ExprConstant.cpp revision 177dce777596e68d111d6d3e6046f3ddfc96bd07
1//===--- ExprConstant.cpp - Expression Constant Evaluator -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the Expr constant evaluator.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/APValue.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/CharUnits.h"
17#include "clang/AST/RecordLayout.h"
18#include "clang/AST/StmtVisitor.h"
19#include "clang/AST/TypeLoc.h"
20#include "clang/AST/ASTDiagnostic.h"
21#include "clang/AST/Expr.h"
22#include "clang/Basic/Builtins.h"
23#include "clang/Basic/TargetInfo.h"
24#include "llvm/ADT/SmallString.h"
25#include <cstring>
26
27using namespace clang;
28using llvm::APSInt;
29using llvm::APFloat;
30
31/// EvalInfo - This is a private struct used by the evaluator to capture
32/// information about a subexpression as it is folded.  It retains information
33/// about the AST context, but also maintains information about the folded
34/// expression.
35///
36/// If an expression could be evaluated, it is still possible it is not a C
37/// "integer constant expression" or constant expression.  If not, this struct
38/// captures information about how and why not.
39///
40/// One bit of information passed *into* the request for constant folding
41/// indicates whether the subexpression is "evaluated" or not according to C
42/// rules.  For example, the RHS of (0 && foo()) is not evaluated.  We can
43/// evaluate the expression regardless of what the RHS is, but C only allows
44/// certain things in certain situations.
45namespace {
46  struct CallStackFrame;
47  struct EvalInfo;
48
49  /// A core constant value. This can be the value of any constant expression,
50  /// or a pointer or reference to a non-static object or function parameter.
51  class CCValue : public APValue {
52    typedef llvm::APSInt APSInt;
53    typedef llvm::APFloat APFloat;
54    /// If the value is a reference or pointer into a parameter or temporary,
55    /// this is the corresponding call stack frame.
56    CallStackFrame *CallFrame;
57  public:
58    struct GlobalValue {};
59
60    CCValue() {}
61    explicit CCValue(const APSInt &I) : APValue(I) {}
62    explicit CCValue(const APFloat &F) : APValue(F) {}
63    CCValue(const APValue *E, unsigned N) : APValue(E, N) {}
64    CCValue(const APSInt &R, const APSInt &I) : APValue(R, I) {}
65    CCValue(const APFloat &R, const APFloat &I) : APValue(R, I) {}
66    CCValue(const CCValue &V) : APValue(V), CallFrame(V.CallFrame) {}
67    CCValue(const Expr *B, const CharUnits &O, CallStackFrame *F) :
68      APValue(B, O), CallFrame(F) {}
69    CCValue(const APValue &V, GlobalValue) :
70      APValue(V), CallFrame(0) {}
71
72    CallStackFrame *getLValueFrame() const {
73      assert(getKind() == LValue);
74      return CallFrame;
75    }
76  };
77
78  /// A stack frame in the constexpr call stack.
79  struct CallStackFrame {
80    EvalInfo &Info;
81
82    /// Parent - The caller of this stack frame.
83    CallStackFrame *Caller;
84
85    /// ParmBindings - Parameter bindings for this function call, indexed by
86    /// parameters' function scope indices.
87    const CCValue *Arguments;
88
89    typedef llvm::DenseMap<const Expr*, CCValue> MapTy;
90    typedef MapTy::const_iterator temp_iterator;
91    /// Temporaries - Temporary lvalues materialized within this stack frame.
92    MapTy Temporaries;
93
94    CallStackFrame(EvalInfo &Info, const CCValue *Arguments);
95    ~CallStackFrame();
96  };
97
98  struct EvalInfo {
99    const ASTContext &Ctx;
100
101    /// EvalStatus - Contains information about the evaluation.
102    Expr::EvalStatus &EvalStatus;
103
104    /// CurrentCall - The top of the constexpr call stack.
105    CallStackFrame *CurrentCall;
106
107    /// NumCalls - The number of calls we've evaluated so far.
108    unsigned NumCalls;
109
110    /// CallStackDepth - The number of calls in the call stack right now.
111    unsigned CallStackDepth;
112
113    typedef llvm::DenseMap<const OpaqueValueExpr*, CCValue> MapTy;
114    /// OpaqueValues - Values used as the common expression in a
115    /// BinaryConditionalOperator.
116    MapTy OpaqueValues;
117
118    /// BottomFrame - The frame in which evaluation started. This must be
119    /// initialized last.
120    CallStackFrame BottomFrame;
121
122
123    EvalInfo(const ASTContext &C, Expr::EvalStatus &S)
124      : Ctx(C), EvalStatus(S), CurrentCall(0), NumCalls(0), CallStackDepth(0),
125        BottomFrame(*this, 0) {}
126
127    const CCValue *getOpaqueValue(const OpaqueValueExpr *e) const {
128      MapTy::const_iterator i = OpaqueValues.find(e);
129      if (i == OpaqueValues.end()) return 0;
130      return &i->second;
131    }
132
133    const LangOptions &getLangOpts() { return Ctx.getLangOptions(); }
134  };
135
136  CallStackFrame::CallStackFrame(EvalInfo &Info, const CCValue *Arguments)
137      : Info(Info), Caller(Info.CurrentCall), Arguments(Arguments) {
138    Info.CurrentCall = this;
139    ++Info.CallStackDepth;
140  }
141
142  CallStackFrame::~CallStackFrame() {
143    assert(Info.CurrentCall == this && "calls retired out of order");
144    --Info.CallStackDepth;
145    Info.CurrentCall = Caller;
146  }
147
148  struct ComplexValue {
149  private:
150    bool IsInt;
151
152  public:
153    APSInt IntReal, IntImag;
154    APFloat FloatReal, FloatImag;
155
156    ComplexValue() : FloatReal(APFloat::Bogus), FloatImag(APFloat::Bogus) {}
157
158    void makeComplexFloat() { IsInt = false; }
159    bool isComplexFloat() const { return !IsInt; }
160    APFloat &getComplexFloatReal() { return FloatReal; }
161    APFloat &getComplexFloatImag() { return FloatImag; }
162
163    void makeComplexInt() { IsInt = true; }
164    bool isComplexInt() const { return IsInt; }
165    APSInt &getComplexIntReal() { return IntReal; }
166    APSInt &getComplexIntImag() { return IntImag; }
167
168    void moveInto(CCValue &v) const {
169      if (isComplexFloat())
170        v = CCValue(FloatReal, FloatImag);
171      else
172        v = CCValue(IntReal, IntImag);
173    }
174    void setFrom(const CCValue &v) {
175      assert(v.isComplexFloat() || v.isComplexInt());
176      if (v.isComplexFloat()) {
177        makeComplexFloat();
178        FloatReal = v.getComplexFloatReal();
179        FloatImag = v.getComplexFloatImag();
180      } else {
181        makeComplexInt();
182        IntReal = v.getComplexIntReal();
183        IntImag = v.getComplexIntImag();
184      }
185    }
186  };
187
188  struct LValue {
189    const Expr *Base;
190    CharUnits Offset;
191    CallStackFrame *Frame;
192
193    const Expr *getLValueBase() const { return Base; }
194    CharUnits &getLValueOffset() { return Offset; }
195    const CharUnits &getLValueOffset() const { return Offset; }
196    CallStackFrame *getLValueFrame() const { return Frame; }
197
198    void moveInto(CCValue &V) const {
199      V = CCValue(Base, Offset, Frame);
200    }
201    void setFrom(const CCValue &V) {
202      assert(V.isLValue());
203      Base = V.getLValueBase();
204      Offset = V.getLValueOffset();
205      Frame = V.getLValueFrame();
206    }
207  };
208}
209
210static bool Evaluate(CCValue &Result, EvalInfo &Info, const Expr *E);
211static bool EvaluateLValue(const Expr *E, LValue &Result, EvalInfo &Info);
212static bool EvaluatePointer(const Expr *E, LValue &Result, EvalInfo &Info);
213static bool EvaluateInteger(const Expr *E, APSInt  &Result, EvalInfo &Info);
214static bool EvaluateIntegerOrLValue(const Expr *E, CCValue &Result,
215                                    EvalInfo &Info);
216static bool EvaluateFloat(const Expr *E, APFloat &Result, EvalInfo &Info);
217static bool EvaluateComplex(const Expr *E, ComplexValue &Res, EvalInfo &Info);
218
219//===----------------------------------------------------------------------===//
220// Misc utilities
221//===----------------------------------------------------------------------===//
222
223static bool IsGlobalLValue(const Expr* E) {
224  if (!E) return true;
225
226  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
227    if (isa<FunctionDecl>(DRE->getDecl()))
228      return true;
229    if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()))
230      return VD->hasGlobalStorage();
231    return false;
232  }
233
234  if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(E))
235    return CLE->isFileScope();
236
237  if (isa<MemberExpr>(E) || isa<MaterializeTemporaryExpr>(E))
238    return false;
239
240  return true;
241}
242
243/// Check that this core constant expression value is a valid value for a
244/// constant expression.
245static bool CheckConstantExpression(const CCValue &Value) {
246  return !Value.isLValue() || IsGlobalLValue(Value.getLValueBase());
247}
248
249const ValueDecl *GetLValueBaseDecl(const LValue &LVal) {
250  if (!LVal.Base)
251    return 0;
252
253  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(LVal.Base))
254    return DRE->getDecl();
255
256  // FIXME: Static data members accessed via a MemberExpr are represented as
257  // that MemberExpr. We should use the Decl directly instead.
258  if (const MemberExpr *ME = dyn_cast<MemberExpr>(LVal.Base)) {
259    assert(!isa<FieldDecl>(ME->getMemberDecl()) && "shouldn't see fields here");
260    return ME->getMemberDecl();
261  }
262
263  return 0;
264}
265
266static bool IsLiteralLValue(const LValue &Value) {
267  return Value.Base &&
268         !isa<DeclRefExpr>(Value.Base) &&
269         !isa<MemberExpr>(Value.Base) &&
270         !isa<MaterializeTemporaryExpr>(Value.Base);
271}
272
273static bool IsWeakLValue(const LValue &Value) {
274  const ValueDecl *Decl = GetLValueBaseDecl(Value);
275  if (!Decl)
276    return false;
277
278  return Decl->hasAttr<WeakAttr>() ||
279         Decl->hasAttr<WeakRefAttr>() ||
280         Decl->isWeakImported();
281}
282
283static bool EvalPointerValueAsBool(const LValue &Value, bool &Result) {
284  const Expr* Base = Value.Base;
285
286  // A null base expression indicates a null pointer.  These are always
287  // evaluatable, and they are false unless the offset is zero.
288  if (!Base) {
289    Result = !Value.Offset.isZero();
290    return true;
291  }
292
293  // Require the base expression to be a global l-value.
294  // FIXME: C++11 requires such conversions. Remove this check.
295  if (!IsGlobalLValue(Base)) return false;
296
297  // We have a non-null base expression.  These are generally known to
298  // be true, but if it'a decl-ref to a weak symbol it can be null at
299  // runtime.
300  Result = true;
301  return !IsWeakLValue(Value);
302}
303
304static bool HandleConversionToBool(const CCValue &Val, bool &Result) {
305  switch (Val.getKind()) {
306  case APValue::Uninitialized:
307    return false;
308  case APValue::Int:
309    Result = Val.getInt().getBoolValue();
310    return true;
311  case APValue::Float:
312    Result = !Val.getFloat().isZero();
313    return true;
314  case APValue::ComplexInt:
315    Result = Val.getComplexIntReal().getBoolValue() ||
316             Val.getComplexIntImag().getBoolValue();
317    return true;
318  case APValue::ComplexFloat:
319    Result = !Val.getComplexFloatReal().isZero() ||
320             !Val.getComplexFloatImag().isZero();
321    return true;
322  case APValue::LValue: {
323    LValue PointerResult;
324    PointerResult.setFrom(Val);
325    return EvalPointerValueAsBool(PointerResult, Result);
326  }
327  case APValue::Vector:
328    return false;
329  }
330
331  llvm_unreachable("unknown APValue kind");
332}
333
334static bool EvaluateAsBooleanCondition(const Expr *E, bool &Result,
335                                       EvalInfo &Info) {
336  assert(E->isRValue() && "missing lvalue-to-rvalue conv in bool condition");
337  CCValue Val;
338  if (!Evaluate(Val, Info, E))
339    return false;
340  return HandleConversionToBool(Val, Result);
341}
342
343static APSInt HandleFloatToIntCast(QualType DestType, QualType SrcType,
344                                   APFloat &Value, const ASTContext &Ctx) {
345  unsigned DestWidth = Ctx.getIntWidth(DestType);
346  // Determine whether we are converting to unsigned or signed.
347  bool DestSigned = DestType->isSignedIntegerOrEnumerationType();
348
349  // FIXME: Warning for overflow.
350  APSInt Result(DestWidth, !DestSigned);
351  bool ignored;
352  (void)Value.convertToInteger(Result, llvm::APFloat::rmTowardZero, &ignored);
353  return Result;
354}
355
356static APFloat HandleFloatToFloatCast(QualType DestType, QualType SrcType,
357                                      APFloat &Value, const ASTContext &Ctx) {
358  bool ignored;
359  APFloat Result = Value;
360  Result.convert(Ctx.getFloatTypeSemantics(DestType),
361                 APFloat::rmNearestTiesToEven, &ignored);
362  return Result;
363}
364
365static APSInt HandleIntToIntCast(QualType DestType, QualType SrcType,
366                                 APSInt &Value, const ASTContext &Ctx) {
367  unsigned DestWidth = Ctx.getIntWidth(DestType);
368  APSInt Result = Value;
369  // Figure out if this is a truncate, extend or noop cast.
370  // If the input is signed, do a sign extend, noop, or truncate.
371  Result = Result.extOrTrunc(DestWidth);
372  Result.setIsUnsigned(DestType->isUnsignedIntegerOrEnumerationType());
373  return Result;
374}
375
376static APFloat HandleIntToFloatCast(QualType DestType, QualType SrcType,
377                                    APSInt &Value, const ASTContext &Ctx) {
378
379  APFloat Result(Ctx.getFloatTypeSemantics(DestType), 1);
380  Result.convertFromAPInt(Value, Value.isSigned(),
381                          APFloat::rmNearestTiesToEven);
382  return Result;
383}
384
385/// Try to evaluate the initializer for a variable declaration.
386static bool EvaluateVarDeclInit(EvalInfo &Info, const VarDecl *VD,
387                                CallStackFrame *Frame, CCValue &Result) {
388  // If this is a parameter to an active constexpr function call, perform
389  // argument substitution.
390  if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) {
391    if (!Frame || !Frame->Arguments)
392      return false;
393    Result = Frame->Arguments[PVD->getFunctionScopeIndex()];
394    return true;
395  }
396
397  const Expr *Init = VD->getAnyInitializer();
398  if (!Init)
399    return false;
400
401  if (APValue *V = VD->getEvaluatedValue()) {
402    Result = CCValue(*V, CCValue::GlobalValue());
403    return !Result.isUninit();
404  }
405
406  if (VD->isEvaluatingValue())
407    return false;
408
409  VD->setEvaluatingValue();
410
411  Expr::EvalStatus EStatus;
412  EvalInfo InitInfo(Info.Ctx, EStatus);
413  // FIXME: The caller will need to know whether the value was a constant
414  // expression. If not, we should propagate up a diagnostic.
415  if (!Evaluate(Result, InitInfo, Init) || !CheckConstantExpression(Result)) {
416    VD->setEvaluatedValue(APValue());
417    return false;
418  }
419
420  VD->setEvaluatedValue(Result);
421  return true;
422}
423
424static bool IsConstNonVolatile(QualType T) {
425  Qualifiers Quals = T.getQualifiers();
426  return Quals.hasConst() && !Quals.hasVolatile();
427}
428
429bool HandleLValueToRValueConversion(EvalInfo &Info, QualType Type,
430                                    const LValue &LVal, CCValue &RVal) {
431  const Expr *Base = LVal.Base;
432  CallStackFrame *Frame = LVal.Frame;
433
434  // FIXME: Indirection through a null pointer deserves a diagnostic.
435  if (!Base)
436    return false;
437
438  // FIXME: Support accessing subobjects of objects of literal types. A simple
439  // byte offset is insufficient for C++11 semantics: we need to know how the
440  // reference was formed (which union member was named, for instance).
441  // FIXME: Support subobjects of StringLiteral and PredefinedExpr.
442  if (!LVal.Offset.isZero())
443    return false;
444
445  if (const ValueDecl *D = GetLValueBaseDecl(LVal)) {
446    // If the lvalue has been cast to some other type, don't try to read it.
447    // FIXME: Could simulate a bitcast here.
448    if (!Info.Ctx.hasSameUnqualifiedType(Type, D->getType()))
449      return 0;
450
451    // In C++98, const, non-volatile integers initialized with ICEs are ICEs.
452    // In C++11, constexpr, non-volatile variables initialized with constant
453    // expressions are constant expressions too. Inside constexpr functions,
454    // parameters are constant expressions even if they're non-const.
455    // In C, such things can also be folded, although they are not ICEs.
456    //
457    // FIXME: volatile-qualified ParmVarDecls need special handling. A literal
458    // interpretation of C++11 suggests that volatile parameters are OK if
459    // they're never read (there's no prohibition against constructing volatile
460    // objects in constant expressions), but lvalue-to-rvalue conversions on
461    // them are not permitted.
462    const VarDecl *VD = dyn_cast<VarDecl>(D);
463    if (!VD || !(IsConstNonVolatile(VD->getType()) || isa<ParmVarDecl>(VD)) ||
464        !Type->isLiteralType() || !EvaluateVarDeclInit(Info, VD, Frame, RVal))
465      return false;
466
467    if (isa<ParmVarDecl>(VD) || !VD->getAnyInitializer()->isLValue())
468      return true;
469
470    // The declaration was initialized by an lvalue, with no lvalue-to-rvalue
471    // conversion. This happens when the declaration and the lvalue should be
472    // considered synonymous, for instance when initializing an array of char
473    // from a string literal. Continue as if the initializer lvalue was the
474    // value we were originally given.
475    if (!RVal.getLValueOffset().isZero())
476      return false;
477    Base = RVal.getLValueBase();
478    Frame = RVal.getLValueFrame();
479  }
480
481  // If this is a temporary expression with a nontrivial initializer, grab the
482  // value from the relevant stack frame.
483  if (Frame) {
484    RVal = Frame->Temporaries[Base];
485    return true;
486  }
487
488  // In C99, a CompoundLiteralExpr is an lvalue, and we defer evaluating the
489  // initializer until now for such expressions. Such an expression can't be
490  // an ICE in C, so this only matters for fold.
491  if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(Base)) {
492    assert(!Info.getLangOpts().CPlusPlus && "lvalue compound literal in c++?");
493    return Evaluate(RVal, Info, CLE->getInitializer());
494  }
495
496  return false;
497}
498
499namespace {
500enum EvalStmtResult {
501  /// Evaluation failed.
502  ESR_Failed,
503  /// Hit a 'return' statement.
504  ESR_Returned,
505  /// Evaluation succeeded.
506  ESR_Succeeded
507};
508}
509
510// Evaluate a statement.
511static EvalStmtResult EvaluateStmt(CCValue &Result, EvalInfo &Info,
512                                   const Stmt *S) {
513  switch (S->getStmtClass()) {
514  default:
515    return ESR_Failed;
516
517  case Stmt::NullStmtClass:
518  case Stmt::DeclStmtClass:
519    return ESR_Succeeded;
520
521  case Stmt::ReturnStmtClass:
522    if (Evaluate(Result, Info, cast<ReturnStmt>(S)->getRetValue()))
523      return ESR_Returned;
524    return ESR_Failed;
525
526  case Stmt::CompoundStmtClass: {
527    const CompoundStmt *CS = cast<CompoundStmt>(S);
528    for (CompoundStmt::const_body_iterator BI = CS->body_begin(),
529           BE = CS->body_end(); BI != BE; ++BI) {
530      EvalStmtResult ESR = EvaluateStmt(Result, Info, *BI);
531      if (ESR != ESR_Succeeded)
532        return ESR;
533    }
534    return ESR_Succeeded;
535  }
536  }
537}
538
539/// Evaluate a function call.
540static bool HandleFunctionCall(ArrayRef<const Expr*> Args, const Stmt *Body,
541                               EvalInfo &Info, CCValue &Result) {
542  // FIXME: Implement a proper call limit, along with a command-line flag.
543  if (Info.NumCalls >= 1000000 || Info.CallStackDepth >= 512)
544    return false;
545
546  SmallVector<CCValue, 16> ArgValues(Args.size());
547  // FIXME: Deal with default arguments and 'this'.
548  for (ArrayRef<const Expr*>::iterator I = Args.begin(), E = Args.end();
549       I != E; ++I)
550    if (!Evaluate(ArgValues[I - Args.begin()], Info, *I))
551      return false;
552
553  CallStackFrame Frame(Info, ArgValues.data());
554  return EvaluateStmt(Result, Info, Body) == ESR_Returned;
555}
556
557namespace {
558class HasSideEffect
559  : public ConstStmtVisitor<HasSideEffect, bool> {
560  const ASTContext &Ctx;
561public:
562
563  HasSideEffect(const ASTContext &C) : Ctx(C) {}
564
565  // Unhandled nodes conservatively default to having side effects.
566  bool VisitStmt(const Stmt *S) {
567    return true;
568  }
569
570  bool VisitParenExpr(const ParenExpr *E) { return Visit(E->getSubExpr()); }
571  bool VisitGenericSelectionExpr(const GenericSelectionExpr *E) {
572    return Visit(E->getResultExpr());
573  }
574  bool VisitDeclRefExpr(const DeclRefExpr *E) {
575    if (Ctx.getCanonicalType(E->getType()).isVolatileQualified())
576      return true;
577    return false;
578  }
579  bool VisitObjCIvarRefExpr(const ObjCIvarRefExpr *E) {
580    if (Ctx.getCanonicalType(E->getType()).isVolatileQualified())
581      return true;
582    return false;
583  }
584  bool VisitBlockDeclRefExpr (const BlockDeclRefExpr *E) {
585    if (Ctx.getCanonicalType(E->getType()).isVolatileQualified())
586      return true;
587    return false;
588  }
589
590  // We don't want to evaluate BlockExprs multiple times, as they generate
591  // a ton of code.
592  bool VisitBlockExpr(const BlockExpr *E) { return true; }
593  bool VisitPredefinedExpr(const PredefinedExpr *E) { return false; }
594  bool VisitCompoundLiteralExpr(const CompoundLiteralExpr *E)
595    { return Visit(E->getInitializer()); }
596  bool VisitMemberExpr(const MemberExpr *E) { return Visit(E->getBase()); }
597  bool VisitIntegerLiteral(const IntegerLiteral *E) { return false; }
598  bool VisitFloatingLiteral(const FloatingLiteral *E) { return false; }
599  bool VisitStringLiteral(const StringLiteral *E) { return false; }
600  bool VisitCharacterLiteral(const CharacterLiteral *E) { return false; }
601  bool VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E)
602    { return false; }
603  bool VisitArraySubscriptExpr(const ArraySubscriptExpr *E)
604    { return Visit(E->getLHS()) || Visit(E->getRHS()); }
605  bool VisitChooseExpr(const ChooseExpr *E)
606    { return Visit(E->getChosenSubExpr(Ctx)); }
607  bool VisitCastExpr(const CastExpr *E) { return Visit(E->getSubExpr()); }
608  bool VisitBinAssign(const BinaryOperator *E) { return true; }
609  bool VisitCompoundAssignOperator(const BinaryOperator *E) { return true; }
610  bool VisitBinaryOperator(const BinaryOperator *E)
611  { return Visit(E->getLHS()) || Visit(E->getRHS()); }
612  bool VisitUnaryPreInc(const UnaryOperator *E) { return true; }
613  bool VisitUnaryPostInc(const UnaryOperator *E) { return true; }
614  bool VisitUnaryPreDec(const UnaryOperator *E) { return true; }
615  bool VisitUnaryPostDec(const UnaryOperator *E) { return true; }
616  bool VisitUnaryDeref(const UnaryOperator *E) {
617    if (Ctx.getCanonicalType(E->getType()).isVolatileQualified())
618      return true;
619    return Visit(E->getSubExpr());
620  }
621  bool VisitUnaryOperator(const UnaryOperator *E) { return Visit(E->getSubExpr()); }
622
623  // Has side effects if any element does.
624  bool VisitInitListExpr(const InitListExpr *E) {
625    for (unsigned i = 0, e = E->getNumInits(); i != e; ++i)
626      if (Visit(E->getInit(i))) return true;
627    if (const Expr *filler = E->getArrayFiller())
628      return Visit(filler);
629    return false;
630  }
631
632  bool VisitSizeOfPackExpr(const SizeOfPackExpr *) { return false; }
633};
634
635class OpaqueValueEvaluation {
636  EvalInfo &info;
637  OpaqueValueExpr *opaqueValue;
638
639public:
640  OpaqueValueEvaluation(EvalInfo &info, OpaqueValueExpr *opaqueValue,
641                        Expr *value)
642    : info(info), opaqueValue(opaqueValue) {
643
644    // If evaluation fails, fail immediately.
645    if (!Evaluate(info.OpaqueValues[opaqueValue], info, value)) {
646      this->opaqueValue = 0;
647      return;
648    }
649  }
650
651  bool hasError() const { return opaqueValue == 0; }
652
653  ~OpaqueValueEvaluation() {
654    // FIXME: This will not work for recursive constexpr functions using opaque
655    // values. Restore the former value.
656    if (opaqueValue) info.OpaqueValues.erase(opaqueValue);
657  }
658};
659
660} // end anonymous namespace
661
662//===----------------------------------------------------------------------===//
663// Generic Evaluation
664//===----------------------------------------------------------------------===//
665namespace {
666
667template <class Derived, typename RetTy=void>
668class ExprEvaluatorBase
669  : public ConstStmtVisitor<Derived, RetTy> {
670private:
671  RetTy DerivedSuccess(const CCValue &V, const Expr *E) {
672    return static_cast<Derived*>(this)->Success(V, E);
673  }
674  RetTy DerivedError(const Expr *E) {
675    return static_cast<Derived*>(this)->Error(E);
676  }
677  RetTy DerivedValueInitialization(const Expr *E) {
678    return static_cast<Derived*>(this)->ValueInitialization(E);
679  }
680
681protected:
682  EvalInfo &Info;
683  typedef ConstStmtVisitor<Derived, RetTy> StmtVisitorTy;
684  typedef ExprEvaluatorBase ExprEvaluatorBaseTy;
685
686  RetTy ValueInitialization(const Expr *E) { return DerivedError(E); }
687
688  bool MakeTemporary(const Expr *Key, const Expr *Value, LValue &Result) {
689    if (!Evaluate(Info.CurrentCall->Temporaries[Key], Info, Value))
690      return false;
691    Result.Base = Key;
692    Result.Offset = CharUnits::Zero();
693    Result.Frame = Info.CurrentCall;
694    return true;
695  }
696public:
697  ExprEvaluatorBase(EvalInfo &Info) : Info(Info) {}
698
699  RetTy VisitStmt(const Stmt *) {
700    llvm_unreachable("Expression evaluator should not be called on stmts");
701  }
702  RetTy VisitExpr(const Expr *E) {
703    return DerivedError(E);
704  }
705
706  RetTy VisitParenExpr(const ParenExpr *E)
707    { return StmtVisitorTy::Visit(E->getSubExpr()); }
708  RetTy VisitUnaryExtension(const UnaryOperator *E)
709    { return StmtVisitorTy::Visit(E->getSubExpr()); }
710  RetTy VisitUnaryPlus(const UnaryOperator *E)
711    { return StmtVisitorTy::Visit(E->getSubExpr()); }
712  RetTy VisitChooseExpr(const ChooseExpr *E)
713    { return StmtVisitorTy::Visit(E->getChosenSubExpr(Info.Ctx)); }
714  RetTy VisitGenericSelectionExpr(const GenericSelectionExpr *E)
715    { return StmtVisitorTy::Visit(E->getResultExpr()); }
716  RetTy VisitSubstNonTypeTemplateParmExpr(const SubstNonTypeTemplateParmExpr *E)
717    { return StmtVisitorTy::Visit(E->getReplacement()); }
718
719  RetTy VisitBinaryConditionalOperator(const BinaryConditionalOperator *E) {
720    OpaqueValueEvaluation opaque(Info, E->getOpaqueValue(), E->getCommon());
721    if (opaque.hasError())
722      return DerivedError(E);
723
724    bool cond;
725    if (!EvaluateAsBooleanCondition(E->getCond(), cond, Info))
726      return DerivedError(E);
727
728    return StmtVisitorTy::Visit(cond ? E->getTrueExpr() : E->getFalseExpr());
729  }
730
731  RetTy VisitConditionalOperator(const ConditionalOperator *E) {
732    bool BoolResult;
733    if (!EvaluateAsBooleanCondition(E->getCond(), BoolResult, Info))
734      return DerivedError(E);
735
736    Expr *EvalExpr = BoolResult ? E->getTrueExpr() : E->getFalseExpr();
737    return StmtVisitorTy::Visit(EvalExpr);
738  }
739
740  RetTy VisitOpaqueValueExpr(const OpaqueValueExpr *E) {
741    const CCValue *Value = Info.getOpaqueValue(E);
742    if (!Value)
743      return (E->getSourceExpr() ? StmtVisitorTy::Visit(E->getSourceExpr())
744                                 : DerivedError(E));
745    return DerivedSuccess(*Value, E);
746  }
747
748  RetTy VisitCallExpr(const CallExpr *E) {
749    const Expr *Callee = E->getCallee();
750    QualType CalleeType = Callee->getType();
751
752    // FIXME: Handle the case where Callee is a (parenthesized) MemberExpr for a
753    // non-static member function.
754    if (CalleeType->isSpecificBuiltinType(BuiltinType::BoundMember))
755      return DerivedError(E);
756
757    if (!CalleeType->isFunctionType() && !CalleeType->isFunctionPointerType())
758      return DerivedError(E);
759
760    CCValue Call;
761    if (!Evaluate(Call, Info, Callee) || !Call.isLValue() ||
762        !Call.getLValueBase() || !Call.getLValueOffset().isZero())
763      return DerivedError(Callee);
764
765    const FunctionDecl *FD = 0;
766    if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Call.getLValueBase()))
767      FD = dyn_cast<FunctionDecl>(DRE->getDecl());
768    else if (const MemberExpr *ME = dyn_cast<MemberExpr>(Call.getLValueBase()))
769      FD = dyn_cast<FunctionDecl>(ME->getMemberDecl());
770    if (!FD)
771      return DerivedError(Callee);
772
773    // Don't call function pointers which have been cast to some other type.
774    if (!Info.Ctx.hasSameType(CalleeType->getPointeeType(), FD->getType()))
775      return DerivedError(E);
776
777    const FunctionDecl *Definition;
778    Stmt *Body = FD->getBody(Definition);
779    CCValue Result;
780    llvm::ArrayRef<const Expr*> Args(E->getArgs(), E->getNumArgs());
781
782    if (Body && Definition->isConstexpr() && !Definition->isInvalidDecl() &&
783        HandleFunctionCall(Args, Body, Info, Result) &&
784        CheckConstantExpression(Result))
785      return DerivedSuccess(Result, E);
786
787    return DerivedError(E);
788  }
789
790  RetTy VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
791    return StmtVisitorTy::Visit(E->getInitializer());
792  }
793  RetTy VisitInitListExpr(const InitListExpr *E) {
794    if (Info.getLangOpts().CPlusPlus0x) {
795      if (E->getNumInits() == 0)
796        return DerivedValueInitialization(E);
797      if (E->getNumInits() == 1)
798        return StmtVisitorTy::Visit(E->getInit(0));
799    }
800    return DerivedError(E);
801  }
802  RetTy VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
803    return DerivedValueInitialization(E);
804  }
805  RetTy VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
806    return DerivedValueInitialization(E);
807  }
808
809  RetTy VisitCastExpr(const CastExpr *E) {
810    switch (E->getCastKind()) {
811    default:
812      break;
813
814    case CK_NoOp:
815      return StmtVisitorTy::Visit(E->getSubExpr());
816
817    case CK_LValueToRValue: {
818      LValue LVal;
819      if (EvaluateLValue(E->getSubExpr(), LVal, Info)) {
820        CCValue RVal;
821        if (HandleLValueToRValueConversion(Info, E->getType(), LVal, RVal))
822          return DerivedSuccess(RVal, E);
823      }
824      break;
825    }
826    }
827
828    return DerivedError(E);
829  }
830
831  /// Visit a value which is evaluated, but whose value is ignored.
832  void VisitIgnoredValue(const Expr *E) {
833    CCValue Scratch;
834    if (!Evaluate(Scratch, Info, E))
835      Info.EvalStatus.HasSideEffects = true;
836  }
837};
838
839}
840
841//===----------------------------------------------------------------------===//
842// LValue Evaluation
843//
844// This is used for evaluating lvalues (in C and C++), xvalues (in C++11),
845// function designators (in C), decl references to void objects (in C), and
846// temporaries (if building with -Wno-address-of-temporary).
847//
848// LValue evaluation produces values comprising a base expression of one of the
849// following types:
850//  * DeclRefExpr
851//  * MemberExpr for a static member
852//  * CompoundLiteralExpr in C
853//  * StringLiteral
854//  * PredefinedExpr
855//  * ObjCEncodeExpr
856//  * AddrLabelExpr
857//  * BlockExpr
858//  * CallExpr for a MakeStringConstant builtin
859// plus an offset in bytes. It can also produce lvalues referring to locals. In
860// that case, the Frame will point to a stack frame, and the Expr is used as a
861// key to find the relevant temporary's value.
862//===----------------------------------------------------------------------===//
863namespace {
864class LValueExprEvaluator
865  : public ExprEvaluatorBase<LValueExprEvaluator, bool> {
866  LValue &Result;
867  const Decl *PrevDecl;
868
869  bool Success(const Expr *E) {
870    Result.Base = E;
871    Result.Offset = CharUnits::Zero();
872    Result.Frame = 0;
873    return true;
874  }
875public:
876
877  LValueExprEvaluator(EvalInfo &info, LValue &Result) :
878    ExprEvaluatorBaseTy(info), Result(Result), PrevDecl(0) {}
879
880  bool Success(const CCValue &V, const Expr *E) {
881    Result.setFrom(V);
882    return true;
883  }
884  bool Error(const Expr *E) {
885    return false;
886  }
887
888  bool VisitVarDecl(const Expr *E, const VarDecl *VD);
889
890  bool VisitDeclRefExpr(const DeclRefExpr *E);
891  bool VisitPredefinedExpr(const PredefinedExpr *E) { return Success(E); }
892  bool VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
893  bool VisitCompoundLiteralExpr(const CompoundLiteralExpr *E);
894  bool VisitMemberExpr(const MemberExpr *E);
895  bool VisitStringLiteral(const StringLiteral *E) { return Success(E); }
896  bool VisitObjCEncodeExpr(const ObjCEncodeExpr *E) { return Success(E); }
897  bool VisitArraySubscriptExpr(const ArraySubscriptExpr *E);
898  bool VisitUnaryDeref(const UnaryOperator *E);
899
900  bool VisitCastExpr(const CastExpr *E) {
901    switch (E->getCastKind()) {
902    default:
903      return ExprEvaluatorBaseTy::VisitCastExpr(E);
904
905    case CK_LValueBitCast:
906      return Visit(E->getSubExpr());
907
908    // FIXME: Support CK_DerivedToBase and CK_UncheckedDerivedToBase.
909    // Reuse PointerExprEvaluator::VisitCastExpr for these.
910    }
911  }
912
913  // FIXME: Missing: __real__, __imag__
914
915};
916} // end anonymous namespace
917
918/// Evaluate an expression as an lvalue. This can be legitimately called on
919/// expressions which are not glvalues, in a few cases:
920///  * function designators in C,
921///  * "extern void" objects,
922///  * temporaries, if building with -Wno-address-of-temporary.
923static bool EvaluateLValue(const Expr* E, LValue& Result, EvalInfo &Info) {
924  assert((E->isGLValue() || E->getType()->isFunctionType() ||
925          E->getType()->isVoidType() || isa<CXXTemporaryObjectExpr>(E)) &&
926         "can't evaluate expression as an lvalue");
927  return LValueExprEvaluator(Info, Result).Visit(E);
928}
929
930bool LValueExprEvaluator::VisitDeclRefExpr(const DeclRefExpr *E) {
931  if (isa<FunctionDecl>(E->getDecl()))
932    return Success(E);
933  if (const VarDecl* VD = dyn_cast<VarDecl>(E->getDecl()))
934    return VisitVarDecl(E, VD);
935  return Error(E);
936}
937
938bool LValueExprEvaluator::VisitVarDecl(const Expr *E, const VarDecl *VD) {
939  if (!VD->getType()->isReferenceType()) {
940    if (isa<ParmVarDecl>(VD)) {
941      Result.Base = E;
942      Result.Offset = CharUnits::Zero();
943      Result.Frame = Info.CurrentCall;
944      return true;
945    }
946    return Success(E);
947  }
948
949  CCValue V;
950  if (EvaluateVarDeclInit(Info, VD, Info.CurrentCall, V))
951    return Success(V, E);
952
953  return Error(E);
954}
955
956bool LValueExprEvaluator::VisitMaterializeTemporaryExpr(
957    const MaterializeTemporaryExpr *E) {
958  return MakeTemporary(E, E->GetTemporaryExpr(), Result);
959}
960
961bool
962LValueExprEvaluator::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
963  assert(!Info.getLangOpts().CPlusPlus && "lvalue compound literal in c++?");
964  // Defer visiting the literal until the lvalue-to-rvalue conversion. We can
965  // only see this when folding in C, so there's no standard to follow here.
966  return Success(E);
967}
968
969bool LValueExprEvaluator::VisitMemberExpr(const MemberExpr *E) {
970  // Handle static data members.
971  if (const VarDecl *VD = dyn_cast<VarDecl>(E->getMemberDecl())) {
972    VisitIgnoredValue(E->getBase());
973    return VisitVarDecl(E, VD);
974  }
975
976  // Handle static member functions.
977  if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl())) {
978    if (MD->isStatic()) {
979      VisitIgnoredValue(E->getBase());
980      return Success(E);
981    }
982  }
983
984  QualType Ty;
985  if (E->isArrow()) {
986    if (!EvaluatePointer(E->getBase(), Result, Info))
987      return false;
988    Ty = E->getBase()->getType()->getAs<PointerType>()->getPointeeType();
989  } else {
990    if (!Visit(E->getBase()))
991      return false;
992    Ty = E->getBase()->getType();
993  }
994
995  const RecordDecl *RD = Ty->getAs<RecordType>()->getDecl();
996  const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD);
997
998  const FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl());
999  if (!FD) // FIXME: deal with other kinds of member expressions
1000    return false;
1001
1002  if (FD->getType()->isReferenceType())
1003    return false;
1004
1005  unsigned i = FD->getFieldIndex();
1006  Result.Offset += Info.Ctx.toCharUnitsFromBits(RL.getFieldOffset(i));
1007  return true;
1008}
1009
1010bool LValueExprEvaluator::VisitArraySubscriptExpr(const ArraySubscriptExpr *E) {
1011  // FIXME: Deal with vectors as array subscript bases.
1012  if (E->getBase()->getType()->isVectorType())
1013    return false;
1014
1015  if (!EvaluatePointer(E->getBase(), Result, Info))
1016    return false;
1017
1018  APSInt Index;
1019  if (!EvaluateInteger(E->getIdx(), Index, Info))
1020    return false;
1021
1022  CharUnits ElementSize = Info.Ctx.getTypeSizeInChars(E->getType());
1023  Result.Offset += Index.getSExtValue() * ElementSize;
1024  return true;
1025}
1026
1027bool LValueExprEvaluator::VisitUnaryDeref(const UnaryOperator *E) {
1028  return EvaluatePointer(E->getSubExpr(), Result, Info);
1029}
1030
1031//===----------------------------------------------------------------------===//
1032// Pointer Evaluation
1033//===----------------------------------------------------------------------===//
1034
1035namespace {
1036class PointerExprEvaluator
1037  : public ExprEvaluatorBase<PointerExprEvaluator, bool> {
1038  LValue &Result;
1039
1040  bool Success(const Expr *E) {
1041    Result.Base = E;
1042    Result.Offset = CharUnits::Zero();
1043    Result.Frame = 0;
1044    return true;
1045  }
1046public:
1047
1048  PointerExprEvaluator(EvalInfo &info, LValue &Result)
1049    : ExprEvaluatorBaseTy(info), Result(Result) {}
1050
1051  bool Success(const CCValue &V, const Expr *E) {
1052    Result.setFrom(V);
1053    return true;
1054  }
1055  bool Error(const Stmt *S) {
1056    return false;
1057  }
1058  bool ValueInitialization(const Expr *E) {
1059    return Success((Expr*)0);
1060  }
1061
1062  bool VisitBinaryOperator(const BinaryOperator *E);
1063  bool VisitCastExpr(const CastExpr* E);
1064  bool VisitUnaryAddrOf(const UnaryOperator *E);
1065  bool VisitObjCStringLiteral(const ObjCStringLiteral *E)
1066      { return Success(E); }
1067  bool VisitAddrLabelExpr(const AddrLabelExpr *E)
1068      { return Success(E); }
1069  bool VisitCallExpr(const CallExpr *E);
1070  bool VisitBlockExpr(const BlockExpr *E) {
1071    if (!E->getBlockDecl()->hasCaptures())
1072      return Success(E);
1073    return false;
1074  }
1075  bool VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E)
1076      { return ValueInitialization(E); }
1077
1078  // FIXME: Missing: @protocol, @selector
1079};
1080} // end anonymous namespace
1081
1082static bool EvaluatePointer(const Expr* E, LValue& Result, EvalInfo &Info) {
1083  assert(E->isRValue() && E->getType()->hasPointerRepresentation());
1084  return PointerExprEvaluator(Info, Result).Visit(E);
1085}
1086
1087bool PointerExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
1088  if (E->getOpcode() != BO_Add &&
1089      E->getOpcode() != BO_Sub)
1090    return false;
1091
1092  const Expr *PExp = E->getLHS();
1093  const Expr *IExp = E->getRHS();
1094  if (IExp->getType()->isPointerType())
1095    std::swap(PExp, IExp);
1096
1097  if (!EvaluatePointer(PExp, Result, Info))
1098    return false;
1099
1100  llvm::APSInt Offset;
1101  if (!EvaluateInteger(IExp, Offset, Info))
1102    return false;
1103  int64_t AdditionalOffset
1104    = Offset.isSigned() ? Offset.getSExtValue()
1105                        : static_cast<int64_t>(Offset.getZExtValue());
1106
1107  // Compute the new offset in the appropriate width.
1108
1109  QualType PointeeType =
1110    PExp->getType()->getAs<PointerType>()->getPointeeType();
1111  CharUnits SizeOfPointee;
1112
1113  // Explicitly handle GNU void* and function pointer arithmetic extensions.
1114  if (PointeeType->isVoidType() || PointeeType->isFunctionType())
1115    SizeOfPointee = CharUnits::One();
1116  else
1117    SizeOfPointee = Info.Ctx.getTypeSizeInChars(PointeeType);
1118
1119  if (E->getOpcode() == BO_Add)
1120    Result.Offset += AdditionalOffset * SizeOfPointee;
1121  else
1122    Result.Offset -= AdditionalOffset * SizeOfPointee;
1123
1124  return true;
1125}
1126
1127bool PointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) {
1128  return EvaluateLValue(E->getSubExpr(), Result, Info);
1129}
1130
1131
1132bool PointerExprEvaluator::VisitCastExpr(const CastExpr* E) {
1133  const Expr* SubExpr = E->getSubExpr();
1134
1135  switch (E->getCastKind()) {
1136  default:
1137    break;
1138
1139  case CK_BitCast:
1140  case CK_CPointerToObjCPointerCast:
1141  case CK_BlockPointerToObjCPointerCast:
1142  case CK_AnyPointerToBlockPointerCast:
1143    return Visit(SubExpr);
1144
1145  case CK_DerivedToBase:
1146  case CK_UncheckedDerivedToBase: {
1147    if (!EvaluatePointer(E->getSubExpr(), Result, Info))
1148      return false;
1149
1150    // Now figure out the necessary offset to add to the baseLV to get from
1151    // the derived class to the base class.
1152    CharUnits Offset = CharUnits::Zero();
1153
1154    QualType Ty = E->getSubExpr()->getType();
1155    const CXXRecordDecl *DerivedDecl =
1156      Ty->getAs<PointerType>()->getPointeeType()->getAsCXXRecordDecl();
1157
1158    for (CastExpr::path_const_iterator PathI = E->path_begin(),
1159         PathE = E->path_end(); PathI != PathE; ++PathI) {
1160      const CXXBaseSpecifier *Base = *PathI;
1161
1162      // FIXME: If the base is virtual, we'd need to determine the type of the
1163      // most derived class and we don't support that right now.
1164      if (Base->isVirtual())
1165        return false;
1166
1167      const CXXRecordDecl *BaseDecl = Base->getType()->getAsCXXRecordDecl();
1168      const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(DerivedDecl);
1169
1170      Result.getLValueOffset() += Layout.getBaseClassOffset(BaseDecl);
1171      DerivedDecl = BaseDecl;
1172    }
1173
1174    return true;
1175  }
1176
1177  case CK_NullToPointer:
1178    return ValueInitialization(E);
1179
1180  case CK_IntegralToPointer: {
1181    CCValue Value;
1182    if (!EvaluateIntegerOrLValue(SubExpr, Value, Info))
1183      break;
1184
1185    if (Value.isInt()) {
1186      unsigned Size = Info.Ctx.getTypeSize(E->getType());
1187      uint64_t N = Value.getInt().extOrTrunc(Size).getZExtValue();
1188      Result.Base = 0;
1189      Result.Offset = CharUnits::fromQuantity(N);
1190      Result.Frame = 0;
1191      return true;
1192    } else {
1193      // Cast is of an lvalue, no need to change value.
1194      Result.setFrom(Value);
1195      return true;
1196    }
1197  }
1198  case CK_ArrayToPointerDecay:
1199    // FIXME: Support array-to-pointer decay on array rvalues.
1200    if (!SubExpr->isGLValue())
1201      return Error(E);
1202    return EvaluateLValue(SubExpr, Result, Info);
1203
1204  case CK_FunctionToPointerDecay:
1205    return EvaluateLValue(SubExpr, Result, Info);
1206  }
1207
1208  return ExprEvaluatorBaseTy::VisitCastExpr(E);
1209}
1210
1211bool PointerExprEvaluator::VisitCallExpr(const CallExpr *E) {
1212  if (E->isBuiltinCall(Info.Ctx) ==
1213        Builtin::BI__builtin___CFStringMakeConstantString ||
1214      E->isBuiltinCall(Info.Ctx) ==
1215        Builtin::BI__builtin___NSStringMakeConstantString)
1216    return Success(E);
1217
1218  return ExprEvaluatorBaseTy::VisitCallExpr(E);
1219}
1220
1221//===----------------------------------------------------------------------===//
1222// Vector Evaluation
1223//===----------------------------------------------------------------------===//
1224
1225namespace {
1226  class VectorExprEvaluator
1227  : public ExprEvaluatorBase<VectorExprEvaluator, bool> {
1228    APValue &Result;
1229  public:
1230
1231    VectorExprEvaluator(EvalInfo &info, APValue &Result)
1232      : ExprEvaluatorBaseTy(info), Result(Result) {}
1233
1234    bool Success(const ArrayRef<APValue> &V, const Expr *E) {
1235      assert(V.size() == E->getType()->castAs<VectorType>()->getNumElements());
1236      // FIXME: remove this APValue copy.
1237      Result = APValue(V.data(), V.size());
1238      return true;
1239    }
1240    bool Success(const APValue &V, const Expr *E) {
1241      Result = V;
1242      return true;
1243    }
1244    bool Error(const Expr *E) { return false; }
1245    bool ValueInitialization(const Expr *E);
1246
1247    bool VisitUnaryReal(const UnaryOperator *E)
1248      { return Visit(E->getSubExpr()); }
1249    bool VisitCastExpr(const CastExpr* E);
1250    bool VisitInitListExpr(const InitListExpr *E);
1251    bool VisitUnaryImag(const UnaryOperator *E);
1252    // FIXME: Missing: unary -, unary ~, binary add/sub/mul/div,
1253    //                 binary comparisons, binary and/or/xor,
1254    //                 shufflevector, ExtVectorElementExpr
1255    //        (Note that these require implementing conversions
1256    //         between vector types.)
1257  };
1258} // end anonymous namespace
1259
1260static bool EvaluateVector(const Expr* E, APValue& Result, EvalInfo &Info) {
1261  assert(E->isRValue() && E->getType()->isVectorType() &&"not a vector rvalue");
1262  return VectorExprEvaluator(Info, Result).Visit(E);
1263}
1264
1265bool VectorExprEvaluator::VisitCastExpr(const CastExpr* E) {
1266  const VectorType *VTy = E->getType()->castAs<VectorType>();
1267  QualType EltTy = VTy->getElementType();
1268  unsigned NElts = VTy->getNumElements();
1269  unsigned EltWidth = Info.Ctx.getTypeSize(EltTy);
1270
1271  const Expr* SE = E->getSubExpr();
1272  QualType SETy = SE->getType();
1273
1274  switch (E->getCastKind()) {
1275  case CK_VectorSplat: {
1276    APValue Val = APValue();
1277    if (SETy->isIntegerType()) {
1278      APSInt IntResult;
1279      if (!EvaluateInteger(SE, IntResult, Info))
1280         return Error(E);
1281      Val = APValue(IntResult);
1282    } else if (SETy->isRealFloatingType()) {
1283       APFloat F(0.0);
1284       if (!EvaluateFloat(SE, F, Info))
1285         return Error(E);
1286       Val = APValue(F);
1287    } else {
1288      return Error(E);
1289    }
1290
1291    // Splat and create vector APValue.
1292    SmallVector<APValue, 4> Elts(NElts, Val);
1293    return Success(Elts, E);
1294  }
1295  case CK_BitCast: {
1296    // FIXME: this is wrong for any cast other than a no-op cast.
1297    if (SETy->isVectorType())
1298      return Visit(SE);
1299
1300    if (!SETy->isIntegerType())
1301      return Error(E);
1302
1303    APSInt Init;
1304    if (!EvaluateInteger(SE, Init, Info))
1305      return Error(E);
1306
1307    assert((EltTy->isIntegerType() || EltTy->isRealFloatingType()) &&
1308           "Vectors must be composed of ints or floats");
1309
1310    SmallVector<APValue, 4> Elts;
1311    for (unsigned i = 0; i != NElts; ++i) {
1312      APSInt Tmp = Init.extOrTrunc(EltWidth);
1313
1314      if (EltTy->isIntegerType())
1315        Elts.push_back(APValue(Tmp));
1316      else
1317        Elts.push_back(APValue(APFloat(Tmp)));
1318
1319      Init >>= EltWidth;
1320    }
1321    return Success(Elts, E);
1322  }
1323  default:
1324    return ExprEvaluatorBaseTy::VisitCastExpr(E);
1325  }
1326}
1327
1328bool
1329VectorExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
1330  const VectorType *VT = E->getType()->castAs<VectorType>();
1331  unsigned NumInits = E->getNumInits();
1332  unsigned NumElements = VT->getNumElements();
1333
1334  QualType EltTy = VT->getElementType();
1335  SmallVector<APValue, 4> Elements;
1336
1337  // If a vector is initialized with a single element, that value
1338  // becomes every element of the vector, not just the first.
1339  // This is the behavior described in the IBM AltiVec documentation.
1340  if (NumInits == 1) {
1341
1342    // Handle the case where the vector is initialized by another
1343    // vector (OpenCL 6.1.6).
1344    if (E->getInit(0)->getType()->isVectorType())
1345      return Visit(E->getInit(0));
1346
1347    APValue InitValue;
1348    if (EltTy->isIntegerType()) {
1349      llvm::APSInt sInt(32);
1350      if (!EvaluateInteger(E->getInit(0), sInt, Info))
1351        return Error(E);
1352      InitValue = APValue(sInt);
1353    } else {
1354      llvm::APFloat f(0.0);
1355      if (!EvaluateFloat(E->getInit(0), f, Info))
1356        return Error(E);
1357      InitValue = APValue(f);
1358    }
1359    for (unsigned i = 0; i < NumElements; i++) {
1360      Elements.push_back(InitValue);
1361    }
1362  } else {
1363    for (unsigned i = 0; i < NumElements; i++) {
1364      if (EltTy->isIntegerType()) {
1365        llvm::APSInt sInt(32);
1366        if (i < NumInits) {
1367          if (!EvaluateInteger(E->getInit(i), sInt, Info))
1368            return Error(E);
1369        } else {
1370          sInt = Info.Ctx.MakeIntValue(0, EltTy);
1371        }
1372        Elements.push_back(APValue(sInt));
1373      } else {
1374        llvm::APFloat f(0.0);
1375        if (i < NumInits) {
1376          if (!EvaluateFloat(E->getInit(i), f, Info))
1377            return Error(E);
1378        } else {
1379          f = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy));
1380        }
1381        Elements.push_back(APValue(f));
1382      }
1383    }
1384  }
1385  return Success(Elements, E);
1386}
1387
1388bool
1389VectorExprEvaluator::ValueInitialization(const Expr *E) {
1390  const VectorType *VT = E->getType()->getAs<VectorType>();
1391  QualType EltTy = VT->getElementType();
1392  APValue ZeroElement;
1393  if (EltTy->isIntegerType())
1394    ZeroElement = APValue(Info.Ctx.MakeIntValue(0, EltTy));
1395  else
1396    ZeroElement =
1397        APValue(APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy)));
1398
1399  SmallVector<APValue, 4> Elements(VT->getNumElements(), ZeroElement);
1400  return Success(Elements, E);
1401}
1402
1403bool VectorExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
1404  VisitIgnoredValue(E->getSubExpr());
1405  return ValueInitialization(E);
1406}
1407
1408//===----------------------------------------------------------------------===//
1409// Integer Evaluation
1410//
1411// As a GNU extension, we support casting pointers to sufficiently-wide integer
1412// types and back in constant folding. Integer values are thus represented
1413// either as an integer-valued APValue, or as an lvalue-valued APValue.
1414//===----------------------------------------------------------------------===//
1415
1416namespace {
1417class IntExprEvaluator
1418  : public ExprEvaluatorBase<IntExprEvaluator, bool> {
1419  CCValue &Result;
1420public:
1421  IntExprEvaluator(EvalInfo &info, CCValue &result)
1422    : ExprEvaluatorBaseTy(info), Result(result) {}
1423
1424  bool Success(const llvm::APSInt &SI, const Expr *E) {
1425    assert(E->getType()->isIntegralOrEnumerationType() &&
1426           "Invalid evaluation result.");
1427    assert(SI.isSigned() == E->getType()->isSignedIntegerOrEnumerationType() &&
1428           "Invalid evaluation result.");
1429    assert(SI.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) &&
1430           "Invalid evaluation result.");
1431    Result = CCValue(SI);
1432    return true;
1433  }
1434
1435  bool Success(const llvm::APInt &I, const Expr *E) {
1436    assert(E->getType()->isIntegralOrEnumerationType() &&
1437           "Invalid evaluation result.");
1438    assert(I.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) &&
1439           "Invalid evaluation result.");
1440    Result = CCValue(APSInt(I));
1441    Result.getInt().setIsUnsigned(
1442                            E->getType()->isUnsignedIntegerOrEnumerationType());
1443    return true;
1444  }
1445
1446  bool Success(uint64_t Value, const Expr *E) {
1447    assert(E->getType()->isIntegralOrEnumerationType() &&
1448           "Invalid evaluation result.");
1449    Result = CCValue(Info.Ctx.MakeIntValue(Value, E->getType()));
1450    return true;
1451  }
1452
1453  bool Success(CharUnits Size, const Expr *E) {
1454    return Success(Size.getQuantity(), E);
1455  }
1456
1457
1458  bool Error(SourceLocation L, diag::kind D, const Expr *E) {
1459    // Take the first error.
1460    if (Info.EvalStatus.Diag == 0) {
1461      Info.EvalStatus.DiagLoc = L;
1462      Info.EvalStatus.Diag = D;
1463      Info.EvalStatus.DiagExpr = E;
1464    }
1465    return false;
1466  }
1467
1468  bool Success(const CCValue &V, const Expr *E) {
1469    if (V.isLValue()) {
1470      Result = V;
1471      return true;
1472    }
1473    return Success(V.getInt(), E);
1474  }
1475  bool Error(const Expr *E) {
1476    return Error(E->getLocStart(), diag::note_invalid_subexpr_in_ice, E);
1477  }
1478
1479  bool ValueInitialization(const Expr *E) { return Success(0, E); }
1480
1481  //===--------------------------------------------------------------------===//
1482  //                            Visitor Methods
1483  //===--------------------------------------------------------------------===//
1484
1485  bool VisitIntegerLiteral(const IntegerLiteral *E) {
1486    return Success(E->getValue(), E);
1487  }
1488  bool VisitCharacterLiteral(const CharacterLiteral *E) {
1489    return Success(E->getValue(), E);
1490  }
1491
1492  bool CheckReferencedDecl(const Expr *E, const Decl *D);
1493  bool VisitDeclRefExpr(const DeclRefExpr *E) {
1494    if (CheckReferencedDecl(E, E->getDecl()))
1495      return true;
1496
1497    return ExprEvaluatorBaseTy::VisitDeclRefExpr(E);
1498  }
1499  bool VisitMemberExpr(const MemberExpr *E) {
1500    if (CheckReferencedDecl(E, E->getMemberDecl())) {
1501      VisitIgnoredValue(E->getBase());
1502      return true;
1503    }
1504
1505    return ExprEvaluatorBaseTy::VisitMemberExpr(E);
1506  }
1507
1508  bool VisitCallExpr(const CallExpr *E);
1509  bool VisitBinaryOperator(const BinaryOperator *E);
1510  bool VisitOffsetOfExpr(const OffsetOfExpr *E);
1511  bool VisitUnaryOperator(const UnaryOperator *E);
1512
1513  bool VisitCastExpr(const CastExpr* E);
1514  bool VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
1515
1516  bool VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
1517    return Success(E->getValue(), E);
1518  }
1519
1520  // Note, GNU defines __null as an integer, not a pointer.
1521  bool VisitGNUNullExpr(const GNUNullExpr *E) {
1522    return ValueInitialization(E);
1523  }
1524
1525  bool VisitUnaryTypeTraitExpr(const UnaryTypeTraitExpr *E) {
1526    return Success(E->getValue(), E);
1527  }
1528
1529  bool VisitBinaryTypeTraitExpr(const BinaryTypeTraitExpr *E) {
1530    return Success(E->getValue(), E);
1531  }
1532
1533  bool VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
1534    return Success(E->getValue(), E);
1535  }
1536
1537  bool VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
1538    return Success(E->getValue(), E);
1539  }
1540
1541  bool VisitUnaryReal(const UnaryOperator *E);
1542  bool VisitUnaryImag(const UnaryOperator *E);
1543
1544  bool VisitCXXNoexceptExpr(const CXXNoexceptExpr *E);
1545  bool VisitSizeOfPackExpr(const SizeOfPackExpr *E);
1546
1547private:
1548  CharUnits GetAlignOfExpr(const Expr *E);
1549  CharUnits GetAlignOfType(QualType T);
1550  static QualType GetObjectType(const Expr *E);
1551  bool TryEvaluateBuiltinObjectSize(const CallExpr *E);
1552  // FIXME: Missing: array subscript of vector, member of vector
1553};
1554} // end anonymous namespace
1555
1556/// EvaluateIntegerOrLValue - Evaluate an rvalue integral-typed expression, and
1557/// produce either the integer value or a pointer.
1558///
1559/// GCC has a heinous extension which folds casts between pointer types and
1560/// pointer-sized integral types. We support this by allowing the evaluation of
1561/// an integer rvalue to produce a pointer (represented as an lvalue) instead.
1562/// Some simple arithmetic on such values is supported (they are treated much
1563/// like char*).
1564static bool EvaluateIntegerOrLValue(const Expr* E, CCValue &Result,
1565                                    EvalInfo &Info) {
1566  assert(E->isRValue() && E->getType()->isIntegralOrEnumerationType());
1567  return IntExprEvaluator(Info, Result).Visit(E);
1568}
1569
1570static bool EvaluateInteger(const Expr* E, APSInt &Result, EvalInfo &Info) {
1571  CCValue Val;
1572  if (!EvaluateIntegerOrLValue(E, Val, Info) || !Val.isInt())
1573    return false;
1574  Result = Val.getInt();
1575  return true;
1576}
1577
1578bool IntExprEvaluator::CheckReferencedDecl(const Expr* E, const Decl* D) {
1579  // Enums are integer constant exprs.
1580  if (const EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(D)) {
1581    // Check for signedness/width mismatches between E type and ECD value.
1582    bool SameSign = (ECD->getInitVal().isSigned()
1583                     == E->getType()->isSignedIntegerOrEnumerationType());
1584    bool SameWidth = (ECD->getInitVal().getBitWidth()
1585                      == Info.Ctx.getIntWidth(E->getType()));
1586    if (SameSign && SameWidth)
1587      return Success(ECD->getInitVal(), E);
1588    else {
1589      // Get rid of mismatch (otherwise Success assertions will fail)
1590      // by computing a new value matching the type of E.
1591      llvm::APSInt Val = ECD->getInitVal();
1592      if (!SameSign)
1593        Val.setIsSigned(!ECD->getInitVal().isSigned());
1594      if (!SameWidth)
1595        Val = Val.extOrTrunc(Info.Ctx.getIntWidth(E->getType()));
1596      return Success(Val, E);
1597    }
1598  }
1599  return false;
1600}
1601
1602/// EvaluateBuiltinClassifyType - Evaluate __builtin_classify_type the same way
1603/// as GCC.
1604static int EvaluateBuiltinClassifyType(const CallExpr *E) {
1605  // The following enum mimics the values returned by GCC.
1606  // FIXME: Does GCC differ between lvalue and rvalue references here?
1607  enum gcc_type_class {
1608    no_type_class = -1,
1609    void_type_class, integer_type_class, char_type_class,
1610    enumeral_type_class, boolean_type_class,
1611    pointer_type_class, reference_type_class, offset_type_class,
1612    real_type_class, complex_type_class,
1613    function_type_class, method_type_class,
1614    record_type_class, union_type_class,
1615    array_type_class, string_type_class,
1616    lang_type_class
1617  };
1618
1619  // If no argument was supplied, default to "no_type_class". This isn't
1620  // ideal, however it is what gcc does.
1621  if (E->getNumArgs() == 0)
1622    return no_type_class;
1623
1624  QualType ArgTy = E->getArg(0)->getType();
1625  if (ArgTy->isVoidType())
1626    return void_type_class;
1627  else if (ArgTy->isEnumeralType())
1628    return enumeral_type_class;
1629  else if (ArgTy->isBooleanType())
1630    return boolean_type_class;
1631  else if (ArgTy->isCharType())
1632    return string_type_class; // gcc doesn't appear to use char_type_class
1633  else if (ArgTy->isIntegerType())
1634    return integer_type_class;
1635  else if (ArgTy->isPointerType())
1636    return pointer_type_class;
1637  else if (ArgTy->isReferenceType())
1638    return reference_type_class;
1639  else if (ArgTy->isRealType())
1640    return real_type_class;
1641  else if (ArgTy->isComplexType())
1642    return complex_type_class;
1643  else if (ArgTy->isFunctionType())
1644    return function_type_class;
1645  else if (ArgTy->isStructureOrClassType())
1646    return record_type_class;
1647  else if (ArgTy->isUnionType())
1648    return union_type_class;
1649  else if (ArgTy->isArrayType())
1650    return array_type_class;
1651  else if (ArgTy->isUnionType())
1652    return union_type_class;
1653  else  // FIXME: offset_type_class, method_type_class, & lang_type_class?
1654    llvm_unreachable("CallExpr::isBuiltinClassifyType(): unimplemented type");
1655  return -1;
1656}
1657
1658/// Retrieves the "underlying object type" of the given expression,
1659/// as used by __builtin_object_size.
1660QualType IntExprEvaluator::GetObjectType(const Expr *E) {
1661  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
1662    if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()))
1663      return VD->getType();
1664  } else if (isa<CompoundLiteralExpr>(E)) {
1665    return E->getType();
1666  }
1667
1668  return QualType();
1669}
1670
1671bool IntExprEvaluator::TryEvaluateBuiltinObjectSize(const CallExpr *E) {
1672  // TODO: Perhaps we should let LLVM lower this?
1673  LValue Base;
1674  if (!EvaluatePointer(E->getArg(0), Base, Info))
1675    return false;
1676
1677  // If we can prove the base is null, lower to zero now.
1678  const Expr *LVBase = Base.getLValueBase();
1679  if (!LVBase) return Success(0, E);
1680
1681  QualType T = GetObjectType(LVBase);
1682  if (T.isNull() ||
1683      T->isIncompleteType() ||
1684      T->isFunctionType() ||
1685      T->isVariablyModifiedType() ||
1686      T->isDependentType())
1687    return false;
1688
1689  CharUnits Size = Info.Ctx.getTypeSizeInChars(T);
1690  CharUnits Offset = Base.getLValueOffset();
1691
1692  if (!Offset.isNegative() && Offset <= Size)
1693    Size -= Offset;
1694  else
1695    Size = CharUnits::Zero();
1696  return Success(Size, E);
1697}
1698
1699bool IntExprEvaluator::VisitCallExpr(const CallExpr *E) {
1700  switch (E->isBuiltinCall(Info.Ctx)) {
1701  default:
1702    return ExprEvaluatorBaseTy::VisitCallExpr(E);
1703
1704  case Builtin::BI__builtin_object_size: {
1705    if (TryEvaluateBuiltinObjectSize(E))
1706      return true;
1707
1708    // If evaluating the argument has side-effects we can't determine
1709    // the size of the object and lower it to unknown now.
1710    if (E->getArg(0)->HasSideEffects(Info.Ctx)) {
1711      if (E->getArg(1)->EvaluateKnownConstInt(Info.Ctx).getZExtValue() <= 1)
1712        return Success(-1ULL, E);
1713      return Success(0, E);
1714    }
1715
1716    return Error(E->getLocStart(), diag::note_invalid_subexpr_in_ice, E);
1717  }
1718
1719  case Builtin::BI__builtin_classify_type:
1720    return Success(EvaluateBuiltinClassifyType(E), E);
1721
1722  case Builtin::BI__builtin_constant_p:
1723    // __builtin_constant_p always has one operand: it returns true if that
1724    // operand can be folded, false otherwise.
1725    return Success(E->getArg(0)->isEvaluatable(Info.Ctx), E);
1726
1727  case Builtin::BI__builtin_eh_return_data_regno: {
1728    int Operand = E->getArg(0)->EvaluateKnownConstInt(Info.Ctx).getZExtValue();
1729    Operand = Info.Ctx.getTargetInfo().getEHDataRegisterNumber(Operand);
1730    return Success(Operand, E);
1731  }
1732
1733  case Builtin::BI__builtin_expect:
1734    return Visit(E->getArg(0));
1735
1736  case Builtin::BIstrlen:
1737  case Builtin::BI__builtin_strlen:
1738    // As an extension, we support strlen() and __builtin_strlen() as constant
1739    // expressions when the argument is a string literal.
1740    if (const StringLiteral *S
1741               = dyn_cast<StringLiteral>(E->getArg(0)->IgnoreParenImpCasts())) {
1742      // The string literal may have embedded null characters. Find the first
1743      // one and truncate there.
1744      StringRef Str = S->getString();
1745      StringRef::size_type Pos = Str.find(0);
1746      if (Pos != StringRef::npos)
1747        Str = Str.substr(0, Pos);
1748
1749      return Success(Str.size(), E);
1750    }
1751
1752    return Error(E->getLocStart(), diag::note_invalid_subexpr_in_ice, E);
1753
1754  case Builtin::BI__atomic_is_lock_free: {
1755    APSInt SizeVal;
1756    if (!EvaluateInteger(E->getArg(0), SizeVal, Info))
1757      return false;
1758
1759    // For __atomic_is_lock_free(sizeof(_Atomic(T))), if the size is a power
1760    // of two less than the maximum inline atomic width, we know it is
1761    // lock-free.  If the size isn't a power of two, or greater than the
1762    // maximum alignment where we promote atomics, we know it is not lock-free
1763    // (at least not in the sense of atomic_is_lock_free).  Otherwise,
1764    // the answer can only be determined at runtime; for example, 16-byte
1765    // atomics have lock-free implementations on some, but not all,
1766    // x86-64 processors.
1767
1768    // Check power-of-two.
1769    CharUnits Size = CharUnits::fromQuantity(SizeVal.getZExtValue());
1770    if (!Size.isPowerOfTwo())
1771#if 0
1772      // FIXME: Suppress this folding until the ABI for the promotion width
1773      // settles.
1774      return Success(0, E);
1775#else
1776      return Error(E->getLocStart(), diag::note_invalid_subexpr_in_ice, E);
1777#endif
1778
1779#if 0
1780    // Check against promotion width.
1781    // FIXME: Suppress this folding until the ABI for the promotion width
1782    // settles.
1783    unsigned PromoteWidthBits =
1784        Info.Ctx.getTargetInfo().getMaxAtomicPromoteWidth();
1785    if (Size > Info.Ctx.toCharUnitsFromBits(PromoteWidthBits))
1786      return Success(0, E);
1787#endif
1788
1789    // Check against inlining width.
1790    unsigned InlineWidthBits =
1791        Info.Ctx.getTargetInfo().getMaxAtomicInlineWidth();
1792    if (Size <= Info.Ctx.toCharUnitsFromBits(InlineWidthBits))
1793      return Success(1, E);
1794
1795    return Error(E->getLocStart(), diag::note_invalid_subexpr_in_ice, E);
1796  }
1797  }
1798}
1799
1800static bool HasSameBase(const LValue &A, const LValue &B) {
1801  if (!A.getLValueBase())
1802    return !B.getLValueBase();
1803  if (!B.getLValueBase())
1804    return false;
1805
1806  if (A.getLValueBase() != B.getLValueBase()) {
1807    const Decl *ADecl = GetLValueBaseDecl(A);
1808    if (!ADecl)
1809      return false;
1810    const Decl *BDecl = GetLValueBaseDecl(B);
1811    if (ADecl != BDecl)
1812      return false;
1813  }
1814
1815  return IsGlobalLValue(A.getLValueBase()) ||
1816         A.getLValueFrame() == B.getLValueFrame();
1817}
1818
1819bool IntExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
1820  if (E->isAssignmentOp())
1821    return Error(E->getOperatorLoc(), diag::note_invalid_subexpr_in_ice, E);
1822
1823  if (E->getOpcode() == BO_Comma) {
1824    VisitIgnoredValue(E->getLHS());
1825    return Visit(E->getRHS());
1826  }
1827
1828  if (E->isLogicalOp()) {
1829    // These need to be handled specially because the operands aren't
1830    // necessarily integral
1831    bool lhsResult, rhsResult;
1832
1833    if (EvaluateAsBooleanCondition(E->getLHS(), lhsResult, Info)) {
1834      // We were able to evaluate the LHS, see if we can get away with not
1835      // evaluating the RHS: 0 && X -> 0, 1 || X -> 1
1836      if (lhsResult == (E->getOpcode() == BO_LOr))
1837        return Success(lhsResult, E);
1838
1839      if (EvaluateAsBooleanCondition(E->getRHS(), rhsResult, Info)) {
1840        if (E->getOpcode() == BO_LOr)
1841          return Success(lhsResult || rhsResult, E);
1842        else
1843          return Success(lhsResult && rhsResult, E);
1844      }
1845    } else {
1846      if (EvaluateAsBooleanCondition(E->getRHS(), rhsResult, Info)) {
1847        // We can't evaluate the LHS; however, sometimes the result
1848        // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
1849        if (rhsResult == (E->getOpcode() == BO_LOr) ||
1850            !rhsResult == (E->getOpcode() == BO_LAnd)) {
1851          // Since we weren't able to evaluate the left hand side, it
1852          // must have had side effects.
1853          Info.EvalStatus.HasSideEffects = true;
1854
1855          return Success(rhsResult, E);
1856        }
1857      }
1858    }
1859
1860    return false;
1861  }
1862
1863  QualType LHSTy = E->getLHS()->getType();
1864  QualType RHSTy = E->getRHS()->getType();
1865
1866  if (LHSTy->isAnyComplexType()) {
1867    assert(RHSTy->isAnyComplexType() && "Invalid comparison");
1868    ComplexValue LHS, RHS;
1869
1870    if (!EvaluateComplex(E->getLHS(), LHS, Info))
1871      return false;
1872
1873    if (!EvaluateComplex(E->getRHS(), RHS, Info))
1874      return false;
1875
1876    if (LHS.isComplexFloat()) {
1877      APFloat::cmpResult CR_r =
1878        LHS.getComplexFloatReal().compare(RHS.getComplexFloatReal());
1879      APFloat::cmpResult CR_i =
1880        LHS.getComplexFloatImag().compare(RHS.getComplexFloatImag());
1881
1882      if (E->getOpcode() == BO_EQ)
1883        return Success((CR_r == APFloat::cmpEqual &&
1884                        CR_i == APFloat::cmpEqual), E);
1885      else {
1886        assert(E->getOpcode() == BO_NE &&
1887               "Invalid complex comparison.");
1888        return Success(((CR_r == APFloat::cmpGreaterThan ||
1889                         CR_r == APFloat::cmpLessThan ||
1890                         CR_r == APFloat::cmpUnordered) ||
1891                        (CR_i == APFloat::cmpGreaterThan ||
1892                         CR_i == APFloat::cmpLessThan ||
1893                         CR_i == APFloat::cmpUnordered)), E);
1894      }
1895    } else {
1896      if (E->getOpcode() == BO_EQ)
1897        return Success((LHS.getComplexIntReal() == RHS.getComplexIntReal() &&
1898                        LHS.getComplexIntImag() == RHS.getComplexIntImag()), E);
1899      else {
1900        assert(E->getOpcode() == BO_NE &&
1901               "Invalid compex comparison.");
1902        return Success((LHS.getComplexIntReal() != RHS.getComplexIntReal() ||
1903                        LHS.getComplexIntImag() != RHS.getComplexIntImag()), E);
1904      }
1905    }
1906  }
1907
1908  if (LHSTy->isRealFloatingType() &&
1909      RHSTy->isRealFloatingType()) {
1910    APFloat RHS(0.0), LHS(0.0);
1911
1912    if (!EvaluateFloat(E->getRHS(), RHS, Info))
1913      return false;
1914
1915    if (!EvaluateFloat(E->getLHS(), LHS, Info))
1916      return false;
1917
1918    APFloat::cmpResult CR = LHS.compare(RHS);
1919
1920    switch (E->getOpcode()) {
1921    default:
1922      llvm_unreachable("Invalid binary operator!");
1923    case BO_LT:
1924      return Success(CR == APFloat::cmpLessThan, E);
1925    case BO_GT:
1926      return Success(CR == APFloat::cmpGreaterThan, E);
1927    case BO_LE:
1928      return Success(CR == APFloat::cmpLessThan || CR == APFloat::cmpEqual, E);
1929    case BO_GE:
1930      return Success(CR == APFloat::cmpGreaterThan || CR == APFloat::cmpEqual,
1931                     E);
1932    case BO_EQ:
1933      return Success(CR == APFloat::cmpEqual, E);
1934    case BO_NE:
1935      return Success(CR == APFloat::cmpGreaterThan
1936                     || CR == APFloat::cmpLessThan
1937                     || CR == APFloat::cmpUnordered, E);
1938    }
1939  }
1940
1941  if (LHSTy->isPointerType() && RHSTy->isPointerType()) {
1942    if (E->getOpcode() == BO_Sub || E->isComparisonOp()) {
1943      LValue LHSValue;
1944      if (!EvaluatePointer(E->getLHS(), LHSValue, Info))
1945        return false;
1946
1947      LValue RHSValue;
1948      if (!EvaluatePointer(E->getRHS(), RHSValue, Info))
1949        return false;
1950
1951      // Reject differing bases from the normal codepath; we special-case
1952      // comparisons to null.
1953      if (!HasSameBase(LHSValue, RHSValue)) {
1954        // Inequalities and subtractions between unrelated pointers have
1955        // unspecified or undefined behavior.
1956        if (!E->isEqualityOp())
1957          return false;
1958        // A constant address may compare equal to the address of a symbol.
1959        // The one exception is that address of an object cannot compare equal
1960        // to a null pointer constant.
1961        if ((!LHSValue.Base && !LHSValue.Offset.isZero()) ||
1962            (!RHSValue.Base && !RHSValue.Offset.isZero()))
1963          return false;
1964        // It's implementation-defined whether distinct literals will have
1965        // distinct addresses. In clang, we do not guarantee the addresses are
1966        // distinct.
1967        if (IsLiteralLValue(LHSValue) || IsLiteralLValue(RHSValue))
1968          return false;
1969        // We can't tell whether weak symbols will end up pointing to the same
1970        // object.
1971        if (IsWeakLValue(LHSValue) || IsWeakLValue(RHSValue))
1972          return false;
1973        // Pointers with different bases cannot represent the same object.
1974        // (Note that clang defaults to -fmerge-all-constants, which can
1975        // lead to inconsistent results for comparisons involving the address
1976        // of a constant; this generally doesn't matter in practice.)
1977        return Success(E->getOpcode() == BO_NE, E);
1978      }
1979
1980      if (E->getOpcode() == BO_Sub) {
1981        QualType Type = E->getLHS()->getType();
1982        QualType ElementType = Type->getAs<PointerType>()->getPointeeType();
1983
1984        CharUnits ElementSize = CharUnits::One();
1985        if (!ElementType->isVoidType() && !ElementType->isFunctionType())
1986          ElementSize = Info.Ctx.getTypeSizeInChars(ElementType);
1987
1988        CharUnits Diff = LHSValue.getLValueOffset() -
1989                             RHSValue.getLValueOffset();
1990        return Success(Diff / ElementSize, E);
1991      }
1992
1993      const CharUnits &LHSOffset = LHSValue.getLValueOffset();
1994      const CharUnits &RHSOffset = RHSValue.getLValueOffset();
1995      switch (E->getOpcode()) {
1996      default: llvm_unreachable("missing comparison operator");
1997      case BO_LT: return Success(LHSOffset < RHSOffset, E);
1998      case BO_GT: return Success(LHSOffset > RHSOffset, E);
1999      case BO_LE: return Success(LHSOffset <= RHSOffset, E);
2000      case BO_GE: return Success(LHSOffset >= RHSOffset, E);
2001      case BO_EQ: return Success(LHSOffset == RHSOffset, E);
2002      case BO_NE: return Success(LHSOffset != RHSOffset, E);
2003      }
2004    }
2005  }
2006  if (!LHSTy->isIntegralOrEnumerationType() ||
2007      !RHSTy->isIntegralOrEnumerationType()) {
2008    // We can't continue from here for non-integral types, and they
2009    // could potentially confuse the following operations.
2010    return false;
2011  }
2012
2013  // The LHS of a constant expr is always evaluated and needed.
2014  CCValue LHSVal;
2015  if (!EvaluateIntegerOrLValue(E->getLHS(), LHSVal, Info))
2016    return false; // error in subexpression.
2017
2018  if (!Visit(E->getRHS()))
2019    return false;
2020  CCValue &RHSVal = Result;
2021
2022  // Handle cases like (unsigned long)&a + 4.
2023  if (E->isAdditiveOp() && LHSVal.isLValue() && RHSVal.isInt()) {
2024    CharUnits AdditionalOffset = CharUnits::fromQuantity(
2025                                     RHSVal.getInt().getZExtValue());
2026    if (E->getOpcode() == BO_Add)
2027      LHSVal.getLValueOffset() += AdditionalOffset;
2028    else
2029      LHSVal.getLValueOffset() -= AdditionalOffset;
2030    Result = LHSVal;
2031    return true;
2032  }
2033
2034  // Handle cases like 4 + (unsigned long)&a
2035  if (E->getOpcode() == BO_Add &&
2036        RHSVal.isLValue() && LHSVal.isInt()) {
2037    RHSVal.getLValueOffset() += CharUnits::fromQuantity(
2038                                    LHSVal.getInt().getZExtValue());
2039    // Note that RHSVal is Result.
2040    return true;
2041  }
2042
2043  // All the following cases expect both operands to be an integer
2044  if (!LHSVal.isInt() || !RHSVal.isInt())
2045    return false;
2046
2047  APSInt &LHS = LHSVal.getInt();
2048  APSInt &RHS = RHSVal.getInt();
2049
2050  switch (E->getOpcode()) {
2051  default:
2052    return Error(E->getOperatorLoc(), diag::note_invalid_subexpr_in_ice, E);
2053  case BO_Mul: return Success(LHS * RHS, E);
2054  case BO_Add: return Success(LHS + RHS, E);
2055  case BO_Sub: return Success(LHS - RHS, E);
2056  case BO_And: return Success(LHS & RHS, E);
2057  case BO_Xor: return Success(LHS ^ RHS, E);
2058  case BO_Or:  return Success(LHS | RHS, E);
2059  case BO_Div:
2060    if (RHS == 0)
2061      return Error(E->getOperatorLoc(), diag::note_expr_divide_by_zero, E);
2062    return Success(LHS / RHS, E);
2063  case BO_Rem:
2064    if (RHS == 0)
2065      return Error(E->getOperatorLoc(), diag::note_expr_divide_by_zero, E);
2066    return Success(LHS % RHS, E);
2067  case BO_Shl: {
2068    // During constant-folding, a negative shift is an opposite shift.
2069    if (RHS.isSigned() && RHS.isNegative()) {
2070      RHS = -RHS;
2071      goto shift_right;
2072    }
2073
2074  shift_left:
2075    unsigned SA
2076      = (unsigned) RHS.getLimitedValue(LHS.getBitWidth()-1);
2077    return Success(LHS << SA, E);
2078  }
2079  case BO_Shr: {
2080    // During constant-folding, a negative shift is an opposite shift.
2081    if (RHS.isSigned() && RHS.isNegative()) {
2082      RHS = -RHS;
2083      goto shift_left;
2084    }
2085
2086  shift_right:
2087    unsigned SA =
2088      (unsigned) RHS.getLimitedValue(LHS.getBitWidth()-1);
2089    return Success(LHS >> SA, E);
2090  }
2091
2092  case BO_LT: return Success(LHS < RHS, E);
2093  case BO_GT: return Success(LHS > RHS, E);
2094  case BO_LE: return Success(LHS <= RHS, E);
2095  case BO_GE: return Success(LHS >= RHS, E);
2096  case BO_EQ: return Success(LHS == RHS, E);
2097  case BO_NE: return Success(LHS != RHS, E);
2098  }
2099}
2100
2101CharUnits IntExprEvaluator::GetAlignOfType(QualType T) {
2102  // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
2103  //   the result is the size of the referenced type."
2104  // C++ [expr.alignof]p3: "When alignof is applied to a reference type, the
2105  //   result shall be the alignment of the referenced type."
2106  if (const ReferenceType *Ref = T->getAs<ReferenceType>())
2107    T = Ref->getPointeeType();
2108
2109  // __alignof is defined to return the preferred alignment.
2110  return Info.Ctx.toCharUnitsFromBits(
2111    Info.Ctx.getPreferredTypeAlign(T.getTypePtr()));
2112}
2113
2114CharUnits IntExprEvaluator::GetAlignOfExpr(const Expr *E) {
2115  E = E->IgnoreParens();
2116
2117  // alignof decl is always accepted, even if it doesn't make sense: we default
2118  // to 1 in those cases.
2119  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
2120    return Info.Ctx.getDeclAlign(DRE->getDecl(),
2121                                 /*RefAsPointee*/true);
2122
2123  if (const MemberExpr *ME = dyn_cast<MemberExpr>(E))
2124    return Info.Ctx.getDeclAlign(ME->getMemberDecl(),
2125                                 /*RefAsPointee*/true);
2126
2127  return GetAlignOfType(E->getType());
2128}
2129
2130
2131/// VisitUnaryExprOrTypeTraitExpr - Evaluate a sizeof, alignof or vec_step with
2132/// a result as the expression's type.
2133bool IntExprEvaluator::VisitUnaryExprOrTypeTraitExpr(
2134                                    const UnaryExprOrTypeTraitExpr *E) {
2135  switch(E->getKind()) {
2136  case UETT_AlignOf: {
2137    if (E->isArgumentType())
2138      return Success(GetAlignOfType(E->getArgumentType()), E);
2139    else
2140      return Success(GetAlignOfExpr(E->getArgumentExpr()), E);
2141  }
2142
2143  case UETT_VecStep: {
2144    QualType Ty = E->getTypeOfArgument();
2145
2146    if (Ty->isVectorType()) {
2147      unsigned n = Ty->getAs<VectorType>()->getNumElements();
2148
2149      // The vec_step built-in functions that take a 3-component
2150      // vector return 4. (OpenCL 1.1 spec 6.11.12)
2151      if (n == 3)
2152        n = 4;
2153
2154      return Success(n, E);
2155    } else
2156      return Success(1, E);
2157  }
2158
2159  case UETT_SizeOf: {
2160    QualType SrcTy = E->getTypeOfArgument();
2161    // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
2162    //   the result is the size of the referenced type."
2163    // C++ [expr.alignof]p3: "When alignof is applied to a reference type, the
2164    //   result shall be the alignment of the referenced type."
2165    if (const ReferenceType *Ref = SrcTy->getAs<ReferenceType>())
2166      SrcTy = Ref->getPointeeType();
2167
2168    // sizeof(void), __alignof__(void), sizeof(function) = 1 as a gcc
2169    // extension.
2170    if (SrcTy->isVoidType() || SrcTy->isFunctionType())
2171      return Success(1, E);
2172
2173    // sizeof(vla) is not a constantexpr: C99 6.5.3.4p2.
2174    if (!SrcTy->isConstantSizeType())
2175      return false;
2176
2177    // Get information about the size.
2178    return Success(Info.Ctx.getTypeSizeInChars(SrcTy), E);
2179  }
2180  }
2181
2182  llvm_unreachable("unknown expr/type trait");
2183  return false;
2184}
2185
2186bool IntExprEvaluator::VisitOffsetOfExpr(const OffsetOfExpr *OOE) {
2187  CharUnits Result;
2188  unsigned n = OOE->getNumComponents();
2189  if (n == 0)
2190    return false;
2191  QualType CurrentType = OOE->getTypeSourceInfo()->getType();
2192  for (unsigned i = 0; i != n; ++i) {
2193    OffsetOfExpr::OffsetOfNode ON = OOE->getComponent(i);
2194    switch (ON.getKind()) {
2195    case OffsetOfExpr::OffsetOfNode::Array: {
2196      const Expr *Idx = OOE->getIndexExpr(ON.getArrayExprIndex());
2197      APSInt IdxResult;
2198      if (!EvaluateInteger(Idx, IdxResult, Info))
2199        return false;
2200      const ArrayType *AT = Info.Ctx.getAsArrayType(CurrentType);
2201      if (!AT)
2202        return false;
2203      CurrentType = AT->getElementType();
2204      CharUnits ElementSize = Info.Ctx.getTypeSizeInChars(CurrentType);
2205      Result += IdxResult.getSExtValue() * ElementSize;
2206        break;
2207    }
2208
2209    case OffsetOfExpr::OffsetOfNode::Field: {
2210      FieldDecl *MemberDecl = ON.getField();
2211      const RecordType *RT = CurrentType->getAs<RecordType>();
2212      if (!RT)
2213        return false;
2214      RecordDecl *RD = RT->getDecl();
2215      const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD);
2216      unsigned i = MemberDecl->getFieldIndex();
2217      assert(i < RL.getFieldCount() && "offsetof field in wrong type");
2218      Result += Info.Ctx.toCharUnitsFromBits(RL.getFieldOffset(i));
2219      CurrentType = MemberDecl->getType().getNonReferenceType();
2220      break;
2221    }
2222
2223    case OffsetOfExpr::OffsetOfNode::Identifier:
2224      llvm_unreachable("dependent __builtin_offsetof");
2225      return false;
2226
2227    case OffsetOfExpr::OffsetOfNode::Base: {
2228      CXXBaseSpecifier *BaseSpec = ON.getBase();
2229      if (BaseSpec->isVirtual())
2230        return false;
2231
2232      // Find the layout of the class whose base we are looking into.
2233      const RecordType *RT = CurrentType->getAs<RecordType>();
2234      if (!RT)
2235        return false;
2236      RecordDecl *RD = RT->getDecl();
2237      const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD);
2238
2239      // Find the base class itself.
2240      CurrentType = BaseSpec->getType();
2241      const RecordType *BaseRT = CurrentType->getAs<RecordType>();
2242      if (!BaseRT)
2243        return false;
2244
2245      // Add the offset to the base.
2246      Result += RL.getBaseClassOffset(cast<CXXRecordDecl>(BaseRT->getDecl()));
2247      break;
2248    }
2249    }
2250  }
2251  return Success(Result, OOE);
2252}
2253
2254bool IntExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
2255  if (E->getOpcode() == UO_LNot) {
2256    // LNot's operand isn't necessarily an integer, so we handle it specially.
2257    bool bres;
2258    if (!EvaluateAsBooleanCondition(E->getSubExpr(), bres, Info))
2259      return false;
2260    return Success(!bres, E);
2261  }
2262
2263  // Only handle integral operations...
2264  if (!E->getSubExpr()->getType()->isIntegralOrEnumerationType())
2265    return false;
2266
2267  // Get the operand value.
2268  CCValue Val;
2269  if (!Evaluate(Val, Info, E->getSubExpr()))
2270    return false;
2271
2272  switch (E->getOpcode()) {
2273  default:
2274    // Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
2275    // See C99 6.6p3.
2276    return Error(E->getOperatorLoc(), diag::note_invalid_subexpr_in_ice, E);
2277  case UO_Extension:
2278    // FIXME: Should extension allow i-c-e extension expressions in its scope?
2279    // If so, we could clear the diagnostic ID.
2280    return Success(Val, E);
2281  case UO_Plus:
2282    // The result is just the value.
2283    return Success(Val, E);
2284  case UO_Minus:
2285    if (!Val.isInt()) return false;
2286    return Success(-Val.getInt(), E);
2287  case UO_Not:
2288    if (!Val.isInt()) return false;
2289    return Success(~Val.getInt(), E);
2290  }
2291}
2292
2293/// HandleCast - This is used to evaluate implicit or explicit casts where the
2294/// result type is integer.
2295bool IntExprEvaluator::VisitCastExpr(const CastExpr *E) {
2296  const Expr *SubExpr = E->getSubExpr();
2297  QualType DestType = E->getType();
2298  QualType SrcType = SubExpr->getType();
2299
2300  switch (E->getCastKind()) {
2301  case CK_BaseToDerived:
2302  case CK_DerivedToBase:
2303  case CK_UncheckedDerivedToBase:
2304  case CK_Dynamic:
2305  case CK_ToUnion:
2306  case CK_ArrayToPointerDecay:
2307  case CK_FunctionToPointerDecay:
2308  case CK_NullToPointer:
2309  case CK_NullToMemberPointer:
2310  case CK_BaseToDerivedMemberPointer:
2311  case CK_DerivedToBaseMemberPointer:
2312  case CK_ConstructorConversion:
2313  case CK_IntegralToPointer:
2314  case CK_ToVoid:
2315  case CK_VectorSplat:
2316  case CK_IntegralToFloating:
2317  case CK_FloatingCast:
2318  case CK_CPointerToObjCPointerCast:
2319  case CK_BlockPointerToObjCPointerCast:
2320  case CK_AnyPointerToBlockPointerCast:
2321  case CK_ObjCObjectLValueCast:
2322  case CK_FloatingRealToComplex:
2323  case CK_FloatingComplexToReal:
2324  case CK_FloatingComplexCast:
2325  case CK_FloatingComplexToIntegralComplex:
2326  case CK_IntegralRealToComplex:
2327  case CK_IntegralComplexCast:
2328  case CK_IntegralComplexToFloatingComplex:
2329    llvm_unreachable("invalid cast kind for integral value");
2330
2331  case CK_BitCast:
2332  case CK_Dependent:
2333  case CK_GetObjCProperty:
2334  case CK_LValueBitCast:
2335  case CK_UserDefinedConversion:
2336  case CK_ARCProduceObject:
2337  case CK_ARCConsumeObject:
2338  case CK_ARCReclaimReturnedObject:
2339  case CK_ARCExtendBlockObject:
2340    return false;
2341
2342  case CK_LValueToRValue:
2343  case CK_NoOp:
2344    return ExprEvaluatorBaseTy::VisitCastExpr(E);
2345
2346  case CK_MemberPointerToBoolean:
2347  case CK_PointerToBoolean:
2348  case CK_IntegralToBoolean:
2349  case CK_FloatingToBoolean:
2350  case CK_FloatingComplexToBoolean:
2351  case CK_IntegralComplexToBoolean: {
2352    bool BoolResult;
2353    if (!EvaluateAsBooleanCondition(SubExpr, BoolResult, Info))
2354      return false;
2355    return Success(BoolResult, E);
2356  }
2357
2358  case CK_IntegralCast: {
2359    if (!Visit(SubExpr))
2360      return false;
2361
2362    if (!Result.isInt()) {
2363      // Only allow casts of lvalues if they are lossless.
2364      return Info.Ctx.getTypeSize(DestType) == Info.Ctx.getTypeSize(SrcType);
2365    }
2366
2367    return Success(HandleIntToIntCast(DestType, SrcType,
2368                                      Result.getInt(), Info.Ctx), E);
2369  }
2370
2371  case CK_PointerToIntegral: {
2372    LValue LV;
2373    if (!EvaluatePointer(SubExpr, LV, Info))
2374      return false;
2375
2376    if (LV.getLValueBase()) {
2377      // Only allow based lvalue casts if they are lossless.
2378      if (Info.Ctx.getTypeSize(DestType) != Info.Ctx.getTypeSize(SrcType))
2379        return false;
2380
2381      LV.moveInto(Result);
2382      return true;
2383    }
2384
2385    APSInt AsInt = Info.Ctx.MakeIntValue(LV.getLValueOffset().getQuantity(),
2386                                         SrcType);
2387    return Success(HandleIntToIntCast(DestType, SrcType, AsInt, Info.Ctx), E);
2388  }
2389
2390  case CK_IntegralComplexToReal: {
2391    ComplexValue C;
2392    if (!EvaluateComplex(SubExpr, C, Info))
2393      return false;
2394    return Success(C.getComplexIntReal(), E);
2395  }
2396
2397  case CK_FloatingToIntegral: {
2398    APFloat F(0.0);
2399    if (!EvaluateFloat(SubExpr, F, Info))
2400      return false;
2401
2402    return Success(HandleFloatToIntCast(DestType, SrcType, F, Info.Ctx), E);
2403  }
2404  }
2405
2406  llvm_unreachable("unknown cast resulting in integral value");
2407  return false;
2408}
2409
2410bool IntExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
2411  if (E->getSubExpr()->getType()->isAnyComplexType()) {
2412    ComplexValue LV;
2413    if (!EvaluateComplex(E->getSubExpr(), LV, Info) || !LV.isComplexInt())
2414      return Error(E->getExprLoc(), diag::note_invalid_subexpr_in_ice, E);
2415    return Success(LV.getComplexIntReal(), E);
2416  }
2417
2418  return Visit(E->getSubExpr());
2419}
2420
2421bool IntExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
2422  if (E->getSubExpr()->getType()->isComplexIntegerType()) {
2423    ComplexValue LV;
2424    if (!EvaluateComplex(E->getSubExpr(), LV, Info) || !LV.isComplexInt())
2425      return Error(E->getExprLoc(), diag::note_invalid_subexpr_in_ice, E);
2426    return Success(LV.getComplexIntImag(), E);
2427  }
2428
2429  VisitIgnoredValue(E->getSubExpr());
2430  return Success(0, E);
2431}
2432
2433bool IntExprEvaluator::VisitSizeOfPackExpr(const SizeOfPackExpr *E) {
2434  return Success(E->getPackLength(), E);
2435}
2436
2437bool IntExprEvaluator::VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
2438  return Success(E->getValue(), E);
2439}
2440
2441//===----------------------------------------------------------------------===//
2442// Float Evaluation
2443//===----------------------------------------------------------------------===//
2444
2445namespace {
2446class FloatExprEvaluator
2447  : public ExprEvaluatorBase<FloatExprEvaluator, bool> {
2448  APFloat &Result;
2449public:
2450  FloatExprEvaluator(EvalInfo &info, APFloat &result)
2451    : ExprEvaluatorBaseTy(info), Result(result) {}
2452
2453  bool Success(const CCValue &V, const Expr *e) {
2454    Result = V.getFloat();
2455    return true;
2456  }
2457  bool Error(const Stmt *S) {
2458    return false;
2459  }
2460
2461  bool ValueInitialization(const Expr *E) {
2462    Result = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(E->getType()));
2463    return true;
2464  }
2465
2466  bool VisitCallExpr(const CallExpr *E);
2467
2468  bool VisitUnaryOperator(const UnaryOperator *E);
2469  bool VisitBinaryOperator(const BinaryOperator *E);
2470  bool VisitFloatingLiteral(const FloatingLiteral *E);
2471  bool VisitCastExpr(const CastExpr *E);
2472
2473  bool VisitUnaryReal(const UnaryOperator *E);
2474  bool VisitUnaryImag(const UnaryOperator *E);
2475
2476  // FIXME: Missing: array subscript of vector, member of vector,
2477  //                 ImplicitValueInitExpr
2478};
2479} // end anonymous namespace
2480
2481static bool EvaluateFloat(const Expr* E, APFloat& Result, EvalInfo &Info) {
2482  assert(E->isRValue() && E->getType()->isRealFloatingType());
2483  return FloatExprEvaluator(Info, Result).Visit(E);
2484}
2485
2486static bool TryEvaluateBuiltinNaN(const ASTContext &Context,
2487                                  QualType ResultTy,
2488                                  const Expr *Arg,
2489                                  bool SNaN,
2490                                  llvm::APFloat &Result) {
2491  const StringLiteral *S = dyn_cast<StringLiteral>(Arg->IgnoreParenCasts());
2492  if (!S) return false;
2493
2494  const llvm::fltSemantics &Sem = Context.getFloatTypeSemantics(ResultTy);
2495
2496  llvm::APInt fill;
2497
2498  // Treat empty strings as if they were zero.
2499  if (S->getString().empty())
2500    fill = llvm::APInt(32, 0);
2501  else if (S->getString().getAsInteger(0, fill))
2502    return false;
2503
2504  if (SNaN)
2505    Result = llvm::APFloat::getSNaN(Sem, false, &fill);
2506  else
2507    Result = llvm::APFloat::getQNaN(Sem, false, &fill);
2508  return true;
2509}
2510
2511bool FloatExprEvaluator::VisitCallExpr(const CallExpr *E) {
2512  switch (E->isBuiltinCall(Info.Ctx)) {
2513  default:
2514    return ExprEvaluatorBaseTy::VisitCallExpr(E);
2515
2516  case Builtin::BI__builtin_huge_val:
2517  case Builtin::BI__builtin_huge_valf:
2518  case Builtin::BI__builtin_huge_vall:
2519  case Builtin::BI__builtin_inf:
2520  case Builtin::BI__builtin_inff:
2521  case Builtin::BI__builtin_infl: {
2522    const llvm::fltSemantics &Sem =
2523      Info.Ctx.getFloatTypeSemantics(E->getType());
2524    Result = llvm::APFloat::getInf(Sem);
2525    return true;
2526  }
2527
2528  case Builtin::BI__builtin_nans:
2529  case Builtin::BI__builtin_nansf:
2530  case Builtin::BI__builtin_nansl:
2531    return TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(0),
2532                                 true, Result);
2533
2534  case Builtin::BI__builtin_nan:
2535  case Builtin::BI__builtin_nanf:
2536  case Builtin::BI__builtin_nanl:
2537    // If this is __builtin_nan() turn this into a nan, otherwise we
2538    // can't constant fold it.
2539    return TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(0),
2540                                 false, Result);
2541
2542  case Builtin::BI__builtin_fabs:
2543  case Builtin::BI__builtin_fabsf:
2544  case Builtin::BI__builtin_fabsl:
2545    if (!EvaluateFloat(E->getArg(0), Result, Info))
2546      return false;
2547
2548    if (Result.isNegative())
2549      Result.changeSign();
2550    return true;
2551
2552  case Builtin::BI__builtin_copysign:
2553  case Builtin::BI__builtin_copysignf:
2554  case Builtin::BI__builtin_copysignl: {
2555    APFloat RHS(0.);
2556    if (!EvaluateFloat(E->getArg(0), Result, Info) ||
2557        !EvaluateFloat(E->getArg(1), RHS, Info))
2558      return false;
2559    Result.copySign(RHS);
2560    return true;
2561  }
2562  }
2563}
2564
2565bool FloatExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
2566  if (E->getSubExpr()->getType()->isAnyComplexType()) {
2567    ComplexValue CV;
2568    if (!EvaluateComplex(E->getSubExpr(), CV, Info))
2569      return false;
2570    Result = CV.FloatReal;
2571    return true;
2572  }
2573
2574  return Visit(E->getSubExpr());
2575}
2576
2577bool FloatExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
2578  if (E->getSubExpr()->getType()->isAnyComplexType()) {
2579    ComplexValue CV;
2580    if (!EvaluateComplex(E->getSubExpr(), CV, Info))
2581      return false;
2582    Result = CV.FloatImag;
2583    return true;
2584  }
2585
2586  VisitIgnoredValue(E->getSubExpr());
2587  const llvm::fltSemantics &Sem = Info.Ctx.getFloatTypeSemantics(E->getType());
2588  Result = llvm::APFloat::getZero(Sem);
2589  return true;
2590}
2591
2592bool FloatExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
2593  switch (E->getOpcode()) {
2594  default: return false;
2595  case UO_Plus:
2596    return EvaluateFloat(E->getSubExpr(), Result, Info);
2597  case UO_Minus:
2598    if (!EvaluateFloat(E->getSubExpr(), Result, Info))
2599      return false;
2600    Result.changeSign();
2601    return true;
2602  }
2603}
2604
2605bool FloatExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
2606  if (E->getOpcode() == BO_Comma) {
2607    VisitIgnoredValue(E->getLHS());
2608    return Visit(E->getRHS());
2609  }
2610
2611  // We can't evaluate pointer-to-member operations or assignments.
2612  if (E->isPtrMemOp() || E->isAssignmentOp())
2613    return false;
2614
2615  // FIXME: Diagnostics?  I really don't understand how the warnings
2616  // and errors are supposed to work.
2617  APFloat RHS(0.0);
2618  if (!EvaluateFloat(E->getLHS(), Result, Info))
2619    return false;
2620  if (!EvaluateFloat(E->getRHS(), RHS, Info))
2621    return false;
2622
2623  switch (E->getOpcode()) {
2624  default: return false;
2625  case BO_Mul:
2626    Result.multiply(RHS, APFloat::rmNearestTiesToEven);
2627    return true;
2628  case BO_Add:
2629    Result.add(RHS, APFloat::rmNearestTiesToEven);
2630    return true;
2631  case BO_Sub:
2632    Result.subtract(RHS, APFloat::rmNearestTiesToEven);
2633    return true;
2634  case BO_Div:
2635    Result.divide(RHS, APFloat::rmNearestTiesToEven);
2636    return true;
2637  }
2638}
2639
2640bool FloatExprEvaluator::VisitFloatingLiteral(const FloatingLiteral *E) {
2641  Result = E->getValue();
2642  return true;
2643}
2644
2645bool FloatExprEvaluator::VisitCastExpr(const CastExpr *E) {
2646  const Expr* SubExpr = E->getSubExpr();
2647
2648  switch (E->getCastKind()) {
2649  default:
2650    return ExprEvaluatorBaseTy::VisitCastExpr(E);
2651
2652  case CK_IntegralToFloating: {
2653    APSInt IntResult;
2654    if (!EvaluateInteger(SubExpr, IntResult, Info))
2655      return false;
2656    Result = HandleIntToFloatCast(E->getType(), SubExpr->getType(),
2657                                  IntResult, Info.Ctx);
2658    return true;
2659  }
2660
2661  case CK_FloatingCast: {
2662    if (!Visit(SubExpr))
2663      return false;
2664    Result = HandleFloatToFloatCast(E->getType(), SubExpr->getType(),
2665                                    Result, Info.Ctx);
2666    return true;
2667  }
2668
2669  case CK_FloatingComplexToReal: {
2670    ComplexValue V;
2671    if (!EvaluateComplex(SubExpr, V, Info))
2672      return false;
2673    Result = V.getComplexFloatReal();
2674    return true;
2675  }
2676  }
2677
2678  return false;
2679}
2680
2681//===----------------------------------------------------------------------===//
2682// Complex Evaluation (for float and integer)
2683//===----------------------------------------------------------------------===//
2684
2685namespace {
2686class ComplexExprEvaluator
2687  : public ExprEvaluatorBase<ComplexExprEvaluator, bool> {
2688  ComplexValue &Result;
2689
2690public:
2691  ComplexExprEvaluator(EvalInfo &info, ComplexValue &Result)
2692    : ExprEvaluatorBaseTy(info), Result(Result) {}
2693
2694  bool Success(const CCValue &V, const Expr *e) {
2695    Result.setFrom(V);
2696    return true;
2697  }
2698  bool Error(const Expr *E) {
2699    return false;
2700  }
2701
2702  //===--------------------------------------------------------------------===//
2703  //                            Visitor Methods
2704  //===--------------------------------------------------------------------===//
2705
2706  bool VisitImaginaryLiteral(const ImaginaryLiteral *E);
2707
2708  bool VisitCastExpr(const CastExpr *E);
2709
2710  bool VisitBinaryOperator(const BinaryOperator *E);
2711  bool VisitUnaryOperator(const UnaryOperator *E);
2712  // FIXME Missing: ImplicitValueInitExpr, InitListExpr
2713};
2714} // end anonymous namespace
2715
2716static bool EvaluateComplex(const Expr *E, ComplexValue &Result,
2717                            EvalInfo &Info) {
2718  assert(E->isRValue() && E->getType()->isAnyComplexType());
2719  return ComplexExprEvaluator(Info, Result).Visit(E);
2720}
2721
2722bool ComplexExprEvaluator::VisitImaginaryLiteral(const ImaginaryLiteral *E) {
2723  const Expr* SubExpr = E->getSubExpr();
2724
2725  if (SubExpr->getType()->isRealFloatingType()) {
2726    Result.makeComplexFloat();
2727    APFloat &Imag = Result.FloatImag;
2728    if (!EvaluateFloat(SubExpr, Imag, Info))
2729      return false;
2730
2731    Result.FloatReal = APFloat(Imag.getSemantics());
2732    return true;
2733  } else {
2734    assert(SubExpr->getType()->isIntegerType() &&
2735           "Unexpected imaginary literal.");
2736
2737    Result.makeComplexInt();
2738    APSInt &Imag = Result.IntImag;
2739    if (!EvaluateInteger(SubExpr, Imag, Info))
2740      return false;
2741
2742    Result.IntReal = APSInt(Imag.getBitWidth(), !Imag.isSigned());
2743    return true;
2744  }
2745}
2746
2747bool ComplexExprEvaluator::VisitCastExpr(const CastExpr *E) {
2748
2749  switch (E->getCastKind()) {
2750  case CK_BitCast:
2751  case CK_BaseToDerived:
2752  case CK_DerivedToBase:
2753  case CK_UncheckedDerivedToBase:
2754  case CK_Dynamic:
2755  case CK_ToUnion:
2756  case CK_ArrayToPointerDecay:
2757  case CK_FunctionToPointerDecay:
2758  case CK_NullToPointer:
2759  case CK_NullToMemberPointer:
2760  case CK_BaseToDerivedMemberPointer:
2761  case CK_DerivedToBaseMemberPointer:
2762  case CK_MemberPointerToBoolean:
2763  case CK_ConstructorConversion:
2764  case CK_IntegralToPointer:
2765  case CK_PointerToIntegral:
2766  case CK_PointerToBoolean:
2767  case CK_ToVoid:
2768  case CK_VectorSplat:
2769  case CK_IntegralCast:
2770  case CK_IntegralToBoolean:
2771  case CK_IntegralToFloating:
2772  case CK_FloatingToIntegral:
2773  case CK_FloatingToBoolean:
2774  case CK_FloatingCast:
2775  case CK_CPointerToObjCPointerCast:
2776  case CK_BlockPointerToObjCPointerCast:
2777  case CK_AnyPointerToBlockPointerCast:
2778  case CK_ObjCObjectLValueCast:
2779  case CK_FloatingComplexToReal:
2780  case CK_FloatingComplexToBoolean:
2781  case CK_IntegralComplexToReal:
2782  case CK_IntegralComplexToBoolean:
2783  case CK_ARCProduceObject:
2784  case CK_ARCConsumeObject:
2785  case CK_ARCReclaimReturnedObject:
2786  case CK_ARCExtendBlockObject:
2787    llvm_unreachable("invalid cast kind for complex value");
2788
2789  case CK_LValueToRValue:
2790  case CK_NoOp:
2791    return ExprEvaluatorBaseTy::VisitCastExpr(E);
2792
2793  case CK_Dependent:
2794  case CK_GetObjCProperty:
2795  case CK_LValueBitCast:
2796  case CK_UserDefinedConversion:
2797    return false;
2798
2799  case CK_FloatingRealToComplex: {
2800    APFloat &Real = Result.FloatReal;
2801    if (!EvaluateFloat(E->getSubExpr(), Real, Info))
2802      return false;
2803
2804    Result.makeComplexFloat();
2805    Result.FloatImag = APFloat(Real.getSemantics());
2806    return true;
2807  }
2808
2809  case CK_FloatingComplexCast: {
2810    if (!Visit(E->getSubExpr()))
2811      return false;
2812
2813    QualType To = E->getType()->getAs<ComplexType>()->getElementType();
2814    QualType From
2815      = E->getSubExpr()->getType()->getAs<ComplexType>()->getElementType();
2816
2817    Result.FloatReal
2818      = HandleFloatToFloatCast(To, From, Result.FloatReal, Info.Ctx);
2819    Result.FloatImag
2820      = HandleFloatToFloatCast(To, From, Result.FloatImag, Info.Ctx);
2821    return true;
2822  }
2823
2824  case CK_FloatingComplexToIntegralComplex: {
2825    if (!Visit(E->getSubExpr()))
2826      return false;
2827
2828    QualType To = E->getType()->getAs<ComplexType>()->getElementType();
2829    QualType From
2830      = E->getSubExpr()->getType()->getAs<ComplexType>()->getElementType();
2831    Result.makeComplexInt();
2832    Result.IntReal = HandleFloatToIntCast(To, From, Result.FloatReal, Info.Ctx);
2833    Result.IntImag = HandleFloatToIntCast(To, From, Result.FloatImag, Info.Ctx);
2834    return true;
2835  }
2836
2837  case CK_IntegralRealToComplex: {
2838    APSInt &Real = Result.IntReal;
2839    if (!EvaluateInteger(E->getSubExpr(), Real, Info))
2840      return false;
2841
2842    Result.makeComplexInt();
2843    Result.IntImag = APSInt(Real.getBitWidth(), !Real.isSigned());
2844    return true;
2845  }
2846
2847  case CK_IntegralComplexCast: {
2848    if (!Visit(E->getSubExpr()))
2849      return false;
2850
2851    QualType To = E->getType()->getAs<ComplexType>()->getElementType();
2852    QualType From
2853      = E->getSubExpr()->getType()->getAs<ComplexType>()->getElementType();
2854
2855    Result.IntReal = HandleIntToIntCast(To, From, Result.IntReal, Info.Ctx);
2856    Result.IntImag = HandleIntToIntCast(To, From, Result.IntImag, Info.Ctx);
2857    return true;
2858  }
2859
2860  case CK_IntegralComplexToFloatingComplex: {
2861    if (!Visit(E->getSubExpr()))
2862      return false;
2863
2864    QualType To = E->getType()->getAs<ComplexType>()->getElementType();
2865    QualType From
2866      = E->getSubExpr()->getType()->getAs<ComplexType>()->getElementType();
2867    Result.makeComplexFloat();
2868    Result.FloatReal = HandleIntToFloatCast(To, From, Result.IntReal, Info.Ctx);
2869    Result.FloatImag = HandleIntToFloatCast(To, From, Result.IntImag, Info.Ctx);
2870    return true;
2871  }
2872  }
2873
2874  llvm_unreachable("unknown cast resulting in complex value");
2875  return false;
2876}
2877
2878bool ComplexExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
2879  if (E->getOpcode() == BO_Comma) {
2880    VisitIgnoredValue(E->getLHS());
2881    return Visit(E->getRHS());
2882  }
2883  if (!Visit(E->getLHS()))
2884    return false;
2885
2886  ComplexValue RHS;
2887  if (!EvaluateComplex(E->getRHS(), RHS, Info))
2888    return false;
2889
2890  assert(Result.isComplexFloat() == RHS.isComplexFloat() &&
2891         "Invalid operands to binary operator.");
2892  switch (E->getOpcode()) {
2893  default: return false;
2894  case BO_Add:
2895    if (Result.isComplexFloat()) {
2896      Result.getComplexFloatReal().add(RHS.getComplexFloatReal(),
2897                                       APFloat::rmNearestTiesToEven);
2898      Result.getComplexFloatImag().add(RHS.getComplexFloatImag(),
2899                                       APFloat::rmNearestTiesToEven);
2900    } else {
2901      Result.getComplexIntReal() += RHS.getComplexIntReal();
2902      Result.getComplexIntImag() += RHS.getComplexIntImag();
2903    }
2904    break;
2905  case BO_Sub:
2906    if (Result.isComplexFloat()) {
2907      Result.getComplexFloatReal().subtract(RHS.getComplexFloatReal(),
2908                                            APFloat::rmNearestTiesToEven);
2909      Result.getComplexFloatImag().subtract(RHS.getComplexFloatImag(),
2910                                            APFloat::rmNearestTiesToEven);
2911    } else {
2912      Result.getComplexIntReal() -= RHS.getComplexIntReal();
2913      Result.getComplexIntImag() -= RHS.getComplexIntImag();
2914    }
2915    break;
2916  case BO_Mul:
2917    if (Result.isComplexFloat()) {
2918      ComplexValue LHS = Result;
2919      APFloat &LHS_r = LHS.getComplexFloatReal();
2920      APFloat &LHS_i = LHS.getComplexFloatImag();
2921      APFloat &RHS_r = RHS.getComplexFloatReal();
2922      APFloat &RHS_i = RHS.getComplexFloatImag();
2923
2924      APFloat Tmp = LHS_r;
2925      Tmp.multiply(RHS_r, APFloat::rmNearestTiesToEven);
2926      Result.getComplexFloatReal() = Tmp;
2927      Tmp = LHS_i;
2928      Tmp.multiply(RHS_i, APFloat::rmNearestTiesToEven);
2929      Result.getComplexFloatReal().subtract(Tmp, APFloat::rmNearestTiesToEven);
2930
2931      Tmp = LHS_r;
2932      Tmp.multiply(RHS_i, APFloat::rmNearestTiesToEven);
2933      Result.getComplexFloatImag() = Tmp;
2934      Tmp = LHS_i;
2935      Tmp.multiply(RHS_r, APFloat::rmNearestTiesToEven);
2936      Result.getComplexFloatImag().add(Tmp, APFloat::rmNearestTiesToEven);
2937    } else {
2938      ComplexValue LHS = Result;
2939      Result.getComplexIntReal() =
2940        (LHS.getComplexIntReal() * RHS.getComplexIntReal() -
2941         LHS.getComplexIntImag() * RHS.getComplexIntImag());
2942      Result.getComplexIntImag() =
2943        (LHS.getComplexIntReal() * RHS.getComplexIntImag() +
2944         LHS.getComplexIntImag() * RHS.getComplexIntReal());
2945    }
2946    break;
2947  case BO_Div:
2948    if (Result.isComplexFloat()) {
2949      ComplexValue LHS = Result;
2950      APFloat &LHS_r = LHS.getComplexFloatReal();
2951      APFloat &LHS_i = LHS.getComplexFloatImag();
2952      APFloat &RHS_r = RHS.getComplexFloatReal();
2953      APFloat &RHS_i = RHS.getComplexFloatImag();
2954      APFloat &Res_r = Result.getComplexFloatReal();
2955      APFloat &Res_i = Result.getComplexFloatImag();
2956
2957      APFloat Den = RHS_r;
2958      Den.multiply(RHS_r, APFloat::rmNearestTiesToEven);
2959      APFloat Tmp = RHS_i;
2960      Tmp.multiply(RHS_i, APFloat::rmNearestTiesToEven);
2961      Den.add(Tmp, APFloat::rmNearestTiesToEven);
2962
2963      Res_r = LHS_r;
2964      Res_r.multiply(RHS_r, APFloat::rmNearestTiesToEven);
2965      Tmp = LHS_i;
2966      Tmp.multiply(RHS_i, APFloat::rmNearestTiesToEven);
2967      Res_r.add(Tmp, APFloat::rmNearestTiesToEven);
2968      Res_r.divide(Den, APFloat::rmNearestTiesToEven);
2969
2970      Res_i = LHS_i;
2971      Res_i.multiply(RHS_r, APFloat::rmNearestTiesToEven);
2972      Tmp = LHS_r;
2973      Tmp.multiply(RHS_i, APFloat::rmNearestTiesToEven);
2974      Res_i.subtract(Tmp, APFloat::rmNearestTiesToEven);
2975      Res_i.divide(Den, APFloat::rmNearestTiesToEven);
2976    } else {
2977      if (RHS.getComplexIntReal() == 0 && RHS.getComplexIntImag() == 0) {
2978        // FIXME: what about diagnostics?
2979        return false;
2980      }
2981      ComplexValue LHS = Result;
2982      APSInt Den = RHS.getComplexIntReal() * RHS.getComplexIntReal() +
2983        RHS.getComplexIntImag() * RHS.getComplexIntImag();
2984      Result.getComplexIntReal() =
2985        (LHS.getComplexIntReal() * RHS.getComplexIntReal() +
2986         LHS.getComplexIntImag() * RHS.getComplexIntImag()) / Den;
2987      Result.getComplexIntImag() =
2988        (LHS.getComplexIntImag() * RHS.getComplexIntReal() -
2989         LHS.getComplexIntReal() * RHS.getComplexIntImag()) / Den;
2990    }
2991    break;
2992  }
2993
2994  return true;
2995}
2996
2997bool ComplexExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
2998  // Get the operand value into 'Result'.
2999  if (!Visit(E->getSubExpr()))
3000    return false;
3001
3002  switch (E->getOpcode()) {
3003  default:
3004    // FIXME: what about diagnostics?
3005    return false;
3006  case UO_Extension:
3007    return true;
3008  case UO_Plus:
3009    // The result is always just the subexpr.
3010    return true;
3011  case UO_Minus:
3012    if (Result.isComplexFloat()) {
3013      Result.getComplexFloatReal().changeSign();
3014      Result.getComplexFloatImag().changeSign();
3015    }
3016    else {
3017      Result.getComplexIntReal() = -Result.getComplexIntReal();
3018      Result.getComplexIntImag() = -Result.getComplexIntImag();
3019    }
3020    return true;
3021  case UO_Not:
3022    if (Result.isComplexFloat())
3023      Result.getComplexFloatImag().changeSign();
3024    else
3025      Result.getComplexIntImag() = -Result.getComplexIntImag();
3026    return true;
3027  }
3028}
3029
3030//===----------------------------------------------------------------------===//
3031// Top level Expr::EvaluateAsRValue method.
3032//===----------------------------------------------------------------------===//
3033
3034static bool Evaluate(CCValue &Result, EvalInfo &Info, const Expr *E) {
3035  // In C, function designators are not lvalues, but we evaluate them as if they
3036  // are.
3037  if (E->isGLValue() || E->getType()->isFunctionType()) {
3038    LValue LV;
3039    if (!EvaluateLValue(E, LV, Info))
3040      return false;
3041    LV.moveInto(Result);
3042  } else if (E->getType()->isVectorType()) {
3043    if (!EvaluateVector(E, Result, Info))
3044      return false;
3045  } else if (E->getType()->isIntegralOrEnumerationType()) {
3046    if (!IntExprEvaluator(Info, Result).Visit(E))
3047      return false;
3048  } else if (E->getType()->hasPointerRepresentation()) {
3049    LValue LV;
3050    if (!EvaluatePointer(E, LV, Info))
3051      return false;
3052    LV.moveInto(Result);
3053  } else if (E->getType()->isRealFloatingType()) {
3054    llvm::APFloat F(0.0);
3055    if (!EvaluateFloat(E, F, Info))
3056      return false;
3057    Result = CCValue(F);
3058  } else if (E->getType()->isAnyComplexType()) {
3059    ComplexValue C;
3060    if (!EvaluateComplex(E, C, Info))
3061      return false;
3062    C.moveInto(Result);
3063  } else
3064    return false;
3065
3066  return true;
3067}
3068
3069
3070/// EvaluateAsRValue - Return true if this is a constant which we can fold using
3071/// any crazy technique (that has nothing to do with language standards) that
3072/// we want to.  If this function returns true, it returns the folded constant
3073/// in Result. If this expression is a glvalue, an lvalue-to-rvalue conversion
3074/// will be applied to the result.
3075bool Expr::EvaluateAsRValue(EvalResult &Result, const ASTContext &Ctx) const {
3076  EvalInfo Info(Ctx, Result);
3077
3078  CCValue Value;
3079  if (!::Evaluate(Value, Info, this))
3080    return false;
3081
3082  if (isGLValue()) {
3083    LValue LV;
3084    LV.setFrom(Value);
3085    if (!HandleLValueToRValueConversion(Info, getType(), LV, Value))
3086      return false;
3087  }
3088
3089  // Check this core constant expression is a constant expression, and if so,
3090  // slice it down to one.
3091  if (!CheckConstantExpression(Value))
3092    return false;
3093  Result.Val = Value;
3094  return true;
3095}
3096
3097bool Expr::EvaluateAsBooleanCondition(bool &Result,
3098                                      const ASTContext &Ctx) const {
3099  EvalResult Scratch;
3100  return EvaluateAsRValue(Scratch, Ctx) &&
3101         HandleConversionToBool(CCValue(Scratch.Val, CCValue::GlobalValue()),
3102                                Result);
3103}
3104
3105bool Expr::EvaluateAsInt(APSInt &Result, const ASTContext &Ctx) const {
3106  EvalResult ExprResult;
3107  if (!EvaluateAsRValue(ExprResult, Ctx) || ExprResult.HasSideEffects ||
3108      !ExprResult.Val.isInt()) {
3109    return false;
3110  }
3111  Result = ExprResult.Val.getInt();
3112  return true;
3113}
3114
3115bool Expr::EvaluateAsLValue(EvalResult &Result, const ASTContext &Ctx) const {
3116  EvalInfo Info(Ctx, Result);
3117
3118  LValue LV;
3119  if (EvaluateLValue(this, LV, Info) && !Result.HasSideEffects &&
3120      IsGlobalLValue(LV.Base)) {
3121    Result.Val = APValue(LV.Base, LV.Offset);
3122    return true;
3123  }
3124  return false;
3125}
3126
3127bool Expr::EvaluateAsAnyLValue(EvalResult &Result,
3128                               const ASTContext &Ctx) const {
3129  EvalInfo Info(Ctx, Result);
3130
3131  LValue LV;
3132  if (EvaluateLValue(this, LV, Info)) {
3133    Result.Val = APValue(LV.Base, LV.Offset);
3134    return true;
3135  }
3136  return false;
3137}
3138
3139/// isEvaluatable - Call EvaluateAsRValue to see if this expression can be
3140/// constant folded, but discard the result.
3141bool Expr::isEvaluatable(const ASTContext &Ctx) const {
3142  EvalResult Result;
3143  return EvaluateAsRValue(Result, Ctx) && !Result.HasSideEffects;
3144}
3145
3146bool Expr::HasSideEffects(const ASTContext &Ctx) const {
3147  return HasSideEffect(Ctx).Visit(this);
3148}
3149
3150APSInt Expr::EvaluateKnownConstInt(const ASTContext &Ctx) const {
3151  EvalResult EvalResult;
3152  bool Result = EvaluateAsRValue(EvalResult, Ctx);
3153  (void)Result;
3154  assert(Result && "Could not evaluate expression");
3155  assert(EvalResult.Val.isInt() && "Expression did not evaluate to integer");
3156
3157  return EvalResult.Val.getInt();
3158}
3159
3160 bool Expr::EvalResult::isGlobalLValue() const {
3161   assert(Val.isLValue());
3162   return IsGlobalLValue(Val.getLValueBase());
3163 }
3164
3165
3166/// isIntegerConstantExpr - this recursive routine will test if an expression is
3167/// an integer constant expression.
3168
3169/// FIXME: Pass up a reason why! Invalid operation in i-c-e, division by zero,
3170/// comma, etc
3171///
3172/// FIXME: Handle offsetof.  Two things to do:  Handle GCC's __builtin_offsetof
3173/// to support gcc 4.0+  and handle the idiom GCC recognizes with a null pointer
3174/// cast+dereference.
3175
3176// CheckICE - This function does the fundamental ICE checking: the returned
3177// ICEDiag contains a Val of 0, 1, or 2, and a possibly null SourceLocation.
3178// Note that to reduce code duplication, this helper does no evaluation
3179// itself; the caller checks whether the expression is evaluatable, and
3180// in the rare cases where CheckICE actually cares about the evaluated
3181// value, it calls into Evalute.
3182//
3183// Meanings of Val:
3184// 0: This expression is an ICE.
3185// 1: This expression is not an ICE, but if it isn't evaluated, it's
3186//    a legal subexpression for an ICE. This return value is used to handle
3187//    the comma operator in C99 mode.
3188// 2: This expression is not an ICE, and is not a legal subexpression for one.
3189
3190namespace {
3191
3192struct ICEDiag {
3193  unsigned Val;
3194  SourceLocation Loc;
3195
3196  public:
3197  ICEDiag(unsigned v, SourceLocation l) : Val(v), Loc(l) {}
3198  ICEDiag() : Val(0) {}
3199};
3200
3201}
3202
3203static ICEDiag NoDiag() { return ICEDiag(); }
3204
3205static ICEDiag CheckEvalInICE(const Expr* E, ASTContext &Ctx) {
3206  Expr::EvalResult EVResult;
3207  if (!E->EvaluateAsRValue(EVResult, Ctx) || EVResult.HasSideEffects ||
3208      !EVResult.Val.isInt()) {
3209    return ICEDiag(2, E->getLocStart());
3210  }
3211  return NoDiag();
3212}
3213
3214static ICEDiag CheckICE(const Expr* E, ASTContext &Ctx) {
3215  assert(!E->isValueDependent() && "Should not see value dependent exprs!");
3216  if (!E->getType()->isIntegralOrEnumerationType()) {
3217    return ICEDiag(2, E->getLocStart());
3218  }
3219
3220  switch (E->getStmtClass()) {
3221#define ABSTRACT_STMT(Node)
3222#define STMT(Node, Base) case Expr::Node##Class:
3223#define EXPR(Node, Base)
3224#include "clang/AST/StmtNodes.inc"
3225  case Expr::PredefinedExprClass:
3226  case Expr::FloatingLiteralClass:
3227  case Expr::ImaginaryLiteralClass:
3228  case Expr::StringLiteralClass:
3229  case Expr::ArraySubscriptExprClass:
3230  case Expr::MemberExprClass:
3231  case Expr::CompoundAssignOperatorClass:
3232  case Expr::CompoundLiteralExprClass:
3233  case Expr::ExtVectorElementExprClass:
3234  case Expr::DesignatedInitExprClass:
3235  case Expr::ImplicitValueInitExprClass:
3236  case Expr::ParenListExprClass:
3237  case Expr::VAArgExprClass:
3238  case Expr::AddrLabelExprClass:
3239  case Expr::StmtExprClass:
3240  case Expr::CXXMemberCallExprClass:
3241  case Expr::CUDAKernelCallExprClass:
3242  case Expr::CXXDynamicCastExprClass:
3243  case Expr::CXXTypeidExprClass:
3244  case Expr::CXXUuidofExprClass:
3245  case Expr::CXXNullPtrLiteralExprClass:
3246  case Expr::CXXThisExprClass:
3247  case Expr::CXXThrowExprClass:
3248  case Expr::CXXNewExprClass:
3249  case Expr::CXXDeleteExprClass:
3250  case Expr::CXXPseudoDestructorExprClass:
3251  case Expr::UnresolvedLookupExprClass:
3252  case Expr::DependentScopeDeclRefExprClass:
3253  case Expr::CXXConstructExprClass:
3254  case Expr::CXXBindTemporaryExprClass:
3255  case Expr::ExprWithCleanupsClass:
3256  case Expr::CXXTemporaryObjectExprClass:
3257  case Expr::CXXUnresolvedConstructExprClass:
3258  case Expr::CXXDependentScopeMemberExprClass:
3259  case Expr::UnresolvedMemberExprClass:
3260  case Expr::ObjCStringLiteralClass:
3261  case Expr::ObjCEncodeExprClass:
3262  case Expr::ObjCMessageExprClass:
3263  case Expr::ObjCSelectorExprClass:
3264  case Expr::ObjCProtocolExprClass:
3265  case Expr::ObjCIvarRefExprClass:
3266  case Expr::ObjCPropertyRefExprClass:
3267  case Expr::ObjCIsaExprClass:
3268  case Expr::ShuffleVectorExprClass:
3269  case Expr::BlockExprClass:
3270  case Expr::BlockDeclRefExprClass:
3271  case Expr::NoStmtClass:
3272  case Expr::OpaqueValueExprClass:
3273  case Expr::PackExpansionExprClass:
3274  case Expr::SubstNonTypeTemplateParmPackExprClass:
3275  case Expr::AsTypeExprClass:
3276  case Expr::ObjCIndirectCopyRestoreExprClass:
3277  case Expr::MaterializeTemporaryExprClass:
3278  case Expr::AtomicExprClass:
3279    return ICEDiag(2, E->getLocStart());
3280
3281  case Expr::InitListExprClass:
3282    if (Ctx.getLangOptions().CPlusPlus0x) {
3283      const InitListExpr *ILE = cast<InitListExpr>(E);
3284      if (ILE->getNumInits() == 0)
3285        return NoDiag();
3286      if (ILE->getNumInits() == 1)
3287        return CheckICE(ILE->getInit(0), Ctx);
3288      // Fall through for more than 1 expression.
3289    }
3290    return ICEDiag(2, E->getLocStart());
3291
3292  case Expr::SizeOfPackExprClass:
3293  case Expr::GNUNullExprClass:
3294    // GCC considers the GNU __null value to be an integral constant expression.
3295    return NoDiag();
3296
3297  case Expr::SubstNonTypeTemplateParmExprClass:
3298    return
3299      CheckICE(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(), Ctx);
3300
3301  case Expr::ParenExprClass:
3302    return CheckICE(cast<ParenExpr>(E)->getSubExpr(), Ctx);
3303  case Expr::GenericSelectionExprClass:
3304    return CheckICE(cast<GenericSelectionExpr>(E)->getResultExpr(), Ctx);
3305  case Expr::IntegerLiteralClass:
3306  case Expr::CharacterLiteralClass:
3307  case Expr::CXXBoolLiteralExprClass:
3308  case Expr::CXXScalarValueInitExprClass:
3309  case Expr::UnaryTypeTraitExprClass:
3310  case Expr::BinaryTypeTraitExprClass:
3311  case Expr::ArrayTypeTraitExprClass:
3312  case Expr::ExpressionTraitExprClass:
3313  case Expr::CXXNoexceptExprClass:
3314    return NoDiag();
3315  case Expr::CallExprClass:
3316  case Expr::CXXOperatorCallExprClass: {
3317    // C99 6.6/3 allows function calls within unevaluated subexpressions of
3318    // constant expressions, but they can never be ICEs because an ICE cannot
3319    // contain an operand of (pointer to) function type.
3320    const CallExpr *CE = cast<CallExpr>(E);
3321    if (CE->isBuiltinCall(Ctx))
3322      return CheckEvalInICE(E, Ctx);
3323    return ICEDiag(2, E->getLocStart());
3324  }
3325  case Expr::DeclRefExprClass:
3326    if (isa<EnumConstantDecl>(cast<DeclRefExpr>(E)->getDecl()))
3327      return NoDiag();
3328    if (Ctx.getLangOptions().CPlusPlus && IsConstNonVolatile(E->getType())) {
3329      const NamedDecl *D = cast<DeclRefExpr>(E)->getDecl();
3330
3331      // Parameter variables are never constants.  Without this check,
3332      // getAnyInitializer() can find a default argument, which leads
3333      // to chaos.
3334      if (isa<ParmVarDecl>(D))
3335        return ICEDiag(2, cast<DeclRefExpr>(E)->getLocation());
3336
3337      // C++ 7.1.5.1p2
3338      //   A variable of non-volatile const-qualified integral or enumeration
3339      //   type initialized by an ICE can be used in ICEs.
3340      if (const VarDecl *Dcl = dyn_cast<VarDecl>(D)) {
3341        // Look for a declaration of this variable that has an initializer.
3342        const VarDecl *ID = 0;
3343        const Expr *Init = Dcl->getAnyInitializer(ID);
3344        if (Init) {
3345          if (ID->isInitKnownICE()) {
3346            // We have already checked whether this subexpression is an
3347            // integral constant expression.
3348            if (ID->isInitICE())
3349              return NoDiag();
3350            else
3351              return ICEDiag(2, cast<DeclRefExpr>(E)->getLocation());
3352          }
3353
3354          // It's an ICE whether or not the definition we found is
3355          // out-of-line.  See DR 721 and the discussion in Clang PR
3356          // 6206 for details.
3357
3358          if (Dcl->isCheckingICE()) {
3359            return ICEDiag(2, cast<DeclRefExpr>(E)->getLocation());
3360          }
3361
3362          Dcl->setCheckingICE();
3363          ICEDiag Result = CheckICE(Init, Ctx);
3364          // Cache the result of the ICE test.
3365          Dcl->setInitKnownICE(Result.Val == 0);
3366          return Result;
3367        }
3368      }
3369    }
3370    return ICEDiag(2, E->getLocStart());
3371  case Expr::UnaryOperatorClass: {
3372    const UnaryOperator *Exp = cast<UnaryOperator>(E);
3373    switch (Exp->getOpcode()) {
3374    case UO_PostInc:
3375    case UO_PostDec:
3376    case UO_PreInc:
3377    case UO_PreDec:
3378    case UO_AddrOf:
3379    case UO_Deref:
3380      // C99 6.6/3 allows increment and decrement within unevaluated
3381      // subexpressions of constant expressions, but they can never be ICEs
3382      // because an ICE cannot contain an lvalue operand.
3383      return ICEDiag(2, E->getLocStart());
3384    case UO_Extension:
3385    case UO_LNot:
3386    case UO_Plus:
3387    case UO_Minus:
3388    case UO_Not:
3389    case UO_Real:
3390    case UO_Imag:
3391      return CheckICE(Exp->getSubExpr(), Ctx);
3392    }
3393
3394    // OffsetOf falls through here.
3395  }
3396  case Expr::OffsetOfExprClass: {
3397      // Note that per C99, offsetof must be an ICE. And AFAIK, using
3398      // EvaluateAsRValue matches the proposed gcc behavior for cases like
3399      // "offsetof(struct s{int x[4];}, x[1.0])".  This doesn't affect
3400      // compliance: we should warn earlier for offsetof expressions with
3401      // array subscripts that aren't ICEs, and if the array subscripts
3402      // are ICEs, the value of the offsetof must be an integer constant.
3403      return CheckEvalInICE(E, Ctx);
3404  }
3405  case Expr::UnaryExprOrTypeTraitExprClass: {
3406    const UnaryExprOrTypeTraitExpr *Exp = cast<UnaryExprOrTypeTraitExpr>(E);
3407    if ((Exp->getKind() ==  UETT_SizeOf) &&
3408        Exp->getTypeOfArgument()->isVariableArrayType())
3409      return ICEDiag(2, E->getLocStart());
3410    return NoDiag();
3411  }
3412  case Expr::BinaryOperatorClass: {
3413    const BinaryOperator *Exp = cast<BinaryOperator>(E);
3414    switch (Exp->getOpcode()) {
3415    case BO_PtrMemD:
3416    case BO_PtrMemI:
3417    case BO_Assign:
3418    case BO_MulAssign:
3419    case BO_DivAssign:
3420    case BO_RemAssign:
3421    case BO_AddAssign:
3422    case BO_SubAssign:
3423    case BO_ShlAssign:
3424    case BO_ShrAssign:
3425    case BO_AndAssign:
3426    case BO_XorAssign:
3427    case BO_OrAssign:
3428      // C99 6.6/3 allows assignments within unevaluated subexpressions of
3429      // constant expressions, but they can never be ICEs because an ICE cannot
3430      // contain an lvalue operand.
3431      return ICEDiag(2, E->getLocStart());
3432
3433    case BO_Mul:
3434    case BO_Div:
3435    case BO_Rem:
3436    case BO_Add:
3437    case BO_Sub:
3438    case BO_Shl:
3439    case BO_Shr:
3440    case BO_LT:
3441    case BO_GT:
3442    case BO_LE:
3443    case BO_GE:
3444    case BO_EQ:
3445    case BO_NE:
3446    case BO_And:
3447    case BO_Xor:
3448    case BO_Or:
3449    case BO_Comma: {
3450      ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
3451      ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
3452      if (Exp->getOpcode() == BO_Div ||
3453          Exp->getOpcode() == BO_Rem) {
3454        // EvaluateAsRValue gives an error for undefined Div/Rem, so make sure
3455        // we don't evaluate one.
3456        if (LHSResult.Val == 0 && RHSResult.Val == 0) {
3457          llvm::APSInt REval = Exp->getRHS()->EvaluateKnownConstInt(Ctx);
3458          if (REval == 0)
3459            return ICEDiag(1, E->getLocStart());
3460          if (REval.isSigned() && REval.isAllOnesValue()) {
3461            llvm::APSInt LEval = Exp->getLHS()->EvaluateKnownConstInt(Ctx);
3462            if (LEval.isMinSignedValue())
3463              return ICEDiag(1, E->getLocStart());
3464          }
3465        }
3466      }
3467      if (Exp->getOpcode() == BO_Comma) {
3468        if (Ctx.getLangOptions().C99) {
3469          // C99 6.6p3 introduces a strange edge case: comma can be in an ICE
3470          // if it isn't evaluated.
3471          if (LHSResult.Val == 0 && RHSResult.Val == 0)
3472            return ICEDiag(1, E->getLocStart());
3473        } else {
3474          // In both C89 and C++, commas in ICEs are illegal.
3475          return ICEDiag(2, E->getLocStart());
3476        }
3477      }
3478      if (LHSResult.Val >= RHSResult.Val)
3479        return LHSResult;
3480      return RHSResult;
3481    }
3482    case BO_LAnd:
3483    case BO_LOr: {
3484      ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
3485
3486      // C++0x [expr.const]p2:
3487      //   [...] subexpressions of logical AND (5.14), logical OR
3488      //   (5.15), and condi- tional (5.16) operations that are not
3489      //   evaluated are not considered.
3490      if (Ctx.getLangOptions().CPlusPlus0x && LHSResult.Val == 0) {
3491        if (Exp->getOpcode() == BO_LAnd &&
3492            Exp->getLHS()->EvaluateKnownConstInt(Ctx) == 0)
3493          return LHSResult;
3494
3495        if (Exp->getOpcode() == BO_LOr &&
3496            Exp->getLHS()->EvaluateKnownConstInt(Ctx) != 0)
3497          return LHSResult;
3498      }
3499
3500      ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
3501      if (LHSResult.Val == 0 && RHSResult.Val == 1) {
3502        // Rare case where the RHS has a comma "side-effect"; we need
3503        // to actually check the condition to see whether the side
3504        // with the comma is evaluated.
3505        if ((Exp->getOpcode() == BO_LAnd) !=
3506            (Exp->getLHS()->EvaluateKnownConstInt(Ctx) == 0))
3507          return RHSResult;
3508        return NoDiag();
3509      }
3510
3511      if (LHSResult.Val >= RHSResult.Val)
3512        return LHSResult;
3513      return RHSResult;
3514    }
3515    }
3516  }
3517  case Expr::ImplicitCastExprClass:
3518  case Expr::CStyleCastExprClass:
3519  case Expr::CXXFunctionalCastExprClass:
3520  case Expr::CXXStaticCastExprClass:
3521  case Expr::CXXReinterpretCastExprClass:
3522  case Expr::CXXConstCastExprClass:
3523  case Expr::ObjCBridgedCastExprClass: {
3524    const Expr *SubExpr = cast<CastExpr>(E)->getSubExpr();
3525    if (isa<ExplicitCastExpr>(E) &&
3526        isa<FloatingLiteral>(SubExpr->IgnoreParenImpCasts()))
3527      return NoDiag();
3528    switch (cast<CastExpr>(E)->getCastKind()) {
3529    case CK_LValueToRValue:
3530    case CK_NoOp:
3531    case CK_IntegralToBoolean:
3532    case CK_IntegralCast:
3533      return CheckICE(SubExpr, Ctx);
3534    default:
3535      return ICEDiag(2, E->getLocStart());
3536    }
3537  }
3538  case Expr::BinaryConditionalOperatorClass: {
3539    const BinaryConditionalOperator *Exp = cast<BinaryConditionalOperator>(E);
3540    ICEDiag CommonResult = CheckICE(Exp->getCommon(), Ctx);
3541    if (CommonResult.Val == 2) return CommonResult;
3542    ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx);
3543    if (FalseResult.Val == 2) return FalseResult;
3544    if (CommonResult.Val == 1) return CommonResult;
3545    if (FalseResult.Val == 1 &&
3546        Exp->getCommon()->EvaluateKnownConstInt(Ctx) == 0) return NoDiag();
3547    return FalseResult;
3548  }
3549  case Expr::ConditionalOperatorClass: {
3550    const ConditionalOperator *Exp = cast<ConditionalOperator>(E);
3551    // If the condition (ignoring parens) is a __builtin_constant_p call,
3552    // then only the true side is actually considered in an integer constant
3553    // expression, and it is fully evaluated.  This is an important GNU
3554    // extension.  See GCC PR38377 for discussion.
3555    if (const CallExpr *CallCE
3556        = dyn_cast<CallExpr>(Exp->getCond()->IgnoreParenCasts()))
3557      if (CallCE->isBuiltinCall(Ctx) == Builtin::BI__builtin_constant_p) {
3558        Expr::EvalResult EVResult;
3559        if (!E->EvaluateAsRValue(EVResult, Ctx) || EVResult.HasSideEffects ||
3560            !EVResult.Val.isInt()) {
3561          return ICEDiag(2, E->getLocStart());
3562        }
3563        return NoDiag();
3564      }
3565    ICEDiag CondResult = CheckICE(Exp->getCond(), Ctx);
3566    if (CondResult.Val == 2)
3567      return CondResult;
3568
3569    // C++0x [expr.const]p2:
3570    //   subexpressions of [...] conditional (5.16) operations that
3571    //   are not evaluated are not considered
3572    bool TrueBranch = Ctx.getLangOptions().CPlusPlus0x
3573      ? Exp->getCond()->EvaluateKnownConstInt(Ctx) != 0
3574      : false;
3575    ICEDiag TrueResult = NoDiag();
3576    if (!Ctx.getLangOptions().CPlusPlus0x || TrueBranch)
3577      TrueResult = CheckICE(Exp->getTrueExpr(), Ctx);
3578    ICEDiag FalseResult = NoDiag();
3579    if (!Ctx.getLangOptions().CPlusPlus0x || !TrueBranch)
3580      FalseResult = CheckICE(Exp->getFalseExpr(), Ctx);
3581
3582    if (TrueResult.Val == 2)
3583      return TrueResult;
3584    if (FalseResult.Val == 2)
3585      return FalseResult;
3586    if (CondResult.Val == 1)
3587      return CondResult;
3588    if (TrueResult.Val == 0 && FalseResult.Val == 0)
3589      return NoDiag();
3590    // Rare case where the diagnostics depend on which side is evaluated
3591    // Note that if we get here, CondResult is 0, and at least one of
3592    // TrueResult and FalseResult is non-zero.
3593    if (Exp->getCond()->EvaluateKnownConstInt(Ctx) == 0) {
3594      return FalseResult;
3595    }
3596    return TrueResult;
3597  }
3598  case Expr::CXXDefaultArgExprClass:
3599    return CheckICE(cast<CXXDefaultArgExpr>(E)->getExpr(), Ctx);
3600  case Expr::ChooseExprClass: {
3601    return CheckICE(cast<ChooseExpr>(E)->getChosenSubExpr(Ctx), Ctx);
3602  }
3603  }
3604
3605  // Silence a GCC warning
3606  return ICEDiag(2, E->getLocStart());
3607}
3608
3609bool Expr::isIntegerConstantExpr(llvm::APSInt &Result, ASTContext &Ctx,
3610                                 SourceLocation *Loc, bool isEvaluated) const {
3611  ICEDiag d = CheckICE(this, Ctx);
3612  if (d.Val != 0) {
3613    if (Loc) *Loc = d.Loc;
3614    return false;
3615  }
3616  if (!EvaluateAsInt(Result, Ctx))
3617    llvm_unreachable("ICE cannot be evaluated!");
3618  return true;
3619}
3620