr && pParse->nVar>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
609    sqlite3ErrorMsg(pParse, "too many SQL variables");
610  }
611}
612
613/*
614** Recursively delete an expression tree.
615*/
616void sqlite3ExprDelete(sqlite3 *db, Expr *p){
617  if( p==0 ) return;
618  /* Sanity check: Assert that the IntValue is non-negative if it exists */
619  assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 );
620  if( !ExprHasAnyProperty(p, EP_TokenOnly) ){
621    sqlite3ExprDelete(db, p->pLeft);
622    sqlite3ExprDelete(db, p->pRight);
623    if( !ExprHasProperty(p, EP_Reduced) && (p->flags2 & EP2_MallocedToken)!=0 ){
624      sqlite3DbFree(db, p->u.zToken);
625    }
626    if( ExprHasProperty(p, EP_xIsSelect) ){
627      sqlite3SelectDelete(db, p->x.pSelect);
628    }else{
629      sqlite3ExprListDelete(db, p->x.pList);
630    }
631  }
632  if( !ExprHasProperty(p, EP_Static) ){
633    sqlite3DbFree(db, p);
634  }
635}
636
637/*
638** Return the number of bytes allocated for the expression structure
639** passed as the first argument. This is always one of EXPR_FULLSIZE,
640** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE.
641*/
642static int exprStructSize(Expr *p){
643  if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE;
644  if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE;
645  return EXPR_FULLSIZE;
646}
647
648/*
649** The dupedExpr*Size() routines each return the number of bytes required
650** to store a copy of an expression or expression tree.  They differ in
651** how much of the tree is measured.
652**
653**     dupedExprStructSize()     Size of only the Expr structure
654**     dupedExprNodeSize()       Size of Expr + space for token
655**     dupedExprSize()           Expr + token + subtree components
656**
657***************************************************************************
658**
659** The dupedExprStructSize() function returns two values OR-ed together:
660** (1) the space required for a copy of the Expr structure only and
661** (2) the EP_xxx flags that indicate what the structure size should be.
662** The return values is always one of:
663**
664**      EXPR_FULLSIZE
665**      EXPR_REDUCEDSIZE   | EP_Reduced
666**      EXPR_TOKENONLYSIZE | EP_TokenOnly
667**
668** The size of the structure can be found by masking the return value
669** of this routine with 0xfff.  The flags can be found by masking the
670** return value with EP_Reduced|EP_TokenOnly.
671**
672** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size
673** (unreduced) Expr objects as they or originally constructed by the parser.
674** During expression analysis, extra information is computed and moved into
675** later parts of teh Expr object and that extra information might get chopped
676** off if the expression is reduced.  Note also that it does not work to
677** make a EXPRDUP_REDUCE copy of a reduced expression.  It is only legal
678** to reduce a pristine expression tree from the parser.  The implementation
679** of dupedExprStructSize() contain multiple assert() statements that attempt
680** to enforce this constraint.
681*/
682static int dupedExprStructSize(Expr *p, int flags){
683  int nSize;
684  assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */
685  if( 0==(flags&EXPRDUP_REDUCE) ){
686    nSize = EXPR_FULLSIZE;
687  }else{
688    assert( !ExprHasAnyProperty(p, EP_TokenOnly|EP_Reduced) );
689    assert( !ExprHasProperty(p, EP_FromJoin) );
690    assert( (p->flags2 & EP2_MallocedToken)==0 );
691    assert( (p->flags2 & EP2_Irreducible)==0 );
692    if( p->pLeft || p->pRight || p->pColl || p->x.pList ){
693      nSize = EXPR_REDUCEDSIZE | EP_Reduced;
694    }else{
695      nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly;
696    }
697  }
698  return nSize;
699}
700
701/*
702** This function returns the space in bytes required to store the copy
703** of the Expr structure and a copy of the Expr.u.zToken string (if that
704** string is defined.)
705*/
706static int dupedExprNodeSize(Expr *p, int flags){
707  int nByte = dupedExprStructSize(p, flags) & 0xfff;
708  if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
709    nByte += sqlite3Strlen30(p->u.zToken)+1;
710  }
711  return ROUND8(nByte);
712}
713
714/*
715** Return the number of bytes required to create a duplicate of the
716** expression passed as the first argument. The second argument is a
717** mask containing EXPRDUP_XXX flags.
718**
719** The value returned includes space to create a copy of the Expr struct
720** itself and the buffer referred to by Expr.u.zToken, if any.
721**
722** If the EXPRDUP_REDUCE flag is set, then the return value includes
723** space to duplicate all Expr nodes in the tree formed by Expr.pLeft
724** and Expr.pRight variables (but not for any structures pointed to or
725** descended from the Expr.x.pList or Expr.x.pSelect variables).
726*/
727static int dupedExprSize(Expr *p, int flags){
728  int nByte = 0;
729  if( p ){
730    nByte = dupedExprNodeSize(p, flags);
731    if( flags&EXPRDUP_REDUCE ){
732      nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags);
733    }
734  }
735  return nByte;
736}
737
738/*
739** This function is similar to sqlite3ExprDup(), except that if pzBuffer
740** is not NULL then *pzBuffer is assumed to point to a buffer large enough
741** to store the copy of expression p, the copies of p->u.zToken
742** (if applicable), and the copies of the p->pLeft and p->pRight expressions,
743** if any. Before returning, *pzBuffer is set to the first byte passed the
744** portion of the buffer copied into by this function.
745*/
746static Expr *exprDup(sqlite3 *db, Expr *p, int flags, u8 **pzBuffer){
747  Expr *pNew = 0;                      /* Value to return */
748  if( p ){
749    const int isReduced = (flags&EXPRDUP_REDUCE);
750    u8 *zAlloc;
751    u32 staticFlag = 0;
752
753    assert( pzBuffer==0 || isReduced );
754
755    /* Figure out where to write the new Expr structure. */
756    if( pzBuffer ){
757      zAlloc = *pzBuffer;
758      staticFlag = EP_Static;
759    }else{
760      zAlloc = sqlite3DbMallocRaw(db, dupedExprSize(p, flags));
761    }
762    pNew = (Expr *)zAlloc;
763
764    if( pNew ){
765      /* Set nNewSize to the size allocated for the structure pointed to
766      ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or
767      ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed
768      ** by the copy of the p->u.zToken string (if any).
769      */
770      const unsigned nStructSize = dupedExprStructSize(p, flags);
771      const int nNewSize = nStructSize & 0xfff;
772      int nToken;
773      if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
774        nToken = sqlite3Strlen30(p->u.zToken) + 1;
775      }else{
776        nToken = 0;
777      }
778      if( isReduced ){
779        assert( ExprHasProperty(p, EP_Reduced)==0 );
780        memcpy(zAlloc, p, nNewSize);
781      }else{
782        int nSize = exprStructSize(p);
783        memcpy(zAlloc, p, nSize);
784        if( EXPR_FULLSIZE>nSize ){
785          memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize);
786        }
787      }
788
789      /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */
790      pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static);
791      pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly);
792      pNew->flags |= staticFlag;
793
794      /* Copy the p->u.zToken string, if any. */
795      if( nToken ){
796        char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize];
797        memcpy(zToken, p->u.zToken, nToken);
798      }
799
800      if( 0==((p->flags|pNew->flags) & EP_TokenOnly) ){
801        /* Fill in the pNew->x.pSelect or pNew->x.pList member. */
802        if( ExprHasProperty(p, EP_xIsSelect) ){
803          pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, isReduced);
804        }else{
805          pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, isReduced);
806        }
807      }
808
809      /* Fill in pNew->pLeft and pNew->pRight. */
810      if( ExprHasAnyProperty(pNew, EP_Reduced|EP_TokenOnly) ){
811        zAlloc += dupedExprNodeSize(p, flags);
812        if( ExprHasProperty(pNew, EP_Reduced) ){
813          pNew->pLeft = exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc);
814          pNew->pRight = exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc);
815        }
816        if( pzBuffer ){
817          *pzBuffer = zAlloc;
818        }
819      }else{
820        pNew->flags2 = 0;
821        if( !ExprHasAnyProperty(p, EP_TokenOnly) ){
822          pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0);
823          pNew->pRight = sqlite3ExprDup(db, p->pRight, 0);
824        }
825      }
826
827    }
828  }
829  return pNew;
830}
831
832/*
833** The following group of routines make deep copies of expressions,
834** expression lists, ID lists, and select statements.  The copies can
835** be deleted (by being passed to their respective ...Delete() routines)
836** without effecting the originals.
837**
838** The expression list, ID, and source lists return by sqlite3ExprListDup(),
839** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded
840** by subsequent calls to sqlite*ListAppend() routines.
841**
842** Any tables that the SrcList might point to are not duplicated.
843**
844** The flags parameter contains a combination of the EXPRDUP_XXX flags.
845** If the EXPRDUP_REDUCE flag is set, then the structure returned is a
846** truncated version of the usual Expr structure that will be stored as
847** part of the in-memory representation of the database schema.
848*/
849Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){
850  return exprDup(db, p, flags, 0);
851}
852ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){
853  ExprList *pNew;
854  struct ExprList_item *pItem, *pOldItem;
855  int i;
856  if( p==0 ) return 0;
857  pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) );
858  if( pNew==0 ) return 0;
859  pNew->iECursor = 0;
860  pNew->nExpr = pNew->nAlloc = p->nExpr;
861  pNew->a = pItem = sqlite3DbMallocRaw(db,  p->nExpr*sizeof(p->a[0]) );
862  if( pItem==0 ){
863    sqlite3DbFree(db, pNew);
864    return 0;
865  }
866  pOldItem = p->a;
867  for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){
868    Expr *pOldExpr = pOldItem->pExpr;
869    pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags);
870    pItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
871    pItem->zSpan = sqlite3DbStrDup(db, pOldItem->zSpan);
872    pItem->sortOrder = pOldItem->sortOrder;
873    pItem->done = 0;
874    pItem->iCol = pOldItem->iCol;
875    pItem->iAlias = pOldItem->iAlias;
876  }
877  return pNew;
878}
879
880/*
881** If cursors, triggers, views and subqueries are all omitted from
882** the build, then none of the following routines, except for
883** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes
884** called with a NULL argument.
885*/
886#if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \
887 || !defined(SQLITE_OMIT_SUBQUERY)
888SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){
889  SrcList *pNew;
890  int i;
891  int nByte;
892  if( p==0 ) return 0;
893  nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0);
894  pNew = sqlite3DbMallocRaw(db, nByte );
895  if( pNew==0 ) return 0;
896  pNew->nSrc = pNew->nAlloc = p->nSrc;
897  for(i=0; i<p->nSrc; i++){
898    struct SrcList_item *pNewItem = &pNew->a[i];
899    struct SrcList_item *pOldItem = &p->a[i];
900    Table *pTab;
901    pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase);
902    pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
903    pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias);
904    pNewItem->jointype = pOldItem->jointype;
905    pNewItem->iCursor = pOldItem->iCursor;
906    pNewItem->isPopulated = pOldItem->isPopulated;
907    pNewItem->zIndex = sqlite3DbStrDup(db, pOldItem->zIndex);
908    pNewItem->notIndexed = pOldItem->notIndexed;
909    pNewItem->pIndex = pOldItem->pIndex;
910    pTab = pNewItem->pTab = pOldItem->pTab;
911    if( pTab ){
912      pTab->nRef++;
913    }
914    pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags);
915    pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags);
916    pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing);
917    pNewItem->colUsed = pOldItem->colUsed;
918  }
919  return pNew;
920}
921IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){
922  IdList *pNew;
923  int i;
924  if( p==0 ) return 0;
925  pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) );
926  if( pNew==0 ) return 0;
927  pNew->nId = pNew->nAlloc = p->nId;
928  pNew->a = sqlite3DbMallocRaw(db, p->nId*sizeof(p->a[0]) );
929  if( pNew->a==0 ){
930    sqlite3DbFree(db, pNew);
931    return 0;
932  }
933  for(i=0; i<p->nId; i++){
934    struct IdList_item *pNewItem = &pNew->a[i];
935    struct IdList_item *pOldItem = &p->a[i];
936    pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
937    pNewItem->idx = pOldItem->idx;
938  }
939  return pNew;
940}
941Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){
942  Select *pNew;
943  if( p==0 ) return 0;
944  pNew = sqlite3DbMallocRaw(db, sizeof(*p) );
945  if( pNew==0 ) return 0;
946  pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags);
947  pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags);
948  pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags);
949  pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags);
950  pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags);
951  pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags);
952  pNew->op = p->op;
953  pNew->pPrior = sqlite3SelectDup(db, p->pPrior, flags);
954  pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags);
955  pNew->pOffset = sqlite3ExprDup(db, p->pOffset, flags);
956  pNew->iLimit = 0;
957  pNew->iOffset = 0;
958  pNew->selFlags = p->selFlags & ~SF_UsesEphemeral;
959  pNew->pRightmost = 0;
960  pNew->addrOpenEphm[0] = -1;
961  pNew->addrOpenEphm[1] = -1;
962  pNew->addrOpenEphm[2] = -1;
963  return pNew;
964}
965#else
966Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){
967  assert( p==0 );
968  return 0;
969}
970#endif
971
972
973/*
974** Add a new element to the end of an expression list.  If pList is
975** initially NULL, then create a new expression list.
976**
977** If a memory allocation error occurs, the entire list is freed and
978** NULL is returned.  If non-NULL is returned, then it is guaranteed
979** that the new entry was successfully appended.
980*/
981ExprList *sqlite3ExprListAppend(
982  Parse *pParse,          /* Parsing context */
983  ExprList *pList,        /* List to which to append. Might be NULL */
984  Expr *pExpr             /* Expression to be appended. Might be NULL */
985){
986  sqlite3 *db = pParse->db;
987  if( pList==0 ){
988    pList = sqlite3DbMallocZero(db, sizeof(ExprList) );
989    if( pList==0 ){
990      goto no_mem;
991    }
992    assert( pList->nAlloc==0 );
993  }
994  if( pList->nAlloc<=pList->nExpr ){
995    struct ExprList_item *a;
996    int n = pList->nAlloc*2 + 4;
997    a = sqlite3DbRealloc(db, pList->a, n*sizeof(pList->a[0]));
998    if( a==0 ){
999      goto no_mem;
1000    }
1001    pList->a = a;
1002    pList->nAlloc = sqlite3DbMallocSize(db, a)/sizeof(a[0]);
1003  }
1004  assert( pList->a!=0 );
1005  if( 1 ){
1006    struct ExprList_item *pItem = &pList->a[pList->nExpr++];
1007    memset(pItem, 0, sizeof(*pItem));
1008    pItem->pExpr = pExpr;
1009  }
1010  return pList;
1011
1012no_mem:
1013  /* Avoid leaking memory if malloc has failed. */
1014  sqlite3ExprDelete(db, pExpr);
1015  sqlite3ExprListDelete(db, pList);
1016  return 0;
1017}
1018
1019/*
1020** Set the ExprList.a[].zName element of the most recently added item
1021** on the expression list.
1022**
1023** pList might be NULL following an OOM error.  But pName should never be
1024** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
1025** is set.
1026*/
1027void sqlite3ExprListSetName(
1028  Parse *pParse,          /* Parsing context */
1029  ExprList *pList,        /* List to which to add the span. */
1030  Token *pName,           /* Name to be added */
1031  int dequote             /* True to cause the name to be dequoted */
1032){
1033  assert( pList!=0 || pParse->db->mallocFailed!=0 );
1034  if( pList ){
1035    struct ExprList_item *pItem;
1036    assert( pList->nExpr>0 );
1037    pItem = &pList->a[pList->nExpr-1];
1038    assert( pItem->zName==0 );
1039    pItem->zName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n);
1040    if( dequote && pItem->zName ) sqlite3Dequote(pItem->zName);
1041  }
1042}
1043
1044/*
1045** Set the ExprList.a[].zSpan element of the most recently added item
1046** on the expression list.
1047**
1048** pList might be NULL following an OOM error.  But pSpan should never be
1049** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
1050** is set.
1051*/
1052void sqlite3ExprListSetSpan(
1053  Parse *pParse,          /* Parsing context */
1054  ExprList *pList,        /* List to which to add the span. */
1055  ExprSpan *pSpan         /* The span to be added */
1056){
1057  sqlite3 *db = pParse->db;
1058  assert( pList!=0 || db->mallocFailed!=0 );
1059  if( pList ){
1060    struct ExprList_item *pItem = &pList->a[pList->nExpr-1];
1061    assert( pList->nExpr>0 );
1062    assert( db->mallocFailed || pItem->pExpr==pSpan->pExpr );
1063    sqlite3DbFree(db, pItem->zSpan);
1064    pItem->zSpan = sqlite3DbStrNDup(db, (char*)pSpan->zStart,
1065                                    (int)(pSpan->zEnd - pSpan->zStart));
1066  }
1067}
1068
1069/*
1070** If the expression list pEList contains more than iLimit elements,
1071** leave an error message in pParse.
1072*/
1073void sqlite3ExprListCheckLength(
1074  Parse *pParse,
1075  ExprList *pEList,
1076  const char *zObject
1077){
1078  int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN];
1079  testcase( pEList && pEList->nExpr==mx );
1080  testcase( pEList && pEList->nExpr==mx+1 );
1081  if( pEList && pEList->nExpr>mx ){
1082    sqlite3ErrorMsg(pParse, "too many columns in %s", zObject);
1083  }
1084}
1085
1086/*
1087** Delete an entire expression list.
1088*/
1089void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){
1090  int i;
1091  struct ExprList_item *pItem;
1092  if( pList==0 ) return;
1093  assert( pList->a!=0 || (pList->nExpr==0 && pList->nAlloc==0) );
1094  assert( pList->nExpr<=pList->nAlloc );
1095  for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
1096    sqlite3ExprDelete(db, pItem->pExpr);
1097    sqlite3DbFree(db, pItem->zName);
1098    sqlite3DbFree(db, pItem->zSpan);
1099  }
1100  sqlite3DbFree(db, pList->a);
1101  sqlite3DbFree(db, pList);
1102}
1103
1104/*
1105** These routines are Walker callbacks.  Walker.u.pi is a pointer
1106** to an integer.  These routines are checking an expression to see
1107** if it is a constant.  Set *Walker.u.pi to 0 if the expression is
1108** not constant.
1109**
1110** These callback routines are used to implement the following:
1111**
1112**     sqlite3ExprIsConstant()
1113**     sqlite3ExprIsConstantNotJoin()
1114**     sqlite3ExprIsConstantOrFunction()
1115**
1116*/
1117static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){
1118
1119  /* If pWalker->u.i is 3 then any term of the expression that comes from
1120  ** the ON or USING clauses of a join disqualifies the expression
1121  ** from being considered constant. */
1122  if( pWalker->u.i==3 && ExprHasAnyProperty(pExpr, EP_FromJoin) ){
1123    pWalker->u.i = 0;
1124    return WRC_Abort;
1125  }
1126
1127  switch( pExpr->op ){
1128    /* Consider functions to be constant if all their arguments are constant
1129    ** and pWalker->u.i==2 */
1130    case TK_FUNCTION:
1131      if( pWalker->u.i==2 ) return 0;
1132      /* Fall through */
1133    case TK_ID:
1134    case TK_COLUMN:
1135    case TK_AGG_FUNCTION:
1136    case TK_AGG_COLUMN:
1137      testcase( pExpr->op==TK_ID );
1138      testcase( pExpr->op==TK_COLUMN );
1139      testcase( pExpr->op==TK_AGG_FUNCTION );
1140      testcase( pExpr->op==TK_AGG_COLUMN );
1141      pWalker->u.i = 0;
1142      return WRC_Abort;
1143    default:
1144      testcase( pExpr->op==TK_SELECT ); /* selectNodeIsConstant will disallow */
1145      testcase( pExpr->op==TK_EXISTS ); /* selectNodeIsConstant will disallow */
1146      return WRC_Continue;
1147  }
1148}
1149static int selectNodeIsConstant(Walker *pWalker, Select *NotUsed){
1150  UNUSED_PARAMETER(NotUsed);
1151  pWalker->u.i = 0;
1152  return WRC_Abort;
1153}
1154static int exprIsConst(Expr *p, int initFlag){
1155  Walker w;
1156  w.u.i = initFlag;
1157  w.xExprCallback = exprNodeIsConstant;
1158  w.xSelectCallback = selectNodeIsConstant;
1159  sqlite3WalkExpr(&w, p);
1160  return w.u.i;
1161}
1162
1163/*
1164** Walk an expression tree.  Return 1 if the expression is constant
1165** and 0 if it involves variables or function calls.
1166**
1167** For the purposes of this function, a double-quoted string (ex: "abc")
1168** is considered a variable but a single-quoted string (ex: 'abc') is
1169** a constant.
1170*/
1171int sqlite3ExprIsConstant(Expr *p){
1172  return exprIsConst(p, 1);
1173}
1174
1175/*
1176** Walk an expression tree.  Return 1 if the expression is constant
1177** that does no originate from the ON or USING clauses of a join.
1178** Return 0 if it involves variables or function calls or terms from
1179** an ON or USING clause.
1180*/
1181int sqlite3ExprIsConstantNotJoin(Expr *p){
1182  return exprIsConst(p, 3);
1183}
1184
1185/*
1186** Walk an expression tree.  Return 1 if the expression is constant
1187** or a function call with constant arguments.  Return and 0 if there
1188** are any variables.
1189**
1190** For the purposes of this function, a double-quoted string (ex: "abc")
1191** is considered a variable but a single-quoted string (ex: 'abc') is
1192** a constant.
1193*/
1194int sqlite3ExprIsConstantOrFunction(Expr *p){
1195  return exprIsConst(p, 2);
1196}
1197
1198/*
1199** If the expression p codes a constant integer that is small enough
1200** to fit in a 32-bit integer, return 1 and put the value of the integer
1201** in *pValue.  If the expression is not an integer or if it is too big
1202** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged.
1203*/
1204int sqlite3ExprIsInteger(Expr *p, int *pValue){
1205  int rc = 0;
1206
1207  /* If an expression is an integer literal that fits in a signed 32-bit
1208  ** integer, then the EP_IntValue flag will have already been set */
1209  assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0
1210           || sqlite3GetInt32(p->u.zToken, &rc)==0 );
1211
1212  if( p->flags & EP_IntValue ){
1213    *pValue = p->u.iValue;
1214    return 1;
1215  }
1216  switch( p->op ){
1217    case TK_UPLUS: {
1218      rc = sqlite3ExprIsInteger(p->pLeft, pValue);
1219      break;
1220    }
1221    case TK_UMINUS: {
1222      int v;
1223      if( sqlite3ExprIsInteger(p->pLeft, &v) ){
1224        *pValue = -v;
1225        rc = 1;
1226      }
1227      break;
1228    }
1229    default: break;
1230  }
1231  return rc;
1232}
1233
1234/*
1235** Return FALSE if there is no chance that the expression can be NULL.
1236**
1237** If the expression might be NULL or if the expression is too complex
1238** to tell return TRUE.
1239**
1240** This routine is used as an optimization, to skip OP_IsNull opcodes
1241** when we know that a value cannot be NULL.  Hence, a false positive
1242** (returning TRUE when in fact the expression can never be NULL) might
1243** be a small performance hit but is otherwise harmless.  On the other
1244** hand, a false negative (returning FALSE when the result could be NULL)
1245** will likely result in an incorrect answer.  So when in doubt, return
1246** TRUE.
1247*/
1248int sqlite3ExprCanBeNull(const Expr *p){
1249  u8 op;
1250  while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; }
1251  op = p->op;
1252  if( op==TK_REGISTER ) op = p->op2;
1253  switch( op ){
1254    case TK_INTEGER:
1255    case TK_STRING:
1256    case TK_FLOAT:
1257    case TK_BLOB:
1258      return 0;
1259    default:
1260      return 1;
1261  }
1262}
1263
1264/*
1265** Generate an OP_IsNull instruction that tests register iReg and jumps
1266** to location iDest if the value in iReg is NULL.  The value in iReg
1267** was computed by pExpr.  If we can look at pExpr at compile-time and
1268** determine that it can never generate a NULL, then the OP_IsNull operation
1269** can be omitted.
1270*/
1271void sqlite3ExprCodeIsNullJump(
1272  Vdbe *v,            /* The VDBE under construction */
1273  const Expr *pExpr,  /* Only generate OP_IsNull if this expr can be NULL */
1274  int iReg,           /* Test the value in this register for NULL */
1275  int iDest           /* Jump here if the value is null */
1276){
1277  if( sqlite3ExprCanBeNull(pExpr) ){
1278    sqlite3VdbeAddOp2(v, OP_IsNull, iReg, iDest);
1279  }
1280}
1281
1282/*
1283** Return TRUE if the given expression is a constant which would be
1284** unchanged by OP_Affinity with the affinity given in the second
1285** argument.
1286**
1287** This routine is used to determine if the OP_Affinity operation
1288** can be omitted.  When in doubt return FALSE.  A false negative
1289** is harmless.  A false positive, however, can result in the wrong
1290** answer.
1291*/
1292int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){
1293  u8 op;
1294  if( aff==SQLITE_AFF_NONE ) return 1;
1295  while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; }
1296  op = p->op;
1297  if( op==TK_REGISTER ) op = p->op2;
1298  switch( op ){
1299    case TK_INTEGER: {
1300      return aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC;
1301    }
1302    case TK_FLOAT: {
1303      return aff==SQLITE_AFF_REAL || aff==SQLITE_AFF_NUMERIC;
1304    }
1305    case TK_STRING: {
1306      return aff==SQLITE_AFF_TEXT;
1307    }
1308    case TK_BLOB: {
1309      return 1;
1310    }
1311    case TK_COLUMN: {
1312      assert( p->iTable>=0 );  /* p cannot be part of a CHECK constraint */
1313      return p->iColumn<0
1314          && (aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC);
1315    }
1316    default: {
1317      return 0;
1318    }
1319  }
1320}
1321
1322/*
1323** Return TRUE if the given string is a row-id column name.
1324*/
1325int sqlite3IsRowid(const char *z){
1326  if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1;
1327  if( sqlite3StrICmp(z, "ROWID")==0 ) return 1;
1328  if( sqlite3StrICmp(z, "OID")==0 ) return 1;
1329  return 0;
1330}
1331
1332/*
1333** Return true if we are able to the IN operator optimization on a
1334** query of the form
1335**
1336**       x IN (SELECT ...)
1337**
1338** Where the SELECT... clause is as specified by the parameter to this
1339** routine.
1340**
1341** The Select object passed in has already been preprocessed and no
1342** errors have been found.
1343*/
1344#ifndef SQLITE_OMIT_SUBQUERY
1345static int isCandidateForInOpt(Select *p){
1346  SrcList *pSrc;
1347  ExprList *pEList;
1348  Table *pTab;
1349  if( p==0 ) return 0;                   /* right-hand side of IN is SELECT */
1350  if( p->pPrior ) return 0;              /* Not a compound SELECT */
1351  if( p->selFlags & (SF_Distinct|SF_Aggregate) ){
1352    testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
1353    testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
1354    return 0; /* No DISTINCT keyword and no aggregate functions */
1355  }
1356  assert( p->pGroupBy==0 );              /* Has no GROUP BY clause */
1357  if( p->pLimit ) return 0;              /* Has no LIMIT clause */
1358  assert( p->pOffset==0 );               /* No LIMIT means no OFFSET */
1359  if( p->pWhere ) return 0;              /* Has no WHERE clause */
1360  pSrc = p->pSrc;
1361  assert( pSrc!=0 );
1362  if( pSrc->nSrc!=1 ) return 0;          /* Single term in FROM clause */
1363  if( pSrc->a[0].pSelect ) return 0;     /* FROM is not a subquery or view */
1364  pTab = pSrc->a[0].pTab;
1365  if( NEVER(pTab==0) ) return 0;
1366  assert( pTab->pSelect==0 );            /* FROM clause is not a view */
1367  if( IsVirtual(pTab) ) return 0;        /* FROM clause not a virtual table */
1368  pEList = p->pEList;
1369  if( pEList->nExpr!=1 ) return 0;       /* One column in the result set */
1370  if( pEList->a[0].pExpr->op!=TK_COLUMN ) return 0; /* Result is a column */
1371  return 1;
1372}
1373#endif /* SQLITE_OMIT_SUBQUERY */
1374
1375/*
1376** This function is used by the implementation of the IN (...) operator.
1377** It's job is to find or create a b-tree structure that may be used
1378** either to test for membership of the (...) set or to iterate through
1379** its members, skipping duplicates.
1380**
1381** The index of the cursor opened on the b-tree (database table, database index
1382** or ephermal table) is stored in pX->iTable before this function returns.
1383** The returned value of this function indicates the b-tree type, as follows:
1384**
1385**   IN_INDEX_ROWID - The cursor was opened on a database table.
1386**   IN_INDEX_INDEX - The cursor was opened on a database index.
1387**   IN_INDEX_EPH -   The cursor was opened on a specially created and
1388**                    populated epheremal table.
1389**
1390** An existing b-tree may only be used if the SELECT is of the simple
1391** form:
1392**
1393**     SELECT <column> FROM <table>
1394**
1395** If the prNotFound parameter is 0, then the b-tree will be used to iterate
1396** through the set members, skipping any duplicates. In this case an
1397** epheremal table must be used unless the selected <column> is guaranteed
1398** to be unique - either because it is an INTEGER PRIMARY KEY or it
1399** has a UNIQUE constraint or UNIQUE index.
1400**
1401** If the prNotFound parameter is not 0, then the b-tree will be used
1402** for fast set membership tests. In this case an epheremal table must
1403** be used unless <column> is an INTEGER PRIMARY KEY or an index can
1404** be found with <column> as its left-most column.
1405**
1406** When the b-tree is being used for membership tests, the calling function
1407** needs to know whether or not the structure contains an SQL NULL
1408** value in order to correctly evaluate expressions like "X IN (Y, Z)".
1409** If there is any chance that the (...) might contain a NULL value at
1410** runtime, then a register is allocated and the register number written
1411** to *prNotFound. If there is no chance that the (...) contains a
1412** NULL value, then *prNotFound is left unchanged.
1413**
1414** If a register is allocated and its location stored in *prNotFound, then
1415** its initial value is NULL.  If the (...) does not remain constant
1416** for the duration of the query (i.e. the SELECT within the (...)
1417** is a correlated subquery) then the value of the allocated register is
1418** reset to NULL each time the subquery is rerun. This allows the
1419** caller to use vdbe code equivalent to the following:
1420**
1421**   if( register==NULL ){
1422**     has_null = <test if data structure contains null>
1423**     register = 1
1424**   }
1425**
1426** in order to avoid running the <test if data structure contains null>
1427** test more often than is necessary.
1428*/
1429#ifndef SQLITE_OMIT_SUBQUERY
1430int sqlite3FindInIndex(Parse *pParse, Expr *pX, int *prNotFound){
1431  Select *p;                            /* SELECT to the right of IN operator */
1432  int eType = 0;                        /* Type of RHS table. IN_INDEX_* */
1433  int iTab = pParse->nTab++;            /* Cursor of the RHS table */
1434  int mustBeUnique = (prNotFound==0);   /* True if RHS must be unique */
1435
1436  assert( pX->op==TK_IN );
1437
1438  /* Check to see if an existing table or index can be used to
1439  ** satisfy the query.  This is preferable to generating a new
1440  ** ephemeral table.
1441  */
1442  p = (ExprHasProperty(pX, EP_xIsSelect) ? pX->x.pSelect : 0);
1443  if( ALWAYS(pParse->nErr==0) && isCandidateForInOpt(p) ){
1444    sqlite3 *db = pParse->db;              /* Database connection */
1445    Expr *pExpr = p->pEList->a[0].pExpr;   /* Expression <column> */
1446    int iCol = pExpr->iColumn;             /* Index of column <column> */
1447    Vdbe *v = sqlite3GetVdbe(pParse);      /* Virtual machine being coded */
1448    Table *pTab = p->pSrc->a[0].pTab;      /* Table <table>. */
1449    int iDb;                               /* Database idx for pTab */
1450
1451    /* Code an OP_VerifyCookie and OP_TableLock for <table>. */
1452    iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
1453    sqlite3CodeVerifySchema(pParse, iDb);
1454    sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
1455
1456    /* This function is only called from two places. In both cases the vdbe
1457    ** has already been allocated. So assume sqlite3GetVdbe() is always
1458    ** successful here.
1459    */
1460    assert(v);
1461    if( iCol<0 ){
1462      int iMem = ++pParse->nMem;
1463      int iAddr;
1464
1465      iAddr = sqlite3VdbeAddOp1(v, OP_If, iMem);
1466      sqlite3VdbeAddOp2(v, OP_Integer, 1, iMem);
1467
1468      sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
1469      eType = IN_INDEX_ROWID;
1470
1471      sqlite3VdbeJumpHere(v, iAddr);
1472    }else{
1473      Index *pIdx;                         /* Iterator variable */
1474
1475      /* The collation sequence used by the comparison. If an index is to
1476      ** be used in place of a temp-table, it must be ordered according
1477      ** to this collation sequence.  */
1478      CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pExpr);
1479
1480      /* Check that the affinity that will be used to perform the
1481      ** comparison is the same as the affinity of the column. If
1482      ** it is not, it is not possible to use any index.
1483      */
1484      char aff = comparisonAffinity(pX);
1485      int affinity_ok = (pTab->aCol[iCol].affinity==aff||aff==SQLITE_AFF_NONE);
1486
1487      for(pIdx=pTab->pIndex; pIdx && eType==0 && affinity_ok; pIdx=pIdx->pNext){
1488        if( (pIdx->aiColumn[0]==iCol)
1489         && sqlite3FindCollSeq(db, ENC(db), pIdx->azColl[0], 0)==pReq
1490         && (!mustBeUnique || (pIdx->nColumn==1 && pIdx->onError!=OE_None))
1491        ){
1492          int iMem = ++pParse->nMem;
1493          int iAddr;
1494          char *pKey;
1495
1496          pKey = (char *)sqlite3IndexKeyinfo(pParse, pIdx);
1497          iAddr = sqlite3VdbeAddOp1(v, OP_If, iMem);
1498          sqlite3VdbeAddOp2(v, OP_Integer, 1, iMem);
1499
1500          sqlite3VdbeAddOp4(v, OP_OpenRead, iTab, pIdx->tnum, iDb,
1501                               pKey,P4_KEYINFO_HANDOFF);
1502          VdbeComment((v, "%s", pIdx->zName));
1503          eType = IN_INDEX_INDEX;
1504
1505          sqlite3VdbeJumpHere(v, iAddr);
1506          if( prNotFound && !pTab->aCol[iCol].notNull ){
1507            *prNotFound = ++pParse->nMem;
1508          }
1509        }
1510      }
1511    }
1512  }
1513
1514  if( eType==0 ){
1515    /* Could not found an existing table or index to use as the RHS b-tree.
1516    ** We will have to generate an ephemeral table to do the job.
1517    */
1518    double savedNQueryLoop = pParse->nQueryLoop;
1519    int rMayHaveNull = 0;
1520    eType = IN_INDEX_EPH;
1521    if( prNotFound ){
1522      *prNotFound = rMayHaveNull = ++pParse->nMem;
1523    }else{
1524      testcase( pParse->nQueryLoop>(double)1 );
1525      pParse->nQueryLoop = (double)1;
1526      if( pX->pLeft->iColumn<0 && !ExprHasAnyProperty(pX, EP_xIsSelect) ){
1527        eType = IN_INDEX_ROWID;
1528      }
1529    }
1530    sqlite3CodeSubselect(pParse, pX, rMayHaveNull, eType==IN_INDEX_ROWID);
1531    pParse->nQueryLoop = savedNQueryLoop;
1532  }else{
1533    pX->iTable = iTab;
1534  }
1535  return eType;
1536}
1537#endif
1538
1539/*
1540** Generate code for scalar subqueries used as a subquery expression, EXISTS,
1541** or IN operators.  Examples:
1542**
1543**     (SELECT a FROM b)          -- subquery
1544**     EXISTS (SELECT a FROM b)   -- EXISTS subquery
1545**     x IN (4,5,11)              -- IN operator with list on right-hand side
1546**     x IN (SELECT a FROM b)     -- IN operator with subquery on the right
1547**
1548** The pExpr parameter describes the expression that contains the IN
1549** operator or subquery.
1550**
1551** If parameter isRowid is non-zero, then expression pExpr is guaranteed
1552** to be of the form "<rowid> IN (?, ?, ?)", where <rowid> is a reference
1553** to some integer key column of a table B-Tree. In this case, use an
1554** intkey B-Tree to store the set of IN(...) values instead of the usual
1555** (slower) variable length keys B-Tree.
1556**
1557** If rMayHaveNull is non-zero, that means that the operation is an IN
1558** (not a SELECT or EXISTS) and that the RHS might contains NULLs.
1559** Furthermore, the IN is in a WHERE clause and that we really want
1560** to iterate over the RHS of the IN operator in order to quickly locate
1561** all corresponding LHS elements.  All this routine does is initialize
1562** the register given by rMayHaveNull to NULL.  Calling routines will take
1563** care of changing this register value to non-NULL if the RHS is NULL-free.
1564**
1565** If rMayHaveNull is zero, that means that the subquery is being used
1566** for membership testing only.  There is no need to initialize any
1567** registers to indicate the presense or absence of NULLs on the RHS.
1568**
1569** For a SELECT or EXISTS operator, return the register that holds the
1570** result.  For IN operators or if an error occurs, the return value is 0.
1571*/
1572#ifndef SQLITE_OMIT_SUBQUERY
1573int sqlite3CodeSubselect(
1574  Parse *pParse,          /* Parsing context */
1575  Expr *pExpr,            /* The IN, SELECT, or EXISTS operator */
1576  int rMayHaveNull,       /* Register that records whether NULLs exist in RHS */
1577  int isRowid             /* If true, LHS of IN operator is a rowid */
1578){
1579  int testAddr = 0;                       /* One-time test address */
1580  int rReg = 0;                           /* Register storing resulting */
1581  Vdbe *v = sqlite3GetVdbe(pParse);
1582  if( NEVER(v==0) ) return 0;
1583  sqlite3ExprCachePush(pParse);
1584
1585  /* This code must be run in its entirety every time it is encountered
1586  ** if any of the following is true:
1587  **
1588  **    *  The right-hand side is a correlated subquery
1589  **    *  The right-hand side is an expression list containing variables
1590  **    *  We are inside a trigger
1591  **
1592  ** If all of the above are false, then we can run this code just once
1593  ** save the results, and reuse the same result on subsequent invocations.
1594  */
1595  if( !ExprHasAnyProperty(pExpr, EP_VarSelect) && !pParse->pTriggerTab ){
1596    int mem = ++pParse->nMem;
1597    sqlite3VdbeAddOp1(v, OP_If, mem);
1598    testAddr = sqlite3VdbeAddOp2(v, OP_Integer, 1, mem);
1599    assert( testAddr>0 || pParse->db->mallocFailed );
1600  }
1601
1602#ifndef SQLITE_OMIT_EXPLAIN
1603  if( pParse->explain==2 ){
1604    char *zMsg = sqlite3MPrintf(
1605        pParse->db, "EXECUTE %s%s SUBQUERY %d", testAddr?"":"CORRELATED ",
1606        pExpr->op==TK_IN?"LIST":"SCALAR", pParse->iNextSelectId
1607    );
1608    sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
1609  }
1610#endif
1611
1612  switch( pExpr->op ){
1613    case TK_IN: {
1614      char affinity;              /* Affinity of the LHS of the IN */
1615      KeyInfo keyInfo;            /* Keyinfo for the generated table */
1616      int addr;                   /* Address of OP_OpenEphemeral instruction */
1617      Expr *pLeft = pExpr->pLeft; /* the LHS of the IN operator */
1618
1619      if( rMayHaveNull ){
1620        sqlite3VdbeAddOp2(v, OP_Null, 0, rMayHaveNull);
1621      }
1622
1623      affinity = sqlite3ExprAffinity(pLeft);
1624
1625      /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)'
1626      ** expression it is handled the same way.  An ephemeral table is
1627      ** filled with single-field index keys representing the results
1628      ** from the SELECT or the <exprlist>.
1629      **
1630      ** If the 'x' expression is a column value, or the SELECT...
1631      ** statement returns a column value, then the affinity of that
1632      ** column is used to build the index keys. If both 'x' and the
1633      ** SELECT... statement are columns, then numeric affinity is used
1634      ** if either column has NUMERIC or INTEGER affinity. If neither
1635      ** 'x' nor the SELECT... statement are columns, then numeric affinity
1636      ** is used.
1637      */
1638      pExpr->iTable = pParse->nTab++;
1639      addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, !isRowid);
1640      if( rMayHaveNull==0 ) sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
1641      memset(&keyInfo, 0, sizeof(keyInfo));
1642      keyInfo.nField = 1;
1643
1644      if( ExprHasProperty(pExpr, EP_xIsSelect) ){
1645        /* Case 1:     expr IN (SELECT ...)
1646        **
1647        ** Generate code to write the results of the select into the temporary
1648        ** table allocated and opened above.
1649        */
1650        SelectDest dest;
1651        ExprList *pEList;
1652
1653        assert( !isRowid );
1654        sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable);
1655        dest.affinity = (u8)affinity;
1656        assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable );
1657        pExpr->x.pSelect->iLimit = 0;
1658        if( sqlite3Select(pParse, pExpr->x.pSelect, &dest) ){
1659          return 0;
1660        }
1661        pEList = pExpr->x.pSelect->pEList;
1662        if( ALWAYS(pEList!=0 && pEList->nExpr>0) ){
1663          keyInfo.aColl[0] = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft,
1664              pEList->a[0].pExpr);
1665        }
1666      }else if( ALWAYS(pExpr->x.pList!=0) ){
1667        /* Case 2:     expr IN (exprlist)
1668        **
1669        ** For each expression, build an index key from the evaluation and
1670        ** store it in the temporary table. If <expr> is a column, then use
1671        ** that columns affinity when building index keys. If <expr> is not
1672        ** a column, use numeric affinity.
1673        */
1674        int i;
1675        ExprList *pList = pExpr->x.pList;
1676        struct ExprList_item *pItem;
1677        int r1, r2, r3;
1678
1679        if( !affinity ){
1680          affinity = SQLITE_AFF_NONE;
1681        }
1682        keyInfo.aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
1683
1684        /* Loop through each expression in <exprlist>. */
1685        r1 = sqlite3GetTempReg(pParse);
1686        r2 = sqlite3GetTempReg(pParse);
1687        sqlite3VdbeAddOp2(v, OP_Null, 0, r2);
1688        for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){
1689          Expr *pE2 = pItem->pExpr;
1690          int iValToIns;
1691
1692          /* If the expression is not constant then we will need to
1693          ** disable the test that was generated above that makes sure
1694          ** this code only executes once.  Because for a non-constant
1695          ** expression we need to rerun this code each time.
1696          */
1697          if( testAddr && !sqlite3ExprIsConstant(pE2) ){
1698            sqlite3VdbeChangeToNoop(v, testAddr-1, 2);
1699            testAddr = 0;
1700          }
1701
1702          /* Evaluate the expression and insert it into the temp table */
1703          if( isRowid && sqlite3ExprIsInteger(pE2, &iValToIns) ){
1704            sqlite3VdbeAddOp3(v, OP_InsertInt, pExpr->iTable, r2, iValToIns);
1705          }else{
1706            r3 = sqlite3ExprCodeTarget(pParse, pE2, r1);
1707            if( isRowid ){
1708              sqlite3VdbeAddOp2(v, OP_MustBeInt, r3,
1709                                sqlite3VdbeCurrentAddr(v)+2);
1710              sqlite3VdbeAddOp3(v, OP_Insert, pExpr->iTable, r2, r3);
1711            }else{
1712              sqlite3VdbeAddOp4(v, OP_MakeRecord, r3, 1, r2, &affinity, 1);
1713              sqlite3ExprCacheAffinityChange(pParse, r3, 1);
1714              sqlite3VdbeAddOp2(v, OP_IdxInsert, pExpr->iTable, r2);
1715            }
1716          }
1717        }
1718        sqlite3ReleaseTempReg(pParse, r1);
1719        sqlite3ReleaseTempReg(pParse, r2);
1720      }
1721      if( !isRowid ){
1722        sqlite3VdbeChangeP4(v, addr, (void *)&keyInfo, P4_KEYINFO);
1723      }
1724      break;
1725    }
1726
1727    case TK_EXISTS:
1728    case TK_SELECT:
1729    default: {
1730      /* If this has to be a scalar SELECT.  Generate code to put the
1731      ** value of this select in a memory cell and record the number
1732      ** of the memory cell in iColumn.  If this is an EXISTS, write
1733      ** an integer 0 (not exists) or 1 (exists) into a memory cell
1734      ** and record that memory cell in iColumn.
1735      */
1736      Select *pSel;                         /* SELECT statement to encode */
1737      SelectDest dest;                      /* How to deal with SELECt result */
1738
1739      testcase( pExpr->op==TK_EXISTS );
1740      testcase( pExpr->op==TK_SELECT );
1741      assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT );
1742
1743      assert( ExprHasProperty(pExpr, EP_xIsSelect) );
1744      pSel = pExpr->x.pSelect;
1745      sqlite3SelectDestInit(&dest, 0, ++pParse->nMem);
1746      if( pExpr->op==TK_SELECT ){
1747        dest.eDest = SRT_Mem;
1748        sqlite3VdbeAddOp2(v, OP_Null, 0, dest.iParm);
1749        VdbeComment((v, "Init subquery result"));
1750      }else{
1751        dest.eDest = SRT_Exists;
1752        sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iParm);
1753        VdbeComment((v, "Init EXISTS result"));
1754      }
1755      sqlite3ExprDelete(pParse->db, pSel->pLimit);
1756      pSel->pLimit = sqlite3PExpr(pParse, TK_INTEGER, 0, 0,
1757                                  &sqlite3IntTokens[1]);
1758      pSel->iLimit = 0;
1759      if( sqlite3Select(pParse, pSel, &dest) ){
1760        return 0;
1761      }
1762      rReg = dest.iParm;
1763      ExprSetIrreducible(pExpr);
1764      break;
1765    }
1766  }
1767
1768  if( testAddr ){
1769    sqlite3VdbeJumpHere(v, testAddr-1);
1770  }
1771  sqlite3ExprCachePop(pParse, 1);
1772
1773  return rReg;
1774}
1775#endif /* SQLITE_OMIT_SUBQUERY */
1776
1777#ifndef SQLITE_OMIT_SUBQUERY
1778/*
1779** Generate code for an IN expression.
1780**
1781**      x IN (SELECT ...)
1782**      x IN (value, value, ...)
1783**
1784** The left-hand side (LHS) is a scalar expression.  The right-hand side (RHS)
1785** is an array of zero or more values.  The expression is true if the LHS is
1786** contained within the RHS.  The value of the expression is unknown (NULL)
1787** if the LHS is NULL or if the LHS is not contained within the RHS and the
1788** RHS contains one or more NULL values.
1789**
1790** This routine generates code will jump to destIfFalse if the LHS is not
1791** contained within the RHS.  If due to NULLs we cannot determine if the LHS
1792** is contained in the RHS then jump to destIfNull.  If the LHS is contained
1793** within the RHS then fall through.
1794*/
1795static void sqlite3ExprCodeIN(
1796  Parse *pParse,        /* Parsing and code generating context */
1797  Expr *pExpr,          /* The IN expression */
1798  int destIfFalse,      /* Jump here if LHS is not contained in the RHS */
1799  int destIfNull        /* Jump here if the results are unknown due to NULLs */
1800){
1801  int rRhsHasNull = 0;  /* Register that is true if RHS contains NULL values */
1802  char affinity;        /* Comparison affinity to use */
1803  int eType;            /* Type of the RHS */
1804  int r1;               /* Temporary use register */
1805  Vdbe *v;              /* Statement under construction */
1806
1807  /* Compute the RHS.   After this step, the table with cursor
1808  ** pExpr->iTable will contains the values that make up the RHS.
1809  */
1810  v = pParse->pVdbe;
1811  assert( v!=0 );       /* OOM detected prior to this routine */
1812  VdbeNoopComment((v, "begin IN expr"));
1813  eType = sqlite3FindInIndex(pParse, pExpr, &rRhsHasNull);
1814
1815  /* Figure out the affinity to use to create a key from the results
1816  ** of the expression. affinityStr stores a static string suitable for
1817  ** P4 of OP_MakeRecord.
1818  */
1819  affinity = comparisonAffinity(pExpr);
1820
1821  /* Code the LHS, the <expr> from "<expr> IN (...)".
1822  */
1823  sqlite3ExprCachePush(pParse);
1824  r1 = sqlite3GetTempReg(pParse);
1825  sqlite3ExprCode(pParse, pExpr->pLeft, r1);
1826
1827  /* If the LHS is NULL, then the result is either false or NULL depending
1828  ** on whether the RHS is empty or not, respectively.
1829  */
1830  if( destIfNull==destIfFalse ){
1831    /* Shortcut for the common case where the false and NULL outcomes are
1832    ** the same. */
1833    sqlite3VdbeAddOp2(v, OP_IsNull, r1, destIfNull);
1834  }else{
1835    int addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, r1);
1836    sqlite3VdbeAddOp2(v, OP_Rewind, pExpr->iTable, destIfFalse);
1837    sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull);
1838    sqlite3VdbeJumpHere(v, addr1);
1839  }
1840
1841  if( eType==IN_INDEX_ROWID ){
1842    /* In this case, the RHS is the ROWID of table b-tree
1843    */
1844    sqlite3VdbeAddOp2(v, OP_MustBeInt, r1, destIfFalse);
1845    sqlite3VdbeAddOp3(v, OP_NotExists, pExpr->iTable, destIfFalse, r1);
1846  }else{
1847    /* In this case, the RHS is an index b-tree.
1848    */
1849    sqlite3VdbeAddOp4(v, OP_Affinity, r1, 1, 0, &affinity, 1);
1850
1851    /* If the set membership test fails, then the result of the
1852    ** "x IN (...)" expression must be either 0 or NULL. If the set
1853    ** contains no NULL values, then the result is 0. If the set
1854    ** contains one or more NULL values, then the result of the
1855    ** expression is also NULL.
1856    */
1857    if( rRhsHasNull==0 || destIfFalse==destIfNull ){
1858      /* This branch runs if it is known at compile time that the RHS
1859      ** cannot contain NULL values. This happens as the result
1860      ** of a "NOT NULL" constraint in the database schema.
1861      **
1862      ** Also run this branch if NULL is equivalent to FALSE
1863      ** for this particular IN operator.
1864      */
1865      sqlite3VdbeAddOp4Int(v, OP_NotFound, pExpr->iTable, destIfFalse, r1, 1);
1866
1867    }else{
1868      /* In this branch, the RHS of the IN might contain a NULL and
1869      ** the presence of a NULL on the RHS makes a difference in the
1870      ** outcome.
1871      */
1872      int j1, j2, j3;
1873
1874      /* First check to see if the LHS is contained in the RHS.  If so,
1875      ** then the presence of NULLs in the RHS does not matter, so jump
1876      ** over all of the code that follows.
1877      */
1878      j1 = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, r1, 1);
1879
1880      /* Here we begin generating code that runs if the LHS is not
1881      ** contained within the RHS.  Generate additional code that
1882      ** tests the RHS for NULLs.  If the RHS contains a NULL then
1883      ** jump to destIfNull.  If there are no NULLs in the RHS then
1884      ** jump to destIfFalse.
1885      */
1886      j2 = sqlite3VdbeAddOp1(v, OP_NotNull, rRhsHasNull);
1887      j3 = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, rRhsHasNull, 1);
1888      sqlite3VdbeAddOp2(v, OP_Integer, -1, rRhsHasNull);
1889      sqlite3VdbeJumpHere(v, j3);
1890      sqlite3VdbeAddOp2(v, OP_AddImm, rRhsHasNull, 1);
1891      sqlite3VdbeJumpHere(v, j2);
1892
1893      /* Jump to the appropriate target depending on whether or not
1894      ** the RHS contains a NULL
1895      */
1896      sqlite3VdbeAddOp2(v, OP_If, rRhsHasNull, destIfNull);
1897      sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse);
1898
1899      /* The OP_Found at the top of this branch jumps here when true,
1900      ** causing the overall IN expression evaluation to fall through.
1901      */
1902      sqlite3VdbeJumpHere(v, j1);
1903    }
1904  }
1905  sqlite3ReleaseTempReg(pParse, r1);
1906  sqlite3ExprCachePop(pParse, 1);
1907  VdbeComment((v, "end IN expr"));
1908}
1909#endif /* SQLITE_OMIT_SUBQUERY */
1910
1911/*
1912** Duplicate an 8-byte value
1913*/
1914static char *dup8bytes(Vdbe *v, const char *in){
1915  char *out = sqlite3DbMallocRaw(sqlite3VdbeDb(v), 8);
1916  if( out ){
1917    memcpy(out, in, 8);
1918  }
1919  return out;
1920}
1921
1922#ifndef SQLITE_OMIT_FLOATING_POINT
1923/*
1924** Generate an instruction that will put the floating point
1925** value described by z[0..n-1] into register iMem.
1926**
1927** The z[] string will probably not be zero-terminated.  But the
1928** z[n] character is guaranteed to be something that does not look
1929** like the continuation of the number.
1930*/
1931static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){
1932  if( ALWAYS(z!=0) ){
1933    double value;
1934    char *zV;
1935    sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8);
1936    assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */
1937    if( negateFlag ) value = -value;
1938    zV = dup8bytes(v, (char*)&value);
1939    sqlite3VdbeAddOp4(v, OP_Real, 0, iMem, 0, zV, P4_REAL);
1940  }
1941}
1942#endif
1943
1944
1945/*
1946** Generate an instruction that will put the integer describe by
1947** text z[0..n-1] into register iMem.
1948**
1949** Expr.u.zToken is always UTF8 and zero-terminated.
1950*/
1951static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){
1952  Vdbe *v = pParse->pVdbe;
1953  if( pExpr->flags & EP_IntValue ){
1954    int i = pExpr->u.iValue;
1955    assert( i>=0 );
1956    if( negFlag ) i = -i;
1957    sqlite3VdbeAddOp2(v, OP_Integer, i, iMem);
1958  }else{
1959    int c;
1960    i64 value;
1961    const char *z = pExpr->u.zToken;
1962    assert( z!=0 );
1963    c = sqlite3Atoi64(z, &value, sqlite3Strlen30(z), SQLITE_UTF8);
1964    if( c==0 || (c==2 && negFlag) ){
1965      char *zV;
1966      if( negFlag ){ value = c==2 ? SMALLEST_INT64 : -value; }
1967      zV = dup8bytes(v, (char*)&value);
1968      sqlite3VdbeAddOp4(v, OP_Int64, 0, iMem, 0, zV, P4_INT64);
1969    }else{
1970#ifdef SQLITE_OMIT_FLOATING_POINT
1971      sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z);
1972#else
1973      codeReal(v, z, negFlag, iMem);
1974#endif
1975    }
1976  }
1977}
1978
1979/*
1980** Clear a cache entry.
1981*/
1982static void cacheEntryClear(Parse *pParse, struct yColCache *p){
1983  if( p->tempReg ){
1984    if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){
1985      pParse->aTempReg[pParse->nTempReg++] = p->iReg;
1986    }
1987    p->tempReg = 0;
1988  }
1989}
1990
1991
1992/*
1993** Record in the column cache that a particular column from a
1994** particular table is stored in a particular register.
1995*/
1996void sqlite3ExprCacheStore(Parse *pParse, int iTab, int iCol, int iReg){
1997  int i;
1998  int minLru;
1999  int idxLru;
2000  struct yColCache *p;
2001
2002  assert( iReg>0 );  /* Register numbers are always positive */
2003  assert( iCol>=-1 && iCol<32768 );  /* Finite column numbers */
2004
2005  /* The SQLITE_ColumnCache flag disables the column cache.  This is used
2006  ** for testing only - to verify that SQLite always gets the same answer
2007  ** with and without the column cache.
2008  */
2009  if( pParse->db->flags & SQLITE_ColumnCache ) return;
2010
2011  /* First replace any existing entry.
2012  **
2013  ** Actually, the way the column cache is currently used, we are guaranteed
2014  ** that the object will never already be in cache.  Verify this guarantee.
2015  */
2016#ifndef NDEBUG
2017  for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2018#if 0 /* This code wold remove the entry from the cache if it existed */
2019    if( p->iReg && p->iTable==iTab && p->iColumn==iCol ){
2020      cacheEntryClear(pParse, p);
2021      p->iLevel = pParse->iCacheLevel;
2022      p->iReg = iReg;
2023      p->lru = pParse->iCacheCnt++;
2024      return;
2025    }
2026#endif
2027    assert( p->iReg==0 || p->iTable!=iTab || p->iColumn!=iCol );
2028  }
2029#endif
2030
2031  /* Find an empty slot and replace it */
2032  for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2033    if( p->iReg==0 ){
2034      p->iLevel = pParse->iCacheLevel;
2035      p->iTable = iTab;
2036      p->iColumn = iCol;
2037      p->iReg = iReg;
2038      p->tempReg = 0;
2039      p->lru = pParse->iCacheCnt++;
2040      return;
2041    }
2042  }
2043
2044  /* Replace the last recently used */
2045  minLru = 0x7fffffff;
2046  idxLru = -1;
2047  for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2048    if( p->lru<minLru ){
2049      idxLru = i;
2050      minLru = p->lru;
2051    }
2052  }
2053  if( ALWAYS(idxLru>=0) ){
2054    p = &pParse->aColCache[idxLru];
2055    p->iLevel = pParse->iCacheLevel;
2056    p->iTable = iTab;
2057    p->iColumn = iCol;
2058    p->iReg = iReg;
2059    p->tempReg = 0;
2060    p->lru = pParse->iCacheCnt++;
2061    return;
2062  }
2063}
2064
2065/*
2066** Indicate that registers between iReg..iReg+nReg-1 are being overwritten.
2067** Purge the range of registers from the column cache.
2068*/
2069void sqlite3ExprCacheRemove(Parse *pParse, int iReg, int nReg){
2070  int i;
2071  int iLast = iReg + nReg - 1;
2072  struct yColCache *p;
2073  for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2074    int r = p->iReg;
2075    if( r>=iReg && r<=iLast ){
2076      cacheEntryClear(pParse, p);
2077      p->iReg = 0;
2078    }
2079  }
2080}
2081
2082/*
2083** Remember the current column cache context.  Any new entries added
2084** added to the column cache after this call are removed when the
2085** corresponding pop occurs.
2086*/
2087void sqlite3ExprCachePush(Parse *pParse){
2088  pParse->iCacheLevel++;
2089}
2090
2091/*
2092** Remove from the column cache any entries that were added since the
2093** the previous N Push operations.  In other words, restore the cache
2094** to the state it was in N Pushes ago.
2095*/
2096void sqlite3ExprCachePop(Parse *pParse, int N){
2097  int i;
2098  struct yColCache *p;
2099  assert( N>0 );
2100  assert( pParse->iCacheLevel>=N );
2101  pParse->iCacheLevel -= N;
2102  for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2103    if( p->iReg && p->iLevel>pParse->iCacheLevel ){
2104      cacheEntryClear(pParse, p);
2105      p->iReg = 0;
2106    }
2107  }
2108}
2109
2110/*
2111** When a cached column is reused, make sure that its register is
2112** no longer available as a temp register.  ticket #3879:  that same
2113** register might be in the cache in multiple places, so be sure to
2114** get them all.
2115*/
2116static void sqlite3ExprCachePinRegister(Parse *pParse, int iReg){
2117  int i;
2118  struct yColCache *p;
2119  for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2120    if( p->iReg==iReg ){
2121      p->tempReg = 0;
2122    }
2123  }
2124}
2125
2126/*
2127** Generate code to extract the value of the iCol-th column of a table.
2128*/
2129void sqlite3ExprCodeGetColumnOfTable(
2130  Vdbe *v,        /* The VDBE under construction */
2131  Table *pTab,    /* The table containing the value */
2132  int iTabCur,    /* The cursor for this table */
2133  int iCol,       /* Index of the column to extract */
2134  int regOut      /* Extract the valud into this register */
2135){
2136  if( iCol<0 || iCol==pTab->iPKey ){
2137    sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut);
2138  }else{
2139    int op = IsVirtual(pTab) ? OP_VColumn : OP_Column;
2140    sqlite3VdbeAddOp3(v, op, iTabCur, iCol, regOut);
2141  }
2142  if( iCol>=0 ){
2143    sqlite3ColumnDefault(v, pTab, iCol, regOut);
2144  }
2145}
2146
2147/*
2148** Generate code that will extract the iColumn-th column from
2149** table pTab and store the column value in a register.  An effort
2150** is made to store the column value in register iReg, but this is
2151** not guaranteed.  The location of the column value is returned.
2152**
2153** There must be an open cursor to pTab in iTable when this routine
2154** is called.  If iColumn<0 then code is generated that extracts the rowid.
2155*/
2156int sqlite3ExprCodeGetColumn(
2157  Parse *pParse,   /* Parsing and code generating context */
2158  Table *pTab,     /* Description of the table we are reading from */
2159  int iColumn,     /* Index of the table column */
2160  int iTable,      /* The cursor pointing to the table */
2161  int iReg         /* Store results here */
2162){
2163  Vdbe *v = pParse->pVdbe;
2164  int i;
2165  struct yColCache *p;
2166
2167  for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2168    if( p->iReg>0 && p->iTable==iTable && p->iColumn==iColumn ){
2169      p->lru = pParse->iCacheCnt++;
2170      sqlite3ExprCachePinRegister(pParse, p->iReg);
2171      return p->iReg;
2172    }
2173  }
2174  assert( v!=0 );
2175  sqlite3ExprCodeGetColumnOfTable(v, pTab, iTable, iColumn, iReg);
2176  sqlite3ExprCacheStore(pParse, iTable, iColumn, iReg);
2177  return iReg;
2178}
2179
2180/*
2181** Clear all column cache entries.
2182*/
2183void sqlite3ExprCacheClear(Parse *pParse){
2184  int i;
2185  struct yColCache *p;
2186
2187  for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2188    if( p->iReg ){
2189      cacheEntryClear(pParse, p);
2190      p->iReg = 0;
2191    }
2192  }
2193}
2194
2195/*
2196** Record the fact that an affinity change has occurred on iCount
2197** registers starting with iStart.
2198*/
2199void sqlite3ExprCacheAffinityChange(Parse *pParse, int iStart, int iCount){
2200  sqlite3ExprCacheRemove(pParse, iStart, iCount);
2201}
2202
2203/*
2204** Generate code to move content from registers iFrom...iFrom+nReg-1
2205** over to iTo..iTo+nReg-1. Keep the column cache up-to-date.
2206*/
2207void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){
2208  int i;
2209  struct yColCache *p;
2210  if( NEVER(iFrom==iTo) ) return;
2211  sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg);
2212  for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2213    int x = p->iReg;
2214    if( x>=iFrom && x<iFrom+nReg ){
2215      p->iReg += iTo-iFrom;
2216    }
2217  }
2218}
2219
2220/*
2221** Generate code to copy content from registers iFrom...iFrom+nReg-1
2222** over to iTo..iTo+nReg-1.
2223*/
2224void sqlite3ExprCodeCopy(Parse *pParse, int iFrom, int iTo, int nReg){
2225  int i;
2226  if( NEVER(iFrom==iTo) ) return;
2227  for(i=0; i<nReg; i++){
2228    sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, iFrom+i, iTo+i);
2229  }
2230}
2231
2232#if defined(SQLITE_DEBUG) || defined(SQLITE_COVERAGE_TEST)
2233/*
2234** Return true if any register in the range iFrom..iTo (inclusive)
2235** is used as part of the column cache.
2236**
2237** This routine is used within assert() and testcase() macros only
2238** and does not appear in a normal build.
2239*/
2240static int usedAsColumnCache(Parse *pParse, int iFrom, int iTo){
2241  int i;
2242  struct yColCache *p;
2243  for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2244    int r = p->iReg;
2245    if( r>=iFrom && r<=iTo ) return 1;    /*NO_TEST*/
2246  }
2247  return 0;
2248}
2249#endif /* SQLITE_DEBUG || SQLITE_COVERAGE_TEST */
2250
2251/*
2252** Generate code into the current Vdbe to evaluate the given
2253** expression.  Attempt to store the results in register "target".
2254** Return the register where results are stored.
2255**
2256** With this routine, there is no guarantee that results will
2257** be stored in target.  The result might be stored in some other
2258** register if it is convenient to do so.  The calling function
2259** must check the return code and move the results to the desired
2260** register.
2261*/
2262int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){
2263  Vdbe *v = pParse->pVdbe;  /* The VM under construction */
2264  int op;                   /* The opcode being coded */
2265  int inReg = target;       /* Results stored in register inReg */
2266  int regFree1 = 0;         /* If non-zero free this temporary register */
2267  int regFree2 = 0;         /* If non-zero free this temporary register */
2268  int r1, r2, r3, r4;       /* Various register numbers */
2269  sqlite3 *db = pParse->db; /* The database connection */
2270
2271  assert( target>0 && target<=pParse->nMem );
2272  if( v==0 ){
2273    assert( pParse->db->mallocFailed );
2274    return 0;
2275  }
2276
2277  if( pExpr==0 ){
2278    op = TK_NULL;
2279  }else{
2280    op = pExpr->op;
2281  }
2282  switch( op ){
2283    case TK_AGG_COLUMN: {
2284      AggInfo *pAggInfo = pExpr->pAggInfo;
2285      struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg];
2286      if( !pAggInfo->directMode ){
2287        assert( pCol->iMem>0 );
2288        inReg = pCol->iMem;
2289        break;
2290      }else if( pAggInfo->useSortingIdx ){
2291        sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdx,
2292                              pCol->iSorterColumn, target);
2293        break;
2294      }
2295      /* Otherwise, fall thru into the TK_COLUMN case */
2296    }
2297    case TK_COLUMN: {
2298      if( pExpr->iTable<0 ){
2299        /* This only happens when coding check constraints */
2300        assert( pParse->ckBase>0 );
2301        inReg = pExpr->iColumn + pParse->ckBase;
2302      }else{
2303        inReg = sqlite3ExprCodeGetColumn(pParse, pExpr->pTab,
2304                                 pExpr->iColumn, pExpr->iTable, target);
2305      }
2306      break;
2307    }
2308    case TK_INTEGER: {
2309      codeInteger(pParse, pExpr, 0, target);
2310      break;
2311    }
2312#ifndef SQLITE_OMIT_FLOATING_POINT
2313    case TK_FLOAT: {
2314      assert( !ExprHasProperty(pExpr, EP_IntValue) );
2315      codeReal(v, pExpr->u.zToken, 0, target);
2316      break;
2317    }
2318#endif
2319    case TK_STRING: {
2320      assert( !ExprHasProperty(pExpr, EP_IntValue) );
2321      sqlite3VdbeAddOp4(v, OP_String8, 0, target, 0, pExpr->u.zToken, 0);
2322      break;
2323    }
2324    case TK_NULL: {
2325      sqlite3VdbeAddOp2(v, OP_Null, 0, target);
2326      break;
2327    }
2328#ifndef SQLITE_OMIT_BLOB_LITERAL
2329    case TK_BLOB: {
2330      int n;
2331      const char *z;
2332      char *zBlob;
2333      assert( !ExprHasProperty(pExpr, EP_IntValue) );
2334      assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' );
2335      assert( pExpr->u.zToken[1]=='\'' );
2336      z = &pExpr->u.zToken[2];
2337      n = sqlite3Strlen30(z) - 1;
2338      assert( z[n]=='\'' );
2339      zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n);
2340      sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC);
2341      break;
2342    }
2343#endif
2344    case TK_VARIABLE: {
2345      assert( !ExprHasProperty(pExpr, EP_IntValue) );
2346      assert( pExpr->u.zToken!=0 );
2347      assert( pExpr->u.zToken[0]!=0 );
2348      sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target);
2349      if( pExpr->u.zToken[1]!=0 ){
2350        sqlite3VdbeChangeP4(v, -1, pExpr->u.zToken, P4_TRANSIENT);
2351      }
2352      break;
2353    }
2354    case TK_REGISTER: {
2355      inReg = pExpr->iTable;
2356      break;
2357    }
2358    case TK_AS: {
2359      inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
2360      break;
2361    }
2362#ifndef SQLITE_OMIT_CAST
2363    case TK_CAST: {
2364      /* Expressions of the form:   CAST(pLeft AS token) */
2365      int aff, to_op;
2366      inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
2367      assert( !ExprHasProperty(pExpr, EP_IntValue) );
2368      aff = sqlite3AffinityType(pExpr->u.zToken);
2369      to_op = aff - SQLITE_AFF_TEXT + OP_ToText;
2370      assert( to_op==OP_ToText    || aff!=SQLITE_AFF_TEXT    );
2371      assert( to_op==OP_ToBlob    || aff!=SQLITE_AFF_NONE    );
2372      assert( to_op==OP_ToNumeric || aff!=SQLITE_AFF_NUMERIC );
2373      assert( to_op==OP_ToInt     || aff!=SQLITE_AFF_INTEGER );
2374      assert( to_op==OP_ToReal    || aff!=SQLITE_AFF_REAL    );
2375      testcase( to_op==OP_ToText );
2376      testcase( to_op==OP_ToBlob );
2377      testcase( to_op==OP_ToNumeric );
2378      testcase( to_op==OP_ToInt );
2379      testcase( to_op==OP_ToReal );
2380      if( inReg!=target ){
2381        sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target);
2382        inReg = target;
2383      }
2384      sqlite3VdbeAddOp1(v, to_op, inReg);
2385      testcase( usedAsColumnCache(pParse, inReg, inReg) );
2386      sqlite3ExprCacheAffinityChange(pParse, inReg, 1);
2387      break;
2388    }
2389#endif /* SQLITE_OMIT_CAST */
2390    case TK_LT:
2391    case TK_LE:
2392    case TK_GT:
2393    case TK_GE:
2394    case TK_NE:
2395    case TK_EQ: {
2396      assert( TK_LT==OP_Lt );
2397      assert( TK_LE==OP_Le );
2398      assert( TK_GT==OP_Gt );
2399      assert( TK_GE==OP_Ge );
2400      assert( TK_EQ==OP_Eq );
2401      assert( TK_NE==OP_Ne );
2402      testcase( op==TK_LT );
2403      testcase( op==TK_LE );
2404      testcase( op==TK_GT );
2405      testcase( op==TK_GE );
2406      testcase( op==TK_EQ );
2407      testcase( op==TK_NE );
2408      r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2409      r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
2410      codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
2411                  r1, r2, inReg, SQLITE_STOREP2);
2412      testcase( regFree1==0 );
2413      testcase( regFree2==0 );
2414      break;
2415    }
2416    case TK_IS:
2417    case TK_ISNOT: {
2418      testcase( op==TK_IS );
2419      testcase( op==TK_ISNOT );
2420      r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2421      r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
2422      op = (op==TK_IS) ? TK_EQ : TK_NE;
2423      codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
2424                  r1, r2, inReg, SQLITE_STOREP2 | SQLITE_NULLEQ);
2425      testcase( regFree1==0 );
2426      testcase( regFree2==0 );
2427      break;
2428    }
2429    case TK_AND:
2430    case TK_OR:
2431    case TK_PLUS:
2432    case TK_STAR:
2433    case TK_MINUS:
2434    case TK_REM:
2435    case TK_BITAND:
2436    case TK_BITOR:
2437    case TK_SLASH:
2438    case TK_LSHIFT:
2439    case TK_RSHIFT:
2440    case TK_CONCAT: {
2441      assert( TK_AND==OP_And );
2442      assert( TK_OR==OP_Or );
2443      assert( TK_PLUS==OP_Add );
2444      assert( TK_MINUS==OP_Subtract );
2445      assert( TK_REM==OP_Remainder );
2446      assert( TK_BITAND==OP_BitAnd );
2447      assert( TK_BITOR==OP_BitOr );
2448      assert( TK_SLASH==OP_Divide );
2449      assert( TK_LSHIFT==OP_ShiftLeft );
2450      assert( TK_RSHIFT==OP_ShiftRight );
2451      assert( TK_CONCAT==OP_Concat );
2452      testcase( op==TK_AND );
2453      testcase( op==TK_OR );
2454      testcase( op==TK_PLUS );
2455      testcase( op==TK_MINUS );
2456      testcase( op==TK_REM );
2457      testcase( op==TK_BITAND );
2458      testcase( op==TK_BITOR );
2459      testcase( op==TK_SLASH );
2460      testcase( op==TK_LSHIFT );
2461      testcase( op==TK_RSHIFT );
2462      testcase( op==TK_CONCAT );
2463      r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2464      r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
2465      sqlite3VdbeAddOp3(v, op, r2, r1, target);
2466      testcase( regFree1==0 );
2467      testcase( regFree2==0 );
2468      break;
2469    }
2470    case TK_UMINUS: {
2471      Expr *pLeft = pExpr->pLeft;
2472      assert( pLeft );
2473      if( pLeft->op==TK_INTEGER ){
2474        codeInteger(pParse, pLeft, 1, target);
2475#ifndef SQLITE_OMIT_FLOATING_POINT
2476      }else if( pLeft->op==TK_FLOAT ){
2477        assert( !ExprHasProperty(pExpr, EP_IntValue) );
2478        codeReal(v, pLeft->u.zToken, 1, target);
2479#endif
2480      }else{
2481        regFree1 = r1 = sqlite3GetTempReg(pParse);
2482        sqlite3VdbeAddOp2(v, OP_Integer, 0, r1);
2483        r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree2);
2484        sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target);
2485        testcase( regFree2==0 );
2486      }
2487      inReg = target;
2488      break;
2489    }
2490    case TK_BITNOT:
2491    case TK_NOT: {
2492      assert( TK_BITNOT==OP_BitNot );
2493      assert( TK_NOT==OP_Not );
2494      testcase( op==TK_BITNOT );
2495      testcase( op==TK_NOT );
2496      r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2497      testcase( regFree1==0 );
2498      inReg = target;
2499      sqlite3VdbeAddOp2(v, op, r1, inReg);
2500      break;
2501    }
2502    case TK_ISNULL:
2503    case TK_NOTNULL: {
2504      int addr;
2505      assert( TK_ISNULL==OP_IsNull );
2506      assert( TK_NOTNULL==OP_NotNull );
2507      testcase( op==TK_ISNULL );
2508      testcase( op==TK_NOTNULL );
2509      sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
2510      r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2511      testcase( regFree1==0 );
2512      addr = sqlite3VdbeAddOp1(v, op, r1);
2513      sqlite3VdbeAddOp2(v, OP_AddImm, target, -1);
2514      sqlite3VdbeJumpHere(v, addr);
2515      break;
2516    }
2517    case TK_AGG_FUNCTION: {
2518      AggInfo *pInfo = pExpr->pAggInfo;
2519      if( pInfo==0 ){
2520        assert( !ExprHasProperty(pExpr, EP_IntValue) );
2521        sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken);
2522      }else{
2523        inReg = pInfo->aFunc[pExpr->iAgg].iMem;
2524      }
2525      break;
2526    }
2527    case TK_CONST_FUNC:
2528    case TK_FUNCTION: {
2529      ExprList *pFarg;       /* List of function arguments */
2530      int nFarg;             /* Number of function arguments */
2531      FuncDef *pDef;         /* The function definition object */
2532      int nId;               /* Length of the function name in bytes */
2533      const char *zId;       /* The function name */
2534      int constMask = 0;     /* Mask of function arguments that are constant */
2535      int i;                 /* Loop counter */
2536      u8 enc = ENC(db);      /* The text encoding used by this database */
2537      CollSeq *pColl = 0;    /* A collating sequence */
2538
2539      assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
2540      testcase( op==TK_CONST_FUNC );
2541      testcase( op==TK_FUNCTION );
2542      if( ExprHasAnyProperty(pExpr, EP_TokenOnly) ){
2543        pFarg = 0;
2544      }else{
2545        pFarg = pExpr->x.pList;
2546      }
2547      nFarg = pFarg ? pFarg->nExpr : 0;
2548      assert( !ExprHasProperty(pExpr, EP_IntValue) );
2549      zId = pExpr->u.zToken;
2550      nId = sqlite3Strlen30(zId);
2551      pDef = sqlite3FindFunction(db, zId, nId, nFarg, enc, 0);
2552      if( pDef==0 ){
2553        sqlite3ErrorMsg(pParse, "unknown function: %.*s()", nId, zId);
2554        break;
2555      }
2556
2557      /* Attempt a direct implementation of the built-in COALESCE() and
2558      ** IFNULL() functions.  This avoids unnecessary evalation of
2559      ** arguments past the first non-NULL argument.
2560      */
2561      if( pDef->flags & SQLITE_FUNC_COALESCE ){
2562        int endCoalesce = sqlite3VdbeMakeLabel(v);
2563        assert( nFarg>=2 );
2564        sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target);
2565        for(i=1; i<nFarg; i++){
2566          sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce);
2567          sqlite3ExprCacheRemove(pParse, target, 1);
2568          sqlite3ExprCachePush(pParse);
2569          sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target);
2570          sqlite3ExprCachePop(pParse, 1);
2571        }
2572        sqlite3VdbeResolveLabel(v, endCoalesce);
2573        break;
2574      }
2575
2576
2577      if( pFarg ){
2578        r1 = sqlite3GetTempRange(pParse, nFarg);
2579        sqlite3ExprCachePush(pParse);     /* Ticket 2ea2425d34be */
2580        sqlite3ExprCodeExprList(pParse, pFarg, r1, 1);
2581        sqlite3ExprCachePop(pParse, 1);   /* Ticket 2ea2425d34be */
2582      }else{
2583        r1 = 0;
2584      }
2585#ifndef SQLITE_OMIT_VIRTUALTABLE
2586      /* Possibly overload the function if the first argument is
2587      ** a virtual table column.
2588      **
2589      ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the
2590      ** second argument, not the first, as the argument to test to
2591      ** see if it is a column in a virtual table.  This is done because
2592      ** the left operand of infix functions (the operand we want to
2593      ** control overloading) ends up as the second argument to the
2594      ** function.  The expression "A glob B" is equivalent to
2595      ** "glob(B,A).  We want to use the A in "A glob B" to test
2596      ** for function overloading.  But we use the B term in "glob(B,A)".
2597      */
2598      if( nFarg>=2 && (pExpr->flags & EP_InfixFunc) ){
2599        pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr);
2600      }else if( nFarg>0 ){
2601        pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr);
2602      }
2603#endif
2604      for(i=0; i<nFarg; i++){
2605        if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){
2606          constMask |= (1<<i);
2607        }
2608        if( (pDef->flags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){
2609          pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr);
2610        }
2611      }
2612      if( pDef->flags & SQLITE_FUNC_NEEDCOLL ){
2613        if( !pColl ) pColl = db->pDfltColl;
2614        sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ);
2615      }
2616      sqlite3VdbeAddOp4(v, OP_Function, constMask, r1, target,
2617                        (char*)pDef, P4_FUNCDEF);
2618      sqlite3VdbeChangeP5(v, (u8)nFarg);
2619      if( nFarg ){
2620        sqlite3ReleaseTempRange(pParse, r1, nFarg);
2621      }
2622      break;
2623    }
2624#ifndef SQLITE_OMIT_SUBQUERY
2625    case TK_EXISTS:
2626    case TK_SELECT: {
2627      testcase( op==TK_EXISTS );
2628      testcase( op==TK_SELECT );
2629      inReg = sqlite3CodeSubselect(pParse, pExpr, 0, 0);
2630      break;
2631    }
2632    case TK_IN: {
2633      int destIfFalse = sqlite3VdbeMakeLabel(v);
2634      int destIfNull = sqlite3VdbeMakeLabel(v);
2635      sqlite3VdbeAddOp2(v, OP_Null, 0, target);
2636      sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
2637      sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
2638      sqlite3VdbeResolveLabel(v, destIfFalse);
2639      sqlite3VdbeAddOp2(v, OP_AddImm, target, 0);
2640      sqlite3VdbeResolveLabel(v, destIfNull);
2641      break;
2642    }
2643#endif /* SQLITE_OMIT_SUBQUERY */
2644
2645
2646    /*
2647    **    x BETWEEN y AND z
2648    **
2649    ** This is equivalent to
2650    **
2651    **    x>=y AND x<=z
2652    **
2653    ** X is stored in pExpr->pLeft.
2654    ** Y is stored in pExpr->pList->a[0].pExpr.
2655    ** Z is stored in pExpr->pList->a[1].pExpr.
2656    */
2657    case TK_BETWEEN: {
2658      Expr *pLeft = pExpr->pLeft;
2659      struct ExprList_item *pLItem = pExpr->x.pList->a;
2660      Expr *pRight = pLItem->pExpr;
2661
2662      r1 = sqlite3ExprCodeTemp(pParse, pLeft, &regFree1);
2663      r2 = sqlite3ExprCodeTemp(pParse, pRight, &regFree2);
2664      testcase( regFree1==0 );
2665      testcase( regFree2==0 );
2666      r3 = sqlite3GetTempReg(pParse);
2667      r4 = sqlite3GetTempReg(pParse);
2668      codeCompare(pParse, pLeft, pRight, OP_Ge,
2669                  r1, r2, r3, SQLITE_STOREP2);
2670      pLItem++;
2671      pRight = pLItem->pExpr;
2672      sqlite3ReleaseTempReg(pParse, regFree2);
2673      r2 = sqlite3ExprCodeTemp(pParse, pRight, &regFree2);
2674      testcase( regFree2==0 );
2675      codeCompare(pParse, pLeft, pRight, OP_Le, r1, r2, r4, SQLITE_STOREP2);
2676      sqlite3VdbeAddOp3(v, OP_And, r3, r4, target);
2677      sqlite3ReleaseTempReg(pParse, r3);
2678      sqlite3ReleaseTempReg(pParse, r4);
2679      break;
2680    }
2681    case TK_UPLUS: {
2682      inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
2683      break;
2684    }
2685
2686    case TK_TRIGGER: {
2687      /* If the opcode is TK_TRIGGER, then the expression is a reference
2688      ** to a column in the new.* or old.* pseudo-tables available to
2689      ** trigger programs. In this case Expr.iTable is set to 1 for the
2690      ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn
2691      ** is set to the column of the pseudo-table to read, or to -1 to
2692      ** read the rowid field.
2693      **
2694      ** The expression is implemented using an OP_Param opcode. The p1
2695      ** parameter is set to 0 for an old.rowid reference, or to (i+1)
2696      ** to reference another column of the old.* pseudo-table, where
2697      ** i is the index of the column. For a new.rowid reference, p1 is
2698      ** set to (n+1), where n is the number of columns in each pseudo-table.
2699      ** For a reference to any other column in the new.* pseudo-table, p1
2700      ** is set to (n+2+i), where n and i are as defined previously. For
2701      ** example, if the table on which triggers are being fired is
2702      ** declared as:
2703      **
2704      **   CREATE TABLE t1(a, b);
2705      **
2706      ** Then p1 is interpreted as follows:
2707      **
2708      **   p1==0   ->    old.rowid     p1==3   ->    new.rowid
2709      **   p1==1   ->    old.a         p1==4   ->    new.a
2710      **   p1==2   ->    old.b         p1==5   ->    new.b
2711      */
2712      Table *pTab = pExpr->pTab;
2713      int p1 = pExpr->iTable * (pTab->nCol+1) + 1 + pExpr->iColumn;
2714
2715      assert( pExpr->iTable==0 || pExpr->iTable==1 );
2716      assert( pExpr->iColumn>=-1 && pExpr->iColumn<pTab->nCol );
2717      assert( pTab->iPKey<0 || pExpr->iColumn!=pTab->iPKey );
2718      assert( p1>=0 && p1<(pTab->nCol*2+2) );
2719
2720      sqlite3VdbeAddOp2(v, OP_Param, p1, target);
2721      VdbeComment((v, "%s.%s -> $%d",
2722        (pExpr->iTable ? "new" : "old"),
2723        (pExpr->iColumn<0 ? "rowid" : pExpr->pTab->aCol[pExpr->iColumn].zName),
2724        target
2725      ));
2726
2727#ifndef SQLITE_OMIT_FLOATING_POINT
2728      /* If the column has REAL affinity, it may currently be stored as an
2729      ** integer. Use OP_RealAffinity to make sure it is really real.  */
2730      if( pExpr->iColumn>=0
2731       && pTab->aCol[pExpr->iColumn].affinity==SQLITE_AFF_REAL
2732      ){
2733        sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
2734      }
2735#endif
2736      break;
2737    }
2738
2739
2740    /*
2741    ** Form A:
2742    **   CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
2743    **
2744    ** Form B:
2745    **   CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
2746    **
2747    ** Form A is can be transformed into the equivalent form B as follows:
2748    **   CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ...
2749    **        WHEN x=eN THEN rN ELSE y END
2750    **
2751    ** X (if it exists) is in pExpr->pLeft.
2752    ** Y is in pExpr->pRight.  The Y is also optional.  If there is no
2753    ** ELSE clause and no other term matches, then the result of the
2754    ** exprssion is NULL.
2755    ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1].
2756    **
2757    ** The result of the expression is the Ri for the first matching Ei,
2758    ** or if there is no matching Ei, the ELSE term Y, or if there is
2759    ** no ELSE term, NULL.
2760    */
2761    default: assert( op==TK_CASE ); {
2762      int endLabel;                     /* GOTO label for end of CASE stmt */
2763      int nextCase;                     /* GOTO label for next WHEN clause */
2764      int nExpr;                        /* 2x number of WHEN terms */
2765      int i;                            /* Loop counter */
2766      ExprList *pEList;                 /* List of WHEN terms */
2767      struct ExprList_item *aListelem;  /* Array of WHEN terms */
2768      Expr opCompare;                   /* The X==Ei expression */
2769      Expr cacheX;                      /* Cached expression X */
2770      Expr *pX;                         /* The X expression */
2771      Expr *pTest = 0;                  /* X==Ei (form A) or just Ei (form B) */
2772      VVA_ONLY( int iCacheLevel = pParse->iCacheLevel; )
2773
2774      assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList );
2775      assert((pExpr->x.pList->nExpr % 2) == 0);
2776      assert(pExpr->x.pList->nExpr > 0);
2777      pEList = pExpr->x.pList;
2778      aListelem = pEList->a;
2779      nExpr = pEList->nExpr;
2780      endLabel = sqlite3VdbeMakeLabel(v);
2781      if( (pX = pExpr->pLeft)!=0 ){
2782        cacheX = *pX;
2783        testcase( pX->op==TK_COLUMN );
2784        testcase( pX->op==TK_REGISTER );
2785        cacheX.iTable = sqlite3ExprCodeTemp(pParse, pX, &regFree1);
2786        testcase( regFree1==0 );
2787        cacheX.op = TK_REGISTER;
2788        opCompare.op = TK_EQ;
2789        opCompare.pLeft = &cacheX;
2790        pTest = &opCompare;
2791        /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001:
2792        ** The value in regFree1 might get SCopy-ed into the file result.
2793        ** So make sure that the regFree1 register is not reused for other
2794        ** purposes and possibly overwritten.  */
2795        regFree1 = 0;
2796      }
2797      for(i=0; i<nExpr; i=i+2){
2798        sqlite3ExprCachePush(pParse);
2799        if( pX ){
2800          assert( pTest!=0 );
2801          opCompare.pRight = aListelem[i].pExpr;
2802        }else{
2803          pTest = aListelem[i].pExpr;
2804        }
2805        nextCase = sqlite3VdbeMakeLabel(v);
2806        testcase( pTest->op==TK_COLUMN );
2807        sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL);
2808        testcase( aListelem[i+1].pExpr->op==TK_COLUMN );
2809        testcase( aListelem[i+1].pExpr->op==TK_REGISTER );
2810        sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target);
2811        sqlite3VdbeAddOp2(v, OP_Goto, 0, endLabel);
2812        sqlite3ExprCachePop(pParse, 1);
2813        sqlite3VdbeResolveLabel(v, nextCase);
2814      }
2815      if( pExpr->pRight ){
2816        sqlite3ExprCachePush(pParse);
2817        sqlite3ExprCode(pParse, pExpr->pRight, target);
2818        sqlite3ExprCachePop(pParse, 1);
2819      }else{
2820        sqlite3VdbeAddOp2(v, OP_Null, 0, target);
2821      }
2822      assert( db->mallocFailed || pParse->nErr>0
2823           || pParse->iCacheLevel==iCacheLevel );
2824      sqlite3VdbeResolveLabel(v, endLabel);
2825      break;
2826    }
2827#ifndef SQLITE_OMIT_TRIGGER
2828    case TK_RAISE: {
2829      assert( pExpr->affinity==OE_Rollback
2830           || pExpr->affinity==OE_Abort
2831           || pExpr->affinity==OE_Fail
2832           || pExpr->affinity==OE_Ignore
2833      );
2834      if( !pParse->pTriggerTab ){
2835        sqlite3ErrorMsg(pParse,
2836                       "RAISE() may only be used within a trigger-program");
2837        return 0;
2838      }
2839      if( pExpr->affinity==OE_Abort ){
2840        sqlite3MayAbort(pParse);
2841      }
2842      assert( !ExprHasProperty(pExpr, EP_IntValue) );
2843      if( pExpr->affinity==OE_Ignore ){
2844        sqlite3VdbeAddOp4(
2845            v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0);
2846      }else{
2847        sqlite3HaltConstraint(pParse, pExpr->affinity, pExpr->u.zToken, 0);
2848      }
2849
2850      break;
2851    }
2852#endif
2853  }
2854  sqlite3ReleaseTempReg(pParse, regFree1);
2855  sqlite3ReleaseTempReg(pParse, regFree2);
2856  return inReg;
2857}
2858
2859/*
2860** Generate code to evaluate an expression and store the results
2861** into a register.  Return the register number where the results
2862** are stored.
2863**
2864** If the register is a temporary register that can be deallocated,
2865** then write its number into *pReg.  If the result register is not
2866** a temporary, then set *pReg to zero.
2867*/
2868int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){
2869  int r1 = sqlite3GetTempReg(pParse);
2870  int r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
2871  if( r2==r1 ){
2872    *pReg = r1;
2873  }else{
2874    sqlite3ReleaseTempReg(pParse, r1);
2875    *pReg = 0;
2876  }
2877  return r2;
2878}
2879
2880/*
2881** Generate code that will evaluate expression pExpr and store the
2882** results in register target.  The results are guaranteed to appear
2883** in register target.
2884*/
2885int sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){
2886  int inReg;
2887
2888  assert( target>0 && target<=pParse->nMem );
2889  if( pExpr && pExpr->op==TK_REGISTER ){
2890    sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, pExpr->iTable, target);
2891  }else{
2892    inReg = sqlite3ExprCodeTarget(pParse, pExpr, target);
2893    assert( pParse->pVdbe || pParse->db->mallocFailed );
2894    if( inReg!=target && pParse->pVdbe ){
2895      sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target);
2896    }
2897  }
2898  return target;
2899}
2900
2901/*
2902** Generate code that evalutes the given expression and puts the result
2903** in register target.
2904**
2905** Also make a copy of the expression results into another "cache" register
2906** and modify the expression so that the next time it is evaluated,
2907** the result is a copy of the cache register.
2908**
2909** This routine is used for expressions that are used multiple
2910** times.  They are evaluated once and the results of the expression
2911** are reused.
2912*/
2913int sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){
2914  Vdbe *v = pParse->pVdbe;
2915  int inReg;
2916  inReg = sqlite3ExprCode(pParse, pExpr, target);
2917  assert( target>0 );
2918  /* This routine is called for terms to INSERT or UPDATE.  And the only
2919  ** other place where expressions can be converted into TK_REGISTER is
2920  ** in WHERE clause processing.  So as currently implemented, there is
2921  ** no way for a TK_REGISTER to exist here.  But it seems prudent to
2922  ** keep the ALWAYS() in case the conditions above change with future
2923  ** modifications or enhancements. */
2924  if( ALWAYS(pExpr->op!=TK_REGISTER) ){
2925    int iMem;
2926    iMem = ++pParse->nMem;
2927    sqlite3VdbeAddOp2(v, OP_Copy, inReg, iMem);
2928    pExpr->iTable = iMem;
2929    pExpr->op2 = pExpr->op;
2930    pExpr->op = TK_REGISTER;
2931  }
2932  return inReg;
2933}
2934
2935/*
2936** Return TRUE if pExpr is an constant expression that is appropriate
2937** for factoring out of a loop.  Appropriate expressions are:
2938**
2939**    *  Any expression that evaluates to two or more opcodes.
2940**
2941**    *  Any OP_Integer, OP_Real, OP_String, OP_Blob, OP_Null,
2942**       or OP_Variable that does not need to be placed in a
2943**       specific register.
2944**
2945** There is no point in factoring out single-instruction constant
2946** expressions that need to be placed in a particular register.
2947** We could factor them out, but then we would end up adding an
2948** OP_SCopy instruction to move the value into the correct register
2949** later.  We might as well just use the original instruction and
2950** avoid the OP_SCopy.
2951*/
2952static int isAppropriateForFactoring(Expr *p){
2953  if( !sqlite3ExprIsConstantNotJoin(p) ){
2954    return 0;  /* Only constant expressions are appropriate for factoring */
2955  }
2956  if( (p->flags & EP_FixedDest)==0 ){
2957    return 1;  /* Any constant without a fixed destination is appropriate */
2958  }
2959  while( p->op==TK_UPLUS ) p = p->pLeft;
2960  switch( p->op ){
2961#ifndef SQLITE_OMIT_BLOB_LITERAL
2962    case TK_BLOB:
2963#endif
2964    case TK_VARIABLE:
2965    case TK_INTEGER:
2966    case TK_FLOAT:
2967    case TK_NULL:
2968    case TK_STRING: {
2969      testcase( p->op==TK_BLOB );
2970      testcase( p->op==TK_VARIABLE );
2971      testcase( p->op==TK_INTEGER );
2972      testcase( p->op==TK_FLOAT );
2973      testcase( p->op==TK_NULL );
2974      testcase( p->op==TK_STRING );
2975      /* Single-instruction constants with a fixed destination are
2976      ** better done in-line.  If we factor them, they will just end
2977      ** up generating an OP_SCopy to move the value to the destination
2978      ** register. */
2979      return 0;
2980    }
2981    case TK_UMINUS: {
2982      if( p->pLeft->op==TK_FLOAT || p->pLeft->op==TK_INTEGER ){
2983        return 0;
2984      }
2985      break;
2986    }
2987    default: {
2988      break;
2989    }
2990  }
2991  return 1;
2992}
2993
2994/*
2995** If pExpr is a constant expression that is appropriate for
2996** factoring out of a loop, then evaluate the expression
2997** into a register and convert the expression into a TK_REGISTER
2998** expression.
2999*/
3000static int evalConstExpr(Walker *pWalker, Expr *pExpr){
3001  Parse *pParse = pWalker->pParse;
3002  switch( pExpr->op ){
3003    case TK_IN:
3004    case TK_REGISTER: {
3005      return WRC_Prune;
3006    }
3007    case TK_FUNCTION:
3008    case TK_AGG_FUNCTION:
3009    case TK_CONST_FUNC: {
3010      /* The arguments to a function have a fixed destination.
3011      ** Mark them this way to avoid generated unneeded OP_SCopy
3012      ** instructions.
3013      */
3014      ExprList *pList = pExpr->x.pList;
3015      assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
3016      if( pList ){
3017        int i = pList->nExpr;
3018        struct ExprList_item *pItem = pList->a;
3019        for(; i>0; i--, pItem++){
3020          if( ALWAYS(pItem->pExpr) ) pItem->pExpr->flags |= EP_FixedDest;
3021        }
3022      }
3023      break;
3024    }
3025  }
3026  if( isAppropriateForFactoring(pExpr) ){
3027    int r1 = ++pParse->nMem;
3028    int r2;
3029    r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
3030    if( NEVER(r1!=r2) ) sqlite3ReleaseTempReg(pParse, r1);
3031    pExpr->op2 = pExpr->op;
3032    pExpr->op = TK_REGISTER;
3033    pExpr->iTable = r2;
3034    return WRC_Prune;
3035  }
3036  return WRC_Continue;
3037}
3038
3039/*
3040** Preevaluate constant subexpressions within pExpr and store the
3041** results in registers.  Modify pExpr so that the constant subexpresions
3042** are TK_REGISTER opcodes that refer to the precomputed values.
3043**
3044** This routine is a no-op if the jump to the cookie-check code has
3045** already occur.  Since the cookie-check jump is generated prior to
3046** any other serious processing, this check ensures that there is no
3047** way to accidently bypass the constant initializations.
3048**
3049** This routine is also a no-op if the SQLITE_FactorOutConst optimization
3050** is disabled via the sqlite3_test_control(SQLITE_TESTCTRL_OPTIMIZATIONS)
3051** interface.  This allows test logic to verify that the same answer is
3052** obtained for queries regardless of whether or not constants are
3053** precomputed into registers or if they are inserted in-line.
3054*/
3055void sqlite3ExprCodeConstants(Parse *pParse, Expr *pExpr){
3056  Walker w;
3057  if( pParse->cookieGoto ) return;
3058  if( (pParse->db->flags & SQLITE_FactorOutConst)!=0 ) return;
3059  w.xExprCallback = evalConstExpr;
3060  w.xSelectCallback = 0;
3061  w.pParse = pParse;
3062  sqlite3WalkExpr(&w, pExpr);
3063}
3064
3065
3066/*
3067** Generate code that pushes the value of every element of the given
3068** expression list into a sequence of registers beginning at target.
3069**
3070** Return the number of elements evaluated.
3071*/
3072int sqlite3ExprCodeExprList(
3073  Parse *pParse,     /* Parsing context */
3074  ExprList *pList,   /* The expression list to be coded */
3075  int target,        /* Where to write results */
3076  int doHardCopy     /* Make a hard copy of every element */
3077){
3078  struct ExprList_item *pItem;
3079  int i, n;
3080  assert( pList!=0 );
3081  assert( target>0 );
3082  assert( pParse->pVdbe!=0 );  /* Never gets this far otherwise */
3083  n = pList->nExpr;
3084  for(pItem=pList->a, i=0; i<n; i++, pItem++){
3085    Expr *pExpr = pItem->pExpr;
3086    int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i);
3087    if( inReg!=target+i ){
3088      sqlite3VdbeAddOp2(pParse->pVdbe, doHardCopy ? OP_Copy : OP_SCopy,
3089                        inReg, target+i);
3090    }
3091  }
3092  return n;
3093}
3094
3095/*
3096** Generate code for a BETWEEN operator.
3097**
3098**    x BETWEEN y AND z
3099**
3100** The above is equivalent to
3101**
3102**    x>=y AND x<=z
3103**
3104** Code it as such, taking care to do the common subexpression
3105** elementation of x.
3106*/
3107static void exprCodeBetween(
3108  Parse *pParse,    /* Parsing and code generating context */
3109  Expr *pExpr,      /* The BETWEEN expression */
3110  int dest,         /* Jump here if the jump is taken */
3111  int jumpIfTrue,   /* Take the jump if the BETWEEN is true */
3112  int jumpIfNull    /* Take the jump if the BETWEEN is NULL */
3113){
3114  Expr exprAnd;     /* The AND operator in  x>=y AND x<=z  */
3115  Expr compLeft;    /* The  x>=y  term */
3116  Expr compRight;   /* The  x<=z  term */
3117  Expr exprX;       /* The  x  subexpression */
3118  int regFree1 = 0; /* Temporary use register */
3119
3120  assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
3121  exprX = *pExpr->pLeft;
3122  exprAnd.op = TK_AND;
3123  exprAnd.pLeft = &compLeft;
3124  exprAnd.pRight = &compRight;
3125  compLeft.op = TK_GE;
3126  compLeft.pLeft = &exprX;
3127  compLeft.pRight = pExpr->x.pList->a[0].pExpr;
3128  compRight.op = TK_LE;
3129  compRight.pLeft = &exprX;
3130  compRight.pRight = pExpr->x.pList->a[1].pExpr;
3131  exprX.iTable = sqlite3ExprCodeTemp(pParse, &exprX, &regFree1);
3132  exprX.op = TK_REGISTER;
3133  if( jumpIfTrue ){
3134    sqlite3ExprIfTrue(pParse, &exprAnd, dest, jumpIfNull);
3135  }else{
3136    sqlite3ExprIfFalse(pParse, &exprAnd, dest, jumpIfNull);
3137  }
3138  sqlite3ReleaseTempReg(pParse, regFree1);
3139
3140  /* Ensure adequate test coverage */
3141  testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1==0 );
3142  testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1!=0 );
3143  testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1==0 );
3144  testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1!=0 );
3145  testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1==0 );
3146  testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1!=0 );
3147  testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1==0 );
3148  testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1!=0 );
3149}
3150
3151/*
3152** Generate code for a boolean expression such that a jump is made
3153** to the label "dest" if the expression is true but execution
3154** continues straight thru if the expression is false.
3155**
3156** If the expression evaluates to NULL (neither true nor false), then
3157** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL.
3158**
3159** This code depends on the fact that certain token values (ex: TK_EQ)
3160** are the same as opcode values (ex: OP_Eq) that implement the corresponding
3161** operation.  Special comments in vdbe.c and the mkopcodeh.awk script in
3162** the make process cause these values to align.  Assert()s in the code
3163** below verify that the numbers are aligned correctly.
3164*/
3165void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
3166  Vdbe *v = pParse->pVdbe;
3167  int op = 0;
3168  int regFree1 = 0;
3169  int regFree2 = 0;
3170  int r1, r2;
3171
3172  assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
3173  if( NEVER(v==0) )     return;  /* Existance of VDBE checked by caller */
3174  if( NEVER(pExpr==0) ) return;  /* No way this can happen */
3175  op = pExpr->op;
3176  switch( op ){
3177    case TK_AND: {
3178      int d2 = sqlite3VdbeMakeLabel(v);
3179      testcase( jumpIfNull==0 );
3180      sqlite3ExprCachePush(pParse);
3181      sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,jumpIfNull^SQLITE_JUMPIFNULL);
3182      sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
3183      sqlite3VdbeResolveLabel(v, d2);
3184      sqlite3ExprCachePop(pParse, 1);
3185      break;
3186    }
3187    case TK_OR: {
3188      testcase( jumpIfNull==0 );
3189      sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
3190      sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
3191      break;
3192    }
3193    case TK_NOT: {
3194      testcase( jumpIfNull==0 );
3195      sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
3196      break;
3197    }
3198    case TK_LT:
3199    case TK_LE:
3200    case TK_GT:
3201    case TK_GE:
3202    case TK_NE:
3203    case TK_EQ: {
3204      assert( TK_LT==OP_Lt );
3205      assert( TK_LE==OP_Le );
3206      assert( TK_GT==OP_Gt );
3207      assert( TK_GE==OP_Ge );
3208      assert( TK_EQ==OP_Eq );
3209      assert( TK_NE==OP_Ne );
3210      testcase( op==TK_LT );
3211      testcase( op==TK_LE );
3212      testcase( op==TK_GT );
3213      testcase( op==TK_GE );
3214      testcase( op==TK_EQ );
3215      testcase( op==TK_NE );
3216      testcase( jumpIfNull==0 );
3217      r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3218      r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3219      codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
3220                  r1, r2, dest, jumpIfNull);
3221      testcase( regFree1==0 );
3222      testcase( regFree2==0 );
3223      break;
3224    }
3225    case TK_IS:
3226    case TK_ISNOT: {
3227      testcase( op==TK_IS );
3228      testcase( op==TK_ISNOT );
3229      r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3230      r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3231      op = (op==TK_IS) ? TK_EQ : TK_NE;
3232      codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
3233                  r1, r2, dest, SQLITE_NULLEQ);
3234      testcase( regFree1==0 );
3235      testcase( regFree2==0 );
3236      break;
3237    }
3238    case TK_ISNULL:
3239    case TK_NOTNULL: {
3240      assert( TK_ISNULL==OP_IsNull );
3241      assert( TK_NOTNULL==OP_NotNull );
3242      testcase( op==TK_ISNULL );
3243      testcase( op==TK_NOTNULL );
3244      r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3245      sqlite3VdbeAddOp2(v, op, r1, dest);
3246      testcase( regFree1==0 );
3247      break;
3248    }
3249    case TK_BETWEEN: {
3250      testcase( jumpIfNull==0 );
3251      exprCodeBetween(pParse, pExpr, dest, 1, jumpIfNull);
3252      break;
3253    }
3254#ifndef SQLITE_OMIT_SUBQUERY
3255    case TK_IN: {
3256      int destIfFalse = sqlite3VdbeMakeLabel(v);
3257      int destIfNull = jumpIfNull ? dest : destIfFalse;
3258      sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
3259      sqlite3VdbeAddOp2(v, OP_Goto, 0, dest);
3260      sqlite3VdbeResolveLabel(v, destIfFalse);
3261      break;
3262    }
3263#endif
3264    default: {
3265      r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
3266      sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0);
3267      testcase( regFree1==0 );
3268      testcase( jumpIfNull==0 );
3269      break;
3270    }
3271  }
3272  sqlite3ReleaseTempReg(pParse, regFree1);
3273  sqlite3ReleaseTempReg(pParse, regFree2);
3274}
3275
3276/*
3277** Generate code for a boolean expression such that a jump is made
3278** to the label "dest" if the expression is false but execution
3279** continues straight thru if the expression is true.
3280**
3281** If the expression evaluates to NULL (neither true nor false) then
3282** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull
3283** is 0.
3284*/
3285void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
3286  Vdbe *v = pParse->pVdbe;
3287  int op = 0;
3288  int regFree1 = 0;
3289  int regFree2 = 0;
3290  int r1, r2;
3291
3292  assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
3293  if( NEVER(v==0) ) return; /* Existance of VDBE checked by caller */
3294  if( pExpr==0 )    return;
3295
3296  /* The value of pExpr->op and op are related as follows:
3297  **
3298  **       pExpr->op            op
3299  **       ---------          ----------
3300  **       TK_ISNULL          OP_NotNull
3301  **       TK_NOTNULL         OP_IsNull
3302  **       TK_NE              OP_Eq
3303  **       TK_EQ              OP_Ne
3304  **       TK_GT              OP_Le
3305  **       TK_LE              OP_Gt
3306  **       TK_GE              OP_Lt
3307  **       TK_LT              OP_Ge
3308  **
3309  ** For other values of pExpr->op, op is undefined and unused.
3310  ** The value of TK_ and OP_ constants are arranged such that we
3311  ** can compute the mapping above using the following expression.
3312  ** Assert()s verify that the computation is correct.
3313  */
3314  op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1);
3315
3316  /* Verify correct alignment of TK_ and OP_ constants
3317  */
3318  assert( pExpr->op!=TK_ISNULL || op==OP_NotNull );
3319  assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull );
3320  assert( pExpr->op!=TK_NE || op==OP_Eq );
3321  assert( pExpr->op!=TK_EQ || op==OP_Ne );
3322  assert( pExpr->op!=TK_LT || op==OP_Ge );
3323  assert( pExpr->op!=TK_LE || op==OP_Gt );
3324  assert( pExpr->op!=TK_GT || op==OP_Le );
3325  assert( pExpr->op!=TK_GE || op==OP_Lt );
3326
3327  switch( pExpr->op ){
3328    case TK_AND: {
3329      testcase( jumpIfNull==0 );
3330      sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
3331      sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
3332      break;
3333    }
3334    case TK_OR: {
3335      int d2 = sqlite3VdbeMakeLabel(v);
3336      testcase( jumpIfNull==0 );
3337      sqlite3ExprCachePush(pParse);
3338      sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL);
3339      sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
3340      sqlite3VdbeResolveLabel(v, d2);
3341      sqlite3ExprCachePop(pParse, 1);
3342      break;
3343    }
3344    case TK_NOT: {
3345      testcase( jumpIfNull==0 );
3346      sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
3347      break;
3348    }
3349    case TK_LT:
3350    case TK_LE:
3351    case TK_GT:
3352    case TK_GE:
3353    case TK_NE:
3354    case TK_EQ: {
3355      testcase( op==TK_LT );
3356      testcase( op==TK_LE );
3357      testcase( op==TK_GT );
3358      testcase( op==TK_GE );
3359      testcase( op==TK_EQ );
3360      testcase( op==TK_NE );
3361      testcase( jumpIfNull==0 );
3362      r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3363      r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3364      codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
3365                  r1, r2, dest, jumpIfNull);
3366      testcase( regFree1==0 );
3367      testcase( regFree2==0 );
3368      break;
3369    }
3370    case TK_IS:
3371    case TK_ISNOT: {
3372      testcase( pExpr->op==TK_IS );
3373      testcase( pExpr->op==TK_ISNOT );
3374      r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3375      r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3376      op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ;
3377      codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
3378                  r1, r2, dest, SQLITE_NULLEQ);
3379      testcase( regFree1==0 );
3380      testcase( regFree2==0 );
3381      break;
3382    }
3383    case TK_ISNULL:
3384    case TK_NOTNULL: {
3385      testcase( op==TK_ISNULL );
3386      testcase( op==TK_NOTNULL );
3387      r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3388      sqlite3VdbeAddOp2(v, op, r1, dest);
3389      testcase( regFree1==0 );
3390      break;
3391    }
3392    case TK_BETWEEN: {
3393      testcase( jumpIfNull==0 );
3394      exprCodeBetween(pParse, pExpr, dest, 0, jumpIfNull);
3395      break;
3396    }
3397#ifndef SQLITE_OMIT_SUBQUERY
3398    case TK_IN: {
3399      if( jumpIfNull ){
3400        sqlite3ExprCodeIN(pParse, pExpr, dest, dest);
3401      }else{
3402        int destIfNull = sqlite3VdbeMakeLabel(v);
3403        sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull);
3404        sqlite3VdbeResolveLabel(v, destIfNull);
3405      }
3406      break;
3407    }
3408#endif
3409    default: {
3410      r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
3411      sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0);
3412      testcase( regFree1==0 );
3413      testcase( jumpIfNull==0 );
3414      break;
3415    }
3416  }
3417  sqlite3ReleaseTempReg(pParse, regFree1);
3418  sqlite3ReleaseTempReg(pParse, regFree2);
3419}
3420
3421/*
3422** Do a deep comparison of two expression trees.  Return 0 if the two
3423** expressions are completely identical.  Return 1 if they differ only
3424** by a COLLATE operator at the top level.  Return 2 if there are differences
3425** other than the top-level COLLATE operator.
3426**
3427** Sometimes this routine will return 2 even if the two expressions
3428** really are equivalent.  If we cannot prove that the expressions are
3429** identical, we return 2 just to be safe.  So if this routine
3430** returns 2, then you do not really know for certain if the two
3431** expressions are the same.  But if you get a 0 or 1 return, then you
3432** can be sure the expressions are the same.  In the places where
3433** this routine is used, it does not hurt to get an extra 2 - that
3434** just might result in some slightly slower code.  But returning
3435** an incorrect 0 or 1 could lead to a malfunction.
3436*/
3437int sqlite3ExprCompare(Expr *pA, Expr *pB){
3438  if( pA==0||pB==0 ){
3439    return pB==pA ? 0 : 2;
3440  }
3441  assert( !ExprHasAnyProperty(pA, EP_TokenOnly|EP_Reduced) );
3442  assert( !ExprHasAnyProperty(pB, EP_TokenOnly|EP_Reduced) );
3443  if( ExprHasProperty(pA, EP_xIsSelect) || ExprHasProperty(pB, EP_xIsSelect) ){
3444    return 2;
3445  }
3446  if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 2;
3447  if( pA->op!=pB->op ) return 2;
3448  if( sqlite3ExprCompare(pA->pLeft, pB->pLeft) ) return 2;
3449  if( sqlite3ExprCompare(pA->pRight, pB->pRight) ) return 2;
3450  if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList) ) return 2;
3451  if( pA->iTable!=pB->iTable || pA->iColumn!=pB->iColumn ) return 2;
3452  if( ExprHasProperty(pA, EP_IntValue) ){
3453    if( !ExprHasProperty(pB, EP_IntValue) || pA->u.iValue!=pB->u.iValue ){
3454      return 2;
3455    }
3456  }else if( pA->op!=TK_COLUMN && pA->u.zToken ){
3457    if( ExprHasProperty(pB, EP_IntValue) || NEVER(pB->u.zToken==0) ) return 2;
3458    if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ){
3459      return 2;
3460    }
3461  }
3462  if( (pA->flags & EP_ExpCollate)!=(pB->flags & EP_ExpCollate) ) return 1;
3463  if( (pA->flags & EP_ExpCollate)!=0 && pA->pColl!=pB->pColl ) return 2;
3464  return 0;
3465}
3466
3467/*
3468** Compare two ExprList objects.  Return 0 if they are identical and
3469** non-zero if they differ in any way.
3470**
3471** This routine might return non-zero for equivalent ExprLists.  The
3472** only consequence will be disabled optimizations.  But this routine
3473** must never return 0 if the two ExprList objects are different, or
3474** a malfunction will result.
3475**
3476** Two NULL pointers are considered to be the same.  But a NULL pointer
3477** always differs from a non-NULL pointer.
3478*/
3479int sqlite3ExprListCompare(ExprList *pA, ExprList *pB){
3480  int i;
3481  if( pA==0 && pB==0 ) return 0;
3482  if( pA==0 || pB==0 ) return 1;
3483  if( pA->nExpr!=pB->nExpr ) return 1;
3484  for(i=0; i<pA->nExpr; i++){
3485    Expr *pExprA = pA->a[i].pExpr;
3486    Expr *pExprB = pB->a[i].pExpr;
3487    if( pA->a[i].sortOrder!=pB->a[i].sortOrder ) return 1;
3488    if( sqlite3ExprCompare(pExprA, pExprB) ) return 1;
3489  }
3490  return 0;
3491}
3492
3493/*
3494** Add a new element to the pAggInfo->aCol[] array.  Return the index of
3495** the new element.  Return a negative number if malloc fails.
3496*/
3497static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){
3498  int i;
3499  pInfo->aCol = sqlite3ArrayAllocate(
3500       db,
3501       pInfo->aCol,
3502       sizeof(pInfo->aCol[0]),
3503       3,
3504       &pInfo->nColumn,
3505       &pInfo->nColumnAlloc,
3506       &i
3507  );
3508  return i;
3509}
3510
3511/*
3512** Add a new element to the pAggInfo->aFunc[] array.  Return the index of
3513** the new element.  Return a negative number if malloc fails.
3514*/
3515static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){
3516  int i;
3517  pInfo->aFunc = sqlite3ArrayAllocate(
3518       db,
3519       pInfo->aFunc,
3520       sizeof(pInfo->aFunc[0]),
3521       3,
3522       &pInfo->nFunc,
3523       &pInfo->nFuncAlloc,
3524       &i
3525  );
3526  return i;
3527}
3528
3529/*
3530** This is the xExprCallback for a tree walker.  It is used to
3531** implement sqlite3ExprAnalyzeAggregates().  See sqlite3ExprAnalyzeAggregates
3532** for additional information.
3533*/
3534static int analyzeAggregate(Walker *pWalker, Expr *pExpr){
3535  int i;
3536  NameContext *pNC = pWalker->u.pNC;
3537  Parse *pParse = pNC->pParse;
3538  SrcList *pSrcList = pNC->pSrcList;
3539  AggInfo *pAggInfo = pNC->pAggInfo;
3540
3541  switch( pExpr->op ){
3542    case TK_AGG_COLUMN:
3543    case TK_COLUMN: {
3544      testcase( pExpr->op==TK_AGG_COLUMN );
3545      testcase( pExpr->op==TK_COLUMN );
3546      /* Check to see if the column is in one of the tables in the FROM
3547      ** clause of the aggregate query */
3548      if( ALWAYS(pSrcList!=0) ){
3549        struct SrcList_item *pItem = pSrcList->a;
3550        for(i=0; i<pSrcList->nSrc; i++, pItem++){
3551          struct AggInfo_col *pCol;
3552          assert( !ExprHasAnyProperty(pExpr, EP_TokenOnly|EP_Reduced) );
3553          if( pExpr->iTable==pItem->iCursor ){
3554            /* If we reach this point, it means that pExpr refers to a table
3555            ** that is in the FROM clause of the aggregate query.
3556            **
3557            ** Make an entry for the column in pAggInfo->aCol[] if there
3558            ** is not an entry there already.
3559            */
3560            int k;
3561            pCol = pAggInfo->aCol;
3562            for(k=0; k<pAggInfo->nColumn; k++, pCol++){
3563              if( pCol->iTable==pExpr->iTable &&
3564                  pCol->iColumn==pExpr->iColumn ){
3565                break;
3566              }
3567            }
3568            if( (k>=pAggInfo->nColumn)
3569             && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0
3570            ){
3571              pCol = &pAggInfo->aCol[k];
3572              pCol->pTab = pExpr->pTab;
3573              pCol->iTable = pExpr->iTable;
3574              pCol->iColumn = pExpr->iColumn;
3575              pCol->iMem = ++pParse->nMem;
3576              pCol->iSorterColumn = -1;
3577              pCol->pExpr = pExpr;
3578              if( pAggInfo->pGroupBy ){
3579                int j, n;
3580                ExprList *pGB = pAggInfo->pGroupBy;
3581                struct ExprList_item *pTerm = pGB->a;
3582                n = pGB->nExpr;
3583                for(j=0; j<n; j++, pTerm++){
3584                  Expr *pE = pTerm->pExpr;
3585                  if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable &&
3586                      pE->iColumn==pExpr->iColumn ){
3587                    pCol->iSorterColumn = j;
3588                    break;
3589                  }
3590                }
3591              }
3592              if( pCol->iSorterColumn<0 ){
3593                pCol->iSorterColumn = pAggInfo->nSortingColumn++;
3594              }
3595            }
3596            /* There is now an entry for pExpr in pAggInfo->aCol[] (either
3597            ** because it was there before or because we just created it).
3598            ** Convert the pExpr to be a TK_AGG_COLUMN referring to that
3599            ** pAggInfo->aCol[] entry.
3600            */
3601            ExprSetIrreducible(pExpr);
3602            pExpr->pAggInfo = pAggInfo;
3603            pExpr->op = TK_AGG_COLUMN;
3604            pExpr->iAgg = (i16)k;
3605            break;
3606          } /* endif pExpr->iTable==pItem->iCursor */
3607        } /* end loop over pSrcList */
3608      }
3609      return WRC_Prune;
3610    }
3611    case TK_AGG_FUNCTION: {
3612      /* The pNC->nDepth==0 test causes aggregate functions in subqueries
3613      ** to be ignored */
3614      if( pNC->nDepth==0 ){
3615        /* Check to see if pExpr is a duplicate of another aggregate
3616        ** function that is already in the pAggInfo structure
3617        */
3618        struct AggInfo_func *pItem = pAggInfo->aFunc;
3619        for(i=0; i<pAggInfo->nFunc; i++, pItem++){
3620          if( sqlite3ExprCompare(pItem->pExpr, pExpr)==0 ){
3621            break;
3622          }
3623        }
3624        if( i>=pAggInfo->nFunc ){
3625          /* pExpr is original.  Make a new entry in pAggInfo->aFunc[]
3626          */
3627          u8 enc = ENC(pParse->db);
3628          i = addAggInfoFunc(pParse->db, pAggInfo);
3629          if( i>=0 ){
3630            assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
3631            pItem = &pAggInfo->aFunc[i];
3632            pItem->pExpr = pExpr;
3633            pItem->iMem = ++pParse->nMem;
3634            assert( !ExprHasProperty(pExpr, EP_IntValue) );
3635            pItem->pFunc = sqlite3FindFunction(pParse->db,
3636                   pExpr->u.zToken, sqlite3Strlen30(pExpr->u.zToken),
3637                   pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0);
3638            if( pExpr->flags & EP_Distinct ){
3639              pItem->iDistinct = pParse->nTab++;
3640            }else{
3641              pItem->iDistinct = -1;
3642            }
3643          }
3644        }
3645        /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry
3646        */
3647        assert( !ExprHasAnyProperty(pExpr, EP_TokenOnly|EP_Reduced) );
3648        ExprSetIrreducible(pExpr);
3649        pExpr->iAgg = (i16)i;
3650        pExpr->pAggInfo = pAggInfo;
3651        return WRC_Prune;
3652      }
3653    }
3654  }
3655  return WRC_Continue;
3656}
3657static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){
3658  NameContext *pNC = pWalker->u.pNC;
3659  if( pNC->nDepth==0 ){
3660    pNC->nDepth++;
3661    sqlite3WalkSelect(pWalker, pSelect);
3662    pNC->nDepth--;
3663    return WRC_Prune;
3664  }else{
3665    return WRC_Continue;
3666  }
3667}
3668
3669/*
3670** Analyze the given expression looking for aggregate functions and
3671** for variables that need to be added to the pParse->aAgg[] array.
3672** Make additional entries to the pParse->aAgg[] array as necessary.
3673**
3674** This routine should only be called after the expression has been
3675** analyzed by sqlite3ResolveExprNames().
3676*/
3677void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){
3678  Walker w;
3679  w.xExprCallback = analyzeAggregate;
3680  w.xSelectCallback = analyzeAggregatesInSelect;
3681  w.u.pNC = pNC;
3682  assert( pNC->pSrcList!=0 );
3683  sqlite3WalkExpr(&w, pExpr);
3684}
3685
3686/*
3687** Call sqlite3ExprAnalyzeAggregates() for every expression in an
3688** expression list.  Return the number of errors.
3689**
3690** If an error is found, the analysis is cut short.
3691*/
3692void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){
3693  struct ExprList_item *pItem;
3694  int i;
3695  if( pList ){
3696    for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
3697      sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr);
3698    }
3699  }
3700}
3701
3702/*
3703** Allocate a single new register for use to hold some intermediate result.
3704*/
3705int sqlite3GetTempReg(Parse *pParse){
3706  if( pParse->nTempReg==0 ){
3707    return ++pParse->nMem;
3708  }
3709  return pParse->aTempReg[--pParse->nTempReg];
3710}
3711
3712/*
3713** Deallocate a register, making available for reuse for some other
3714** purpose.
3715**
3716** If a register is currently being used by the column cache, then
3717** the dallocation is deferred until the column cache line that uses
3718** the register becomes stale.
3719*/
3720void sqlite3ReleaseTempReg(Parse *pParse, int iReg){
3721  if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){
3722    int i;
3723    struct yColCache *p;
3724    for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
3725      if( p->iReg==iReg ){
3726        p->tempReg = 1;
3727        return;
3728      }
3729    }
3730    pParse->aTempReg[pParse->nTempReg++] = iReg;
3731  }
3732}
3733
3734/*
3735** Allocate or deallocate a block of nReg consecutive registers
3736*/
3737int sqlite3GetTempRange(Parse *pParse, int nReg){
3738  int i, n;
3739  i = pParse->iRangeReg;
3740  n = pParse->nRangeReg;
3741  if( nReg<=n ){
3742    assert( !usedAsColumnCache(pParse, i, i+n-1) );
3743    pParse->iRangeReg += nReg;
3744    pParse->nRangeReg -= nReg;
3745  }else{
3746    i = pParse->nMem+1;
3747    pParse->nMem += nReg;
3748  }
3749  return i;
3750}
3751void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){
3752  sqlite3ExprCacheRemove(pParse, iReg, nReg);
3753  if( nReg>pParse->nRangeReg ){
3754    pParse->nRangeReg = nReg;
3755    pParse->iRangeReg = iReg;
3756  }
3757}
3758