1// Copyright 2012 the V8 project authors. All rights reserved.
2// Redistribution and use in source and binary forms, with or without
3// modification, are permitted provided that the following conditions are
4// met:
5//
6//     * Redistributions of source code must retain the above copyright
7//       notice, this list of conditions and the following disclaimer.
8//     * Redistributions in binary form must reproduce the above
9//       copyright notice, this list of conditions and the following
10//       disclaimer in the documentation and/or other materials provided
11//       with the distribution.
12//     * Neither the name of Google Inc. nor the names of its
13//       contributors may be used to endorse or promote products derived
14//       from this software without specific prior written permission.
15//
16// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28
29// Declares a Simulator for ARM instructions if we are not generating a native
30// ARM binary. This Simulator allows us to run and debug ARM code generation on
31// regular desktop machines.
32// V8 calls into generated code by "calling" the CALL_GENERATED_CODE macro,
33// which will start execution in the Simulator or forwards to the real entry
34// on a ARM HW platform.
35
36#ifndef V8_ARM_SIMULATOR_ARM_H_
37#define V8_ARM_SIMULATOR_ARM_H_
38
39#include "allocation.h"
40
41#if !defined(USE_SIMULATOR)
42// Running without a simulator on a native arm platform.
43
44namespace v8 {
45namespace internal {
46
47// When running without a simulator we call the entry directly.
48#define CALL_GENERATED_CODE(entry, p0, p1, p2, p3, p4) \
49  (entry(p0, p1, p2, p3, p4))
50
51typedef int (*arm_regexp_matcher)(String*, int, const byte*, const byte*,
52                                  void*, int*, int, Address, int, Isolate*);
53
54
55// Call the generated regexp code directly. The code at the entry address
56// should act as a function matching the type arm_regexp_matcher.
57// The fifth argument is a dummy that reserves the space used for
58// the return address added by the ExitFrame in native calls.
59#define CALL_GENERATED_REGEXP_CODE(entry, p0, p1, p2, p3, p4, p5, p6, p7, p8) \
60  (FUNCTION_CAST<arm_regexp_matcher>(entry)(                              \
61      p0, p1, p2, p3, NULL, p4, p5, p6, p7, p8))
62
63#define TRY_CATCH_FROM_ADDRESS(try_catch_address) \
64  reinterpret_cast<TryCatch*>(try_catch_address)
65
66// The stack limit beyond which we will throw stack overflow errors in
67// generated code. Because generated code on arm uses the C stack, we
68// just use the C stack limit.
69class SimulatorStack : public v8::internal::AllStatic {
70 public:
71  static inline uintptr_t JsLimitFromCLimit(v8::internal::Isolate* isolate,
72                                            uintptr_t c_limit) {
73    USE(isolate);
74    return c_limit;
75  }
76
77  static inline uintptr_t RegisterCTryCatch(uintptr_t try_catch_address) {
78    return try_catch_address;
79  }
80
81  static inline void UnregisterCTryCatch() { }
82};
83
84} }  // namespace v8::internal
85
86#else  // !defined(USE_SIMULATOR)
87// Running with a simulator.
88
89#include "constants-arm.h"
90#include "hashmap.h"
91#include "assembler.h"
92
93namespace v8 {
94namespace internal {
95
96class CachePage {
97 public:
98  static const int LINE_VALID = 0;
99  static const int LINE_INVALID = 1;
100
101  static const int kPageShift = 12;
102  static const int kPageSize = 1 << kPageShift;
103  static const int kPageMask = kPageSize - 1;
104  static const int kLineShift = 2;  // The cache line is only 4 bytes right now.
105  static const int kLineLength = 1 << kLineShift;
106  static const int kLineMask = kLineLength - 1;
107
108  CachePage() {
109    memset(&validity_map_, LINE_INVALID, sizeof(validity_map_));
110  }
111
112  char* ValidityByte(int offset) {
113    return &validity_map_[offset >> kLineShift];
114  }
115
116  char* CachedData(int offset) {
117    return &data_[offset];
118  }
119
120 private:
121  char data_[kPageSize];   // The cached data.
122  static const int kValidityMapSize = kPageSize >> kLineShift;
123  char validity_map_[kValidityMapSize];  // One byte per line.
124};
125
126
127class Simulator {
128 public:
129  friend class ArmDebugger;
130  enum Register {
131    no_reg = -1,
132    r0 = 0, r1, r2, r3, r4, r5, r6, r7,
133    r8, r9, r10, r11, r12, r13, r14, r15,
134    num_registers,
135    sp = 13,
136    lr = 14,
137    pc = 15,
138    s0 = 0, s1, s2, s3, s4, s5, s6, s7,
139    s8, s9, s10, s11, s12, s13, s14, s15,
140    s16, s17, s18, s19, s20, s21, s22, s23,
141    s24, s25, s26, s27, s28, s29, s30, s31,
142    num_s_registers = 32,
143    d0 = 0, d1, d2, d3, d4, d5, d6, d7,
144    d8, d9, d10, d11, d12, d13, d14, d15,
145    d16, d17, d18, d19, d20, d21, d22, d23,
146    d24, d25, d26, d27, d28, d29, d30, d31,
147    num_d_registers = 32,
148    q0 = 0, q1, q2, q3, q4, q5, q6, q7,
149    q8, q9, q10, q11, q12, q13, q14, q15,
150    num_q_registers = 16
151  };
152
153  explicit Simulator(Isolate* isolate);
154  ~Simulator();
155
156  // The currently executing Simulator instance. Potentially there can be one
157  // for each native thread.
158  static Simulator* current(v8::internal::Isolate* isolate);
159
160  // Accessors for register state. Reading the pc value adheres to the ARM
161  // architecture specification and is off by a 8 from the currently executing
162  // instruction.
163  void set_register(int reg, int32_t value);
164  int32_t get_register(int reg) const;
165  double get_double_from_register_pair(int reg);
166  void set_dw_register(int dreg, const int* dbl);
167
168  // Support for VFP.
169  void get_d_register(int dreg, uint64_t* value);
170  void set_d_register(int dreg, const uint64_t* value);
171  void get_d_register(int dreg, uint32_t* value);
172  void set_d_register(int dreg, const uint32_t* value);
173  void get_q_register(int qreg, uint64_t* value);
174  void set_q_register(int qreg, const uint64_t* value);
175  void get_q_register(int qreg, uint32_t* value);
176  void set_q_register(int qreg, const uint32_t* value);
177
178  void set_s_register(int reg, unsigned int value);
179  unsigned int get_s_register(int reg) const;
180
181  void set_d_register_from_double(int dreg, const double& dbl) {
182    SetVFPRegister<double, 2>(dreg, dbl);
183  }
184
185  double get_double_from_d_register(int dreg) {
186    return GetFromVFPRegister<double, 2>(dreg);
187  }
188
189  void set_s_register_from_float(int sreg, const float flt) {
190    SetVFPRegister<float, 1>(sreg, flt);
191  }
192
193  float get_float_from_s_register(int sreg) {
194    return GetFromVFPRegister<float, 1>(sreg);
195  }
196
197  void set_s_register_from_sinteger(int sreg, const int sint) {
198    SetVFPRegister<int, 1>(sreg, sint);
199  }
200
201  int get_sinteger_from_s_register(int sreg) {
202    return GetFromVFPRegister<int, 1>(sreg);
203  }
204
205  // Special case of set_register and get_register to access the raw PC value.
206  void set_pc(int32_t value);
207  int32_t get_pc() const;
208
209  // Accessor to the internal simulator stack area.
210  uintptr_t StackLimit() const;
211
212  // Executes ARM instructions until the PC reaches end_sim_pc.
213  void Execute();
214
215  // Call on program start.
216  static void Initialize(Isolate* isolate);
217
218  // V8 generally calls into generated JS code with 5 parameters and into
219  // generated RegExp code with 7 parameters. This is a convenience function,
220  // which sets up the simulator state and grabs the result on return.
221  int32_t Call(byte* entry, int argument_count, ...);
222  // Alternative: call a 2-argument double function.
223  double CallFP(byte* entry, double d0, double d1);
224
225  // Push an address onto the JS stack.
226  uintptr_t PushAddress(uintptr_t address);
227
228  // Pop an address from the JS stack.
229  uintptr_t PopAddress();
230
231  // Debugger input.
232  void set_last_debugger_input(char* input);
233  char* last_debugger_input() { return last_debugger_input_; }
234
235  // ICache checking.
236  static void FlushICache(v8::internal::HashMap* i_cache, void* start,
237                          size_t size);
238
239  // Returns true if pc register contains one of the 'special_values' defined
240  // below (bad_lr, end_sim_pc).
241  bool has_bad_pc() const;
242
243  // EABI variant for double arguments in use.
244  bool use_eabi_hardfloat() {
245#if USE_EABI_HARDFLOAT
246    return true;
247#else
248    return false;
249#endif
250  }
251
252 private:
253  enum special_values {
254    // Known bad pc value to ensure that the simulator does not execute
255    // without being properly setup.
256    bad_lr = -1,
257    // A pc value used to signal the simulator to stop execution.  Generally
258    // the lr is set to this value on transition from native C code to
259    // simulated execution, so that the simulator can "return" to the native
260    // C code.
261    end_sim_pc = -2
262  };
263
264  // Unsupported instructions use Format to print an error and stop execution.
265  void Format(Instruction* instr, const char* format);
266
267  // Checks if the current instruction should be executed based on its
268  // condition bits.
269  bool ConditionallyExecute(Instruction* instr);
270
271  // Helper functions to set the conditional flags in the architecture state.
272  void SetNZFlags(int32_t val);
273  void SetCFlag(bool val);
274  void SetVFlag(bool val);
275  bool CarryFrom(int32_t left, int32_t right, int32_t carry = 0);
276  bool BorrowFrom(int32_t left, int32_t right);
277  bool OverflowFrom(int32_t alu_out,
278                    int32_t left,
279                    int32_t right,
280                    bool addition);
281
282  inline int GetCarry() {
283    return c_flag_ ? 1 : 0;
284  };
285
286  // Support for VFP.
287  void Compute_FPSCR_Flags(double val1, double val2);
288  void Copy_FPSCR_to_APSR();
289  inline double canonicalizeNaN(double value);
290
291  // Helper functions to decode common "addressing" modes
292  int32_t GetShiftRm(Instruction* instr, bool* carry_out);
293  int32_t GetImm(Instruction* instr, bool* carry_out);
294  int32_t ProcessPU(Instruction* instr,
295                    int num_regs,
296                    int operand_size,
297                    intptr_t* start_address,
298                    intptr_t* end_address);
299  void HandleRList(Instruction* instr, bool load);
300  void HandleVList(Instruction* inst);
301  void SoftwareInterrupt(Instruction* instr);
302
303  // Stop helper functions.
304  inline bool isStopInstruction(Instruction* instr);
305  inline bool isWatchedStop(uint32_t bkpt_code);
306  inline bool isEnabledStop(uint32_t bkpt_code);
307  inline void EnableStop(uint32_t bkpt_code);
308  inline void DisableStop(uint32_t bkpt_code);
309  inline void IncreaseStopCounter(uint32_t bkpt_code);
310  void PrintStopInfo(uint32_t code);
311
312  // Read and write memory.
313  inline uint8_t ReadBU(int32_t addr);
314  inline int8_t ReadB(int32_t addr);
315  inline void WriteB(int32_t addr, uint8_t value);
316  inline void WriteB(int32_t addr, int8_t value);
317
318  inline uint16_t ReadHU(int32_t addr, Instruction* instr);
319  inline int16_t ReadH(int32_t addr, Instruction* instr);
320  // Note: Overloaded on the sign of the value.
321  inline void WriteH(int32_t addr, uint16_t value, Instruction* instr);
322  inline void WriteH(int32_t addr, int16_t value, Instruction* instr);
323
324  inline int ReadW(int32_t addr, Instruction* instr);
325  inline void WriteW(int32_t addr, int value, Instruction* instr);
326
327  int32_t* ReadDW(int32_t addr);
328  void WriteDW(int32_t addr, int32_t value1, int32_t value2);
329
330  // Executing is handled based on the instruction type.
331  // Both type 0 and type 1 rolled into one.
332  void DecodeType01(Instruction* instr);
333  void DecodeType2(Instruction* instr);
334  void DecodeType3(Instruction* instr);
335  void DecodeType4(Instruction* instr);
336  void DecodeType5(Instruction* instr);
337  void DecodeType6(Instruction* instr);
338  void DecodeType7(Instruction* instr);
339
340  // Support for VFP.
341  void DecodeTypeVFP(Instruction* instr);
342  void DecodeType6CoprocessorIns(Instruction* instr);
343  void DecodeSpecialCondition(Instruction* instr);
344
345  void DecodeVMOVBetweenCoreAndSinglePrecisionRegisters(Instruction* instr);
346  void DecodeVCMP(Instruction* instr);
347  void DecodeVCVTBetweenDoubleAndSingle(Instruction* instr);
348  void DecodeVCVTBetweenFloatingPointAndInteger(Instruction* instr);
349
350  // Executes one instruction.
351  void InstructionDecode(Instruction* instr);
352
353  // ICache.
354  static void CheckICache(v8::internal::HashMap* i_cache, Instruction* instr);
355  static void FlushOnePage(v8::internal::HashMap* i_cache, intptr_t start,
356                           int size);
357  static CachePage* GetCachePage(v8::internal::HashMap* i_cache, void* page);
358
359  // Runtime call support.
360  static void* RedirectExternalReference(
361      void* external_function,
362      v8::internal::ExternalReference::Type type);
363
364  // Handle arguments and return value for runtime FP functions.
365  void GetFpArgs(double* x, double* y, int32_t* z);
366  void SetFpResult(const double& result);
367  void TrashCallerSaveRegisters();
368
369  template<class ReturnType, int register_size>
370      ReturnType GetFromVFPRegister(int reg_index);
371
372  template<class InputType, int register_size>
373      void SetVFPRegister(int reg_index, const InputType& value);
374
375  void CallInternal(byte* entry);
376
377  // Architecture state.
378  // Saturating instructions require a Q flag to indicate saturation.
379  // There is currently no way to read the CPSR directly, and thus read the Q
380  // flag, so this is left unimplemented.
381  int32_t registers_[16];
382  bool n_flag_;
383  bool z_flag_;
384  bool c_flag_;
385  bool v_flag_;
386
387  // VFP architecture state.
388  unsigned int vfp_registers_[num_d_registers * 2];
389  bool n_flag_FPSCR_;
390  bool z_flag_FPSCR_;
391  bool c_flag_FPSCR_;
392  bool v_flag_FPSCR_;
393
394  // VFP rounding mode. See ARM DDI 0406B Page A2-29.
395  VFPRoundingMode FPSCR_rounding_mode_;
396  bool FPSCR_default_NaN_mode_;
397
398  // VFP FP exception flags architecture state.
399  bool inv_op_vfp_flag_;
400  bool div_zero_vfp_flag_;
401  bool overflow_vfp_flag_;
402  bool underflow_vfp_flag_;
403  bool inexact_vfp_flag_;
404
405  // Simulator support.
406  char* stack_;
407  bool pc_modified_;
408  int icount_;
409
410  // Debugger input.
411  char* last_debugger_input_;
412
413  // Icache simulation
414  v8::internal::HashMap* i_cache_;
415
416  // Registered breakpoints.
417  Instruction* break_pc_;
418  Instr break_instr_;
419
420  v8::internal::Isolate* isolate_;
421
422  // A stop is watched if its code is less than kNumOfWatchedStops.
423  // Only watched stops support enabling/disabling and the counter feature.
424  static const uint32_t kNumOfWatchedStops = 256;
425
426  // Breakpoint is disabled if bit 31 is set.
427  static const uint32_t kStopDisabledBit = 1 << 31;
428
429  // A stop is enabled, meaning the simulator will stop when meeting the
430  // instruction, if bit 31 of watched_stops_[code].count is unset.
431  // The value watched_stops_[code].count & ~(1 << 31) indicates how many times
432  // the breakpoint was hit or gone through.
433  struct StopCountAndDesc {
434    uint32_t count;
435    char* desc;
436  };
437  StopCountAndDesc watched_stops_[kNumOfWatchedStops];
438};
439
440
441// When running with the simulator transition into simulated execution at this
442// point.
443#define CALL_GENERATED_CODE(entry, p0, p1, p2, p3, p4) \
444  reinterpret_cast<Object*>(Simulator::current(Isolate::Current())->Call( \
445      FUNCTION_ADDR(entry), 5, p0, p1, p2, p3, p4))
446
447#define CALL_GENERATED_REGEXP_CODE(entry, p0, p1, p2, p3, p4, p5, p6, p7, p8) \
448  Simulator::current(Isolate::Current())->Call( \
449      entry, 10, p0, p1, p2, p3, NULL, p4, p5, p6, p7, p8)
450
451#define TRY_CATCH_FROM_ADDRESS(try_catch_address)                              \
452  try_catch_address == NULL ?                                                  \
453      NULL : *(reinterpret_cast<TryCatch**>(try_catch_address))
454
455
456// The simulator has its own stack. Thus it has a different stack limit from
457// the C-based native code.  Setting the c_limit to indicate a very small
458// stack cause stack overflow errors, since the simulator ignores the input.
459// This is unlikely to be an issue in practice, though it might cause testing
460// trouble down the line.
461class SimulatorStack : public v8::internal::AllStatic {
462 public:
463  static inline uintptr_t JsLimitFromCLimit(v8::internal::Isolate* isolate,
464                                            uintptr_t c_limit) {
465    return Simulator::current(isolate)->StackLimit();
466  }
467
468  static inline uintptr_t RegisterCTryCatch(uintptr_t try_catch_address) {
469    Simulator* sim = Simulator::current(Isolate::Current());
470    return sim->PushAddress(try_catch_address);
471  }
472
473  static inline void UnregisterCTryCatch() {
474    Simulator::current(Isolate::Current())->PopAddress();
475  }
476};
477
478} }  // namespace v8::internal
479
480#endif  // !defined(USE_SIMULATOR)
481#endif  // V8_ARM_SIMULATOR_ARM_H_
482