1// Copyright (c) 1994-2006 Sun Microsystems Inc.
2// All Rights Reserved.
3//
4// Redistribution and use in source and binary forms, with or without
5// modification, are permitted provided that the following conditions are
6// met:
7//
8// - Redistributions of source code must retain the above copyright notice,
9// this list of conditions and the following disclaimer.
10//
11// - Redistribution in binary form must reproduce the above copyright
12// notice, this list of conditions and the following disclaimer in the
13// documentation and/or other materials provided with the distribution.
14//
15// - Neither the name of Sun Microsystems or the names of contributors may
16// be used to endorse or promote products derived from this software without
17// specific prior written permission.
18//
19// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
20// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
21// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
23// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
24// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
26// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
27// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
28// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
29// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30
31// The original source code covered by the above license above has been
32// modified significantly by Google Inc.
33// Copyright 2012 the V8 project authors. All rights reserved.
34
35
36#ifndef V8_MIPS_ASSEMBLER_MIPS_H_
37#define V8_MIPS_ASSEMBLER_MIPS_H_
38
39#include <stdio.h>
40#include "assembler.h"
41#include "constants-mips.h"
42#include "serialize.h"
43
44namespace v8 {
45namespace internal {
46
47// CPU Registers.
48//
49// 1) We would prefer to use an enum, but enum values are assignment-
50// compatible with int, which has caused code-generation bugs.
51//
52// 2) We would prefer to use a class instead of a struct but we don't like
53// the register initialization to depend on the particular initialization
54// order (which appears to be different on OS X, Linux, and Windows for the
55// installed versions of C++ we tried). Using a struct permits C-style
56// "initialization". Also, the Register objects cannot be const as this
57// forces initialization stubs in MSVC, making us dependent on initialization
58// order.
59//
60// 3) By not using an enum, we are possibly preventing the compiler from
61// doing certain constant folds, which may significantly reduce the
62// code generated for some assembly instructions (because they boil down
63// to a few constants). If this is a problem, we could change the code
64// such that we use an enum in optimized mode, and the struct in debug
65// mode. This way we get the compile-time error checking in debug mode
66// and best performance in optimized code.
67
68
69// -----------------------------------------------------------------------------
70// Implementation of Register and FPURegister.
71
72// Core register.
73struct Register {
74  static const int kNumRegisters = v8::internal::kNumRegisters;
75  static const int kMaxNumAllocatableRegisters = 14;  // v0 through t7.
76  static const int kSizeInBytes = 4;
77
78  inline static int NumAllocatableRegisters();
79
80  static int ToAllocationIndex(Register reg) {
81    return reg.code() - 2;  // zero_reg and 'at' are skipped.
82  }
83
84  static Register FromAllocationIndex(int index) {
85    ASSERT(index >= 0 && index < kMaxNumAllocatableRegisters);
86    return from_code(index + 2);  // zero_reg and 'at' are skipped.
87  }
88
89  static const char* AllocationIndexToString(int index) {
90    ASSERT(index >= 0 && index < kMaxNumAllocatableRegisters);
91    const char* const names[] = {
92      "v0",
93      "v1",
94      "a0",
95      "a1",
96      "a2",
97      "a3",
98      "t0",
99      "t1",
100      "t2",
101      "t3",
102      "t4",
103      "t5",
104      "t6",
105      "t7",
106    };
107    return names[index];
108  }
109
110  static Register from_code(int code) {
111    Register r = { code };
112    return r;
113  }
114
115  bool is_valid() const { return 0 <= code_ && code_ < kNumRegisters; }
116  bool is(Register reg) const { return code_ == reg.code_; }
117  int code() const {
118    ASSERT(is_valid());
119    return code_;
120  }
121  int bit() const {
122    ASSERT(is_valid());
123    return 1 << code_;
124  }
125
126  // Unfortunately we can't make this private in a struct.
127  int code_;
128};
129
130#define REGISTER(N, C) \
131  const int kRegister_ ## N ## _Code = C; \
132  const Register N = { C }
133
134REGISTER(no_reg, -1);
135// Always zero.
136REGISTER(zero_reg, 0);
137// at: Reserved for synthetic instructions.
138REGISTER(at, 1);
139// v0, v1: Used when returning multiple values from subroutines.
140REGISTER(v0, 2);
141REGISTER(v1, 3);
142// a0 - a4: Used to pass non-FP parameters.
143REGISTER(a0, 4);
144REGISTER(a1, 5);
145REGISTER(a2, 6);
146REGISTER(a3, 7);
147// t0 - t9: Can be used without reservation, act as temporary registers and are
148// allowed to be destroyed by subroutines.
149REGISTER(t0, 8);
150REGISTER(t1, 9);
151REGISTER(t2, 10);
152REGISTER(t3, 11);
153REGISTER(t4, 12);
154REGISTER(t5, 13);
155REGISTER(t6, 14);
156REGISTER(t7, 15);
157// s0 - s7: Subroutine register variables. Subroutines that write to these
158// registers must restore their values before exiting so that the caller can
159// expect the values to be preserved.
160REGISTER(s0, 16);
161REGISTER(s1, 17);
162REGISTER(s2, 18);
163REGISTER(s3, 19);
164REGISTER(s4, 20);
165REGISTER(s5, 21);
166REGISTER(s6, 22);
167REGISTER(s7, 23);
168REGISTER(t8, 24);
169REGISTER(t9, 25);
170// k0, k1: Reserved for system calls and interrupt handlers.
171REGISTER(k0, 26);
172REGISTER(k1, 27);
173// gp: Reserved.
174REGISTER(gp, 28);
175// sp: Stack pointer.
176REGISTER(sp, 29);
177// fp: Frame pointer.
178REGISTER(fp, 30);
179// ra: Return address pointer.
180REGISTER(ra, 31);
181
182#undef REGISTER
183
184
185int ToNumber(Register reg);
186
187Register ToRegister(int num);
188
189// Coprocessor register.
190struct FPURegister {
191  static const int kMaxNumRegisters = v8::internal::kNumFPURegisters;
192
193  // TODO(plind): Warning, inconsistent numbering here. kNumFPURegisters refers
194  // to number of 32-bit FPU regs, but kNumAllocatableRegisters refers to
195  // number of Double regs (64-bit regs, or FPU-reg-pairs).
196
197  // A few double registers are reserved: one as a scratch register and one to
198  // hold 0.0.
199  //  f28: 0.0
200  //  f30: scratch register.
201  static const int kNumReservedRegisters = 2;
202  static const int kMaxNumAllocatableRegisters = kMaxNumRegisters / 2 -
203      kNumReservedRegisters;
204
205  inline static int NumRegisters();
206  inline static int NumAllocatableRegisters();
207  inline static int ToAllocationIndex(FPURegister reg);
208  static const char* AllocationIndexToString(int index);
209
210  static FPURegister FromAllocationIndex(int index) {
211    ASSERT(index >= 0 && index < kMaxNumAllocatableRegisters);
212    return from_code(index * 2);
213  }
214
215  static FPURegister from_code(int code) {
216    FPURegister r = { code };
217    return r;
218  }
219
220  bool is_valid() const { return 0 <= code_ && code_ < kMaxNumRegisters ; }
221  bool is(FPURegister creg) const { return code_ == creg.code_; }
222  FPURegister low() const {
223    // Find low reg of a Double-reg pair, which is the reg itself.
224    ASSERT(code_ % 2 == 0);  // Specified Double reg must be even.
225    FPURegister reg;
226    reg.code_ = code_;
227    ASSERT(reg.is_valid());
228    return reg;
229  }
230  FPURegister high() const {
231    // Find high reg of a Doubel-reg pair, which is reg + 1.
232    ASSERT(code_ % 2 == 0);  // Specified Double reg must be even.
233    FPURegister reg;
234    reg.code_ = code_ + 1;
235    ASSERT(reg.is_valid());
236    return reg;
237  }
238
239  int code() const {
240    ASSERT(is_valid());
241    return code_;
242  }
243  int bit() const {
244    ASSERT(is_valid());
245    return 1 << code_;
246  }
247  void setcode(int f) {
248    code_ = f;
249    ASSERT(is_valid());
250  }
251  // Unfortunately we can't make this private in a struct.
252  int code_;
253};
254
255// V8 now supports the O32 ABI, and the FPU Registers are organized as 32
256// 32-bit registers, f0 through f31. When used as 'double' they are used
257// in pairs, starting with the even numbered register. So a double operation
258// on f0 really uses f0 and f1.
259// (Modern mips hardware also supports 32 64-bit registers, via setting
260// (priviledged) Status Register FR bit to 1. This is used by the N32 ABI,
261// but it is not in common use. Someday we will want to support this in v8.)
262
263// For O32 ABI, Floats and Doubles refer to same set of 32 32-bit registers.
264typedef FPURegister DoubleRegister;
265typedef FPURegister FloatRegister;
266
267const FPURegister no_freg = { -1 };
268
269const FPURegister f0 = { 0 };  // Return value in hard float mode.
270const FPURegister f1 = { 1 };
271const FPURegister f2 = { 2 };
272const FPURegister f3 = { 3 };
273const FPURegister f4 = { 4 };
274const FPURegister f5 = { 5 };
275const FPURegister f6 = { 6 };
276const FPURegister f7 = { 7 };
277const FPURegister f8 = { 8 };
278const FPURegister f9 = { 9 };
279const FPURegister f10 = { 10 };
280const FPURegister f11 = { 11 };
281const FPURegister f12 = { 12 };  // Arg 0 in hard float mode.
282const FPURegister f13 = { 13 };
283const FPURegister f14 = { 14 };  // Arg 1 in hard float mode.
284const FPURegister f15 = { 15 };
285const FPURegister f16 = { 16 };
286const FPURegister f17 = { 17 };
287const FPURegister f18 = { 18 };
288const FPURegister f19 = { 19 };
289const FPURegister f20 = { 20 };
290const FPURegister f21 = { 21 };
291const FPURegister f22 = { 22 };
292const FPURegister f23 = { 23 };
293const FPURegister f24 = { 24 };
294const FPURegister f25 = { 25 };
295const FPURegister f26 = { 26 };
296const FPURegister f27 = { 27 };
297const FPURegister f28 = { 28 };
298const FPURegister f29 = { 29 };
299const FPURegister f30 = { 30 };
300const FPURegister f31 = { 31 };
301
302// Register aliases.
303// cp is assumed to be a callee saved register.
304// Defined using #define instead of "static const Register&" because Clang
305// complains otherwise when a compilation unit that includes this header
306// doesn't use the variables.
307#define kRootRegister s6
308#define cp s7
309#define kLithiumScratchReg s3
310#define kLithiumScratchReg2 s4
311#define kLithiumScratchDouble f30
312#define kDoubleRegZero f28
313
314// FPU (coprocessor 1) control registers.
315// Currently only FCSR (#31) is implemented.
316struct FPUControlRegister {
317  bool is_valid() const { return code_ == kFCSRRegister; }
318  bool is(FPUControlRegister creg) const { return code_ == creg.code_; }
319  int code() const {
320    ASSERT(is_valid());
321    return code_;
322  }
323  int bit() const {
324    ASSERT(is_valid());
325    return 1 << code_;
326  }
327  void setcode(int f) {
328    code_ = f;
329    ASSERT(is_valid());
330  }
331  // Unfortunately we can't make this private in a struct.
332  int code_;
333};
334
335const FPUControlRegister no_fpucreg = { kInvalidFPUControlRegister };
336const FPUControlRegister FCSR = { kFCSRRegister };
337
338
339// -----------------------------------------------------------------------------
340// Machine instruction Operands.
341
342// Class Operand represents a shifter operand in data processing instructions.
343class Operand BASE_EMBEDDED {
344 public:
345  // Immediate.
346  INLINE(explicit Operand(int32_t immediate,
347         RelocInfo::Mode rmode = RelocInfo::NONE32));
348  INLINE(explicit Operand(const ExternalReference& f));
349  INLINE(explicit Operand(const char* s));
350  INLINE(explicit Operand(Object** opp));
351  INLINE(explicit Operand(Context** cpp));
352  explicit Operand(Handle<Object> handle);
353  INLINE(explicit Operand(Smi* value));
354
355  // Register.
356  INLINE(explicit Operand(Register rm));
357
358  // Return true if this is a register operand.
359  INLINE(bool is_reg() const);
360
361  inline int32_t immediate() const {
362    ASSERT(!is_reg());
363    return imm32_;
364  }
365
366  Register rm() const { return rm_; }
367
368 private:
369  Register rm_;
370  int32_t imm32_;  // Valid if rm_ == no_reg.
371  RelocInfo::Mode rmode_;
372
373  friend class Assembler;
374  friend class MacroAssembler;
375};
376
377
378// On MIPS we have only one adressing mode with base_reg + offset.
379// Class MemOperand represents a memory operand in load and store instructions.
380class MemOperand : public Operand {
381 public:
382  explicit MemOperand(Register rn, int32_t offset = 0);
383  int32_t offset() const { return offset_; }
384
385  bool OffsetIsInt16Encodable() const {
386    return is_int16(offset_);
387  }
388
389 private:
390  int32_t offset_;
391
392  friend class Assembler;
393};
394
395
396// CpuFeatures keeps track of which features are supported by the target CPU.
397// Supported features must be enabled by a CpuFeatureScope before use.
398class CpuFeatures : public AllStatic {
399 public:
400  // Detect features of the target CPU. Set safe defaults if the serializer
401  // is enabled (snapshots must be portable).
402  static void Probe();
403
404  // Check whether a feature is supported by the target CPU.
405  static bool IsSupported(CpuFeature f) {
406    ASSERT(initialized_);
407    return (supported_ & (1u << f)) != 0;
408  }
409
410  static bool IsFoundByRuntimeProbingOnly(CpuFeature f) {
411    ASSERT(initialized_);
412    return (found_by_runtime_probing_only_ &
413            (static_cast<uint64_t>(1) << f)) != 0;
414  }
415
416  static bool IsSafeForSnapshot(CpuFeature f) {
417    return (IsSupported(f) &&
418            (!Serializer::enabled() || !IsFoundByRuntimeProbingOnly(f)));
419  }
420
421 private:
422#ifdef DEBUG
423  static bool initialized_;
424#endif
425  static unsigned supported_;
426  static unsigned found_by_runtime_probing_only_;
427
428  friend class ExternalReference;
429  DISALLOW_COPY_AND_ASSIGN(CpuFeatures);
430};
431
432
433class Assembler : public AssemblerBase {
434 public:
435  // Create an assembler. Instructions and relocation information are emitted
436  // into a buffer, with the instructions starting from the beginning and the
437  // relocation information starting from the end of the buffer. See CodeDesc
438  // for a detailed comment on the layout (globals.h).
439  //
440  // If the provided buffer is NULL, the assembler allocates and grows its own
441  // buffer, and buffer_size determines the initial buffer size. The buffer is
442  // owned by the assembler and deallocated upon destruction of the assembler.
443  //
444  // If the provided buffer is not NULL, the assembler uses the provided buffer
445  // for code generation and assumes its size to be buffer_size. If the buffer
446  // is too small, a fatal error occurs. No deallocation of the buffer is done
447  // upon destruction of the assembler.
448  Assembler(Isolate* isolate, void* buffer, int buffer_size);
449  virtual ~Assembler() { }
450
451  // GetCode emits any pending (non-emitted) code and fills the descriptor
452  // desc. GetCode() is idempotent; it returns the same result if no other
453  // Assembler functions are invoked in between GetCode() calls.
454  void GetCode(CodeDesc* desc);
455
456  // Label operations & relative jumps (PPUM Appendix D).
457  //
458  // Takes a branch opcode (cc) and a label (L) and generates
459  // either a backward branch or a forward branch and links it
460  // to the label fixup chain. Usage:
461  //
462  // Label L;    // unbound label
463  // j(cc, &L);  // forward branch to unbound label
464  // bind(&L);   // bind label to the current pc
465  // j(cc, &L);  // backward branch to bound label
466  // bind(&L);   // illegal: a label may be bound only once
467  //
468  // Note: The same Label can be used for forward and backward branches
469  // but it may be bound only once.
470  void bind(Label* L);  // Binds an unbound label L to current code position.
471  // Determines if Label is bound and near enough so that branch instruction
472  // can be used to reach it, instead of jump instruction.
473  bool is_near(Label* L);
474
475  // Returns the branch offset to the given label from the current code
476  // position. Links the label to the current position if it is still unbound.
477  // Manages the jump elimination optimization if the second parameter is true.
478  int32_t branch_offset(Label* L, bool jump_elimination_allowed);
479  int32_t shifted_branch_offset(Label* L, bool jump_elimination_allowed) {
480    int32_t o = branch_offset(L, jump_elimination_allowed);
481    ASSERT((o & 3) == 0);   // Assert the offset is aligned.
482    return o >> 2;
483  }
484  uint32_t jump_address(Label* L);
485
486  // Puts a labels target address at the given position.
487  // The high 8 bits are set to zero.
488  void label_at_put(Label* L, int at_offset);
489
490  // Read/Modify the code target address in the branch/call instruction at pc.
491  static Address target_address_at(Address pc);
492  static void set_target_address_at(Address pc, Address target);
493
494  // Return the code target address at a call site from the return address
495  // of that call in the instruction stream.
496  inline static Address target_address_from_return_address(Address pc);
497
498  static void JumpLabelToJumpRegister(Address pc);
499
500  static void QuietNaN(HeapObject* nan);
501
502  // This sets the branch destination (which gets loaded at the call address).
503  // This is for calls and branches within generated code.  The serializer
504  // has already deserialized the lui/ori instructions etc.
505  inline static void deserialization_set_special_target_at(
506      Address instruction_payload, Address target) {
507    set_target_address_at(
508        instruction_payload - kInstructionsFor32BitConstant * kInstrSize,
509        target);
510  }
511
512  // This sets the branch destination.
513  // This is for calls and branches to runtime code.
514  inline static void set_external_target_at(Address instruction_payload,
515                                            Address target) {
516    set_target_address_at(instruction_payload, target);
517  }
518
519  // Size of an instruction.
520  static const int kInstrSize = sizeof(Instr);
521
522  // Difference between address of current opcode and target address offset.
523  static const int kBranchPCOffset = 4;
524
525  // Here we are patching the address in the LUI/ORI instruction pair.
526  // These values are used in the serialization process and must be zero for
527  // MIPS platform, as Code, Embedded Object or External-reference pointers
528  // are split across two consecutive instructions and don't exist separately
529  // in the code, so the serializer should not step forwards in memory after
530  // a target is resolved and written.
531  static const int kSpecialTargetSize = 0;
532
533  // Number of consecutive instructions used to store 32bit constant.
534  // Before jump-optimizations, this constant was used in
535  // RelocInfo::target_address_address() function to tell serializer address of
536  // the instruction that follows LUI/ORI instruction pair. Now, with new jump
537  // optimization, where jump-through-register instruction that usually
538  // follows LUI/ORI pair is substituted with J/JAL, this constant equals
539  // to 3 instructions (LUI+ORI+J/JAL/JR/JALR).
540  static const int kInstructionsFor32BitConstant = 3;
541
542  // Distance between the instruction referring to the address of the call
543  // target and the return address.
544  static const int kCallTargetAddressOffset = 4 * kInstrSize;
545
546  // Distance between start of patched return sequence and the emitted address
547  // to jump to.
548  static const int kPatchReturnSequenceAddressOffset = 0;
549
550  // Distance between start of patched debug break slot and the emitted address
551  // to jump to.
552  static const int kPatchDebugBreakSlotAddressOffset =  0 * kInstrSize;
553
554  // Difference between address of current opcode and value read from pc
555  // register.
556  static const int kPcLoadDelta = 4;
557
558  static const int kPatchDebugBreakSlotReturnOffset = 4 * kInstrSize;
559
560  // Number of instructions used for the JS return sequence. The constant is
561  // used by the debugger to patch the JS return sequence.
562  static const int kJSReturnSequenceInstructions = 7;
563  static const int kDebugBreakSlotInstructions = 4;
564  static const int kDebugBreakSlotLength =
565      kDebugBreakSlotInstructions * kInstrSize;
566
567
568  // ---------------------------------------------------------------------------
569  // Code generation.
570
571  // Insert the smallest number of nop instructions
572  // possible to align the pc offset to a multiple
573  // of m. m must be a power of 2 (>= 4).
574  void Align(int m);
575  // Aligns code to something that's optimal for a jump target for the platform.
576  void CodeTargetAlign();
577
578  // Different nop operations are used by the code generator to detect certain
579  // states of the generated code.
580  enum NopMarkerTypes {
581    NON_MARKING_NOP = 0,
582    DEBUG_BREAK_NOP,
583    // IC markers.
584    PROPERTY_ACCESS_INLINED,
585    PROPERTY_ACCESS_INLINED_CONTEXT,
586    PROPERTY_ACCESS_INLINED_CONTEXT_DONT_DELETE,
587    // Helper values.
588    LAST_CODE_MARKER,
589    FIRST_IC_MARKER = PROPERTY_ACCESS_INLINED,
590    // Code aging
591    CODE_AGE_MARKER_NOP = 6,
592    CODE_AGE_SEQUENCE_NOP
593  };
594
595  // Type == 0 is the default non-marking nop. For mips this is a
596  // sll(zero_reg, zero_reg, 0). We use rt_reg == at for non-zero
597  // marking, to avoid conflict with ssnop and ehb instructions.
598  void nop(unsigned int type = 0) {
599    ASSERT(type < 32);
600    Register nop_rt_reg = (type == 0) ? zero_reg : at;
601    sll(zero_reg, nop_rt_reg, type, true);
602  }
603
604
605  // --------Branch-and-jump-instructions----------
606  // We don't use likely variant of instructions.
607  void b(int16_t offset);
608  void b(Label* L) { b(branch_offset(L, false)>>2); }
609  void bal(int16_t offset);
610  void bal(Label* L) { bal(branch_offset(L, false)>>2); }
611
612  void beq(Register rs, Register rt, int16_t offset);
613  void beq(Register rs, Register rt, Label* L) {
614    beq(rs, rt, branch_offset(L, false) >> 2);
615  }
616  void bgez(Register rs, int16_t offset);
617  void bgezal(Register rs, int16_t offset);
618  void bgtz(Register rs, int16_t offset);
619  void blez(Register rs, int16_t offset);
620  void bltz(Register rs, int16_t offset);
621  void bltzal(Register rs, int16_t offset);
622  void bne(Register rs, Register rt, int16_t offset);
623  void bne(Register rs, Register rt, Label* L) {
624    bne(rs, rt, branch_offset(L, false)>>2);
625  }
626
627  // Never use the int16_t b(l)cond version with a branch offset
628  // instead of using the Label* version.
629
630  // Jump targets must be in the current 256 MB-aligned region. i.e. 28 bits.
631  void j(int32_t target);
632  void jal(int32_t target);
633  void jalr(Register rs, Register rd = ra);
634  void jr(Register target);
635  void j_or_jr(int32_t target, Register rs);
636  void jal_or_jalr(int32_t target, Register rs);
637
638
639  //-------Data-processing-instructions---------
640
641  // Arithmetic.
642  void addu(Register rd, Register rs, Register rt);
643  void subu(Register rd, Register rs, Register rt);
644  void mult(Register rs, Register rt);
645  void multu(Register rs, Register rt);
646  void div(Register rs, Register rt);
647  void divu(Register rs, Register rt);
648  void mul(Register rd, Register rs, Register rt);
649
650  void addiu(Register rd, Register rs, int32_t j);
651
652  // Logical.
653  void and_(Register rd, Register rs, Register rt);
654  void or_(Register rd, Register rs, Register rt);
655  void xor_(Register rd, Register rs, Register rt);
656  void nor(Register rd, Register rs, Register rt);
657
658  void andi(Register rd, Register rs, int32_t j);
659  void ori(Register rd, Register rs, int32_t j);
660  void xori(Register rd, Register rs, int32_t j);
661  void lui(Register rd, int32_t j);
662
663  // Shifts.
664  // Please note: sll(zero_reg, zero_reg, x) instructions are reserved as nop
665  // and may cause problems in normal code. coming_from_nop makes sure this
666  // doesn't happen.
667  void sll(Register rd, Register rt, uint16_t sa, bool coming_from_nop = false);
668  void sllv(Register rd, Register rt, Register rs);
669  void srl(Register rd, Register rt, uint16_t sa);
670  void srlv(Register rd, Register rt, Register rs);
671  void sra(Register rt, Register rd, uint16_t sa);
672  void srav(Register rt, Register rd, Register rs);
673  void rotr(Register rd, Register rt, uint16_t sa);
674  void rotrv(Register rd, Register rt, Register rs);
675
676
677  //------------Memory-instructions-------------
678
679  void lb(Register rd, const MemOperand& rs);
680  void lbu(Register rd, const MemOperand& rs);
681  void lh(Register rd, const MemOperand& rs);
682  void lhu(Register rd, const MemOperand& rs);
683  void lw(Register rd, const MemOperand& rs);
684  void lwl(Register rd, const MemOperand& rs);
685  void lwr(Register rd, const MemOperand& rs);
686  void sb(Register rd, const MemOperand& rs);
687  void sh(Register rd, const MemOperand& rs);
688  void sw(Register rd, const MemOperand& rs);
689  void swl(Register rd, const MemOperand& rs);
690  void swr(Register rd, const MemOperand& rs);
691
692
693  //-------------Misc-instructions--------------
694
695  // Break / Trap instructions.
696  void break_(uint32_t code, bool break_as_stop = false);
697  void stop(const char* msg, uint32_t code = kMaxStopCode);
698  void tge(Register rs, Register rt, uint16_t code);
699  void tgeu(Register rs, Register rt, uint16_t code);
700  void tlt(Register rs, Register rt, uint16_t code);
701  void tltu(Register rs, Register rt, uint16_t code);
702  void teq(Register rs, Register rt, uint16_t code);
703  void tne(Register rs, Register rt, uint16_t code);
704
705  // Move from HI/LO register.
706  void mfhi(Register rd);
707  void mflo(Register rd);
708
709  // Set on less than.
710  void slt(Register rd, Register rs, Register rt);
711  void sltu(Register rd, Register rs, Register rt);
712  void slti(Register rd, Register rs, int32_t j);
713  void sltiu(Register rd, Register rs, int32_t j);
714
715  // Conditional move.
716  void movz(Register rd, Register rs, Register rt);
717  void movn(Register rd, Register rs, Register rt);
718  void movt(Register rd, Register rs, uint16_t cc = 0);
719  void movf(Register rd, Register rs, uint16_t cc = 0);
720
721  // Bit twiddling.
722  void clz(Register rd, Register rs);
723  void ins_(Register rt, Register rs, uint16_t pos, uint16_t size);
724  void ext_(Register rt, Register rs, uint16_t pos, uint16_t size);
725
726  //--------Coprocessor-instructions----------------
727
728  // Load, store, and move.
729  void lwc1(FPURegister fd, const MemOperand& src);
730  void ldc1(FPURegister fd, const MemOperand& src);
731
732  void swc1(FPURegister fs, const MemOperand& dst);
733  void sdc1(FPURegister fs, const MemOperand& dst);
734
735  void mtc1(Register rt, FPURegister fs);
736  void mfc1(Register rt, FPURegister fs);
737
738  void ctc1(Register rt, FPUControlRegister fs);
739  void cfc1(Register rt, FPUControlRegister fs);
740
741  // Arithmetic.
742  void add_d(FPURegister fd, FPURegister fs, FPURegister ft);
743  void sub_d(FPURegister fd, FPURegister fs, FPURegister ft);
744  void mul_d(FPURegister fd, FPURegister fs, FPURegister ft);
745  void madd_d(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft);
746  void div_d(FPURegister fd, FPURegister fs, FPURegister ft);
747  void abs_d(FPURegister fd, FPURegister fs);
748  void mov_d(FPURegister fd, FPURegister fs);
749  void neg_d(FPURegister fd, FPURegister fs);
750  void sqrt_d(FPURegister fd, FPURegister fs);
751
752  // Conversion.
753  void cvt_w_s(FPURegister fd, FPURegister fs);
754  void cvt_w_d(FPURegister fd, FPURegister fs);
755  void trunc_w_s(FPURegister fd, FPURegister fs);
756  void trunc_w_d(FPURegister fd, FPURegister fs);
757  void round_w_s(FPURegister fd, FPURegister fs);
758  void round_w_d(FPURegister fd, FPURegister fs);
759  void floor_w_s(FPURegister fd, FPURegister fs);
760  void floor_w_d(FPURegister fd, FPURegister fs);
761  void ceil_w_s(FPURegister fd, FPURegister fs);
762  void ceil_w_d(FPURegister fd, FPURegister fs);
763
764  void cvt_l_s(FPURegister fd, FPURegister fs);
765  void cvt_l_d(FPURegister fd, FPURegister fs);
766  void trunc_l_s(FPURegister fd, FPURegister fs);
767  void trunc_l_d(FPURegister fd, FPURegister fs);
768  void round_l_s(FPURegister fd, FPURegister fs);
769  void round_l_d(FPURegister fd, FPURegister fs);
770  void floor_l_s(FPURegister fd, FPURegister fs);
771  void floor_l_d(FPURegister fd, FPURegister fs);
772  void ceil_l_s(FPURegister fd, FPURegister fs);
773  void ceil_l_d(FPURegister fd, FPURegister fs);
774
775  void cvt_s_w(FPURegister fd, FPURegister fs);
776  void cvt_s_l(FPURegister fd, FPURegister fs);
777  void cvt_s_d(FPURegister fd, FPURegister fs);
778
779  void cvt_d_w(FPURegister fd, FPURegister fs);
780  void cvt_d_l(FPURegister fd, FPURegister fs);
781  void cvt_d_s(FPURegister fd, FPURegister fs);
782
783  // Conditions and branches.
784  void c(FPUCondition cond, SecondaryField fmt,
785         FPURegister ft, FPURegister fs, uint16_t cc = 0);
786
787  void bc1f(int16_t offset, uint16_t cc = 0);
788  void bc1f(Label* L, uint16_t cc = 0) { bc1f(branch_offset(L, false)>>2, cc); }
789  void bc1t(int16_t offset, uint16_t cc = 0);
790  void bc1t(Label* L, uint16_t cc = 0) { bc1t(branch_offset(L, false)>>2, cc); }
791  void fcmp(FPURegister src1, const double src2, FPUCondition cond);
792
793  // Check the code size generated from label to here.
794  int SizeOfCodeGeneratedSince(Label* label) {
795    return pc_offset() - label->pos();
796  }
797
798  // Check the number of instructions generated from label to here.
799  int InstructionsGeneratedSince(Label* label) {
800    return SizeOfCodeGeneratedSince(label) / kInstrSize;
801  }
802
803  // Class for scoping postponing the trampoline pool generation.
804  class BlockTrampolinePoolScope {
805   public:
806    explicit BlockTrampolinePoolScope(Assembler* assem) : assem_(assem) {
807      assem_->StartBlockTrampolinePool();
808    }
809    ~BlockTrampolinePoolScope() {
810      assem_->EndBlockTrampolinePool();
811    }
812
813   private:
814    Assembler* assem_;
815
816    DISALLOW_IMPLICIT_CONSTRUCTORS(BlockTrampolinePoolScope);
817  };
818
819  // Class for postponing the assembly buffer growth. Typically used for
820  // sequences of instructions that must be emitted as a unit, before
821  // buffer growth (and relocation) can occur.
822  // This blocking scope is not nestable.
823  class BlockGrowBufferScope {
824   public:
825    explicit BlockGrowBufferScope(Assembler* assem) : assem_(assem) {
826      assem_->StartBlockGrowBuffer();
827    }
828    ~BlockGrowBufferScope() {
829      assem_->EndBlockGrowBuffer();
830    }
831
832    private:
833     Assembler* assem_;
834
835     DISALLOW_IMPLICIT_CONSTRUCTORS(BlockGrowBufferScope);
836  };
837
838  // Debugging.
839
840  // Mark address of the ExitJSFrame code.
841  void RecordJSReturn();
842
843  // Mark address of a debug break slot.
844  void RecordDebugBreakSlot();
845
846  // Record the AST id of the CallIC being compiled, so that it can be placed
847  // in the relocation information.
848  void SetRecordedAstId(TypeFeedbackId ast_id) {
849    ASSERT(recorded_ast_id_.IsNone());
850    recorded_ast_id_ = ast_id;
851  }
852
853  TypeFeedbackId RecordedAstId() {
854    ASSERT(!recorded_ast_id_.IsNone());
855    return recorded_ast_id_;
856  }
857
858  void ClearRecordedAstId() { recorded_ast_id_ = TypeFeedbackId::None(); }
859
860  // Record a comment relocation entry that can be used by a disassembler.
861  // Use --code-comments to enable.
862  void RecordComment(const char* msg);
863
864  static int RelocateInternalReference(byte* pc, intptr_t pc_delta);
865
866  // Writes a single byte or word of data in the code stream.  Used for
867  // inline tables, e.g., jump-tables.
868  void db(uint8_t data);
869  void dd(uint32_t data);
870
871  PositionsRecorder* positions_recorder() { return &positions_recorder_; }
872
873  // Postpone the generation of the trampoline pool for the specified number of
874  // instructions.
875  void BlockTrampolinePoolFor(int instructions);
876
877  // Check if there is less than kGap bytes available in the buffer.
878  // If this is the case, we need to grow the buffer before emitting
879  // an instruction or relocation information.
880  inline bool overflow() const { return pc_ >= reloc_info_writer.pos() - kGap; }
881
882  // Get the number of bytes available in the buffer.
883  inline int available_space() const { return reloc_info_writer.pos() - pc_; }
884
885  // Read/patch instructions.
886  static Instr instr_at(byte* pc) { return *reinterpret_cast<Instr*>(pc); }
887  static void instr_at_put(byte* pc, Instr instr) {
888    *reinterpret_cast<Instr*>(pc) = instr;
889  }
890  Instr instr_at(int pos) { return *reinterpret_cast<Instr*>(buffer_ + pos); }
891  void instr_at_put(int pos, Instr instr) {
892    *reinterpret_cast<Instr*>(buffer_ + pos) = instr;
893  }
894
895  // Check if an instruction is a branch of some kind.
896  static bool IsBranch(Instr instr);
897  static bool IsBeq(Instr instr);
898  static bool IsBne(Instr instr);
899
900  static bool IsJump(Instr instr);
901  static bool IsJ(Instr instr);
902  static bool IsLui(Instr instr);
903  static bool IsOri(Instr instr);
904
905  static bool IsJal(Instr instr);
906  static bool IsJr(Instr instr);
907  static bool IsJalr(Instr instr);
908
909  static bool IsNop(Instr instr, unsigned int type);
910  static bool IsPop(Instr instr);
911  static bool IsPush(Instr instr);
912  static bool IsLwRegFpOffset(Instr instr);
913  static bool IsSwRegFpOffset(Instr instr);
914  static bool IsLwRegFpNegOffset(Instr instr);
915  static bool IsSwRegFpNegOffset(Instr instr);
916
917  static Register GetRtReg(Instr instr);
918  static Register GetRsReg(Instr instr);
919  static Register GetRdReg(Instr instr);
920
921  static uint32_t GetRt(Instr instr);
922  static uint32_t GetRtField(Instr instr);
923  static uint32_t GetRs(Instr instr);
924  static uint32_t GetRsField(Instr instr);
925  static uint32_t GetRd(Instr instr);
926  static uint32_t GetRdField(Instr instr);
927  static uint32_t GetSa(Instr instr);
928  static uint32_t GetSaField(Instr instr);
929  static uint32_t GetOpcodeField(Instr instr);
930  static uint32_t GetFunction(Instr instr);
931  static uint32_t GetFunctionField(Instr instr);
932  static uint32_t GetImmediate16(Instr instr);
933  static uint32_t GetLabelConst(Instr instr);
934
935  static int32_t GetBranchOffset(Instr instr);
936  static bool IsLw(Instr instr);
937  static int16_t GetLwOffset(Instr instr);
938  static Instr SetLwOffset(Instr instr, int16_t offset);
939
940  static bool IsSw(Instr instr);
941  static Instr SetSwOffset(Instr instr, int16_t offset);
942  static bool IsAddImmediate(Instr instr);
943  static Instr SetAddImmediateOffset(Instr instr, int16_t offset);
944
945  static bool IsAndImmediate(Instr instr);
946  static bool IsEmittedConstant(Instr instr);
947
948  void CheckTrampolinePool();
949
950 protected:
951  // Relocation for a type-recording IC has the AST id added to it.  This
952  // member variable is a way to pass the information from the call site to
953  // the relocation info.
954  TypeFeedbackId recorded_ast_id_;
955
956  int32_t buffer_space() const { return reloc_info_writer.pos() - pc_; }
957
958  // Decode branch instruction at pos and return branch target pos.
959  int target_at(int32_t pos);
960
961  // Patch branch instruction at pos to branch to given branch target pos.
962  void target_at_put(int32_t pos, int32_t target_pos);
963
964  // Say if we need to relocate with this mode.
965  bool MustUseReg(RelocInfo::Mode rmode);
966
967  // Record reloc info for current pc_.
968  void RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data = 0);
969
970  // Block the emission of the trampoline pool before pc_offset.
971  void BlockTrampolinePoolBefore(int pc_offset) {
972    if (no_trampoline_pool_before_ < pc_offset)
973      no_trampoline_pool_before_ = pc_offset;
974  }
975
976  void StartBlockTrampolinePool() {
977    trampoline_pool_blocked_nesting_++;
978  }
979
980  void EndBlockTrampolinePool() {
981    trampoline_pool_blocked_nesting_--;
982  }
983
984  bool is_trampoline_pool_blocked() const {
985    return trampoline_pool_blocked_nesting_ > 0;
986  }
987
988  bool has_exception() const {
989    return internal_trampoline_exception_;
990  }
991
992  void DoubleAsTwoUInt32(double d, uint32_t* lo, uint32_t* hi);
993
994  bool is_trampoline_emitted() const {
995    return trampoline_emitted_;
996  }
997
998  // Temporarily block automatic assembly buffer growth.
999  void StartBlockGrowBuffer() {
1000    ASSERT(!block_buffer_growth_);
1001    block_buffer_growth_ = true;
1002  }
1003
1004  void EndBlockGrowBuffer() {
1005    ASSERT(block_buffer_growth_);
1006    block_buffer_growth_ = false;
1007  }
1008
1009  bool is_buffer_growth_blocked() const {
1010    return block_buffer_growth_;
1011  }
1012
1013 private:
1014  // Buffer size and constant pool distance are checked together at regular
1015  // intervals of kBufferCheckInterval emitted bytes.
1016  static const int kBufferCheckInterval = 1*KB/2;
1017
1018  // Code generation.
1019  // The relocation writer's position is at least kGap bytes below the end of
1020  // the generated instructions. This is so that multi-instruction sequences do
1021  // not have to check for overflow. The same is true for writes of large
1022  // relocation info entries.
1023  static const int kGap = 32;
1024
1025
1026  // Repeated checking whether the trampoline pool should be emitted is rather
1027  // expensive. By default we only check again once a number of instructions
1028  // has been generated.
1029  static const int kCheckConstIntervalInst = 32;
1030  static const int kCheckConstInterval = kCheckConstIntervalInst * kInstrSize;
1031
1032  int next_buffer_check_;  // pc offset of next buffer check.
1033
1034  // Emission of the trampoline pool may be blocked in some code sequences.
1035  int trampoline_pool_blocked_nesting_;  // Block emission if this is not zero.
1036  int no_trampoline_pool_before_;  // Block emission before this pc offset.
1037
1038  // Keep track of the last emitted pool to guarantee a maximal distance.
1039  int last_trampoline_pool_end_;  // pc offset of the end of the last pool.
1040
1041  // Automatic growth of the assembly buffer may be blocked for some sequences.
1042  bool block_buffer_growth_;  // Block growth when true.
1043
1044  // Relocation information generation.
1045  // Each relocation is encoded as a variable size value.
1046  static const int kMaxRelocSize = RelocInfoWriter::kMaxSize;
1047  RelocInfoWriter reloc_info_writer;
1048
1049  // The bound position, before this we cannot do instruction elimination.
1050  int last_bound_pos_;
1051
1052  // Code emission.
1053  inline void CheckBuffer();
1054  void GrowBuffer();
1055  inline void emit(Instr x);
1056  inline void CheckTrampolinePoolQuick();
1057
1058  // Instruction generation.
1059  // We have 3 different kind of encoding layout on MIPS.
1060  // However due to many different types of objects encoded in the same fields
1061  // we have quite a few aliases for each mode.
1062  // Using the same structure to refer to Register and FPURegister would spare a
1063  // few aliases, but mixing both does not look clean to me.
1064  // Anyway we could surely implement this differently.
1065
1066  void GenInstrRegister(Opcode opcode,
1067                        Register rs,
1068                        Register rt,
1069                        Register rd,
1070                        uint16_t sa = 0,
1071                        SecondaryField func = NULLSF);
1072
1073  void GenInstrRegister(Opcode opcode,
1074                        Register rs,
1075                        Register rt,
1076                        uint16_t msb,
1077                        uint16_t lsb,
1078                        SecondaryField func);
1079
1080  void GenInstrRegister(Opcode opcode,
1081                        SecondaryField fmt,
1082                        FPURegister ft,
1083                        FPURegister fs,
1084                        FPURegister fd,
1085                        SecondaryField func = NULLSF);
1086
1087  void GenInstrRegister(Opcode opcode,
1088                        FPURegister fr,
1089                        FPURegister ft,
1090                        FPURegister fs,
1091                        FPURegister fd,
1092                        SecondaryField func = NULLSF);
1093
1094  void GenInstrRegister(Opcode opcode,
1095                        SecondaryField fmt,
1096                        Register rt,
1097                        FPURegister fs,
1098                        FPURegister fd,
1099                        SecondaryField func = NULLSF);
1100
1101  void GenInstrRegister(Opcode opcode,
1102                        SecondaryField fmt,
1103                        Register rt,
1104                        FPUControlRegister fs,
1105                        SecondaryField func = NULLSF);
1106
1107
1108  void GenInstrImmediate(Opcode opcode,
1109                         Register rs,
1110                         Register rt,
1111                         int32_t  j);
1112  void GenInstrImmediate(Opcode opcode,
1113                         Register rs,
1114                         SecondaryField SF,
1115                         int32_t  j);
1116  void GenInstrImmediate(Opcode opcode,
1117                         Register r1,
1118                         FPURegister r2,
1119                         int32_t  j);
1120
1121
1122  void GenInstrJump(Opcode opcode,
1123                     uint32_t address);
1124
1125  // Helpers.
1126  void LoadRegPlusOffsetToAt(const MemOperand& src);
1127
1128  // Labels.
1129  void print(Label* L);
1130  void bind_to(Label* L, int pos);
1131  void next(Label* L);
1132
1133  // One trampoline consists of:
1134  // - space for trampoline slots,
1135  // - space for labels.
1136  //
1137  // Space for trampoline slots is equal to slot_count * 2 * kInstrSize.
1138  // Space for trampoline slots preceeds space for labels. Each label is of one
1139  // instruction size, so total amount for labels is equal to
1140  // label_count *  kInstrSize.
1141  class Trampoline {
1142   public:
1143    Trampoline() {
1144      start_ = 0;
1145      next_slot_ = 0;
1146      free_slot_count_ = 0;
1147      end_ = 0;
1148    }
1149    Trampoline(int start, int slot_count) {
1150      start_ = start;
1151      next_slot_ = start;
1152      free_slot_count_ = slot_count;
1153      end_ = start + slot_count * kTrampolineSlotsSize;
1154    }
1155    int start() {
1156      return start_;
1157    }
1158    int end() {
1159      return end_;
1160    }
1161    int take_slot() {
1162      int trampoline_slot = kInvalidSlotPos;
1163      if (free_slot_count_ <= 0) {
1164        // We have run out of space on trampolines.
1165        // Make sure we fail in debug mode, so we become aware of each case
1166        // when this happens.
1167        ASSERT(0);
1168        // Internal exception will be caught.
1169      } else {
1170        trampoline_slot = next_slot_;
1171        free_slot_count_--;
1172        next_slot_ += kTrampolineSlotsSize;
1173      }
1174      return trampoline_slot;
1175    }
1176
1177   private:
1178    int start_;
1179    int end_;
1180    int next_slot_;
1181    int free_slot_count_;
1182  };
1183
1184  int32_t get_trampoline_entry(int32_t pos);
1185  int unbound_labels_count_;
1186  // If trampoline is emitted, generated code is becoming large. As this is
1187  // already a slow case which can possibly break our code generation for the
1188  // extreme case, we use this information to trigger different mode of
1189  // branch instruction generation, where we use jump instructions rather
1190  // than regular branch instructions.
1191  bool trampoline_emitted_;
1192  static const int kTrampolineSlotsSize = 4 * kInstrSize;
1193  static const int kMaxBranchOffset = (1 << (18 - 1)) - 1;
1194  static const int kInvalidSlotPos = -1;
1195
1196  Trampoline trampoline_;
1197  bool internal_trampoline_exception_;
1198
1199  friend class RegExpMacroAssemblerMIPS;
1200  friend class RelocInfo;
1201  friend class CodePatcher;
1202  friend class BlockTrampolinePoolScope;
1203
1204  PositionsRecorder positions_recorder_;
1205  friend class PositionsRecorder;
1206  friend class EnsureSpace;
1207};
1208
1209
1210class EnsureSpace BASE_EMBEDDED {
1211 public:
1212  explicit EnsureSpace(Assembler* assembler) {
1213    assembler->CheckBuffer();
1214  }
1215};
1216
1217} }  // namespace v8::internal
1218
1219#endif  // V8_ARM_ASSEMBLER_MIPS_H_
1220