Stmt.h revision b2f81cf7f8445e0c65c0428f4fbb0442566916b8
1//===--- Stmt.h - Classes for representing statements -----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Stmt interface and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_STMT_H
15#define LLVM_CLANG_AST_STMT_H
16
17#include "llvm/Support/Casting.h"
18#include "llvm/Support/raw_ostream.h"
19#include "clang/Basic/SourceLocation.h"
20#include "clang/AST/PrettyPrinter.h"
21#include "clang/AST/StmtIterator.h"
22#include "clang/AST/DeclGroup.h"
23#include "llvm/ADT/SmallVector.h"
24#include "clang/AST/ASTContext.h"
25#include <string>
26using llvm::dyn_cast_or_null;
27
28namespace llvm {
29  class FoldingSetNodeID;
30}
31
32namespace clang {
33  class ASTContext;
34  class Expr;
35  class Decl;
36  class ParmVarDecl;
37  class QualType;
38  class IdentifierInfo;
39  class SourceManager;
40  class StringLiteral;
41  class SwitchStmt;
42
43  //===----------------------------------------------------------------------===//
44  // ExprIterator - Iterators for iterating over Stmt* arrays that contain
45  //  only Expr*.  This is needed because AST nodes use Stmt* arrays to store
46  //  references to children (to be compatible with StmtIterator).
47  //===----------------------------------------------------------------------===//
48
49  class Stmt;
50  class Expr;
51
52  class ExprIterator {
53    Stmt** I;
54  public:
55    ExprIterator(Stmt** i) : I(i) {}
56    ExprIterator() : I(0) {}
57    ExprIterator& operator++() { ++I; return *this; }
58    ExprIterator operator-(size_t i) { return I-i; }
59    ExprIterator operator+(size_t i) { return I+i; }
60    Expr* operator[](size_t idx);
61    // FIXME: Verify that this will correctly return a signed distance.
62    signed operator-(const ExprIterator& R) const { return I - R.I; }
63    Expr* operator*() const;
64    Expr* operator->() const;
65    bool operator==(const ExprIterator& R) const { return I == R.I; }
66    bool operator!=(const ExprIterator& R) const { return I != R.I; }
67    bool operator>(const ExprIterator& R) const { return I > R.I; }
68    bool operator>=(const ExprIterator& R) const { return I >= R.I; }
69  };
70
71  class ConstExprIterator {
72    Stmt* const * I;
73  public:
74    ConstExprIterator(Stmt* const* i) : I(i) {}
75    ConstExprIterator() : I(0) {}
76    ConstExprIterator& operator++() { ++I; return *this; }
77    ConstExprIterator operator+(size_t i) { return I+i; }
78    ConstExprIterator operator-(size_t i) { return I-i; }
79    const Expr * operator[](size_t idx) const;
80    signed operator-(const ConstExprIterator& R) const { return I - R.I; }
81    const Expr * operator*() const;
82    const Expr * operator->() const;
83    bool operator==(const ConstExprIterator& R) const { return I == R.I; }
84    bool operator!=(const ConstExprIterator& R) const { return I != R.I; }
85    bool operator>(const ConstExprIterator& R) const { return I > R.I; }
86    bool operator>=(const ConstExprIterator& R) const { return I >= R.I; }
87  };
88
89//===----------------------------------------------------------------------===//
90// AST classes for statements.
91//===----------------------------------------------------------------------===//
92
93/// Stmt - This represents one statement.
94///
95class Stmt {
96public:
97  enum StmtClass {
98    NoStmtClass = 0,
99#define STMT(CLASS, PARENT) CLASS##Class,
100#define FIRST_STMT(CLASS) firstStmtConstant = CLASS##Class,
101#define LAST_STMT(CLASS) lastStmtConstant = CLASS##Class,
102#define FIRST_EXPR(CLASS) firstExprConstant = CLASS##Class,
103#define LAST_EXPR(CLASS) lastExprConstant = CLASS##Class
104#include "clang/AST/StmtNodes.def"
105};
106private:
107  /// \brief The statement class.
108  const unsigned sClass : 8;
109
110  /// \brief The reference count for this statement.
111  unsigned RefCount : 24;
112
113  // Make vanilla 'new' and 'delete' illegal for Stmts.
114protected:
115  void* operator new(size_t bytes) throw() {
116    assert(0 && "Stmts cannot be allocated with regular 'new'.");
117    return 0;
118  }
119  void operator delete(void* data) throw() {
120    assert(0 && "Stmts cannot be released with regular 'delete'.");
121  }
122
123public:
124  // Only allow allocation of Stmts using the allocator in ASTContext
125  // or by doing a placement new.
126  void* operator new(size_t bytes, ASTContext& C,
127                     unsigned alignment = 16) throw() {
128    return ::operator new(bytes, C, alignment);
129  }
130
131  void* operator new(size_t bytes, ASTContext* C,
132                     unsigned alignment = 16) throw() {
133    return ::operator new(bytes, *C, alignment);
134  }
135
136  void* operator new(size_t bytes, void* mem) throw() {
137    return mem;
138  }
139
140  void operator delete(void*, ASTContext&, unsigned) throw() { }
141  void operator delete(void*, ASTContext*, unsigned) throw() { }
142  void operator delete(void*, std::size_t) throw() { }
143  void operator delete(void*, void*) throw() { }
144
145public:
146  /// \brief A placeholder type used to construct an empty shell of a
147  /// type, that will be filled in later (e.g., by some
148  /// de-serialization).
149  struct EmptyShell { };
150
151protected:
152  /// DestroyChildren - Invoked by destructors of subclasses of Stmt to
153  ///  recursively release child AST nodes.
154  void DestroyChildren(ASTContext& Ctx);
155
156  /// \brief Construct an empty statement.
157  explicit Stmt(StmtClass SC, EmptyShell) : sClass(SC), RefCount(1) {
158    if (Stmt::CollectingStats()) Stmt::addStmtClass(SC);
159  }
160
161  /// \brief Virtual method that performs the actual destruction of
162  /// this statement.
163  ///
164  /// Subclasses should override this method (not Destroy()) to
165  /// provide class-specific destruction.
166  virtual void DoDestroy(ASTContext &Ctx);
167
168public:
169  Stmt(StmtClass SC) : sClass(SC), RefCount(1) {
170    if (Stmt::CollectingStats()) Stmt::addStmtClass(SC);
171  }
172  virtual ~Stmt() {}
173
174  /// \brief Destroy the current statement and its children.
175  void Destroy(ASTContext &Ctx) {
176    assert(RefCount >= 1);
177    if (--RefCount == 0)
178      DoDestroy(Ctx);
179  }
180
181  /// \brief Increases the reference count for this statement.
182  ///
183  /// Invoke the Retain() operation when this statement or expression
184  /// is being shared by another owner.
185  Stmt *Retain() {
186    assert(RefCount >= 1);
187    ++RefCount;
188    return this;
189  }
190
191  StmtClass getStmtClass() const {
192    assert(RefCount >= 1 && "Referencing already-destroyed statement!");
193    return (StmtClass)sClass;
194  }
195  const char *getStmtClassName() const;
196
197  /// SourceLocation tokens are not useful in isolation - they are low level
198  /// value objects created/interpreted by SourceManager. We assume AST
199  /// clients will have a pointer to the respective SourceManager.
200  virtual SourceRange getSourceRange() const = 0;
201  SourceLocation getLocStart() const { return getSourceRange().getBegin(); }
202  SourceLocation getLocEnd() const { return getSourceRange().getEnd(); }
203
204  // global temp stats (until we have a per-module visitor)
205  static void addStmtClass(const StmtClass s);
206  static bool CollectingStats(bool enable=false);
207  static void PrintStats();
208
209  /// dump - This does a local dump of the specified AST fragment.  It dumps the
210  /// specified node and a few nodes underneath it, but not the whole subtree.
211  /// This is useful in a debugger.
212  void dump() const;
213  void dump(SourceManager &SM) const;
214
215  /// dumpAll - This does a dump of the specified AST fragment and all subtrees.
216  void dumpAll() const;
217  void dumpAll(SourceManager &SM) const;
218
219  /// dumpPretty/printPretty - These two methods do a "pretty print" of the AST
220  /// back to its original source language syntax.
221  void dumpPretty(ASTContext& Context) const;
222  void printPretty(llvm::raw_ostream &OS, PrinterHelper *Helper,
223                   const PrintingPolicy &Policy,
224                   unsigned Indentation = 0) const {
225    printPretty(OS, *(ASTContext*)0, Helper, Policy, Indentation);
226  }
227  void printPretty(llvm::raw_ostream &OS, ASTContext &Context,
228                   PrinterHelper *Helper,
229                   const PrintingPolicy &Policy,
230                   unsigned Indentation = 0) const;
231
232  /// viewAST - Visualize an AST rooted at this Stmt* using GraphViz.  Only
233  ///   works on systems with GraphViz (Mac OS X) or dot+gv installed.
234  void viewAST() const;
235
236  // Implement isa<T> support.
237  static bool classof(const Stmt *) { return true; }
238
239  /// hasImplicitControlFlow - Some statements (e.g. short circuited operations)
240  ///  contain implicit control-flow in the order their subexpressions
241  ///  are evaluated.  This predicate returns true if this statement has
242  ///  such implicit control-flow.  Such statements are also specially handled
243  ///  within CFGs.
244  bool hasImplicitControlFlow() const;
245
246  /// Child Iterators: All subclasses must implement child_begin and child_end
247  ///  to permit easy iteration over the substatements/subexpessions of an
248  ///  AST node.  This permits easy iteration over all nodes in the AST.
249  typedef StmtIterator       child_iterator;
250  typedef ConstStmtIterator  const_child_iterator;
251
252  virtual child_iterator child_begin() = 0;
253  virtual child_iterator child_end()   = 0;
254
255  const_child_iterator child_begin() const {
256    return const_child_iterator(const_cast<Stmt*>(this)->child_begin());
257  }
258
259  const_child_iterator child_end() const {
260    return const_child_iterator(const_cast<Stmt*>(this)->child_end());
261  }
262
263  /// \brief Produce a unique representation of the given statement.
264  ///
265  /// \brief ID once the profiling operation is complete, will contain
266  /// the unique representation of the given statement.
267  ///
268  /// \brief Context the AST context in which the statement resides
269  ///
270  /// \brief Canonical whether the profile should be based on the canonical
271  /// representation of this statement (e.g., where non-type template
272  /// parameters are identified by index/level rather than their
273  /// declaration pointers) or the exact representation of the statement as
274  /// written in the source.
275  void Profile(llvm::FoldingSetNodeID &ID, ASTContext &Context,
276               bool Canonical);
277};
278
279/// DeclStmt - Adaptor class for mixing declarations with statements and
280/// expressions. For example, CompoundStmt mixes statements, expressions
281/// and declarations (variables, types). Another example is ForStmt, where
282/// the first statement can be an expression or a declaration.
283///
284class DeclStmt : public Stmt {
285  DeclGroupRef DG;
286  SourceLocation StartLoc, EndLoc;
287
288public:
289  DeclStmt(DeclGroupRef dg, SourceLocation startLoc,
290           SourceLocation endLoc) : Stmt(DeclStmtClass), DG(dg),
291                                    StartLoc(startLoc), EndLoc(endLoc) {}
292
293  /// \brief Build an empty declaration statement.
294  explicit DeclStmt(EmptyShell Empty) : Stmt(DeclStmtClass, Empty) { }
295
296  /// isSingleDecl - This method returns true if this DeclStmt refers
297  /// to a single Decl.
298  bool isSingleDecl() const {
299    return DG.isSingleDecl();
300  }
301
302  const Decl *getSingleDecl() const { return DG.getSingleDecl(); }
303  Decl *getSingleDecl() { return DG.getSingleDecl(); }
304
305  const DeclGroupRef getDeclGroup() const { return DG; }
306  DeclGroupRef getDeclGroup() { return DG; }
307  void setDeclGroup(DeclGroupRef DGR) { DG = DGR; }
308
309  SourceLocation getStartLoc() const { return StartLoc; }
310  void setStartLoc(SourceLocation L) { StartLoc = L; }
311  SourceLocation getEndLoc() const { return EndLoc; }
312  void setEndLoc(SourceLocation L) { EndLoc = L; }
313
314  SourceRange getSourceRange() const {
315    return SourceRange(StartLoc, EndLoc);
316  }
317
318  static bool classof(const Stmt *T) {
319    return T->getStmtClass() == DeclStmtClass;
320  }
321  static bool classof(const DeclStmt *) { return true; }
322
323  // Iterators over subexpressions.
324  virtual child_iterator child_begin();
325  virtual child_iterator child_end();
326
327  typedef DeclGroupRef::iterator decl_iterator;
328  typedef DeclGroupRef::const_iterator const_decl_iterator;
329
330  decl_iterator decl_begin() { return DG.begin(); }
331  decl_iterator decl_end() { return DG.end(); }
332  const_decl_iterator decl_begin() const { return DG.begin(); }
333  const_decl_iterator decl_end() const { return DG.end(); }
334};
335
336/// NullStmt - This is the null statement ";": C99 6.8.3p3.
337///
338class NullStmt : public Stmt {
339  SourceLocation SemiLoc;
340public:
341  NullStmt(SourceLocation L) : Stmt(NullStmtClass), SemiLoc(L) {}
342
343  /// \brief Build an empty null statement.
344  explicit NullStmt(EmptyShell Empty) : Stmt(NullStmtClass, Empty) { }
345
346  SourceLocation getSemiLoc() const { return SemiLoc; }
347  void setSemiLoc(SourceLocation L) { SemiLoc = L; }
348
349  virtual SourceRange getSourceRange() const { return SourceRange(SemiLoc); }
350
351  static bool classof(const Stmt *T) {
352    return T->getStmtClass() == NullStmtClass;
353  }
354  static bool classof(const NullStmt *) { return true; }
355
356  // Iterators
357  virtual child_iterator child_begin();
358  virtual child_iterator child_end();
359};
360
361/// CompoundStmt - This represents a group of statements like { stmt stmt }.
362///
363class CompoundStmt : public Stmt {
364  Stmt** Body;
365  unsigned NumStmts;
366  SourceLocation LBracLoc, RBracLoc;
367public:
368  CompoundStmt(ASTContext& C, Stmt **StmtStart, unsigned numStmts,
369                             SourceLocation LB, SourceLocation RB)
370  : Stmt(CompoundStmtClass), NumStmts(numStmts), LBracLoc(LB), RBracLoc(RB) {
371    if (NumStmts == 0) {
372      Body = 0;
373      return;
374    }
375
376    Body = new (C) Stmt*[NumStmts];
377    memcpy(Body, StmtStart, numStmts * sizeof(*Body));
378  }
379
380  // \brief Build an empty compound statement.
381  explicit CompoundStmt(EmptyShell Empty)
382    : Stmt(CompoundStmtClass, Empty), Body(0), NumStmts(0) { }
383
384  void setStmts(ASTContext &C, Stmt **Stmts, unsigned NumStmts);
385
386  bool body_empty() const { return NumStmts == 0; }
387  unsigned size() const { return NumStmts; }
388
389  typedef Stmt** body_iterator;
390  body_iterator body_begin() { return Body; }
391  body_iterator body_end() { return Body + NumStmts; }
392  Stmt *body_back() { return NumStmts ? Body[NumStmts-1] : 0; }
393
394  typedef Stmt* const * const_body_iterator;
395  const_body_iterator body_begin() const { return Body; }
396  const_body_iterator body_end() const { return Body + NumStmts; }
397  const Stmt *body_back() const { return NumStmts ? Body[NumStmts-1] : 0; }
398
399  typedef std::reverse_iterator<body_iterator> reverse_body_iterator;
400  reverse_body_iterator body_rbegin() {
401    return reverse_body_iterator(body_end());
402  }
403  reverse_body_iterator body_rend() {
404    return reverse_body_iterator(body_begin());
405  }
406
407  typedef std::reverse_iterator<const_body_iterator>
408          const_reverse_body_iterator;
409
410  const_reverse_body_iterator body_rbegin() const {
411    return const_reverse_body_iterator(body_end());
412  }
413
414  const_reverse_body_iterator body_rend() const {
415    return const_reverse_body_iterator(body_begin());
416  }
417
418  virtual SourceRange getSourceRange() const {
419    return SourceRange(LBracLoc, RBracLoc);
420  }
421
422  SourceLocation getLBracLoc() const { return LBracLoc; }
423  void setLBracLoc(SourceLocation L) { LBracLoc = L; }
424  SourceLocation getRBracLoc() const { return RBracLoc; }
425  void setRBracLoc(SourceLocation L) { RBracLoc = L; }
426
427  static bool classof(const Stmt *T) {
428    return T->getStmtClass() == CompoundStmtClass;
429  }
430  static bool classof(const CompoundStmt *) { return true; }
431
432  // Iterators
433  virtual child_iterator child_begin();
434  virtual child_iterator child_end();
435};
436
437// SwitchCase is the base class for CaseStmt and DefaultStmt,
438class SwitchCase : public Stmt {
439protected:
440  // A pointer to the following CaseStmt or DefaultStmt class,
441  // used by SwitchStmt.
442  SwitchCase *NextSwitchCase;
443
444  SwitchCase(StmtClass SC) : Stmt(SC), NextSwitchCase(0) {}
445
446public:
447  const SwitchCase *getNextSwitchCase() const { return NextSwitchCase; }
448
449  SwitchCase *getNextSwitchCase() { return NextSwitchCase; }
450
451  void setNextSwitchCase(SwitchCase *SC) { NextSwitchCase = SC; }
452
453  Stmt *getSubStmt() { return v_getSubStmt(); }
454
455  virtual SourceRange getSourceRange() const { return SourceRange(); }
456
457  static bool classof(const Stmt *T) {
458    return T->getStmtClass() == CaseStmtClass ||
459    T->getStmtClass() == DefaultStmtClass;
460  }
461  static bool classof(const SwitchCase *) { return true; }
462protected:
463  virtual Stmt* v_getSubStmt() = 0;
464};
465
466class CaseStmt : public SwitchCase {
467  enum { SUBSTMT, LHS, RHS, END_EXPR };
468  Stmt* SubExprs[END_EXPR];  // The expression for the RHS is Non-null for
469                             // GNU "case 1 ... 4" extension
470  SourceLocation CaseLoc;
471  SourceLocation EllipsisLoc;
472  SourceLocation ColonLoc;
473
474  virtual Stmt* v_getSubStmt() { return getSubStmt(); }
475public:
476  CaseStmt(Expr *lhs, Expr *rhs, SourceLocation caseLoc,
477           SourceLocation ellipsisLoc, SourceLocation colonLoc)
478    : SwitchCase(CaseStmtClass) {
479    SubExprs[SUBSTMT] = 0;
480    SubExprs[LHS] = reinterpret_cast<Stmt*>(lhs);
481    SubExprs[RHS] = reinterpret_cast<Stmt*>(rhs);
482    CaseLoc = caseLoc;
483    EllipsisLoc = ellipsisLoc;
484    ColonLoc = colonLoc;
485  }
486
487  /// \brief Build an empty switch case statement.
488  explicit CaseStmt(EmptyShell Empty) : SwitchCase(CaseStmtClass) { }
489
490  SourceLocation getCaseLoc() const { return CaseLoc; }
491  void setCaseLoc(SourceLocation L) { CaseLoc = L; }
492  SourceLocation getEllipsisLoc() const { return EllipsisLoc; }
493  void setEllipsisLoc(SourceLocation L) { EllipsisLoc = L; }
494  SourceLocation getColonLoc() const { return ColonLoc; }
495  void setColonLoc(SourceLocation L) { ColonLoc = L; }
496
497  Expr *getLHS() { return reinterpret_cast<Expr*>(SubExprs[LHS]); }
498  Expr *getRHS() { return reinterpret_cast<Expr*>(SubExprs[RHS]); }
499  Stmt *getSubStmt() { return SubExprs[SUBSTMT]; }
500
501  const Expr *getLHS() const {
502    return reinterpret_cast<const Expr*>(SubExprs[LHS]);
503  }
504  const Expr *getRHS() const {
505    return reinterpret_cast<const Expr*>(SubExprs[RHS]);
506  }
507  const Stmt *getSubStmt() const { return SubExprs[SUBSTMT]; }
508
509  void setSubStmt(Stmt *S) { SubExprs[SUBSTMT] = S; }
510  void setLHS(Expr *Val) { SubExprs[LHS] = reinterpret_cast<Stmt*>(Val); }
511  void setRHS(Expr *Val) { SubExprs[RHS] = reinterpret_cast<Stmt*>(Val); }
512
513
514  virtual SourceRange getSourceRange() const {
515    // Handle deeply nested case statements with iteration instead of recursion.
516    const CaseStmt *CS = this;
517    while (const CaseStmt *CS2 = dyn_cast<CaseStmt>(CS->getSubStmt()))
518      CS = CS2;
519
520    return SourceRange(CaseLoc, CS->getSubStmt()->getLocEnd());
521  }
522  static bool classof(const Stmt *T) {
523    return T->getStmtClass() == CaseStmtClass;
524  }
525  static bool classof(const CaseStmt *) { return true; }
526
527  // Iterators
528  virtual child_iterator child_begin();
529  virtual child_iterator child_end();
530};
531
532class DefaultStmt : public SwitchCase {
533  Stmt* SubStmt;
534  SourceLocation DefaultLoc;
535  SourceLocation ColonLoc;
536  virtual Stmt* v_getSubStmt() { return getSubStmt(); }
537public:
538  DefaultStmt(SourceLocation DL, SourceLocation CL, Stmt *substmt) :
539    SwitchCase(DefaultStmtClass), SubStmt(substmt), DefaultLoc(DL),
540    ColonLoc(CL) {}
541
542  /// \brief Build an empty default statement.
543  explicit DefaultStmt(EmptyShell) : SwitchCase(DefaultStmtClass) { }
544
545  Stmt *getSubStmt() { return SubStmt; }
546  const Stmt *getSubStmt() const { return SubStmt; }
547  void setSubStmt(Stmt *S) { SubStmt = S; }
548
549  SourceLocation getDefaultLoc() const { return DefaultLoc; }
550  void setDefaultLoc(SourceLocation L) { DefaultLoc = L; }
551  SourceLocation getColonLoc() const { return ColonLoc; }
552  void setColonLoc(SourceLocation L) { ColonLoc = L; }
553
554  virtual SourceRange getSourceRange() const {
555    return SourceRange(DefaultLoc, SubStmt->getLocEnd());
556  }
557  static bool classof(const Stmt *T) {
558    return T->getStmtClass() == DefaultStmtClass;
559  }
560  static bool classof(const DefaultStmt *) { return true; }
561
562  // Iterators
563  virtual child_iterator child_begin();
564  virtual child_iterator child_end();
565};
566
567class LabelStmt : public Stmt {
568  IdentifierInfo *Label;
569  Stmt *SubStmt;
570  SourceLocation IdentLoc;
571public:
572  LabelStmt(SourceLocation IL, IdentifierInfo *label, Stmt *substmt)
573    : Stmt(LabelStmtClass), Label(label),
574      SubStmt(substmt), IdentLoc(IL) {}
575
576  // \brief Build an empty label statement.
577  explicit LabelStmt(EmptyShell Empty) : Stmt(LabelStmtClass, Empty) { }
578
579  SourceLocation getIdentLoc() const { return IdentLoc; }
580  IdentifierInfo *getID() const { return Label; }
581  void setID(IdentifierInfo *II) { Label = II; }
582  const char *getName() const;
583  Stmt *getSubStmt() { return SubStmt; }
584  const Stmt *getSubStmt() const { return SubStmt; }
585  void setIdentLoc(SourceLocation L) { IdentLoc = L; }
586  void setSubStmt(Stmt *SS) { SubStmt = SS; }
587
588  virtual SourceRange getSourceRange() const {
589    return SourceRange(IdentLoc, SubStmt->getLocEnd());
590  }
591  static bool classof(const Stmt *T) {
592    return T->getStmtClass() == LabelStmtClass;
593  }
594  static bool classof(const LabelStmt *) { return true; }
595
596  // Iterators
597  virtual child_iterator child_begin();
598  virtual child_iterator child_end();
599};
600
601
602/// IfStmt - This represents an if/then/else.
603///
604class IfStmt : public Stmt {
605  enum { COND, THEN, ELSE, END_EXPR };
606  Stmt* SubExprs[END_EXPR];
607  SourceLocation IfLoc;
608  SourceLocation ElseLoc;
609public:
610  IfStmt(SourceLocation IL, Expr *cond, Stmt *then,
611         SourceLocation EL = SourceLocation(), Stmt *elsev = 0)
612    : Stmt(IfStmtClass)  {
613    SubExprs[COND] = reinterpret_cast<Stmt*>(cond);
614    SubExprs[THEN] = then;
615    SubExprs[ELSE] = elsev;
616    IfLoc = IL;
617    ElseLoc = EL;
618  }
619
620  /// \brief Build an empty if/then/else statement
621  explicit IfStmt(EmptyShell Empty) : Stmt(IfStmtClass, Empty) { }
622
623  const Expr *getCond() const { return reinterpret_cast<Expr*>(SubExprs[COND]);}
624  void setCond(Expr *E) { SubExprs[COND] = reinterpret_cast<Stmt *>(E); }
625  const Stmt *getThen() const { return SubExprs[THEN]; }
626  void setThen(Stmt *S) { SubExprs[THEN] = S; }
627  const Stmt *getElse() const { return SubExprs[ELSE]; }
628  void setElse(Stmt *S) { SubExprs[ELSE] = S; }
629
630  Expr *getCond() { return reinterpret_cast<Expr*>(SubExprs[COND]); }
631  Stmt *getThen() { return SubExprs[THEN]; }
632  Stmt *getElse() { return SubExprs[ELSE]; }
633
634  SourceLocation getIfLoc() const { return IfLoc; }
635  void setIfLoc(SourceLocation L) { IfLoc = L; }
636  SourceLocation getElseLoc() const { return ElseLoc; }
637  void setElseLoc(SourceLocation L) { ElseLoc = L; }
638
639  virtual SourceRange getSourceRange() const {
640    if (SubExprs[ELSE])
641      return SourceRange(IfLoc, SubExprs[ELSE]->getLocEnd());
642    else
643      return SourceRange(IfLoc, SubExprs[THEN]->getLocEnd());
644  }
645
646  static bool classof(const Stmt *T) {
647    return T->getStmtClass() == IfStmtClass;
648  }
649  static bool classof(const IfStmt *) { return true; }
650
651  // Iterators
652  virtual child_iterator child_begin();
653  virtual child_iterator child_end();
654};
655
656/// SwitchStmt - This represents a 'switch' stmt.
657///
658class SwitchStmt : public Stmt {
659  enum { COND, BODY, END_EXPR };
660  Stmt* SubExprs[END_EXPR];
661  // This points to a linked list of case and default statements.
662  SwitchCase *FirstCase;
663  SourceLocation SwitchLoc;
664
665protected:
666  virtual void DoDestroy(ASTContext &Ctx);
667
668public:
669  SwitchStmt(Expr *cond) : Stmt(SwitchStmtClass), FirstCase(0) {
670      SubExprs[COND] = reinterpret_cast<Stmt*>(cond);
671      SubExprs[BODY] = NULL;
672    }
673
674  /// \brief Build a empty switch statement.
675  explicit SwitchStmt(EmptyShell Empty) : Stmt(SwitchStmtClass, Empty) { }
676
677  const Expr *getCond() const { return reinterpret_cast<Expr*>(SubExprs[COND]);}
678  const Stmt *getBody() const { return SubExprs[BODY]; }
679  const SwitchCase *getSwitchCaseList() const { return FirstCase; }
680
681  Expr *getCond() { return reinterpret_cast<Expr*>(SubExprs[COND]);}
682  void setCond(Expr *E) { SubExprs[COND] = reinterpret_cast<Stmt *>(E); }
683  Stmt *getBody() { return SubExprs[BODY]; }
684  void setBody(Stmt *S) { SubExprs[BODY] = S; }
685  SwitchCase *getSwitchCaseList() { return FirstCase; }
686
687  /// \brief Set the case list for this switch statement.
688  ///
689  /// The caller is responsible for incrementing the retain counts on
690  /// all of the SwitchCase statements in this list.
691  void setSwitchCaseList(SwitchCase *SC) { FirstCase = SC; }
692
693  SourceLocation getSwitchLoc() const { return SwitchLoc; }
694  void setSwitchLoc(SourceLocation L) { SwitchLoc = L; }
695
696  void setBody(Stmt *S, SourceLocation SL) {
697    SubExprs[BODY] = S;
698    SwitchLoc = SL;
699  }
700  void addSwitchCase(SwitchCase *SC) {
701    assert(!SC->getNextSwitchCase() && "case/default already added to a switch");
702    SC->Retain();
703    SC->setNextSwitchCase(FirstCase);
704    FirstCase = SC;
705  }
706  virtual SourceRange getSourceRange() const {
707    return SourceRange(SwitchLoc, SubExprs[BODY]->getLocEnd());
708  }
709  static bool classof(const Stmt *T) {
710    return T->getStmtClass() == SwitchStmtClass;
711  }
712  static bool classof(const SwitchStmt *) { return true; }
713
714  // Iterators
715  virtual child_iterator child_begin();
716  virtual child_iterator child_end();
717};
718
719
720/// WhileStmt - This represents a 'while' stmt.
721///
722class WhileStmt : public Stmt {
723  enum { COND, BODY, END_EXPR };
724  Stmt* SubExprs[END_EXPR];
725  SourceLocation WhileLoc;
726public:
727  WhileStmt(Expr *cond, Stmt *body, SourceLocation WL) : Stmt(WhileStmtClass) {
728    SubExprs[COND] = reinterpret_cast<Stmt*>(cond);
729    SubExprs[BODY] = body;
730    WhileLoc = WL;
731  }
732
733  /// \brief Build an empty while statement.
734  explicit WhileStmt(EmptyShell Empty) : Stmt(WhileStmtClass, Empty) { }
735
736  Expr *getCond() { return reinterpret_cast<Expr*>(SubExprs[COND]); }
737  const Expr *getCond() const { return reinterpret_cast<Expr*>(SubExprs[COND]);}
738  void setCond(Expr *E) { SubExprs[COND] = reinterpret_cast<Stmt*>(E); }
739  Stmt *getBody() { return SubExprs[BODY]; }
740  const Stmt *getBody() const { return SubExprs[BODY]; }
741  void setBody(Stmt *S) { SubExprs[BODY] = S; }
742
743  SourceLocation getWhileLoc() const { return WhileLoc; }
744  void setWhileLoc(SourceLocation L) { WhileLoc = L; }
745
746  virtual SourceRange getSourceRange() const {
747    return SourceRange(WhileLoc, SubExprs[BODY]->getLocEnd());
748  }
749  static bool classof(const Stmt *T) {
750    return T->getStmtClass() == WhileStmtClass;
751  }
752  static bool classof(const WhileStmt *) { return true; }
753
754  // Iterators
755  virtual child_iterator child_begin();
756  virtual child_iterator child_end();
757};
758
759/// DoStmt - This represents a 'do/while' stmt.
760///
761class DoStmt : public Stmt {
762  enum { COND, BODY, END_EXPR };
763  Stmt* SubExprs[END_EXPR];
764  SourceLocation DoLoc;
765  SourceLocation WhileLoc;
766  SourceLocation RParenLoc;  // Location of final ')' in do stmt condition.
767
768public:
769  DoStmt(Stmt *body, Expr *cond, SourceLocation DL, SourceLocation WL,
770         SourceLocation RP)
771    : Stmt(DoStmtClass), DoLoc(DL), WhileLoc(WL), RParenLoc(RP) {
772    SubExprs[COND] = reinterpret_cast<Stmt*>(cond);
773    SubExprs[BODY] = body;
774  }
775
776  /// \brief Build an empty do-while statement.
777  explicit DoStmt(EmptyShell Empty) : Stmt(DoStmtClass, Empty) { }
778
779  Expr *getCond() { return reinterpret_cast<Expr*>(SubExprs[COND]); }
780  const Expr *getCond() const { return reinterpret_cast<Expr*>(SubExprs[COND]);}
781  void setCond(Expr *E) { SubExprs[COND] = reinterpret_cast<Stmt*>(E); }
782  Stmt *getBody() { return SubExprs[BODY]; }
783  const Stmt *getBody() const { return SubExprs[BODY]; }
784  void setBody(Stmt *S) { SubExprs[BODY] = S; }
785
786  SourceLocation getDoLoc() const { return DoLoc; }
787  void setDoLoc(SourceLocation L) { DoLoc = L; }
788  SourceLocation getWhileLoc() const { return WhileLoc; }
789  void setWhileLoc(SourceLocation L) { WhileLoc = L; }
790
791  SourceLocation getRParenLoc() const { return RParenLoc; }
792  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
793
794  virtual SourceRange getSourceRange() const {
795    return SourceRange(DoLoc, RParenLoc);
796  }
797  static bool classof(const Stmt *T) {
798    return T->getStmtClass() == DoStmtClass;
799  }
800  static bool classof(const DoStmt *) { return true; }
801
802  // Iterators
803  virtual child_iterator child_begin();
804  virtual child_iterator child_end();
805};
806
807
808/// ForStmt - This represents a 'for (init;cond;inc)' stmt.  Note that any of
809/// the init/cond/inc parts of the ForStmt will be null if they were not
810/// specified in the source.
811///
812class ForStmt : public Stmt {
813  enum { INIT, COND, INC, BODY, END_EXPR };
814  Stmt* SubExprs[END_EXPR]; // SubExprs[INIT] is an expression or declstmt.
815  SourceLocation ForLoc;
816  SourceLocation LParenLoc, RParenLoc;
817
818public:
819  ForStmt(Stmt *Init, Expr *Cond, Expr *Inc, Stmt *Body, SourceLocation FL,
820          SourceLocation LP, SourceLocation RP)
821    : Stmt(ForStmtClass) {
822    SubExprs[INIT] = Init;
823    SubExprs[COND] = reinterpret_cast<Stmt*>(Cond);
824    SubExprs[INC] = reinterpret_cast<Stmt*>(Inc);
825    SubExprs[BODY] = Body;
826    ForLoc = FL;
827    LParenLoc = LP;
828    RParenLoc = RP;
829  }
830
831  /// \brief Build an empty for statement.
832  explicit ForStmt(EmptyShell Empty) : Stmt(ForStmtClass, Empty) { }
833
834  Stmt *getInit() { return SubExprs[INIT]; }
835  Expr *getCond() { return reinterpret_cast<Expr*>(SubExprs[COND]); }
836  Expr *getInc()  { return reinterpret_cast<Expr*>(SubExprs[INC]); }
837  Stmt *getBody() { return SubExprs[BODY]; }
838
839  const Stmt *getInit() const { return SubExprs[INIT]; }
840  const Expr *getCond() const { return reinterpret_cast<Expr*>(SubExprs[COND]);}
841  const Expr *getInc()  const { return reinterpret_cast<Expr*>(SubExprs[INC]); }
842  const Stmt *getBody() const { return SubExprs[BODY]; }
843
844  void setInit(Stmt *S) { SubExprs[INIT] = S; }
845  void setCond(Expr *E) { SubExprs[COND] = reinterpret_cast<Stmt*>(E); }
846  void setInc(Expr *E) { SubExprs[INC] = reinterpret_cast<Stmt*>(E); }
847  void setBody(Stmt *S) { SubExprs[BODY] = S; }
848
849  SourceLocation getForLoc() const { return ForLoc; }
850  void setForLoc(SourceLocation L) { ForLoc = L; }
851  SourceLocation getLParenLoc() const { return LParenLoc; }
852  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
853  SourceLocation getRParenLoc() const { return RParenLoc; }
854  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
855
856  virtual SourceRange getSourceRange() const {
857    return SourceRange(ForLoc, SubExprs[BODY]->getLocEnd());
858  }
859  static bool classof(const Stmt *T) {
860    return T->getStmtClass() == ForStmtClass;
861  }
862  static bool classof(const ForStmt *) { return true; }
863
864  // Iterators
865  virtual child_iterator child_begin();
866  virtual child_iterator child_end();
867};
868
869/// GotoStmt - This represents a direct goto.
870///
871class GotoStmt : public Stmt {
872  LabelStmt *Label;
873  SourceLocation GotoLoc;
874  SourceLocation LabelLoc;
875public:
876  GotoStmt(LabelStmt *label, SourceLocation GL, SourceLocation LL)
877    : Stmt(GotoStmtClass), Label(label), GotoLoc(GL), LabelLoc(LL) {}
878
879  /// \brief Build an empty goto statement.
880  explicit GotoStmt(EmptyShell Empty) : Stmt(GotoStmtClass, Empty) { }
881
882  LabelStmt *getLabel() const { return Label; }
883  void setLabel(LabelStmt *S) { Label = S; }
884
885  SourceLocation getGotoLoc() const { return GotoLoc; }
886  void setGotoLoc(SourceLocation L) { GotoLoc = L; }
887  SourceLocation getLabelLoc() const { return LabelLoc; }
888  void setLabelLoc(SourceLocation L) { LabelLoc = L; }
889
890  virtual SourceRange getSourceRange() const {
891    return SourceRange(GotoLoc, LabelLoc);
892  }
893  static bool classof(const Stmt *T) {
894    return T->getStmtClass() == GotoStmtClass;
895  }
896  static bool classof(const GotoStmt *) { return true; }
897
898  // Iterators
899  virtual child_iterator child_begin();
900  virtual child_iterator child_end();
901};
902
903/// IndirectGotoStmt - This represents an indirect goto.
904///
905class IndirectGotoStmt : public Stmt {
906  SourceLocation GotoLoc;
907  SourceLocation StarLoc;
908  Stmt *Target;
909public:
910  IndirectGotoStmt(SourceLocation gotoLoc, SourceLocation starLoc,
911                   Expr *target)
912    : Stmt(IndirectGotoStmtClass), GotoLoc(gotoLoc), StarLoc(starLoc),
913      Target((Stmt*)target) {}
914
915  /// \brief Build an empty indirect goto statement.
916  explicit IndirectGotoStmt(EmptyShell Empty)
917    : Stmt(IndirectGotoStmtClass, Empty) { }
918
919  void setGotoLoc(SourceLocation L) { GotoLoc = L; }
920  SourceLocation getGotoLoc() const { return GotoLoc; }
921  void setStarLoc(SourceLocation L) { StarLoc = L; }
922  SourceLocation getStarLoc() const { return StarLoc; }
923
924  Expr *getTarget();
925  const Expr *getTarget() const;
926  void setTarget(Expr *E) { Target = reinterpret_cast<Stmt*>(E); }
927
928  virtual SourceRange getSourceRange() const {
929    return SourceRange(GotoLoc, Target->getLocEnd());
930  }
931
932  static bool classof(const Stmt *T) {
933    return T->getStmtClass() == IndirectGotoStmtClass;
934  }
935  static bool classof(const IndirectGotoStmt *) { return true; }
936
937  // Iterators
938  virtual child_iterator child_begin();
939  virtual child_iterator child_end();
940};
941
942
943/// ContinueStmt - This represents a continue.
944///
945class ContinueStmt : public Stmt {
946  SourceLocation ContinueLoc;
947public:
948  ContinueStmt(SourceLocation CL) : Stmt(ContinueStmtClass), ContinueLoc(CL) {}
949
950  /// \brief Build an empty continue statement.
951  explicit ContinueStmt(EmptyShell Empty) : Stmt(ContinueStmtClass, Empty) { }
952
953  SourceLocation getContinueLoc() const { return ContinueLoc; }
954  void setContinueLoc(SourceLocation L) { ContinueLoc = L; }
955
956  virtual SourceRange getSourceRange() const {
957    return SourceRange(ContinueLoc);
958  }
959
960  static bool classof(const Stmt *T) {
961    return T->getStmtClass() == ContinueStmtClass;
962  }
963  static bool classof(const ContinueStmt *) { return true; }
964
965  // Iterators
966  virtual child_iterator child_begin();
967  virtual child_iterator child_end();
968};
969
970/// BreakStmt - This represents a break.
971///
972class BreakStmt : public Stmt {
973  SourceLocation BreakLoc;
974public:
975  BreakStmt(SourceLocation BL) : Stmt(BreakStmtClass), BreakLoc(BL) {}
976
977  /// \brief Build an empty break statement.
978  explicit BreakStmt(EmptyShell Empty) : Stmt(BreakStmtClass, Empty) { }
979
980  SourceLocation getBreakLoc() const { return BreakLoc; }
981  void setBreakLoc(SourceLocation L) { BreakLoc = L; }
982
983  virtual SourceRange getSourceRange() const { return SourceRange(BreakLoc); }
984
985  static bool classof(const Stmt *T) {
986    return T->getStmtClass() == BreakStmtClass;
987  }
988  static bool classof(const BreakStmt *) { return true; }
989
990  // Iterators
991  virtual child_iterator child_begin();
992  virtual child_iterator child_end();
993};
994
995
996/// ReturnStmt - This represents a return, optionally of an expression:
997///   return;
998///   return 4;
999///
1000/// Note that GCC allows return with no argument in a function declared to
1001/// return a value, and it allows returning a value in functions declared to
1002/// return void.  We explicitly model this in the AST, which means you can't
1003/// depend on the return type of the function and the presence of an argument.
1004///
1005class ReturnStmt : public Stmt {
1006  Stmt *RetExpr;
1007  SourceLocation RetLoc;
1008public:
1009  ReturnStmt(SourceLocation RL, Expr *E = 0) : Stmt(ReturnStmtClass),
1010    RetExpr((Stmt*) E), RetLoc(RL) {}
1011
1012  /// \brief Build an empty return expression.
1013  explicit ReturnStmt(EmptyShell Empty) : Stmt(ReturnStmtClass, Empty) { }
1014
1015  const Expr *getRetValue() const;
1016  Expr *getRetValue();
1017  void setRetValue(Expr *E) { RetExpr = reinterpret_cast<Stmt*>(E); }
1018
1019  SourceLocation getReturnLoc() const { return RetLoc; }
1020  void setReturnLoc(SourceLocation L) { RetLoc = L; }
1021
1022  virtual SourceRange getSourceRange() const;
1023
1024  static bool classof(const Stmt *T) {
1025    return T->getStmtClass() == ReturnStmtClass;
1026  }
1027  static bool classof(const ReturnStmt *) { return true; }
1028
1029  // Iterators
1030  virtual child_iterator child_begin();
1031  virtual child_iterator child_end();
1032};
1033
1034/// AsmStmt - This represents a GNU inline-assembly statement extension.
1035///
1036class AsmStmt : public Stmt {
1037  SourceLocation AsmLoc, RParenLoc;
1038  StringLiteral *AsmStr;
1039
1040  bool IsSimple;
1041  bool IsVolatile;
1042
1043  unsigned NumOutputs;
1044  unsigned NumInputs;
1045
1046  llvm::SmallVector<std::string, 4> Names;
1047  llvm::SmallVector<StringLiteral*, 4> Constraints;
1048  llvm::SmallVector<Stmt*, 4> Exprs;
1049
1050  llvm::SmallVector<StringLiteral*, 4> Clobbers;
1051public:
1052  AsmStmt(SourceLocation asmloc, bool issimple, bool isvolatile,
1053          unsigned numoutputs, unsigned numinputs,
1054          std::string *names, StringLiteral **constraints,
1055          Expr **exprs, StringLiteral *asmstr, unsigned numclobbers,
1056          StringLiteral **clobbers, SourceLocation rparenloc);
1057
1058  /// \brief Build an empty inline-assembly statement.
1059  explicit AsmStmt(EmptyShell Empty) : Stmt(AsmStmtClass, Empty) { }
1060
1061  SourceLocation getAsmLoc() const { return AsmLoc; }
1062  void setAsmLoc(SourceLocation L) { AsmLoc = L; }
1063  SourceLocation getRParenLoc() const { return RParenLoc; }
1064  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1065
1066  bool isVolatile() const { return IsVolatile; }
1067  void setVolatile(bool V) { IsVolatile = V; }
1068  bool isSimple() const { return IsSimple; }
1069  void setSimple(bool V) { IsSimple = false; }
1070
1071  //===--- Asm String Analysis ---===//
1072
1073  const StringLiteral *getAsmString() const { return AsmStr; }
1074  StringLiteral *getAsmString() { return AsmStr; }
1075  void setAsmString(StringLiteral *E) { AsmStr = E; }
1076
1077  /// AsmStringPiece - this is part of a decomposed asm string specification
1078  /// (for use with the AnalyzeAsmString function below).  An asm string is
1079  /// considered to be a concatenation of these parts.
1080  class AsmStringPiece {
1081  public:
1082    enum Kind {
1083      String,  // String in .ll asm string form, "$" -> "$$" and "%%" -> "%".
1084      Operand  // Operand reference, with optional modifier %c4.
1085    };
1086  private:
1087    Kind MyKind;
1088    std::string Str;
1089    unsigned OperandNo;
1090  public:
1091    AsmStringPiece(const std::string &S) : MyKind(String), Str(S) {}
1092    AsmStringPiece(unsigned OpNo, char Modifier)
1093      : MyKind(Operand), Str(), OperandNo(OpNo) {
1094      Str += Modifier;
1095    }
1096
1097    bool isString() const { return MyKind == String; }
1098    bool isOperand() const { return MyKind == Operand; }
1099
1100    const std::string &getString() const {
1101      assert(isString());
1102      return Str;
1103    }
1104
1105    unsigned getOperandNo() const {
1106      assert(isOperand());
1107      return OperandNo;
1108    }
1109
1110    /// getModifier - Get the modifier for this operand, if present.  This
1111    /// returns '\0' if there was no modifier.
1112    char getModifier() const {
1113      assert(isOperand());
1114      return Str[0];
1115    }
1116  };
1117
1118  /// AnalyzeAsmString - Analyze the asm string of the current asm, decomposing
1119  /// it into pieces.  If the asm string is erroneous, emit errors and return
1120  /// true, otherwise return false.  This handles canonicalization and
1121  /// translation of strings from GCC syntax to LLVM IR syntax, and handles
1122  //// flattening of named references like %[foo] to Operand AsmStringPiece's.
1123  unsigned AnalyzeAsmString(llvm::SmallVectorImpl<AsmStringPiece> &Pieces,
1124                            ASTContext &C, unsigned &DiagOffs) const;
1125
1126
1127  //===--- Output operands ---===//
1128
1129  unsigned getNumOutputs() const { return NumOutputs; }
1130
1131  const std::string &getOutputName(unsigned i) const {
1132    return Names[i];
1133  }
1134
1135  /// getOutputConstraint - Return the constraint string for the specified
1136  /// output operand.  All output constraints are known to be non-empty (either
1137  /// '=' or '+').
1138  std::string getOutputConstraint(unsigned i) const;
1139
1140  const StringLiteral *getOutputConstraintLiteral(unsigned i) const {
1141    return Constraints[i];
1142  }
1143  StringLiteral *getOutputConstraintLiteral(unsigned i) {
1144    return Constraints[i];
1145  }
1146
1147
1148  Expr *getOutputExpr(unsigned i);
1149
1150  const Expr *getOutputExpr(unsigned i) const {
1151    return const_cast<AsmStmt*>(this)->getOutputExpr(i);
1152  }
1153
1154  /// isOutputPlusConstraint - Return true if the specified output constraint
1155  /// is a "+" constraint (which is both an input and an output) or false if it
1156  /// is an "=" constraint (just an output).
1157  bool isOutputPlusConstraint(unsigned i) const {
1158    return getOutputConstraint(i)[0] == '+';
1159  }
1160
1161  /// getNumPlusOperands - Return the number of output operands that have a "+"
1162  /// constraint.
1163  unsigned getNumPlusOperands() const;
1164
1165  //===--- Input operands ---===//
1166
1167  unsigned getNumInputs() const { return NumInputs; }
1168
1169  const std::string &getInputName(unsigned i) const {
1170    return Names[i + NumOutputs];
1171  }
1172
1173  /// getInputConstraint - Return the specified input constraint.  Unlike output
1174  /// constraints, these can be empty.
1175  std::string getInputConstraint(unsigned i) const;
1176
1177  const StringLiteral *getInputConstraintLiteral(unsigned i) const {
1178    return Constraints[i + NumOutputs];
1179  }
1180  StringLiteral *getInputConstraintLiteral(unsigned i) {
1181    return Constraints[i + NumOutputs];
1182  }
1183
1184
1185  Expr *getInputExpr(unsigned i);
1186
1187  const Expr *getInputExpr(unsigned i) const {
1188    return const_cast<AsmStmt*>(this)->getInputExpr(i);
1189  }
1190
1191  void setOutputsAndInputs(unsigned NumOutputs,
1192                           unsigned NumInputs,
1193                           const std::string *Names,
1194                           StringLiteral **Constraints,
1195                           Stmt **Exprs);
1196
1197  //===--- Other ---===//
1198
1199  /// getNamedOperand - Given a symbolic operand reference like %[foo],
1200  /// translate this into a numeric value needed to reference the same operand.
1201  /// This returns -1 if the operand name is invalid.
1202  int getNamedOperand(const std::string &SymbolicName) const;
1203
1204
1205
1206  unsigned getNumClobbers() const { return Clobbers.size(); }
1207  StringLiteral *getClobber(unsigned i) { return Clobbers[i]; }
1208  const StringLiteral *getClobber(unsigned i) const { return Clobbers[i]; }
1209  void setClobbers(StringLiteral **Clobbers, unsigned NumClobbers);
1210
1211  virtual SourceRange getSourceRange() const {
1212    return SourceRange(AsmLoc, RParenLoc);
1213  }
1214
1215  static bool classof(const Stmt *T) {return T->getStmtClass() == AsmStmtClass;}
1216  static bool classof(const AsmStmt *) { return true; }
1217
1218  // Input expr iterators.
1219
1220  typedef ExprIterator inputs_iterator;
1221  typedef ConstExprIterator const_inputs_iterator;
1222
1223  inputs_iterator begin_inputs() {
1224    return Exprs.data() + NumOutputs;
1225  }
1226
1227  inputs_iterator end_inputs() {
1228    return Exprs.data() + NumOutputs + NumInputs;
1229  }
1230
1231  const_inputs_iterator begin_inputs() const {
1232    return Exprs.data() + NumOutputs;
1233  }
1234
1235  const_inputs_iterator end_inputs() const {
1236    return Exprs.data() + NumOutputs + NumInputs;
1237  }
1238
1239  // Output expr iterators.
1240
1241  typedef ExprIterator outputs_iterator;
1242  typedef ConstExprIterator const_outputs_iterator;
1243
1244  outputs_iterator begin_outputs() {
1245    return Exprs.data();
1246  }
1247  outputs_iterator end_outputs() {
1248    return Exprs.data() + NumOutputs;
1249  }
1250
1251  const_outputs_iterator begin_outputs() const {
1252    return Exprs.data();
1253  }
1254  const_outputs_iterator end_outputs() const {
1255    return Exprs.data() + NumOutputs;
1256  }
1257
1258  // Input name iterator.
1259
1260  const std::string *begin_output_names() const {
1261    return &Names[0];
1262  }
1263
1264  const std::string *end_output_names() const {
1265    return &Names[0] + NumOutputs;
1266  }
1267
1268  // Child iterators
1269
1270  virtual child_iterator child_begin();
1271  virtual child_iterator child_end();
1272};
1273
1274}  // end namespace clang
1275
1276#endif
1277