CGObjCGNU.cpp revision 1d784b277cdfd4eba03680715d2a082b3f28d295
1//===------- CGObjCGNU.cpp - Emit LLVM Code from ASTs for a Module --------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This provides Objective-C code generation targeting the GNU runtime.  The
11// class in this file generates structures used by the GNU Objective-C runtime
12// library.  These structures are defined in objc/objc.h and objc/objc-api.h in
13// the GNU runtime distribution.
14//
15//===----------------------------------------------------------------------===//
16
17#include "CGObjCRuntime.h"
18#include "CodeGenModule.h"
19#include "CodeGenFunction.h"
20#include "CGCleanup.h"
21
22#include "clang/AST/ASTContext.h"
23#include "clang/AST/Decl.h"
24#include "clang/AST/DeclObjC.h"
25#include "clang/AST/RecordLayout.h"
26#include "clang/AST/StmtObjC.h"
27#include "clang/Basic/SourceManager.h"
28#include "clang/Basic/FileManager.h"
29
30#include "llvm/Intrinsics.h"
31#include "llvm/Module.h"
32#include "llvm/LLVMContext.h"
33#include "llvm/ADT/SmallVector.h"
34#include "llvm/ADT/StringMap.h"
35#include "llvm/Support/CallSite.h"
36#include "llvm/Support/Compiler.h"
37#include "llvm/Target/TargetData.h"
38
39#include <cstdarg>
40
41
42using namespace clang;
43using namespace CodeGen;
44
45
46namespace {
47/// Class that lazily initialises the runtime function.  Avoids inserting the
48/// types and the function declaration into a module if they're not used, and
49/// avoids constructing the type more than once if it's used more than once.
50class LazyRuntimeFunction {
51  CodeGenModule *CGM;
52  std::vector<llvm::Type*> ArgTys;
53  const char *FunctionName;
54  llvm::Constant *Function;
55  public:
56    /// Constructor leaves this class uninitialized, because it is intended to
57    /// be used as a field in another class and not all of the types that are
58    /// used as arguments will necessarily be available at construction time.
59    LazyRuntimeFunction() : CGM(0), FunctionName(0), Function(0) {}
60
61    /// Initialises the lazy function with the name, return type, and the types
62    /// of the arguments.
63    END_WITH_NULL
64    void init(CodeGenModule *Mod, const char *name,
65        llvm::Type *RetTy, ...) {
66       CGM =Mod;
67       FunctionName = name;
68       Function = 0;
69       ArgTys.clear();
70       va_list Args;
71       va_start(Args, RetTy);
72         while (llvm::Type *ArgTy = va_arg(Args, llvm::Type*))
73           ArgTys.push_back(ArgTy);
74       va_end(Args);
75       // Push the return type on at the end so we can pop it off easily
76       ArgTys.push_back(RetTy);
77   }
78   /// Overloaded cast operator, allows the class to be implicitly cast to an
79   /// LLVM constant.
80   operator llvm::Constant*() {
81     if (!Function) {
82       if (0 == FunctionName) return 0;
83       // We put the return type on the end of the vector, so pop it back off
84       llvm::Type *RetTy = ArgTys.back();
85       ArgTys.pop_back();
86       llvm::FunctionType *FTy = llvm::FunctionType::get(RetTy, ArgTys, false);
87       Function =
88         cast<llvm::Constant>(CGM->CreateRuntimeFunction(FTy, FunctionName));
89       // We won't need to use the types again, so we may as well clean up the
90       // vector now
91       ArgTys.resize(0);
92     }
93     return Function;
94   }
95   operator llvm::Function*() {
96     return cast<llvm::Function>((llvm::Constant*)*this);
97   }
98
99};
100
101
102/// GNU Objective-C runtime code generation.  This class implements the parts of
103/// Objective-C support that are specific to the GNU family of runtimes (GCC and
104/// GNUstep).
105class CGObjCGNU : public CGObjCRuntime {
106protected:
107  /// The module that is using this class
108  CodeGenModule &CGM;
109  /// The LLVM module into which output is inserted
110  llvm::Module &TheModule;
111  /// strut objc_super.  Used for sending messages to super.  This structure
112  /// contains the receiver (object) and the expected class.
113  llvm::StructType *ObjCSuperTy;
114  /// struct objc_super*.  The type of the argument to the superclass message
115  /// lookup functions.
116  llvm::PointerType *PtrToObjCSuperTy;
117  /// LLVM type for selectors.  Opaque pointer (i8*) unless a header declaring
118  /// SEL is included in a header somewhere, in which case it will be whatever
119  /// type is declared in that header, most likely {i8*, i8*}.
120  llvm::PointerType *SelectorTy;
121  /// LLVM i8 type.  Cached here to avoid repeatedly getting it in all of the
122  /// places where it's used
123  llvm::IntegerType *Int8Ty;
124  /// Pointer to i8 - LLVM type of char*, for all of the places where the
125  /// runtime needs to deal with C strings.
126  llvm::PointerType *PtrToInt8Ty;
127  /// Instance Method Pointer type.  This is a pointer to a function that takes,
128  /// at a minimum, an object and a selector, and is the generic type for
129  /// Objective-C methods.  Due to differences between variadic / non-variadic
130  /// calling conventions, it must always be cast to the correct type before
131  /// actually being used.
132  llvm::PointerType *IMPTy;
133  /// Type of an untyped Objective-C object.  Clang treats id as a built-in type
134  /// when compiling Objective-C code, so this may be an opaque pointer (i8*),
135  /// but if the runtime header declaring it is included then it may be a
136  /// pointer to a structure.
137  llvm::PointerType *IdTy;
138  /// Pointer to a pointer to an Objective-C object.  Used in the new ABI
139  /// message lookup function and some GC-related functions.
140  llvm::PointerType *PtrToIdTy;
141  /// The clang type of id.  Used when using the clang CGCall infrastructure to
142  /// call Objective-C methods.
143  CanQualType ASTIdTy;
144  /// LLVM type for C int type.
145  llvm::IntegerType *IntTy;
146  /// LLVM type for an opaque pointer.  This is identical to PtrToInt8Ty, but is
147  /// used in the code to document the difference between i8* meaning a pointer
148  /// to a C string and i8* meaning a pointer to some opaque type.
149  llvm::PointerType *PtrTy;
150  /// LLVM type for C long type.  The runtime uses this in a lot of places where
151  /// it should be using intptr_t, but we can't fix this without breaking
152  /// compatibility with GCC...
153  llvm::IntegerType *LongTy;
154  /// LLVM type for C size_t.  Used in various runtime data structures.
155  llvm::IntegerType *SizeTy;
156  /// LLVM type for C intptr_t.
157  llvm::IntegerType *IntPtrTy;
158  /// LLVM type for C ptrdiff_t.  Mainly used in property accessor functions.
159  llvm::IntegerType *PtrDiffTy;
160  /// LLVM type for C int*.  Used for GCC-ABI-compatible non-fragile instance
161  /// variables.
162  llvm::PointerType *PtrToIntTy;
163  /// LLVM type for Objective-C BOOL type.
164  llvm::Type *BoolTy;
165  /// 32-bit integer type, to save us needing to look it up every time it's used.
166  llvm::IntegerType *Int32Ty;
167  /// 64-bit integer type, to save us needing to look it up every time it's used.
168  llvm::IntegerType *Int64Ty;
169  /// Metadata kind used to tie method lookups to message sends.  The GNUstep
170  /// runtime provides some LLVM passes that can use this to do things like
171  /// automatic IMP caching and speculative inlining.
172  unsigned msgSendMDKind;
173  /// Helper function that generates a constant string and returns a pointer to
174  /// the start of the string.  The result of this function can be used anywhere
175  /// where the C code specifies const char*.
176  llvm::Constant *MakeConstantString(const std::string &Str,
177                                     const std::string &Name="") {
178    llvm::Constant *ConstStr = CGM.GetAddrOfConstantCString(Str, Name.c_str());
179    return llvm::ConstantExpr::getGetElementPtr(ConstStr, Zeros);
180  }
181  /// Emits a linkonce_odr string, whose name is the prefix followed by the
182  /// string value.  This allows the linker to combine the strings between
183  /// different modules.  Used for EH typeinfo names, selector strings, and a
184  /// few other things.
185  llvm::Constant *ExportUniqueString(const std::string &Str,
186                                     const std::string prefix) {
187    std::string name = prefix + Str;
188    llvm::Constant *ConstStr = TheModule.getGlobalVariable(name);
189    if (!ConstStr) {
190      llvm::Constant *value = llvm::ConstantArray::get(VMContext, Str, true);
191      ConstStr = new llvm::GlobalVariable(TheModule, value->getType(), true,
192              llvm::GlobalValue::LinkOnceODRLinkage, value, prefix + Str);
193    }
194    return llvm::ConstantExpr::getGetElementPtr(ConstStr, Zeros);
195  }
196  /// Generates a global structure, initialized by the elements in the vector.
197  /// The element types must match the types of the structure elements in the
198  /// first argument.
199  llvm::GlobalVariable *MakeGlobal(llvm::StructType *Ty,
200                                   llvm::ArrayRef<llvm::Constant*> V,
201                                   StringRef Name="",
202                                   llvm::GlobalValue::LinkageTypes linkage
203                                         =llvm::GlobalValue::InternalLinkage) {
204    llvm::Constant *C = llvm::ConstantStruct::get(Ty, V);
205    return new llvm::GlobalVariable(TheModule, Ty, false,
206        linkage, C, Name);
207  }
208  /// Generates a global array.  The vector must contain the same number of
209  /// elements that the array type declares, of the type specified as the array
210  /// element type.
211  llvm::GlobalVariable *MakeGlobal(llvm::ArrayType *Ty,
212                                   llvm::ArrayRef<llvm::Constant*> V,
213                                   StringRef Name="",
214                                   llvm::GlobalValue::LinkageTypes linkage
215                                         =llvm::GlobalValue::InternalLinkage) {
216    llvm::Constant *C = llvm::ConstantArray::get(Ty, V);
217    return new llvm::GlobalVariable(TheModule, Ty, false,
218                                    linkage, C, Name);
219  }
220  /// Generates a global array, inferring the array type from the specified
221  /// element type and the size of the initialiser.
222  llvm::GlobalVariable *MakeGlobalArray(llvm::Type *Ty,
223                                        llvm::ArrayRef<llvm::Constant*> V,
224                                        StringRef Name="",
225                                        llvm::GlobalValue::LinkageTypes linkage
226                                         =llvm::GlobalValue::InternalLinkage) {
227    llvm::ArrayType *ArrayTy = llvm::ArrayType::get(Ty, V.size());
228    return MakeGlobal(ArrayTy, V, Name, linkage);
229  }
230  /// Ensures that the value has the required type, by inserting a bitcast if
231  /// required.  This function lets us avoid inserting bitcasts that are
232  /// redundant.
233  llvm::Value* EnforceType(CGBuilderTy B, llvm::Value *V, llvm::Type *Ty){
234    if (V->getType() == Ty) return V;
235    return B.CreateBitCast(V, Ty);
236  }
237  // Some zeros used for GEPs in lots of places.
238  llvm::Constant *Zeros[2];
239  /// Null pointer value.  Mainly used as a terminator in various arrays.
240  llvm::Constant *NULLPtr;
241  /// LLVM context.
242  llvm::LLVMContext &VMContext;
243private:
244  /// Placeholder for the class.  Lots of things refer to the class before we've
245  /// actually emitted it.  We use this alias as a placeholder, and then replace
246  /// it with a pointer to the class structure before finally emitting the
247  /// module.
248  llvm::GlobalAlias *ClassPtrAlias;
249  /// Placeholder for the metaclass.  Lots of things refer to the class before
250  /// we've / actually emitted it.  We use this alias as a placeholder, and then
251  /// replace / it with a pointer to the metaclass structure before finally
252  /// emitting the / module.
253  llvm::GlobalAlias *MetaClassPtrAlias;
254  /// All of the classes that have been generated for this compilation units.
255  std::vector<llvm::Constant*> Classes;
256  /// All of the categories that have been generated for this compilation units.
257  std::vector<llvm::Constant*> Categories;
258  /// All of the Objective-C constant strings that have been generated for this
259  /// compilation units.
260  std::vector<llvm::Constant*> ConstantStrings;
261  /// Map from string values to Objective-C constant strings in the output.
262  /// Used to prevent emitting Objective-C strings more than once.  This should
263  /// not be required at all - CodeGenModule should manage this list.
264  llvm::StringMap<llvm::Constant*> ObjCStrings;
265  /// All of the protocols that have been declared.
266  llvm::StringMap<llvm::Constant*> ExistingProtocols;
267  /// For each variant of a selector, we store the type encoding and a
268  /// placeholder value.  For an untyped selector, the type will be the empty
269  /// string.  Selector references are all done via the module's selector table,
270  /// so we create an alias as a placeholder and then replace it with the real
271  /// value later.
272  typedef std::pair<std::string, llvm::GlobalAlias*> TypedSelector;
273  /// Type of the selector map.  This is roughly equivalent to the structure
274  /// used in the GNUstep runtime, which maintains a list of all of the valid
275  /// types for a selector in a table.
276  typedef llvm::DenseMap<Selector, SmallVector<TypedSelector, 2> >
277    SelectorMap;
278  /// A map from selectors to selector types.  This allows us to emit all
279  /// selectors of the same name and type together.
280  SelectorMap SelectorTable;
281
282  /// Selectors related to memory management.  When compiling in GC mode, we
283  /// omit these.
284  Selector RetainSel, ReleaseSel, AutoreleaseSel;
285  /// Runtime functions used for memory management in GC mode.  Note that clang
286  /// supports code generation for calling these functions, but neither GNU
287  /// runtime actually supports this API properly yet.
288  LazyRuntimeFunction IvarAssignFn, StrongCastAssignFn, MemMoveFn, WeakReadFn,
289    WeakAssignFn, GlobalAssignFn;
290
291protected:
292  /// Function used for throwing Objective-C exceptions.
293  LazyRuntimeFunction ExceptionThrowFn;
294  /// Function used for rethrowing exceptions, used at the end of @finally or
295  /// @synchronize blocks.
296  LazyRuntimeFunction ExceptionReThrowFn;
297  /// Function called when entering a catch function.  This is required for
298  /// differentiating Objective-C exceptions and foreign exceptions.
299  LazyRuntimeFunction EnterCatchFn;
300  /// Function called when exiting from a catch block.  Used to do exception
301  /// cleanup.
302  LazyRuntimeFunction ExitCatchFn;
303  /// Function called when entering an @synchronize block.  Acquires the lock.
304  LazyRuntimeFunction SyncEnterFn;
305  /// Function called when exiting an @synchronize block.  Releases the lock.
306  LazyRuntimeFunction SyncExitFn;
307
308private:
309
310  /// Function called if fast enumeration detects that the collection is
311  /// modified during the update.
312  LazyRuntimeFunction EnumerationMutationFn;
313  /// Function for implementing synthesized property getters that return an
314  /// object.
315  LazyRuntimeFunction GetPropertyFn;
316  /// Function for implementing synthesized property setters that return an
317  /// object.
318  LazyRuntimeFunction SetPropertyFn;
319  /// Function used for non-object declared property getters.
320  LazyRuntimeFunction GetStructPropertyFn;
321  /// Function used for non-object declared property setters.
322  LazyRuntimeFunction SetStructPropertyFn;
323
324  /// The version of the runtime that this class targets.  Must match the
325  /// version in the runtime.
326  int RuntimeVersion;
327  /// The version of the protocol class.  Used to differentiate between ObjC1
328  /// and ObjC2 protocols.  Objective-C 1 protocols can not contain optional
329  /// components and can not contain declared properties.  We always emit
330  /// Objective-C 2 property structures, but we have to pretend that they're
331  /// Objective-C 1 property structures when targeting the GCC runtime or it
332  /// will abort.
333  const int ProtocolVersion;
334private:
335  /// Generates an instance variable list structure.  This is a structure
336  /// containing a size and an array of structures containing instance variable
337  /// metadata.  This is used purely for introspection in the fragile ABI.  In
338  /// the non-fragile ABI, it's used for instance variable fixup.
339  llvm::Constant *GenerateIvarList(
340      const SmallVectorImpl<llvm::Constant *>  &IvarNames,
341      const SmallVectorImpl<llvm::Constant *>  &IvarTypes,
342      const SmallVectorImpl<llvm::Constant *>  &IvarOffsets);
343  /// Generates a method list structure.  This is a structure containing a size
344  /// and an array of structures containing method metadata.
345  ///
346  /// This structure is used by both classes and categories, and contains a next
347  /// pointer allowing them to be chained together in a linked list.
348  llvm::Constant *GenerateMethodList(const StringRef &ClassName,
349      const StringRef &CategoryName,
350      const SmallVectorImpl<Selector>  &MethodSels,
351      const SmallVectorImpl<llvm::Constant *>  &MethodTypes,
352      bool isClassMethodList);
353  /// Emits an empty protocol.  This is used for @protocol() where no protocol
354  /// is found.  The runtime will (hopefully) fix up the pointer to refer to the
355  /// real protocol.
356  llvm::Constant *GenerateEmptyProtocol(const std::string &ProtocolName);
357  /// Generates a list of property metadata structures.  This follows the same
358  /// pattern as method and instance variable metadata lists.
359  llvm::Constant *GeneratePropertyList(const ObjCImplementationDecl *OID,
360        SmallVectorImpl<Selector> &InstanceMethodSels,
361        SmallVectorImpl<llvm::Constant*> &InstanceMethodTypes);
362  /// Generates a list of referenced protocols.  Classes, categories, and
363  /// protocols all use this structure.
364  llvm::Constant *GenerateProtocolList(
365      const SmallVectorImpl<std::string> &Protocols);
366  /// To ensure that all protocols are seen by the runtime, we add a category on
367  /// a class defined in the runtime, declaring no methods, but adopting the
368  /// protocols.  This is a horribly ugly hack, but it allows us to collect all
369  /// of the protocols without changing the ABI.
370  void GenerateProtocolHolderCategory(void);
371  /// Generates a class structure.
372  llvm::Constant *GenerateClassStructure(
373      llvm::Constant *MetaClass,
374      llvm::Constant *SuperClass,
375      unsigned info,
376      const char *Name,
377      llvm::Constant *Version,
378      llvm::Constant *InstanceSize,
379      llvm::Constant *IVars,
380      llvm::Constant *Methods,
381      llvm::Constant *Protocols,
382      llvm::Constant *IvarOffsets,
383      llvm::Constant *Properties,
384      llvm::Constant *StrongIvarBitmap,
385      llvm::Constant *WeakIvarBitmap,
386      bool isMeta=false);
387  /// Generates a method list.  This is used by protocols to define the required
388  /// and optional methods.
389  llvm::Constant *GenerateProtocolMethodList(
390      const SmallVectorImpl<llvm::Constant *>  &MethodNames,
391      const SmallVectorImpl<llvm::Constant *>  &MethodTypes);
392  /// Returns a selector with the specified type encoding.  An empty string is
393  /// used to return an untyped selector (with the types field set to NULL).
394  llvm::Value *GetSelector(CGBuilderTy &Builder, Selector Sel,
395    const std::string &TypeEncoding, bool lval);
396  /// Returns the variable used to store the offset of an instance variable.
397  llvm::GlobalVariable *ObjCIvarOffsetVariable(const ObjCInterfaceDecl *ID,
398      const ObjCIvarDecl *Ivar);
399  /// Emits a reference to a class.  This allows the linker to object if there
400  /// is no class of the matching name.
401  void EmitClassRef(const std::string &className);
402  /// Emits a pointer to the named class
403  llvm::Value *GetClassNamed(CGBuilderTy &Builder, const std::string &Name,
404                             bool isWeak);
405protected:
406  /// Looks up the method for sending a message to the specified object.  This
407  /// mechanism differs between the GCC and GNU runtimes, so this method must be
408  /// overridden in subclasses.
409  virtual llvm::Value *LookupIMP(CodeGenFunction &CGF,
410                                 llvm::Value *&Receiver,
411                                 llvm::Value *cmd,
412                                 llvm::MDNode *node) = 0;
413  /// Looks up the method for sending a message to a superclass.  This
414  /// mechanism differs between the GCC and GNU runtimes, so this method must
415  /// be overridden in subclasses.
416  virtual llvm::Value *LookupIMPSuper(CodeGenFunction &CGF,
417                                      llvm::Value *ObjCSuper,
418                                      llvm::Value *cmd) = 0;
419  /// Libobjc2 uses a bitfield representation where small(ish) bitfields are
420  /// stored in a 64-bit value with the low bit set to 1 and the remaining 63
421  /// bits set to their values, LSB first, while larger ones are stored in a
422  /// structure of this / form:
423  ///
424  /// struct { int32_t length; int32_t values[length]; };
425  ///
426  /// The values in the array are stored in host-endian format, with the least
427  /// significant bit being assumed to come first in the bitfield.  Therefore,
428  /// a bitfield with the 64th bit set will be (int64_t)&{ 2, [0, 1<<31] },
429  /// while a bitfield / with the 63rd bit set will be 1<<64.
430  llvm::Constant *MakeBitField(llvm::SmallVectorImpl<bool> &bits);
431public:
432  CGObjCGNU(CodeGenModule &cgm, unsigned runtimeABIVersion,
433      unsigned protocolClassVersion);
434
435  virtual llvm::Constant *GenerateConstantString(const StringLiteral *);
436
437  virtual RValue
438  GenerateMessageSend(CodeGenFunction &CGF,
439                      ReturnValueSlot Return,
440                      QualType ResultType,
441                      Selector Sel,
442                      llvm::Value *Receiver,
443                      const CallArgList &CallArgs,
444                      const ObjCInterfaceDecl *Class,
445                      const ObjCMethodDecl *Method);
446  virtual RValue
447  GenerateMessageSendSuper(CodeGenFunction &CGF,
448                           ReturnValueSlot Return,
449                           QualType ResultType,
450                           Selector Sel,
451                           const ObjCInterfaceDecl *Class,
452                           bool isCategoryImpl,
453                           llvm::Value *Receiver,
454                           bool IsClassMessage,
455                           const CallArgList &CallArgs,
456                           const ObjCMethodDecl *Method);
457  virtual llvm::Value *GetClass(CGBuilderTy &Builder,
458                                const ObjCInterfaceDecl *OID);
459  virtual llvm::Value *GetSelector(CGBuilderTy &Builder, Selector Sel,
460                                   bool lval = false);
461  virtual llvm::Value *GetSelector(CGBuilderTy &Builder, const ObjCMethodDecl
462      *Method);
463  virtual llvm::Constant *GetEHType(QualType T);
464
465  virtual llvm::Function *GenerateMethod(const ObjCMethodDecl *OMD,
466                                         const ObjCContainerDecl *CD);
467  virtual void GenerateCategory(const ObjCCategoryImplDecl *CMD);
468  virtual void GenerateClass(const ObjCImplementationDecl *ClassDecl);
469  virtual llvm::Value *GenerateProtocolRef(CGBuilderTy &Builder,
470                                           const ObjCProtocolDecl *PD);
471  virtual void GenerateProtocol(const ObjCProtocolDecl *PD);
472  virtual llvm::Function *ModuleInitFunction();
473  virtual llvm::Constant *GetPropertyGetFunction();
474  virtual llvm::Constant *GetPropertySetFunction();
475  virtual llvm::Constant *GetSetStructFunction();
476  virtual llvm::Constant *GetGetStructFunction();
477  virtual llvm::Constant *EnumerationMutationFunction();
478
479  virtual void EmitTryStmt(CodeGenFunction &CGF,
480                           const ObjCAtTryStmt &S);
481  virtual void EmitSynchronizedStmt(CodeGenFunction &CGF,
482                                    const ObjCAtSynchronizedStmt &S);
483  virtual void EmitThrowStmt(CodeGenFunction &CGF,
484                             const ObjCAtThrowStmt &S);
485  virtual llvm::Value * EmitObjCWeakRead(CodeGenFunction &CGF,
486                                         llvm::Value *AddrWeakObj);
487  virtual void EmitObjCWeakAssign(CodeGenFunction &CGF,
488                                  llvm::Value *src, llvm::Value *dst);
489  virtual void EmitObjCGlobalAssign(CodeGenFunction &CGF,
490                                    llvm::Value *src, llvm::Value *dest,
491                                    bool threadlocal=false);
492  virtual void EmitObjCIvarAssign(CodeGenFunction &CGF,
493                                    llvm::Value *src, llvm::Value *dest,
494                                    llvm::Value *ivarOffset);
495  virtual void EmitObjCStrongCastAssign(CodeGenFunction &CGF,
496                                        llvm::Value *src, llvm::Value *dest);
497  virtual void EmitGCMemmoveCollectable(CodeGenFunction &CGF,
498                                        llvm::Value *DestPtr,
499                                        llvm::Value *SrcPtr,
500                                        llvm::Value *Size);
501  virtual LValue EmitObjCValueForIvar(CodeGenFunction &CGF,
502                                      QualType ObjectTy,
503                                      llvm::Value *BaseValue,
504                                      const ObjCIvarDecl *Ivar,
505                                      unsigned CVRQualifiers);
506  virtual llvm::Value *EmitIvarOffset(CodeGenFunction &CGF,
507                                      const ObjCInterfaceDecl *Interface,
508                                      const ObjCIvarDecl *Ivar);
509  virtual llvm::Value *EmitNSAutoreleasePoolClassRef(CGBuilderTy &Builder);
510  virtual llvm::Constant *BuildGCBlockLayout(CodeGenModule &CGM,
511                                             const CGBlockInfo &blockInfo) {
512    return NULLPtr;
513  }
514
515  virtual llvm::GlobalVariable *GetClassGlobal(const std::string &Name) {
516    return 0;
517  }
518};
519/// Class representing the legacy GCC Objective-C ABI.  This is the default when
520/// -fobjc-nonfragile-abi is not specified.
521///
522/// The GCC ABI target actually generates code that is approximately compatible
523/// with the new GNUstep runtime ABI, but refrains from using any features that
524/// would not work with the GCC runtime.  For example, clang always generates
525/// the extended form of the class structure, and the extra fields are simply
526/// ignored by GCC libobjc.
527class CGObjCGCC : public CGObjCGNU {
528  /// The GCC ABI message lookup function.  Returns an IMP pointing to the
529  /// method implementation for this message.
530  LazyRuntimeFunction MsgLookupFn;
531  /// The GCC ABI superclass message lookup function.  Takes a pointer to a
532  /// structure describing the receiver and the class, and a selector as
533  /// arguments.  Returns the IMP for the corresponding method.
534  LazyRuntimeFunction MsgLookupSuperFn;
535protected:
536  virtual llvm::Value *LookupIMP(CodeGenFunction &CGF,
537                                 llvm::Value *&Receiver,
538                                 llvm::Value *cmd,
539                                 llvm::MDNode *node) {
540    CGBuilderTy &Builder = CGF.Builder;
541    llvm::Value *args[] = {
542            EnforceType(Builder, Receiver, IdTy),
543            EnforceType(Builder, cmd, SelectorTy) };
544    llvm::CallSite imp = CGF.EmitCallOrInvoke(MsgLookupFn, args);
545    imp->setMetadata(msgSendMDKind, node);
546    return imp.getInstruction();
547  }
548  virtual llvm::Value *LookupIMPSuper(CodeGenFunction &CGF,
549                                      llvm::Value *ObjCSuper,
550                                      llvm::Value *cmd) {
551      CGBuilderTy &Builder = CGF.Builder;
552      llvm::Value *lookupArgs[] = {EnforceType(Builder, ObjCSuper,
553          PtrToObjCSuperTy), cmd};
554      return Builder.CreateCall(MsgLookupSuperFn, lookupArgs);
555    }
556  public:
557    CGObjCGCC(CodeGenModule &Mod) : CGObjCGNU(Mod, 8, 2) {
558      // IMP objc_msg_lookup(id, SEL);
559      MsgLookupFn.init(&CGM, "objc_msg_lookup", IMPTy, IdTy, SelectorTy, NULL);
560      // IMP objc_msg_lookup_super(struct objc_super*, SEL);
561      MsgLookupSuperFn.init(&CGM, "objc_msg_lookup_super", IMPTy,
562              PtrToObjCSuperTy, SelectorTy, NULL);
563    }
564};
565/// Class used when targeting the new GNUstep runtime ABI.
566class CGObjCGNUstep : public CGObjCGNU {
567    /// The slot lookup function.  Returns a pointer to a cacheable structure
568    /// that contains (among other things) the IMP.
569    LazyRuntimeFunction SlotLookupFn;
570    /// The GNUstep ABI superclass message lookup function.  Takes a pointer to
571    /// a structure describing the receiver and the class, and a selector as
572    /// arguments.  Returns the slot for the corresponding method.  Superclass
573    /// message lookup rarely changes, so this is a good caching opportunity.
574    LazyRuntimeFunction SlotLookupSuperFn;
575    /// Type of an slot structure pointer.  This is returned by the various
576    /// lookup functions.
577    llvm::Type *SlotTy;
578  protected:
579    virtual llvm::Value *LookupIMP(CodeGenFunction &CGF,
580                                   llvm::Value *&Receiver,
581                                   llvm::Value *cmd,
582                                   llvm::MDNode *node) {
583      CGBuilderTy &Builder = CGF.Builder;
584      llvm::Function *LookupFn = SlotLookupFn;
585
586      // Store the receiver on the stack so that we can reload it later
587      llvm::Value *ReceiverPtr = CGF.CreateTempAlloca(Receiver->getType());
588      Builder.CreateStore(Receiver, ReceiverPtr);
589
590      llvm::Value *self;
591
592      if (isa<ObjCMethodDecl>(CGF.CurCodeDecl)) {
593        self = CGF.LoadObjCSelf();
594      } else {
595        self = llvm::ConstantPointerNull::get(IdTy);
596      }
597
598      // The lookup function is guaranteed not to capture the receiver pointer.
599      LookupFn->setDoesNotCapture(1);
600
601      llvm::Value *args[] = {
602              EnforceType(Builder, ReceiverPtr, PtrToIdTy),
603              EnforceType(Builder, cmd, SelectorTy),
604              EnforceType(Builder, self, IdTy) };
605      llvm::CallSite slot = CGF.EmitCallOrInvoke(LookupFn, args);
606      slot.setOnlyReadsMemory();
607      slot->setMetadata(msgSendMDKind, node);
608
609      // Load the imp from the slot
610      llvm::Value *imp =
611        Builder.CreateLoad(Builder.CreateStructGEP(slot.getInstruction(), 4));
612
613      // The lookup function may have changed the receiver, so make sure we use
614      // the new one.
615      Receiver = Builder.CreateLoad(ReceiverPtr, true);
616      return imp;
617    }
618    virtual llvm::Value *LookupIMPSuper(CodeGenFunction &CGF,
619                                        llvm::Value *ObjCSuper,
620                                        llvm::Value *cmd) {
621      CGBuilderTy &Builder = CGF.Builder;
622      llvm::Value *lookupArgs[] = {ObjCSuper, cmd};
623
624      llvm::CallInst *slot = Builder.CreateCall(SlotLookupSuperFn, lookupArgs);
625      slot->setOnlyReadsMemory();
626
627      return Builder.CreateLoad(Builder.CreateStructGEP(slot, 4));
628    }
629  public:
630    CGObjCGNUstep(CodeGenModule &Mod) : CGObjCGNU(Mod, 9, 3) {
631      llvm::StructType *SlotStructTy = llvm::StructType::get(PtrTy,
632          PtrTy, PtrTy, IntTy, IMPTy, NULL);
633      SlotTy = llvm::PointerType::getUnqual(SlotStructTy);
634      // Slot_t objc_msg_lookup_sender(id *receiver, SEL selector, id sender);
635      SlotLookupFn.init(&CGM, "objc_msg_lookup_sender", SlotTy, PtrToIdTy,
636          SelectorTy, IdTy, NULL);
637      // Slot_t objc_msg_lookup_super(struct objc_super*, SEL);
638      SlotLookupSuperFn.init(&CGM, "objc_slot_lookup_super", SlotTy,
639              PtrToObjCSuperTy, SelectorTy, NULL);
640      // If we're in ObjC++ mode, then we want to make
641      if (CGM.getLangOptions().CPlusPlus) {
642        llvm::Type *VoidTy = llvm::Type::getVoidTy(VMContext);
643        // void *__cxa_begin_catch(void *e)
644        EnterCatchFn.init(&CGM, "__cxa_begin_catch", PtrTy, PtrTy, NULL);
645        // void __cxa_end_catch(void)
646        ExitCatchFn.init(&CGM, "__cxa_end_catch", VoidTy, NULL);
647        // void _Unwind_Resume_or_Rethrow(void*)
648        ExceptionReThrowFn.init(&CGM, "_Unwind_Resume_or_Rethrow", VoidTy, PtrTy, NULL);
649      }
650    }
651};
652
653} // end anonymous namespace
654
655
656/// Emits a reference to a dummy variable which is emitted with each class.
657/// This ensures that a linker error will be generated when trying to link
658/// together modules where a referenced class is not defined.
659void CGObjCGNU::EmitClassRef(const std::string &className) {
660  std::string symbolRef = "__objc_class_ref_" + className;
661  // Don't emit two copies of the same symbol
662  if (TheModule.getGlobalVariable(symbolRef))
663    return;
664  std::string symbolName = "__objc_class_name_" + className;
665  llvm::GlobalVariable *ClassSymbol = TheModule.getGlobalVariable(symbolName);
666  if (!ClassSymbol) {
667    ClassSymbol = new llvm::GlobalVariable(TheModule, LongTy, false,
668        llvm::GlobalValue::ExternalLinkage, 0, symbolName);
669  }
670  new llvm::GlobalVariable(TheModule, ClassSymbol->getType(), true,
671    llvm::GlobalValue::WeakAnyLinkage, ClassSymbol, symbolRef);
672}
673
674static std::string SymbolNameForMethod(const StringRef &ClassName,
675    const StringRef &CategoryName, const Selector MethodName,
676    bool isClassMethod) {
677  std::string MethodNameColonStripped = MethodName.getAsString();
678  std::replace(MethodNameColonStripped.begin(), MethodNameColonStripped.end(),
679      ':', '_');
680  return (Twine(isClassMethod ? "_c_" : "_i_") + ClassName + "_" +
681    CategoryName + "_" + MethodNameColonStripped).str();
682}
683
684CGObjCGNU::CGObjCGNU(CodeGenModule &cgm, unsigned runtimeABIVersion,
685    unsigned protocolClassVersion)
686  : CGM(cgm), TheModule(CGM.getModule()), VMContext(cgm.getLLVMContext()),
687  ClassPtrAlias(0), MetaClassPtrAlias(0), RuntimeVersion(runtimeABIVersion),
688  ProtocolVersion(protocolClassVersion) {
689
690  msgSendMDKind = VMContext.getMDKindID("GNUObjCMessageSend");
691
692  CodeGenTypes &Types = CGM.getTypes();
693  IntTy = cast<llvm::IntegerType>(
694      Types.ConvertType(CGM.getContext().IntTy));
695  LongTy = cast<llvm::IntegerType>(
696      Types.ConvertType(CGM.getContext().LongTy));
697  SizeTy = cast<llvm::IntegerType>(
698      Types.ConvertType(CGM.getContext().getSizeType()));
699  PtrDiffTy = cast<llvm::IntegerType>(
700      Types.ConvertType(CGM.getContext().getPointerDiffType()));
701  BoolTy = CGM.getTypes().ConvertType(CGM.getContext().BoolTy);
702
703  Int8Ty = llvm::Type::getInt8Ty(VMContext);
704  // C string type.  Used in lots of places.
705  PtrToInt8Ty = llvm::PointerType::getUnqual(Int8Ty);
706
707  Zeros[0] = llvm::ConstantInt::get(LongTy, 0);
708  Zeros[1] = Zeros[0];
709  NULLPtr = llvm::ConstantPointerNull::get(PtrToInt8Ty);
710  // Get the selector Type.
711  QualType selTy = CGM.getContext().getObjCSelType();
712  if (QualType() == selTy) {
713    SelectorTy = PtrToInt8Ty;
714  } else {
715    SelectorTy = cast<llvm::PointerType>(CGM.getTypes().ConvertType(selTy));
716  }
717
718  PtrToIntTy = llvm::PointerType::getUnqual(IntTy);
719  PtrTy = PtrToInt8Ty;
720
721  Int32Ty = llvm::Type::getInt32Ty(VMContext);
722  Int64Ty = llvm::Type::getInt64Ty(VMContext);
723
724  IntPtrTy =
725      TheModule.getPointerSize() == llvm::Module::Pointer32 ? Int32Ty : Int64Ty;
726
727  // Object type
728  QualType UnqualIdTy = CGM.getContext().getObjCIdType();
729  ASTIdTy = CanQualType();
730  if (UnqualIdTy != QualType()) {
731    ASTIdTy = CGM.getContext().getCanonicalType(UnqualIdTy);
732    IdTy = cast<llvm::PointerType>(CGM.getTypes().ConvertType(ASTIdTy));
733  } else {
734    IdTy = PtrToInt8Ty;
735  }
736  PtrToIdTy = llvm::PointerType::getUnqual(IdTy);
737
738  ObjCSuperTy = llvm::StructType::get(IdTy, IdTy, NULL);
739  PtrToObjCSuperTy = llvm::PointerType::getUnqual(ObjCSuperTy);
740
741  llvm::Type *VoidTy = llvm::Type::getVoidTy(VMContext);
742
743  // void objc_exception_throw(id);
744  ExceptionThrowFn.init(&CGM, "objc_exception_throw", VoidTy, IdTy, NULL);
745  ExceptionReThrowFn.init(&CGM, "objc_exception_throw", VoidTy, IdTy, NULL);
746  // int objc_sync_enter(id);
747  SyncEnterFn.init(&CGM, "objc_sync_enter", IntTy, IdTy, NULL);
748  // int objc_sync_exit(id);
749  SyncExitFn.init(&CGM, "objc_sync_exit", IntTy, IdTy, NULL);
750
751  // void objc_enumerationMutation (id)
752  EnumerationMutationFn.init(&CGM, "objc_enumerationMutation", VoidTy,
753      IdTy, NULL);
754
755  // id objc_getProperty(id, SEL, ptrdiff_t, BOOL)
756  GetPropertyFn.init(&CGM, "objc_getProperty", IdTy, IdTy, SelectorTy,
757      PtrDiffTy, BoolTy, NULL);
758  // void objc_setProperty(id, SEL, ptrdiff_t, id, BOOL, BOOL)
759  SetPropertyFn.init(&CGM, "objc_setProperty", VoidTy, IdTy, SelectorTy,
760      PtrDiffTy, IdTy, BoolTy, BoolTy, NULL);
761  // void objc_setPropertyStruct(void*, void*, ptrdiff_t, BOOL, BOOL)
762  GetStructPropertyFn.init(&CGM, "objc_getPropertyStruct", VoidTy, PtrTy, PtrTy,
763      PtrDiffTy, BoolTy, BoolTy, NULL);
764  // void objc_setPropertyStruct(void*, void*, ptrdiff_t, BOOL, BOOL)
765  SetStructPropertyFn.init(&CGM, "objc_setPropertyStruct", VoidTy, PtrTy, PtrTy,
766      PtrDiffTy, BoolTy, BoolTy, NULL);
767
768  // IMP type
769  llvm::Type *IMPArgs[] = { IdTy, SelectorTy };
770  IMPTy = llvm::PointerType::getUnqual(llvm::FunctionType::get(IdTy, IMPArgs,
771              true));
772
773  const LangOptions &Opts = CGM.getLangOptions();
774  if ((Opts.getGC() != LangOptions::NonGC) || Opts.ObjCAutoRefCount)
775    RuntimeVersion = 10;
776
777  // Don't bother initialising the GC stuff unless we're compiling in GC mode
778  if (Opts.getGC() != LangOptions::NonGC) {
779    // This is a bit of an hack.  We should sort this out by having a proper
780    // CGObjCGNUstep subclass for GC, but we may want to really support the old
781    // ABI and GC added in ObjectiveC2.framework, so we fudge it a bit for now
782    // Get selectors needed in GC mode
783    RetainSel = GetNullarySelector("retain", CGM.getContext());
784    ReleaseSel = GetNullarySelector("release", CGM.getContext());
785    AutoreleaseSel = GetNullarySelector("autorelease", CGM.getContext());
786
787    // Get functions needed in GC mode
788
789    // id objc_assign_ivar(id, id, ptrdiff_t);
790    IvarAssignFn.init(&CGM, "objc_assign_ivar", IdTy, IdTy, IdTy, PtrDiffTy,
791        NULL);
792    // id objc_assign_strongCast (id, id*)
793    StrongCastAssignFn.init(&CGM, "objc_assign_strongCast", IdTy, IdTy,
794        PtrToIdTy, NULL);
795    // id objc_assign_global(id, id*);
796    GlobalAssignFn.init(&CGM, "objc_assign_global", IdTy, IdTy, PtrToIdTy,
797        NULL);
798    // id objc_assign_weak(id, id*);
799    WeakAssignFn.init(&CGM, "objc_assign_weak", IdTy, IdTy, PtrToIdTy, NULL);
800    // id objc_read_weak(id*);
801    WeakReadFn.init(&CGM, "objc_read_weak", IdTy, PtrToIdTy, NULL);
802    // void *objc_memmove_collectable(void*, void *, size_t);
803    MemMoveFn.init(&CGM, "objc_memmove_collectable", PtrTy, PtrTy, PtrTy,
804        SizeTy, NULL);
805  }
806}
807
808llvm::Value *CGObjCGNU::GetClassNamed(CGBuilderTy &Builder,
809                                      const std::string &Name,
810                                      bool isWeak) {
811  llvm::Value *ClassName = CGM.GetAddrOfConstantCString(Name);
812  // With the incompatible ABI, this will need to be replaced with a direct
813  // reference to the class symbol.  For the compatible nonfragile ABI we are
814  // still performing this lookup at run time but emitting the symbol for the
815  // class externally so that we can make the switch later.
816  //
817  // Libobjc2 contains an LLVM pass that replaces calls to objc_lookup_class
818  // with memoized versions or with static references if it's safe to do so.
819  if (!isWeak)
820    EmitClassRef(Name);
821  ClassName = Builder.CreateStructGEP(ClassName, 0);
822
823  llvm::Constant *ClassLookupFn =
824    CGM.CreateRuntimeFunction(llvm::FunctionType::get(IdTy, PtrToInt8Ty, true),
825                              "objc_lookup_class");
826  return Builder.CreateCall(ClassLookupFn, ClassName);
827}
828
829// This has to perform the lookup every time, since posing and related
830// techniques can modify the name -> class mapping.
831llvm::Value *CGObjCGNU::GetClass(CGBuilderTy &Builder,
832                                 const ObjCInterfaceDecl *OID) {
833  return GetClassNamed(Builder, OID->getNameAsString(), OID->isWeakImported());
834}
835llvm::Value *CGObjCGNU::EmitNSAutoreleasePoolClassRef(CGBuilderTy &Builder) {
836  return GetClassNamed(Builder, "NSAutoreleasePool", false);
837}
838
839llvm::Value *CGObjCGNU::GetSelector(CGBuilderTy &Builder, Selector Sel,
840    const std::string &TypeEncoding, bool lval) {
841
842  SmallVector<TypedSelector, 2> &Types = SelectorTable[Sel];
843  llvm::GlobalAlias *SelValue = 0;
844
845
846  for (SmallVectorImpl<TypedSelector>::iterator i = Types.begin(),
847      e = Types.end() ; i!=e ; i++) {
848    if (i->first == TypeEncoding) {
849      SelValue = i->second;
850      break;
851    }
852  }
853  if (0 == SelValue) {
854    SelValue = new llvm::GlobalAlias(SelectorTy,
855                                     llvm::GlobalValue::PrivateLinkage,
856                                     ".objc_selector_"+Sel.getAsString(), NULL,
857                                     &TheModule);
858    Types.push_back(TypedSelector(TypeEncoding, SelValue));
859  }
860
861  if (lval) {
862    llvm::Value *tmp = Builder.CreateAlloca(SelValue->getType());
863    Builder.CreateStore(SelValue, tmp);
864    return tmp;
865  }
866  return SelValue;
867}
868
869llvm::Value *CGObjCGNU::GetSelector(CGBuilderTy &Builder, Selector Sel,
870                                    bool lval) {
871  return GetSelector(Builder, Sel, std::string(), lval);
872}
873
874llvm::Value *CGObjCGNU::GetSelector(CGBuilderTy &Builder, const ObjCMethodDecl
875    *Method) {
876  std::string SelTypes;
877  CGM.getContext().getObjCEncodingForMethodDecl(Method, SelTypes);
878  return GetSelector(Builder, Method->getSelector(), SelTypes, false);
879}
880
881llvm::Constant *CGObjCGNU::GetEHType(QualType T) {
882  if (!CGM.getLangOptions().CPlusPlus) {
883      if (T->isObjCIdType()
884          || T->isObjCQualifiedIdType()) {
885        // With the old ABI, there was only one kind of catchall, which broke
886        // foreign exceptions.  With the new ABI, we use __objc_id_typeinfo as
887        // a pointer indicating object catchalls, and NULL to indicate real
888        // catchalls
889        if (CGM.getLangOptions().ObjCNonFragileABI) {
890          return MakeConstantString("@id");
891        } else {
892          return 0;
893        }
894      }
895
896      // All other types should be Objective-C interface pointer types.
897      const ObjCObjectPointerType *OPT =
898        T->getAs<ObjCObjectPointerType>();
899      assert(OPT && "Invalid @catch type.");
900      const ObjCInterfaceDecl *IDecl =
901        OPT->getObjectType()->getInterface();
902      assert(IDecl && "Invalid @catch type.");
903      return MakeConstantString(IDecl->getIdentifier()->getName());
904  }
905  // For Objective-C++, we want to provide the ability to catch both C++ and
906  // Objective-C objects in the same function.
907
908  // There's a particular fixed type info for 'id'.
909  if (T->isObjCIdType() ||
910      T->isObjCQualifiedIdType()) {
911    llvm::Constant *IDEHType =
912      CGM.getModule().getGlobalVariable("__objc_id_type_info");
913    if (!IDEHType)
914      IDEHType =
915        new llvm::GlobalVariable(CGM.getModule(), PtrToInt8Ty,
916                                 false,
917                                 llvm::GlobalValue::ExternalLinkage,
918                                 0, "__objc_id_type_info");
919    return llvm::ConstantExpr::getBitCast(IDEHType, PtrToInt8Ty);
920  }
921
922  const ObjCObjectPointerType *PT =
923    T->getAs<ObjCObjectPointerType>();
924  assert(PT && "Invalid @catch type.");
925  const ObjCInterfaceType *IT = PT->getInterfaceType();
926  assert(IT && "Invalid @catch type.");
927  std::string className = IT->getDecl()->getIdentifier()->getName();
928
929  std::string typeinfoName = "__objc_eh_typeinfo_" + className;
930
931  // Return the existing typeinfo if it exists
932  llvm::Constant *typeinfo = TheModule.getGlobalVariable(typeinfoName);
933  if (typeinfo) return typeinfo;
934
935  // Otherwise create it.
936
937  // vtable for gnustep::libobjc::__objc_class_type_info
938  // It's quite ugly hard-coding this.  Ideally we'd generate it using the host
939  // platform's name mangling.
940  const char *vtableName = "_ZTVN7gnustep7libobjc22__objc_class_type_infoE";
941  llvm::Constant *Vtable = TheModule.getGlobalVariable(vtableName);
942  if (!Vtable) {
943    Vtable = new llvm::GlobalVariable(TheModule, PtrToInt8Ty, true,
944            llvm::GlobalValue::ExternalLinkage, 0, vtableName);
945  }
946  llvm::Constant *Two = llvm::ConstantInt::get(IntTy, 2);
947  Vtable = llvm::ConstantExpr::getGetElementPtr(Vtable, Two);
948  Vtable = llvm::ConstantExpr::getBitCast(Vtable, PtrToInt8Ty);
949
950  llvm::Constant *typeName =
951    ExportUniqueString(className, "__objc_eh_typename_");
952
953  std::vector<llvm::Constant*> fields;
954  fields.push_back(Vtable);
955  fields.push_back(typeName);
956  llvm::Constant *TI =
957      MakeGlobal(llvm::StructType::get(PtrToInt8Ty, PtrToInt8Ty,
958              NULL), fields, "__objc_eh_typeinfo_" + className,
959          llvm::GlobalValue::LinkOnceODRLinkage);
960  return llvm::ConstantExpr::getBitCast(TI, PtrToInt8Ty);
961}
962
963/// Generate an NSConstantString object.
964llvm::Constant *CGObjCGNU::GenerateConstantString(const StringLiteral *SL) {
965
966  std::string Str = SL->getString().str();
967
968  // Look for an existing one
969  llvm::StringMap<llvm::Constant*>::iterator old = ObjCStrings.find(Str);
970  if (old != ObjCStrings.end())
971    return old->getValue();
972
973  std::vector<llvm::Constant*> Ivars;
974  Ivars.push_back(NULLPtr);
975  Ivars.push_back(MakeConstantString(Str));
976  Ivars.push_back(llvm::ConstantInt::get(IntTy, Str.size()));
977  llvm::Constant *ObjCStr = MakeGlobal(
978    llvm::StructType::get(PtrToInt8Ty, PtrToInt8Ty, IntTy, NULL),
979    Ivars, ".objc_str");
980  ObjCStr = llvm::ConstantExpr::getBitCast(ObjCStr, PtrToInt8Ty);
981  ObjCStrings[Str] = ObjCStr;
982  ConstantStrings.push_back(ObjCStr);
983  return ObjCStr;
984}
985
986///Generates a message send where the super is the receiver.  This is a message
987///send to self with special delivery semantics indicating which class's method
988///should be called.
989RValue
990CGObjCGNU::GenerateMessageSendSuper(CodeGenFunction &CGF,
991                                    ReturnValueSlot Return,
992                                    QualType ResultType,
993                                    Selector Sel,
994                                    const ObjCInterfaceDecl *Class,
995                                    bool isCategoryImpl,
996                                    llvm::Value *Receiver,
997                                    bool IsClassMessage,
998                                    const CallArgList &CallArgs,
999                                    const ObjCMethodDecl *Method) {
1000  CGBuilderTy &Builder = CGF.Builder;
1001  if (CGM.getLangOptions().getGC() == LangOptions::GCOnly) {
1002    if (Sel == RetainSel || Sel == AutoreleaseSel) {
1003      return RValue::get(EnforceType(Builder, Receiver,
1004                  CGM.getTypes().ConvertType(ResultType)));
1005    }
1006    if (Sel == ReleaseSel) {
1007      return RValue::get(0);
1008    }
1009  }
1010
1011  llvm::Value *cmd = GetSelector(Builder, Sel);
1012
1013
1014  CallArgList ActualArgs;
1015
1016  ActualArgs.add(RValue::get(EnforceType(Builder, Receiver, IdTy)), ASTIdTy);
1017  ActualArgs.add(RValue::get(cmd), CGF.getContext().getObjCSelType());
1018  ActualArgs.addFrom(CallArgs);
1019
1020  CodeGenTypes &Types = CGM.getTypes();
1021  const CGFunctionInfo &FnInfo = Types.getFunctionInfo(ResultType, ActualArgs,
1022                                                       FunctionType::ExtInfo());
1023
1024  llvm::Value *ReceiverClass = 0;
1025  if (isCategoryImpl) {
1026    llvm::Constant *classLookupFunction = 0;
1027    if (IsClassMessage)  {
1028      classLookupFunction = CGM.CreateRuntimeFunction(llvm::FunctionType::get(
1029            IdTy, PtrTy, true), "objc_get_meta_class");
1030    } else {
1031      classLookupFunction = CGM.CreateRuntimeFunction(llvm::FunctionType::get(
1032            IdTy, PtrTy, true), "objc_get_class");
1033    }
1034    ReceiverClass = Builder.CreateCall(classLookupFunction,
1035        MakeConstantString(Class->getNameAsString()));
1036  } else {
1037    // Set up global aliases for the metaclass or class pointer if they do not
1038    // already exist.  These will are forward-references which will be set to
1039    // pointers to the class and metaclass structure created for the runtime
1040    // load function.  To send a message to super, we look up the value of the
1041    // super_class pointer from either the class or metaclass structure.
1042    if (IsClassMessage)  {
1043      if (!MetaClassPtrAlias) {
1044        MetaClassPtrAlias = new llvm::GlobalAlias(IdTy,
1045            llvm::GlobalValue::InternalLinkage, ".objc_metaclass_ref" +
1046            Class->getNameAsString(), NULL, &TheModule);
1047      }
1048      ReceiverClass = MetaClassPtrAlias;
1049    } else {
1050      if (!ClassPtrAlias) {
1051        ClassPtrAlias = new llvm::GlobalAlias(IdTy,
1052            llvm::GlobalValue::InternalLinkage, ".objc_class_ref" +
1053            Class->getNameAsString(), NULL, &TheModule);
1054      }
1055      ReceiverClass = ClassPtrAlias;
1056    }
1057  }
1058  // Cast the pointer to a simplified version of the class structure
1059  ReceiverClass = Builder.CreateBitCast(ReceiverClass,
1060      llvm::PointerType::getUnqual(
1061        llvm::StructType::get(IdTy, IdTy, NULL)));
1062  // Get the superclass pointer
1063  ReceiverClass = Builder.CreateStructGEP(ReceiverClass, 1);
1064  // Load the superclass pointer
1065  ReceiverClass = Builder.CreateLoad(ReceiverClass);
1066  // Construct the structure used to look up the IMP
1067  llvm::StructType *ObjCSuperTy = llvm::StructType::get(
1068      Receiver->getType(), IdTy, NULL);
1069  llvm::Value *ObjCSuper = Builder.CreateAlloca(ObjCSuperTy);
1070
1071  Builder.CreateStore(Receiver, Builder.CreateStructGEP(ObjCSuper, 0));
1072  Builder.CreateStore(ReceiverClass, Builder.CreateStructGEP(ObjCSuper, 1));
1073
1074  ObjCSuper = EnforceType(Builder, ObjCSuper, PtrToObjCSuperTy);
1075  llvm::FunctionType *impType =
1076    Types.GetFunctionType(FnInfo, Method ? Method->isVariadic() : false);
1077
1078  // Get the IMP
1079  llvm::Value *imp = LookupIMPSuper(CGF, ObjCSuper, cmd);
1080  imp = EnforceType(Builder, imp, llvm::PointerType::getUnqual(impType));
1081
1082  llvm::Value *impMD[] = {
1083      llvm::MDString::get(VMContext, Sel.getAsString()),
1084      llvm::MDString::get(VMContext, Class->getSuperClass()->getNameAsString()),
1085      llvm::ConstantInt::get(llvm::Type::getInt1Ty(VMContext), IsClassMessage)
1086   };
1087  llvm::MDNode *node = llvm::MDNode::get(VMContext, impMD);
1088
1089  llvm::Instruction *call;
1090  RValue msgRet = CGF.EmitCall(FnInfo, imp, Return, ActualArgs,
1091      0, &call);
1092  call->setMetadata(msgSendMDKind, node);
1093  return msgRet;
1094}
1095
1096/// Generate code for a message send expression.
1097RValue
1098CGObjCGNU::GenerateMessageSend(CodeGenFunction &CGF,
1099                               ReturnValueSlot Return,
1100                               QualType ResultType,
1101                               Selector Sel,
1102                               llvm::Value *Receiver,
1103                               const CallArgList &CallArgs,
1104                               const ObjCInterfaceDecl *Class,
1105                               const ObjCMethodDecl *Method) {
1106  CGBuilderTy &Builder = CGF.Builder;
1107
1108  // Strip out message sends to retain / release in GC mode
1109  if (CGM.getLangOptions().getGC() == LangOptions::GCOnly) {
1110    if (Sel == RetainSel || Sel == AutoreleaseSel) {
1111      return RValue::get(EnforceType(Builder, Receiver,
1112                  CGM.getTypes().ConvertType(ResultType)));
1113    }
1114    if (Sel == ReleaseSel) {
1115      return RValue::get(0);
1116    }
1117  }
1118
1119  // If the return type is something that goes in an integer register, the
1120  // runtime will handle 0 returns.  For other cases, we fill in the 0 value
1121  // ourselves.
1122  //
1123  // The language spec says the result of this kind of message send is
1124  // undefined, but lots of people seem to have forgotten to read that
1125  // paragraph and insist on sending messages to nil that have structure
1126  // returns.  With GCC, this generates a random return value (whatever happens
1127  // to be on the stack / in those registers at the time) on most platforms,
1128  // and generates an illegal instruction trap on SPARC.  With LLVM it corrupts
1129  // the stack.
1130  bool isPointerSizedReturn = (ResultType->isAnyPointerType() ||
1131      ResultType->isIntegralOrEnumerationType() || ResultType->isVoidType());
1132
1133  llvm::BasicBlock *startBB = 0;
1134  llvm::BasicBlock *messageBB = 0;
1135  llvm::BasicBlock *continueBB = 0;
1136
1137  if (!isPointerSizedReturn) {
1138    startBB = Builder.GetInsertBlock();
1139    messageBB = CGF.createBasicBlock("msgSend");
1140    continueBB = CGF.createBasicBlock("continue");
1141
1142    llvm::Value *isNil = Builder.CreateICmpEQ(Receiver,
1143            llvm::Constant::getNullValue(Receiver->getType()));
1144    Builder.CreateCondBr(isNil, continueBB, messageBB);
1145    CGF.EmitBlock(messageBB);
1146  }
1147
1148  IdTy = cast<llvm::PointerType>(CGM.getTypes().ConvertType(ASTIdTy));
1149  llvm::Value *cmd;
1150  if (Method)
1151    cmd = GetSelector(Builder, Method);
1152  else
1153    cmd = GetSelector(Builder, Sel);
1154  cmd = EnforceType(Builder, cmd, SelectorTy);
1155  Receiver = EnforceType(Builder, Receiver, IdTy);
1156
1157  llvm::Value *impMD[] = {
1158        llvm::MDString::get(VMContext, Sel.getAsString()),
1159        llvm::MDString::get(VMContext, Class ? Class->getNameAsString() :""),
1160        llvm::ConstantInt::get(llvm::Type::getInt1Ty(VMContext), Class!=0)
1161   };
1162  llvm::MDNode *node = llvm::MDNode::get(VMContext, impMD);
1163
1164  CodeGenTypes &Types = CGM.getTypes();
1165  CallArgList ActualArgs;
1166  ActualArgs.add(RValue::get(Receiver), ASTIdTy);
1167  ActualArgs.add(RValue::get(cmd), CGF.getContext().getObjCSelType());
1168  ActualArgs.addFrom(CallArgs);
1169  const CGFunctionInfo &FnInfo = Types.getFunctionInfo(ResultType, ActualArgs,
1170                                                       FunctionType::ExtInfo());
1171  // Get the IMP to call
1172  llvm::Value *imp;
1173
1174  // If we have non-legacy dispatch specified, we try using the objc_msgSend()
1175  // functions.  These are not supported on all platforms (or all runtimes on a
1176  // given platform), so we
1177  switch (CGM.getCodeGenOpts().getObjCDispatchMethod()) {
1178    default:
1179      llvm_unreachable("Invalid dispatch method!");
1180    case CodeGenOptions::Legacy:
1181      imp = LookupIMP(CGF, Receiver, cmd, node);
1182      break;
1183    case CodeGenOptions::Mixed:
1184    case CodeGenOptions::NonLegacy:
1185      if (CGM.ReturnTypeUsesFPRet(ResultType)) {
1186        imp = CGM.CreateRuntimeFunction(llvm::FunctionType::get(IdTy, IdTy, true),
1187                                  "objc_msgSend_fpret");
1188      } else if (CGM.ReturnTypeUsesSRet(FnInfo)) {
1189        // The actual types here don't matter - we're going to bitcast the
1190        // function anyway
1191        imp = CGM.CreateRuntimeFunction(llvm::FunctionType::get(IdTy, IdTy, true),
1192                                  "objc_msgSend_stret");
1193      } else {
1194        imp = CGM.CreateRuntimeFunction(llvm::FunctionType::get(IdTy, IdTy, true),
1195                                  "objc_msgSend");
1196      }
1197  }
1198
1199  // Reset the receiver in case the lookup modified it
1200  ActualArgs[0] = CallArg(RValue::get(Receiver), ASTIdTy, false);
1201
1202  llvm::FunctionType *impType =
1203    Types.GetFunctionType(FnInfo, Method ? Method->isVariadic() : false);
1204  imp = EnforceType(Builder, imp, llvm::PointerType::getUnqual(impType));
1205
1206  llvm::Instruction *call;
1207  RValue msgRet = CGF.EmitCall(FnInfo, imp, Return, ActualArgs,
1208      0, &call);
1209  call->setMetadata(msgSendMDKind, node);
1210
1211
1212  if (!isPointerSizedReturn) {
1213    messageBB = CGF.Builder.GetInsertBlock();
1214    CGF.Builder.CreateBr(continueBB);
1215    CGF.EmitBlock(continueBB);
1216    if (msgRet.isScalar()) {
1217      llvm::Value *v = msgRet.getScalarVal();
1218      llvm::PHINode *phi = Builder.CreatePHI(v->getType(), 2);
1219      phi->addIncoming(v, messageBB);
1220      phi->addIncoming(llvm::Constant::getNullValue(v->getType()), startBB);
1221      msgRet = RValue::get(phi);
1222    } else if (msgRet.isAggregate()) {
1223      llvm::Value *v = msgRet.getAggregateAddr();
1224      llvm::PHINode *phi = Builder.CreatePHI(v->getType(), 2);
1225      llvm::PointerType *RetTy = cast<llvm::PointerType>(v->getType());
1226      llvm::AllocaInst *NullVal =
1227          CGF.CreateTempAlloca(RetTy->getElementType(), "null");
1228      CGF.InitTempAlloca(NullVal,
1229          llvm::Constant::getNullValue(RetTy->getElementType()));
1230      phi->addIncoming(v, messageBB);
1231      phi->addIncoming(NullVal, startBB);
1232      msgRet = RValue::getAggregate(phi);
1233    } else /* isComplex() */ {
1234      std::pair<llvm::Value*,llvm::Value*> v = msgRet.getComplexVal();
1235      llvm::PHINode *phi = Builder.CreatePHI(v.first->getType(), 2);
1236      phi->addIncoming(v.first, messageBB);
1237      phi->addIncoming(llvm::Constant::getNullValue(v.first->getType()),
1238          startBB);
1239      llvm::PHINode *phi2 = Builder.CreatePHI(v.second->getType(), 2);
1240      phi2->addIncoming(v.second, messageBB);
1241      phi2->addIncoming(llvm::Constant::getNullValue(v.second->getType()),
1242          startBB);
1243      msgRet = RValue::getComplex(phi, phi2);
1244    }
1245  }
1246  return msgRet;
1247}
1248
1249/// Generates a MethodList.  Used in construction of a objc_class and
1250/// objc_category structures.
1251llvm::Constant *CGObjCGNU::GenerateMethodList(const StringRef &ClassName,
1252                                              const StringRef &CategoryName,
1253    const SmallVectorImpl<Selector> &MethodSels,
1254    const SmallVectorImpl<llvm::Constant *> &MethodTypes,
1255    bool isClassMethodList) {
1256  if (MethodSels.empty())
1257    return NULLPtr;
1258  // Get the method structure type.
1259  llvm::StructType *ObjCMethodTy = llvm::StructType::get(
1260    PtrToInt8Ty, // Really a selector, but the runtime creates it us.
1261    PtrToInt8Ty, // Method types
1262    IMPTy, //Method pointer
1263    NULL);
1264  std::vector<llvm::Constant*> Methods;
1265  std::vector<llvm::Constant*> Elements;
1266  for (unsigned int i = 0, e = MethodTypes.size(); i < e; ++i) {
1267    Elements.clear();
1268    llvm::Constant *Method =
1269      TheModule.getFunction(SymbolNameForMethod(ClassName, CategoryName,
1270                                                MethodSels[i],
1271                                                isClassMethodList));
1272    assert(Method && "Can't generate metadata for method that doesn't exist");
1273    llvm::Constant *C = MakeConstantString(MethodSels[i].getAsString());
1274    Elements.push_back(C);
1275    Elements.push_back(MethodTypes[i]);
1276    Method = llvm::ConstantExpr::getBitCast(Method,
1277        IMPTy);
1278    Elements.push_back(Method);
1279    Methods.push_back(llvm::ConstantStruct::get(ObjCMethodTy, Elements));
1280  }
1281
1282  // Array of method structures
1283  llvm::ArrayType *ObjCMethodArrayTy = llvm::ArrayType::get(ObjCMethodTy,
1284                                                            Methods.size());
1285  llvm::Constant *MethodArray = llvm::ConstantArray::get(ObjCMethodArrayTy,
1286                                                         Methods);
1287
1288  // Structure containing list pointer, array and array count
1289  llvm::StructType *ObjCMethodListTy = llvm::StructType::create(VMContext);
1290  llvm::Type *NextPtrTy = llvm::PointerType::getUnqual(ObjCMethodListTy);
1291  ObjCMethodListTy->setBody(
1292      NextPtrTy,
1293      IntTy,
1294      ObjCMethodArrayTy,
1295      NULL);
1296
1297  Methods.clear();
1298  Methods.push_back(llvm::ConstantPointerNull::get(
1299        llvm::PointerType::getUnqual(ObjCMethodListTy)));
1300  Methods.push_back(llvm::ConstantInt::get(Int32Ty, MethodTypes.size()));
1301  Methods.push_back(MethodArray);
1302
1303  // Create an instance of the structure
1304  return MakeGlobal(ObjCMethodListTy, Methods, ".objc_method_list");
1305}
1306
1307/// Generates an IvarList.  Used in construction of a objc_class.
1308llvm::Constant *CGObjCGNU::GenerateIvarList(
1309    const SmallVectorImpl<llvm::Constant *>  &IvarNames,
1310    const SmallVectorImpl<llvm::Constant *>  &IvarTypes,
1311    const SmallVectorImpl<llvm::Constant *>  &IvarOffsets) {
1312  if (IvarNames.size() == 0)
1313    return NULLPtr;
1314  // Get the method structure type.
1315  llvm::StructType *ObjCIvarTy = llvm::StructType::get(
1316    PtrToInt8Ty,
1317    PtrToInt8Ty,
1318    IntTy,
1319    NULL);
1320  std::vector<llvm::Constant*> Ivars;
1321  std::vector<llvm::Constant*> Elements;
1322  for (unsigned int i = 0, e = IvarNames.size() ; i < e ; i++) {
1323    Elements.clear();
1324    Elements.push_back(IvarNames[i]);
1325    Elements.push_back(IvarTypes[i]);
1326    Elements.push_back(IvarOffsets[i]);
1327    Ivars.push_back(llvm::ConstantStruct::get(ObjCIvarTy, Elements));
1328  }
1329
1330  // Array of method structures
1331  llvm::ArrayType *ObjCIvarArrayTy = llvm::ArrayType::get(ObjCIvarTy,
1332      IvarNames.size());
1333
1334
1335  Elements.clear();
1336  Elements.push_back(llvm::ConstantInt::get(IntTy, (int)IvarNames.size()));
1337  Elements.push_back(llvm::ConstantArray::get(ObjCIvarArrayTy, Ivars));
1338  // Structure containing array and array count
1339  llvm::StructType *ObjCIvarListTy = llvm::StructType::get(IntTy,
1340    ObjCIvarArrayTy,
1341    NULL);
1342
1343  // Create an instance of the structure
1344  return MakeGlobal(ObjCIvarListTy, Elements, ".objc_ivar_list");
1345}
1346
1347/// Generate a class structure
1348llvm::Constant *CGObjCGNU::GenerateClassStructure(
1349    llvm::Constant *MetaClass,
1350    llvm::Constant *SuperClass,
1351    unsigned info,
1352    const char *Name,
1353    llvm::Constant *Version,
1354    llvm::Constant *InstanceSize,
1355    llvm::Constant *IVars,
1356    llvm::Constant *Methods,
1357    llvm::Constant *Protocols,
1358    llvm::Constant *IvarOffsets,
1359    llvm::Constant *Properties,
1360    llvm::Constant *StrongIvarBitmap,
1361    llvm::Constant *WeakIvarBitmap,
1362    bool isMeta) {
1363  // Set up the class structure
1364  // Note:  Several of these are char*s when they should be ids.  This is
1365  // because the runtime performs this translation on load.
1366  //
1367  // Fields marked New ABI are part of the GNUstep runtime.  We emit them
1368  // anyway; the classes will still work with the GNU runtime, they will just
1369  // be ignored.
1370  llvm::StructType *ClassTy = llvm::StructType::get(
1371      PtrToInt8Ty,        // class_pointer
1372      PtrToInt8Ty,        // super_class
1373      PtrToInt8Ty,        // name
1374      LongTy,             // version
1375      LongTy,             // info
1376      LongTy,             // instance_size
1377      IVars->getType(),   // ivars
1378      Methods->getType(), // methods
1379      // These are all filled in by the runtime, so we pretend
1380      PtrTy,              // dtable
1381      PtrTy,              // subclass_list
1382      PtrTy,              // sibling_class
1383      PtrTy,              // protocols
1384      PtrTy,              // gc_object_type
1385      // New ABI:
1386      LongTy,                 // abi_version
1387      IvarOffsets->getType(), // ivar_offsets
1388      Properties->getType(),  // properties
1389      IntPtrTy,               // strong_pointers
1390      IntPtrTy,               // weak_pointers
1391      NULL);
1392  llvm::Constant *Zero = llvm::ConstantInt::get(LongTy, 0);
1393  // Fill in the structure
1394  std::vector<llvm::Constant*> Elements;
1395  Elements.push_back(llvm::ConstantExpr::getBitCast(MetaClass, PtrToInt8Ty));
1396  Elements.push_back(SuperClass);
1397  Elements.push_back(MakeConstantString(Name, ".class_name"));
1398  Elements.push_back(Zero);
1399  Elements.push_back(llvm::ConstantInt::get(LongTy, info));
1400  if (isMeta) {
1401    llvm::TargetData td(&TheModule);
1402    Elements.push_back(
1403        llvm::ConstantInt::get(LongTy,
1404                               td.getTypeSizeInBits(ClassTy) /
1405                                 CGM.getContext().getCharWidth()));
1406  } else
1407    Elements.push_back(InstanceSize);
1408  Elements.push_back(IVars);
1409  Elements.push_back(Methods);
1410  Elements.push_back(NULLPtr);
1411  Elements.push_back(NULLPtr);
1412  Elements.push_back(NULLPtr);
1413  Elements.push_back(llvm::ConstantExpr::getBitCast(Protocols, PtrTy));
1414  Elements.push_back(NULLPtr);
1415  Elements.push_back(llvm::ConstantInt::get(LongTy, 1));
1416  Elements.push_back(IvarOffsets);
1417  Elements.push_back(Properties);
1418  Elements.push_back(StrongIvarBitmap);
1419  Elements.push_back(WeakIvarBitmap);
1420  // Create an instance of the structure
1421  // This is now an externally visible symbol, so that we can speed up class
1422  // messages in the next ABI.
1423  return MakeGlobal(ClassTy, Elements, (isMeta ? "_OBJC_METACLASS_":
1424      "_OBJC_CLASS_") + std::string(Name), llvm::GlobalValue::ExternalLinkage);
1425}
1426
1427llvm::Constant *CGObjCGNU::GenerateProtocolMethodList(
1428    const SmallVectorImpl<llvm::Constant *>  &MethodNames,
1429    const SmallVectorImpl<llvm::Constant *>  &MethodTypes) {
1430  // Get the method structure type.
1431  llvm::StructType *ObjCMethodDescTy = llvm::StructType::get(
1432    PtrToInt8Ty, // Really a selector, but the runtime does the casting for us.
1433    PtrToInt8Ty,
1434    NULL);
1435  std::vector<llvm::Constant*> Methods;
1436  std::vector<llvm::Constant*> Elements;
1437  for (unsigned int i = 0, e = MethodTypes.size() ; i < e ; i++) {
1438    Elements.clear();
1439    Elements.push_back(MethodNames[i]);
1440    Elements.push_back(MethodTypes[i]);
1441    Methods.push_back(llvm::ConstantStruct::get(ObjCMethodDescTy, Elements));
1442  }
1443  llvm::ArrayType *ObjCMethodArrayTy = llvm::ArrayType::get(ObjCMethodDescTy,
1444      MethodNames.size());
1445  llvm::Constant *Array = llvm::ConstantArray::get(ObjCMethodArrayTy,
1446                                                   Methods);
1447  llvm::StructType *ObjCMethodDescListTy = llvm::StructType::get(
1448      IntTy, ObjCMethodArrayTy, NULL);
1449  Methods.clear();
1450  Methods.push_back(llvm::ConstantInt::get(IntTy, MethodNames.size()));
1451  Methods.push_back(Array);
1452  return MakeGlobal(ObjCMethodDescListTy, Methods, ".objc_method_list");
1453}
1454
1455// Create the protocol list structure used in classes, categories and so on
1456llvm::Constant *CGObjCGNU::GenerateProtocolList(
1457    const SmallVectorImpl<std::string> &Protocols) {
1458  llvm::ArrayType *ProtocolArrayTy = llvm::ArrayType::get(PtrToInt8Ty,
1459      Protocols.size());
1460  llvm::StructType *ProtocolListTy = llvm::StructType::get(
1461      PtrTy, //Should be a recurisve pointer, but it's always NULL here.
1462      SizeTy,
1463      ProtocolArrayTy,
1464      NULL);
1465  std::vector<llvm::Constant*> Elements;
1466  for (const std::string *iter = Protocols.begin(), *endIter = Protocols.end();
1467      iter != endIter ; iter++) {
1468    llvm::Constant *protocol = 0;
1469    llvm::StringMap<llvm::Constant*>::iterator value =
1470      ExistingProtocols.find(*iter);
1471    if (value == ExistingProtocols.end()) {
1472      protocol = GenerateEmptyProtocol(*iter);
1473    } else {
1474      protocol = value->getValue();
1475    }
1476    llvm::Constant *Ptr = llvm::ConstantExpr::getBitCast(protocol,
1477                                                           PtrToInt8Ty);
1478    Elements.push_back(Ptr);
1479  }
1480  llvm::Constant * ProtocolArray = llvm::ConstantArray::get(ProtocolArrayTy,
1481      Elements);
1482  Elements.clear();
1483  Elements.push_back(NULLPtr);
1484  Elements.push_back(llvm::ConstantInt::get(LongTy, Protocols.size()));
1485  Elements.push_back(ProtocolArray);
1486  return MakeGlobal(ProtocolListTy, Elements, ".objc_protocol_list");
1487}
1488
1489llvm::Value *CGObjCGNU::GenerateProtocolRef(CGBuilderTy &Builder,
1490                                            const ObjCProtocolDecl *PD) {
1491  llvm::Value *protocol = ExistingProtocols[PD->getNameAsString()];
1492  llvm::Type *T =
1493    CGM.getTypes().ConvertType(CGM.getContext().getObjCProtoType());
1494  return Builder.CreateBitCast(protocol, llvm::PointerType::getUnqual(T));
1495}
1496
1497llvm::Constant *CGObjCGNU::GenerateEmptyProtocol(
1498  const std::string &ProtocolName) {
1499  SmallVector<std::string, 0> EmptyStringVector;
1500  SmallVector<llvm::Constant*, 0> EmptyConstantVector;
1501
1502  llvm::Constant *ProtocolList = GenerateProtocolList(EmptyStringVector);
1503  llvm::Constant *MethodList =
1504    GenerateProtocolMethodList(EmptyConstantVector, EmptyConstantVector);
1505  // Protocols are objects containing lists of the methods implemented and
1506  // protocols adopted.
1507  llvm::StructType *ProtocolTy = llvm::StructType::get(IdTy,
1508      PtrToInt8Ty,
1509      ProtocolList->getType(),
1510      MethodList->getType(),
1511      MethodList->getType(),
1512      MethodList->getType(),
1513      MethodList->getType(),
1514      NULL);
1515  std::vector<llvm::Constant*> Elements;
1516  // The isa pointer must be set to a magic number so the runtime knows it's
1517  // the correct layout.
1518  Elements.push_back(llvm::ConstantExpr::getIntToPtr(
1519        llvm::ConstantInt::get(Int32Ty, ProtocolVersion), IdTy));
1520  Elements.push_back(MakeConstantString(ProtocolName, ".objc_protocol_name"));
1521  Elements.push_back(ProtocolList);
1522  Elements.push_back(MethodList);
1523  Elements.push_back(MethodList);
1524  Elements.push_back(MethodList);
1525  Elements.push_back(MethodList);
1526  return MakeGlobal(ProtocolTy, Elements, ".objc_protocol");
1527}
1528
1529void CGObjCGNU::GenerateProtocol(const ObjCProtocolDecl *PD) {
1530  ASTContext &Context = CGM.getContext();
1531  std::string ProtocolName = PD->getNameAsString();
1532
1533  // Use the protocol definition, if there is one.
1534  if (const ObjCProtocolDecl *Def = PD->getDefinition())
1535    PD = Def;
1536
1537  SmallVector<std::string, 16> Protocols;
1538  for (ObjCProtocolDecl::protocol_iterator PI = PD->protocol_begin(),
1539       E = PD->protocol_end(); PI != E; ++PI)
1540    Protocols.push_back((*PI)->getNameAsString());
1541  SmallVector<llvm::Constant*, 16> InstanceMethodNames;
1542  SmallVector<llvm::Constant*, 16> InstanceMethodTypes;
1543  SmallVector<llvm::Constant*, 16> OptionalInstanceMethodNames;
1544  SmallVector<llvm::Constant*, 16> OptionalInstanceMethodTypes;
1545  for (ObjCProtocolDecl::instmeth_iterator iter = PD->instmeth_begin(),
1546       E = PD->instmeth_end(); iter != E; iter++) {
1547    std::string TypeStr;
1548    Context.getObjCEncodingForMethodDecl(*iter, TypeStr);
1549    if ((*iter)->getImplementationControl() == ObjCMethodDecl::Optional) {
1550      InstanceMethodNames.push_back(
1551          MakeConstantString((*iter)->getSelector().getAsString()));
1552      InstanceMethodTypes.push_back(MakeConstantString(TypeStr));
1553    } else {
1554      OptionalInstanceMethodNames.push_back(
1555          MakeConstantString((*iter)->getSelector().getAsString()));
1556      OptionalInstanceMethodTypes.push_back(MakeConstantString(TypeStr));
1557    }
1558  }
1559  // Collect information about class methods:
1560  SmallVector<llvm::Constant*, 16> ClassMethodNames;
1561  SmallVector<llvm::Constant*, 16> ClassMethodTypes;
1562  SmallVector<llvm::Constant*, 16> OptionalClassMethodNames;
1563  SmallVector<llvm::Constant*, 16> OptionalClassMethodTypes;
1564  for (ObjCProtocolDecl::classmeth_iterator
1565         iter = PD->classmeth_begin(), endIter = PD->classmeth_end();
1566       iter != endIter ; iter++) {
1567    std::string TypeStr;
1568    Context.getObjCEncodingForMethodDecl((*iter),TypeStr);
1569    if ((*iter)->getImplementationControl() == ObjCMethodDecl::Optional) {
1570      ClassMethodNames.push_back(
1571          MakeConstantString((*iter)->getSelector().getAsString()));
1572      ClassMethodTypes.push_back(MakeConstantString(TypeStr));
1573    } else {
1574      OptionalClassMethodNames.push_back(
1575          MakeConstantString((*iter)->getSelector().getAsString()));
1576      OptionalClassMethodTypes.push_back(MakeConstantString(TypeStr));
1577    }
1578  }
1579
1580  llvm::Constant *ProtocolList = GenerateProtocolList(Protocols);
1581  llvm::Constant *InstanceMethodList =
1582    GenerateProtocolMethodList(InstanceMethodNames, InstanceMethodTypes);
1583  llvm::Constant *ClassMethodList =
1584    GenerateProtocolMethodList(ClassMethodNames, ClassMethodTypes);
1585  llvm::Constant *OptionalInstanceMethodList =
1586    GenerateProtocolMethodList(OptionalInstanceMethodNames,
1587            OptionalInstanceMethodTypes);
1588  llvm::Constant *OptionalClassMethodList =
1589    GenerateProtocolMethodList(OptionalClassMethodNames,
1590            OptionalClassMethodTypes);
1591
1592  // Property metadata: name, attributes, isSynthesized, setter name, setter
1593  // types, getter name, getter types.
1594  // The isSynthesized value is always set to 0 in a protocol.  It exists to
1595  // simplify the runtime library by allowing it to use the same data
1596  // structures for protocol metadata everywhere.
1597  llvm::StructType *PropertyMetadataTy = llvm::StructType::get(
1598          PtrToInt8Ty, Int8Ty, Int8Ty, PtrToInt8Ty, PtrToInt8Ty, PtrToInt8Ty,
1599          PtrToInt8Ty, NULL);
1600  std::vector<llvm::Constant*> Properties;
1601  std::vector<llvm::Constant*> OptionalProperties;
1602
1603  // Add all of the property methods need adding to the method list and to the
1604  // property metadata list.
1605  for (ObjCContainerDecl::prop_iterator
1606         iter = PD->prop_begin(), endIter = PD->prop_end();
1607       iter != endIter ; iter++) {
1608    std::vector<llvm::Constant*> Fields;
1609    ObjCPropertyDecl *property = (*iter);
1610
1611    Fields.push_back(MakeConstantString(property->getNameAsString()));
1612    Fields.push_back(llvm::ConstantInt::get(Int8Ty,
1613                property->getPropertyAttributes()));
1614    Fields.push_back(llvm::ConstantInt::get(Int8Ty, 0));
1615    if (ObjCMethodDecl *getter = property->getGetterMethodDecl()) {
1616      std::string TypeStr;
1617      Context.getObjCEncodingForMethodDecl(getter,TypeStr);
1618      llvm::Constant *TypeEncoding = MakeConstantString(TypeStr);
1619      InstanceMethodTypes.push_back(TypeEncoding);
1620      Fields.push_back(MakeConstantString(getter->getSelector().getAsString()));
1621      Fields.push_back(TypeEncoding);
1622    } else {
1623      Fields.push_back(NULLPtr);
1624      Fields.push_back(NULLPtr);
1625    }
1626    if (ObjCMethodDecl *setter = property->getSetterMethodDecl()) {
1627      std::string TypeStr;
1628      Context.getObjCEncodingForMethodDecl(setter,TypeStr);
1629      llvm::Constant *TypeEncoding = MakeConstantString(TypeStr);
1630      InstanceMethodTypes.push_back(TypeEncoding);
1631      Fields.push_back(MakeConstantString(setter->getSelector().getAsString()));
1632      Fields.push_back(TypeEncoding);
1633    } else {
1634      Fields.push_back(NULLPtr);
1635      Fields.push_back(NULLPtr);
1636    }
1637    if (property->getPropertyImplementation() == ObjCPropertyDecl::Optional) {
1638      OptionalProperties.push_back(llvm::ConstantStruct::get(PropertyMetadataTy, Fields));
1639    } else {
1640      Properties.push_back(llvm::ConstantStruct::get(PropertyMetadataTy, Fields));
1641    }
1642  }
1643  llvm::Constant *PropertyArray = llvm::ConstantArray::get(
1644      llvm::ArrayType::get(PropertyMetadataTy, Properties.size()), Properties);
1645  llvm::Constant* PropertyListInitFields[] =
1646    {llvm::ConstantInt::get(IntTy, Properties.size()), NULLPtr, PropertyArray};
1647
1648  llvm::Constant *PropertyListInit =
1649      llvm::ConstantStruct::getAnon(PropertyListInitFields);
1650  llvm::Constant *PropertyList = new llvm::GlobalVariable(TheModule,
1651      PropertyListInit->getType(), false, llvm::GlobalValue::InternalLinkage,
1652      PropertyListInit, ".objc_property_list");
1653
1654  llvm::Constant *OptionalPropertyArray =
1655      llvm::ConstantArray::get(llvm::ArrayType::get(PropertyMetadataTy,
1656          OptionalProperties.size()) , OptionalProperties);
1657  llvm::Constant* OptionalPropertyListInitFields[] = {
1658      llvm::ConstantInt::get(IntTy, OptionalProperties.size()), NULLPtr,
1659      OptionalPropertyArray };
1660
1661  llvm::Constant *OptionalPropertyListInit =
1662      llvm::ConstantStruct::getAnon(OptionalPropertyListInitFields);
1663  llvm::Constant *OptionalPropertyList = new llvm::GlobalVariable(TheModule,
1664          OptionalPropertyListInit->getType(), false,
1665          llvm::GlobalValue::InternalLinkage, OptionalPropertyListInit,
1666          ".objc_property_list");
1667
1668  // Protocols are objects containing lists of the methods implemented and
1669  // protocols adopted.
1670  llvm::StructType *ProtocolTy = llvm::StructType::get(IdTy,
1671      PtrToInt8Ty,
1672      ProtocolList->getType(),
1673      InstanceMethodList->getType(),
1674      ClassMethodList->getType(),
1675      OptionalInstanceMethodList->getType(),
1676      OptionalClassMethodList->getType(),
1677      PropertyList->getType(),
1678      OptionalPropertyList->getType(),
1679      NULL);
1680  std::vector<llvm::Constant*> Elements;
1681  // The isa pointer must be set to a magic number so the runtime knows it's
1682  // the correct layout.
1683  Elements.push_back(llvm::ConstantExpr::getIntToPtr(
1684        llvm::ConstantInt::get(Int32Ty, ProtocolVersion), IdTy));
1685  Elements.push_back(MakeConstantString(ProtocolName, ".objc_protocol_name"));
1686  Elements.push_back(ProtocolList);
1687  Elements.push_back(InstanceMethodList);
1688  Elements.push_back(ClassMethodList);
1689  Elements.push_back(OptionalInstanceMethodList);
1690  Elements.push_back(OptionalClassMethodList);
1691  Elements.push_back(PropertyList);
1692  Elements.push_back(OptionalPropertyList);
1693  ExistingProtocols[ProtocolName] =
1694    llvm::ConstantExpr::getBitCast(MakeGlobal(ProtocolTy, Elements,
1695          ".objc_protocol"), IdTy);
1696}
1697void CGObjCGNU::GenerateProtocolHolderCategory(void) {
1698  // Collect information about instance methods
1699  SmallVector<Selector, 1> MethodSels;
1700  SmallVector<llvm::Constant*, 1> MethodTypes;
1701
1702  std::vector<llvm::Constant*> Elements;
1703  const std::string ClassName = "__ObjC_Protocol_Holder_Ugly_Hack";
1704  const std::string CategoryName = "AnotherHack";
1705  Elements.push_back(MakeConstantString(CategoryName));
1706  Elements.push_back(MakeConstantString(ClassName));
1707  // Instance method list
1708  Elements.push_back(llvm::ConstantExpr::getBitCast(GenerateMethodList(
1709          ClassName, CategoryName, MethodSels, MethodTypes, false), PtrTy));
1710  // Class method list
1711  Elements.push_back(llvm::ConstantExpr::getBitCast(GenerateMethodList(
1712          ClassName, CategoryName, MethodSels, MethodTypes, true), PtrTy));
1713  // Protocol list
1714  llvm::ArrayType *ProtocolArrayTy = llvm::ArrayType::get(PtrTy,
1715      ExistingProtocols.size());
1716  llvm::StructType *ProtocolListTy = llvm::StructType::get(
1717      PtrTy, //Should be a recurisve pointer, but it's always NULL here.
1718      SizeTy,
1719      ProtocolArrayTy,
1720      NULL);
1721  std::vector<llvm::Constant*> ProtocolElements;
1722  for (llvm::StringMapIterator<llvm::Constant*> iter =
1723       ExistingProtocols.begin(), endIter = ExistingProtocols.end();
1724       iter != endIter ; iter++) {
1725    llvm::Constant *Ptr = llvm::ConstantExpr::getBitCast(iter->getValue(),
1726            PtrTy);
1727    ProtocolElements.push_back(Ptr);
1728  }
1729  llvm::Constant * ProtocolArray = llvm::ConstantArray::get(ProtocolArrayTy,
1730      ProtocolElements);
1731  ProtocolElements.clear();
1732  ProtocolElements.push_back(NULLPtr);
1733  ProtocolElements.push_back(llvm::ConstantInt::get(LongTy,
1734              ExistingProtocols.size()));
1735  ProtocolElements.push_back(ProtocolArray);
1736  Elements.push_back(llvm::ConstantExpr::getBitCast(MakeGlobal(ProtocolListTy,
1737                  ProtocolElements, ".objc_protocol_list"), PtrTy));
1738  Categories.push_back(llvm::ConstantExpr::getBitCast(
1739        MakeGlobal(llvm::StructType::get(PtrToInt8Ty, PtrToInt8Ty,
1740            PtrTy, PtrTy, PtrTy, NULL), Elements), PtrTy));
1741}
1742
1743/// Libobjc2 uses a bitfield representation where small(ish) bitfields are
1744/// stored in a 64-bit value with the low bit set to 1 and the remaining 63
1745/// bits set to their values, LSB first, while larger ones are stored in a
1746/// structure of this / form:
1747///
1748/// struct { int32_t length; int32_t values[length]; };
1749///
1750/// The values in the array are stored in host-endian format, with the least
1751/// significant bit being assumed to come first in the bitfield.  Therefore, a
1752/// bitfield with the 64th bit set will be (int64_t)&{ 2, [0, 1<<31] }, while a
1753/// bitfield / with the 63rd bit set will be 1<<64.
1754llvm::Constant *CGObjCGNU::MakeBitField(llvm::SmallVectorImpl<bool> &bits) {
1755  int bitCount = bits.size();
1756  int ptrBits =
1757        (TheModule.getPointerSize() == llvm::Module::Pointer32) ? 32 : 64;
1758  if (bitCount < ptrBits) {
1759    uint64_t val = 1;
1760    for (int i=0 ; i<bitCount ; ++i) {
1761      if (bits[i]) val |= 1ULL<<(i+1);
1762    }
1763    return llvm::ConstantInt::get(IntPtrTy, val);
1764  }
1765  llvm::SmallVector<llvm::Constant*, 8> values;
1766  int v=0;
1767  while (v < bitCount) {
1768    int32_t word = 0;
1769    for (int i=0 ; (i<32) && (v<bitCount)  ; ++i) {
1770      if (bits[v]) word |= 1<<i;
1771      v++;
1772    }
1773    values.push_back(llvm::ConstantInt::get(Int32Ty, word));
1774  }
1775  llvm::ArrayType *arrayTy = llvm::ArrayType::get(Int32Ty, values.size());
1776  llvm::Constant *array = llvm::ConstantArray::get(arrayTy, values);
1777  llvm::Constant *fields[2] = {
1778      llvm::ConstantInt::get(Int32Ty, values.size()),
1779      array };
1780  llvm::Constant *GS = MakeGlobal(llvm::StructType::get(Int32Ty, arrayTy,
1781        NULL), fields);
1782  llvm::Constant *ptr = llvm::ConstantExpr::getPtrToInt(GS, IntPtrTy);
1783  return ptr;
1784}
1785
1786void CGObjCGNU::GenerateCategory(const ObjCCategoryImplDecl *OCD) {
1787  std::string ClassName = OCD->getClassInterface()->getNameAsString();
1788  std::string CategoryName = OCD->getNameAsString();
1789  // Collect information about instance methods
1790  SmallVector<Selector, 16> InstanceMethodSels;
1791  SmallVector<llvm::Constant*, 16> InstanceMethodTypes;
1792  for (ObjCCategoryImplDecl::instmeth_iterator
1793         iter = OCD->instmeth_begin(), endIter = OCD->instmeth_end();
1794       iter != endIter ; iter++) {
1795    InstanceMethodSels.push_back((*iter)->getSelector());
1796    std::string TypeStr;
1797    CGM.getContext().getObjCEncodingForMethodDecl(*iter,TypeStr);
1798    InstanceMethodTypes.push_back(MakeConstantString(TypeStr));
1799  }
1800
1801  // Collect information about class methods
1802  SmallVector<Selector, 16> ClassMethodSels;
1803  SmallVector<llvm::Constant*, 16> ClassMethodTypes;
1804  for (ObjCCategoryImplDecl::classmeth_iterator
1805         iter = OCD->classmeth_begin(), endIter = OCD->classmeth_end();
1806       iter != endIter ; iter++) {
1807    ClassMethodSels.push_back((*iter)->getSelector());
1808    std::string TypeStr;
1809    CGM.getContext().getObjCEncodingForMethodDecl(*iter,TypeStr);
1810    ClassMethodTypes.push_back(MakeConstantString(TypeStr));
1811  }
1812
1813  // Collect the names of referenced protocols
1814  SmallVector<std::string, 16> Protocols;
1815  const ObjCCategoryDecl *CatDecl = OCD->getCategoryDecl();
1816  const ObjCList<ObjCProtocolDecl> &Protos = CatDecl->getReferencedProtocols();
1817  for (ObjCList<ObjCProtocolDecl>::iterator I = Protos.begin(),
1818       E = Protos.end(); I != E; ++I)
1819    Protocols.push_back((*I)->getNameAsString());
1820
1821  std::vector<llvm::Constant*> Elements;
1822  Elements.push_back(MakeConstantString(CategoryName));
1823  Elements.push_back(MakeConstantString(ClassName));
1824  // Instance method list
1825  Elements.push_back(llvm::ConstantExpr::getBitCast(GenerateMethodList(
1826          ClassName, CategoryName, InstanceMethodSels, InstanceMethodTypes,
1827          false), PtrTy));
1828  // Class method list
1829  Elements.push_back(llvm::ConstantExpr::getBitCast(GenerateMethodList(
1830          ClassName, CategoryName, ClassMethodSels, ClassMethodTypes, true),
1831        PtrTy));
1832  // Protocol list
1833  Elements.push_back(llvm::ConstantExpr::getBitCast(
1834        GenerateProtocolList(Protocols), PtrTy));
1835  Categories.push_back(llvm::ConstantExpr::getBitCast(
1836        MakeGlobal(llvm::StructType::get(PtrToInt8Ty, PtrToInt8Ty,
1837            PtrTy, PtrTy, PtrTy, NULL), Elements), PtrTy));
1838}
1839
1840llvm::Constant *CGObjCGNU::GeneratePropertyList(const ObjCImplementationDecl *OID,
1841        SmallVectorImpl<Selector> &InstanceMethodSels,
1842        SmallVectorImpl<llvm::Constant*> &InstanceMethodTypes) {
1843  ASTContext &Context = CGM.getContext();
1844  //
1845  // Property metadata: name, attributes, isSynthesized, setter name, setter
1846  // types, getter name, getter types.
1847  llvm::StructType *PropertyMetadataTy = llvm::StructType::get(
1848          PtrToInt8Ty, Int8Ty, Int8Ty, PtrToInt8Ty, PtrToInt8Ty, PtrToInt8Ty,
1849          PtrToInt8Ty, NULL);
1850  std::vector<llvm::Constant*> Properties;
1851
1852
1853  // Add all of the property methods need adding to the method list and to the
1854  // property metadata list.
1855  for (ObjCImplDecl::propimpl_iterator
1856         iter = OID->propimpl_begin(), endIter = OID->propimpl_end();
1857       iter != endIter ; iter++) {
1858    std::vector<llvm::Constant*> Fields;
1859    ObjCPropertyDecl *property = (*iter)->getPropertyDecl();
1860    ObjCPropertyImplDecl *propertyImpl = *iter;
1861    bool isSynthesized = (propertyImpl->getPropertyImplementation() ==
1862        ObjCPropertyImplDecl::Synthesize);
1863
1864    Fields.push_back(MakeConstantString(property->getNameAsString()));
1865    Fields.push_back(llvm::ConstantInt::get(Int8Ty,
1866                property->getPropertyAttributes()));
1867    Fields.push_back(llvm::ConstantInt::get(Int8Ty, isSynthesized));
1868    if (ObjCMethodDecl *getter = property->getGetterMethodDecl()) {
1869      std::string TypeStr;
1870      Context.getObjCEncodingForMethodDecl(getter,TypeStr);
1871      llvm::Constant *TypeEncoding = MakeConstantString(TypeStr);
1872      if (isSynthesized) {
1873        InstanceMethodTypes.push_back(TypeEncoding);
1874        InstanceMethodSels.push_back(getter->getSelector());
1875      }
1876      Fields.push_back(MakeConstantString(getter->getSelector().getAsString()));
1877      Fields.push_back(TypeEncoding);
1878    } else {
1879      Fields.push_back(NULLPtr);
1880      Fields.push_back(NULLPtr);
1881    }
1882    if (ObjCMethodDecl *setter = property->getSetterMethodDecl()) {
1883      std::string TypeStr;
1884      Context.getObjCEncodingForMethodDecl(setter,TypeStr);
1885      llvm::Constant *TypeEncoding = MakeConstantString(TypeStr);
1886      if (isSynthesized) {
1887        InstanceMethodTypes.push_back(TypeEncoding);
1888        InstanceMethodSels.push_back(setter->getSelector());
1889      }
1890      Fields.push_back(MakeConstantString(setter->getSelector().getAsString()));
1891      Fields.push_back(TypeEncoding);
1892    } else {
1893      Fields.push_back(NULLPtr);
1894      Fields.push_back(NULLPtr);
1895    }
1896    Properties.push_back(llvm::ConstantStruct::get(PropertyMetadataTy, Fields));
1897  }
1898  llvm::ArrayType *PropertyArrayTy =
1899      llvm::ArrayType::get(PropertyMetadataTy, Properties.size());
1900  llvm::Constant *PropertyArray = llvm::ConstantArray::get(PropertyArrayTy,
1901          Properties);
1902  llvm::Constant* PropertyListInitFields[] =
1903    {llvm::ConstantInt::get(IntTy, Properties.size()), NULLPtr, PropertyArray};
1904
1905  llvm::Constant *PropertyListInit =
1906      llvm::ConstantStruct::getAnon(PropertyListInitFields);
1907  return new llvm::GlobalVariable(TheModule, PropertyListInit->getType(), false,
1908          llvm::GlobalValue::InternalLinkage, PropertyListInit,
1909          ".objc_property_list");
1910}
1911
1912void CGObjCGNU::GenerateClass(const ObjCImplementationDecl *OID) {
1913  ASTContext &Context = CGM.getContext();
1914
1915  // Get the superclass name.
1916  const ObjCInterfaceDecl * SuperClassDecl =
1917    OID->getClassInterface()->getSuperClass();
1918  std::string SuperClassName;
1919  if (SuperClassDecl) {
1920    SuperClassName = SuperClassDecl->getNameAsString();
1921    EmitClassRef(SuperClassName);
1922  }
1923
1924  // Get the class name
1925  ObjCInterfaceDecl *ClassDecl =
1926    const_cast<ObjCInterfaceDecl *>(OID->getClassInterface());
1927  std::string ClassName = ClassDecl->getNameAsString();
1928  // Emit the symbol that is used to generate linker errors if this class is
1929  // referenced in other modules but not declared.
1930  std::string classSymbolName = "__objc_class_name_" + ClassName;
1931  if (llvm::GlobalVariable *symbol =
1932      TheModule.getGlobalVariable(classSymbolName)) {
1933    symbol->setInitializer(llvm::ConstantInt::get(LongTy, 0));
1934  } else {
1935    new llvm::GlobalVariable(TheModule, LongTy, false,
1936    llvm::GlobalValue::ExternalLinkage, llvm::ConstantInt::get(LongTy, 0),
1937    classSymbolName);
1938  }
1939
1940  // Get the size of instances.
1941  int instanceSize =
1942    Context.getASTObjCImplementationLayout(OID).getSize().getQuantity();
1943
1944  // Collect information about instance variables.
1945  SmallVector<llvm::Constant*, 16> IvarNames;
1946  SmallVector<llvm::Constant*, 16> IvarTypes;
1947  SmallVector<llvm::Constant*, 16> IvarOffsets;
1948
1949  std::vector<llvm::Constant*> IvarOffsetValues;
1950  SmallVector<bool, 16> WeakIvars;
1951  SmallVector<bool, 16> StrongIvars;
1952
1953  int superInstanceSize = !SuperClassDecl ? 0 :
1954    Context.getASTObjCInterfaceLayout(SuperClassDecl).getSize().getQuantity();
1955  // For non-fragile ivars, set the instance size to 0 - {the size of just this
1956  // class}.  The runtime will then set this to the correct value on load.
1957  if (CGM.getContext().getLangOptions().ObjCNonFragileABI) {
1958    instanceSize = 0 - (instanceSize - superInstanceSize);
1959  }
1960
1961  for (const ObjCIvarDecl *IVD = ClassDecl->all_declared_ivar_begin(); IVD;
1962       IVD = IVD->getNextIvar()) {
1963      // Store the name
1964      IvarNames.push_back(MakeConstantString(IVD->getNameAsString()));
1965      // Get the type encoding for this ivar
1966      std::string TypeStr;
1967      Context.getObjCEncodingForType(IVD->getType(), TypeStr);
1968      IvarTypes.push_back(MakeConstantString(TypeStr));
1969      // Get the offset
1970      uint64_t BaseOffset = ComputeIvarBaseOffset(CGM, OID, IVD);
1971      uint64_t Offset = BaseOffset;
1972      if (CGM.getContext().getLangOptions().ObjCNonFragileABI) {
1973        Offset = BaseOffset - superInstanceSize;
1974      }
1975      llvm::Constant *OffsetValue = llvm::ConstantInt::get(IntTy, Offset);
1976      // Create the direct offset value
1977      std::string OffsetName = "__objc_ivar_offset_value_" + ClassName +"." +
1978          IVD->getNameAsString();
1979      llvm::GlobalVariable *OffsetVar = TheModule.getGlobalVariable(OffsetName);
1980      if (OffsetVar) {
1981        OffsetVar->setInitializer(OffsetValue);
1982        // If this is the real definition, change its linkage type so that
1983        // different modules will use this one, rather than their private
1984        // copy.
1985        OffsetVar->setLinkage(llvm::GlobalValue::ExternalLinkage);
1986      } else
1987        OffsetVar = new llvm::GlobalVariable(TheModule, IntTy,
1988          false, llvm::GlobalValue::ExternalLinkage,
1989          OffsetValue,
1990          "__objc_ivar_offset_value_" + ClassName +"." +
1991          IVD->getNameAsString());
1992      IvarOffsets.push_back(OffsetValue);
1993      IvarOffsetValues.push_back(OffsetVar);
1994      Qualifiers::ObjCLifetime lt = IVD->getType().getQualifiers().getObjCLifetime();
1995      switch (lt) {
1996        case Qualifiers::OCL_Strong:
1997          StrongIvars.push_back(true);
1998          WeakIvars.push_back(false);
1999          break;
2000        case Qualifiers::OCL_Weak:
2001          StrongIvars.push_back(false);
2002          WeakIvars.push_back(true);
2003          break;
2004        default:
2005          StrongIvars.push_back(false);
2006          WeakIvars.push_back(false);
2007      }
2008  }
2009  llvm::Constant *StrongIvarBitmap = MakeBitField(StrongIvars);
2010  llvm::Constant *WeakIvarBitmap = MakeBitField(WeakIvars);
2011  llvm::GlobalVariable *IvarOffsetArray =
2012    MakeGlobalArray(PtrToIntTy, IvarOffsetValues, ".ivar.offsets");
2013
2014
2015  // Collect information about instance methods
2016  SmallVector<Selector, 16> InstanceMethodSels;
2017  SmallVector<llvm::Constant*, 16> InstanceMethodTypes;
2018  for (ObjCImplementationDecl::instmeth_iterator
2019         iter = OID->instmeth_begin(), endIter = OID->instmeth_end();
2020       iter != endIter ; iter++) {
2021    InstanceMethodSels.push_back((*iter)->getSelector());
2022    std::string TypeStr;
2023    Context.getObjCEncodingForMethodDecl((*iter),TypeStr);
2024    InstanceMethodTypes.push_back(MakeConstantString(TypeStr));
2025  }
2026
2027  llvm::Constant *Properties = GeneratePropertyList(OID, InstanceMethodSels,
2028          InstanceMethodTypes);
2029
2030
2031  // Collect information about class methods
2032  SmallVector<Selector, 16> ClassMethodSels;
2033  SmallVector<llvm::Constant*, 16> ClassMethodTypes;
2034  for (ObjCImplementationDecl::classmeth_iterator
2035         iter = OID->classmeth_begin(), endIter = OID->classmeth_end();
2036       iter != endIter ; iter++) {
2037    ClassMethodSels.push_back((*iter)->getSelector());
2038    std::string TypeStr;
2039    Context.getObjCEncodingForMethodDecl((*iter),TypeStr);
2040    ClassMethodTypes.push_back(MakeConstantString(TypeStr));
2041  }
2042  // Collect the names of referenced protocols
2043  SmallVector<std::string, 16> Protocols;
2044  const ObjCList<ObjCProtocolDecl> &Protos =ClassDecl->getReferencedProtocols();
2045  for (ObjCList<ObjCProtocolDecl>::iterator I = Protos.begin(),
2046       E = Protos.end(); I != E; ++I)
2047    Protocols.push_back((*I)->getNameAsString());
2048
2049
2050
2051  // Get the superclass pointer.
2052  llvm::Constant *SuperClass;
2053  if (!SuperClassName.empty()) {
2054    SuperClass = MakeConstantString(SuperClassName, ".super_class_name");
2055  } else {
2056    SuperClass = llvm::ConstantPointerNull::get(PtrToInt8Ty);
2057  }
2058  // Empty vector used to construct empty method lists
2059  SmallVector<llvm::Constant*, 1>  empty;
2060  // Generate the method and instance variable lists
2061  llvm::Constant *MethodList = GenerateMethodList(ClassName, "",
2062      InstanceMethodSels, InstanceMethodTypes, false);
2063  llvm::Constant *ClassMethodList = GenerateMethodList(ClassName, "",
2064      ClassMethodSels, ClassMethodTypes, true);
2065  llvm::Constant *IvarList = GenerateIvarList(IvarNames, IvarTypes,
2066      IvarOffsets);
2067  // Irrespective of whether we are compiling for a fragile or non-fragile ABI,
2068  // we emit a symbol containing the offset for each ivar in the class.  This
2069  // allows code compiled for the non-Fragile ABI to inherit from code compiled
2070  // for the legacy ABI, without causing problems.  The converse is also
2071  // possible, but causes all ivar accesses to be fragile.
2072
2073  // Offset pointer for getting at the correct field in the ivar list when
2074  // setting up the alias.  These are: The base address for the global, the
2075  // ivar array (second field), the ivar in this list (set for each ivar), and
2076  // the offset (third field in ivar structure)
2077  llvm::Type *IndexTy = Int32Ty;
2078  llvm::Constant *offsetPointerIndexes[] = {Zeros[0],
2079      llvm::ConstantInt::get(IndexTy, 1), 0,
2080      llvm::ConstantInt::get(IndexTy, 2) };
2081
2082  unsigned ivarIndex = 0;
2083  for (const ObjCIvarDecl *IVD = ClassDecl->all_declared_ivar_begin(); IVD;
2084       IVD = IVD->getNextIvar()) {
2085      const std::string Name = "__objc_ivar_offset_" + ClassName + '.'
2086          + IVD->getNameAsString();
2087      offsetPointerIndexes[2] = llvm::ConstantInt::get(IndexTy, ivarIndex);
2088      // Get the correct ivar field
2089      llvm::Constant *offsetValue = llvm::ConstantExpr::getGetElementPtr(
2090              IvarList, offsetPointerIndexes);
2091      // Get the existing variable, if one exists.
2092      llvm::GlobalVariable *offset = TheModule.getNamedGlobal(Name);
2093      if (offset) {
2094          offset->setInitializer(offsetValue);
2095          // If this is the real definition, change its linkage type so that
2096          // different modules will use this one, rather than their private
2097          // copy.
2098          offset->setLinkage(llvm::GlobalValue::ExternalLinkage);
2099      } else {
2100          // Add a new alias if there isn't one already.
2101          offset = new llvm::GlobalVariable(TheModule, offsetValue->getType(),
2102                  false, llvm::GlobalValue::ExternalLinkage, offsetValue, Name);
2103      }
2104      ++ivarIndex;
2105  }
2106  llvm::Constant *ZeroPtr = llvm::ConstantInt::get(IntPtrTy, 0);
2107  //Generate metaclass for class methods
2108  llvm::Constant *MetaClassStruct = GenerateClassStructure(NULLPtr,
2109      NULLPtr, 0x12L, ClassName.c_str(), 0, Zeros[0], GenerateIvarList(
2110        empty, empty, empty), ClassMethodList, NULLPtr,
2111      NULLPtr, NULLPtr, ZeroPtr, ZeroPtr, true);
2112
2113  // Generate the class structure
2114  llvm::Constant *ClassStruct =
2115    GenerateClassStructure(MetaClassStruct, SuperClass, 0x11L,
2116                           ClassName.c_str(), 0,
2117      llvm::ConstantInt::get(LongTy, instanceSize), IvarList,
2118      MethodList, GenerateProtocolList(Protocols), IvarOffsetArray,
2119      Properties, StrongIvarBitmap, WeakIvarBitmap);
2120
2121  // Resolve the class aliases, if they exist.
2122  if (ClassPtrAlias) {
2123    ClassPtrAlias->replaceAllUsesWith(
2124        llvm::ConstantExpr::getBitCast(ClassStruct, IdTy));
2125    ClassPtrAlias->eraseFromParent();
2126    ClassPtrAlias = 0;
2127  }
2128  if (MetaClassPtrAlias) {
2129    MetaClassPtrAlias->replaceAllUsesWith(
2130        llvm::ConstantExpr::getBitCast(MetaClassStruct, IdTy));
2131    MetaClassPtrAlias->eraseFromParent();
2132    MetaClassPtrAlias = 0;
2133  }
2134
2135  // Add class structure to list to be added to the symtab later
2136  ClassStruct = llvm::ConstantExpr::getBitCast(ClassStruct, PtrToInt8Ty);
2137  Classes.push_back(ClassStruct);
2138}
2139
2140
2141llvm::Function *CGObjCGNU::ModuleInitFunction() {
2142  // Only emit an ObjC load function if no Objective-C stuff has been called
2143  if (Classes.empty() && Categories.empty() && ConstantStrings.empty() &&
2144      ExistingProtocols.empty() && SelectorTable.empty())
2145    return NULL;
2146
2147  // Add all referenced protocols to a category.
2148  GenerateProtocolHolderCategory();
2149
2150  llvm::StructType *SelStructTy = dyn_cast<llvm::StructType>(
2151          SelectorTy->getElementType());
2152  llvm::Type *SelStructPtrTy = SelectorTy;
2153  if (SelStructTy == 0) {
2154    SelStructTy = llvm::StructType::get(PtrToInt8Ty, PtrToInt8Ty, NULL);
2155    SelStructPtrTy = llvm::PointerType::getUnqual(SelStructTy);
2156  }
2157
2158  std::vector<llvm::Constant*> Elements;
2159  llvm::Constant *Statics = NULLPtr;
2160  // Generate statics list:
2161  if (ConstantStrings.size()) {
2162    llvm::ArrayType *StaticsArrayTy = llvm::ArrayType::get(PtrToInt8Ty,
2163        ConstantStrings.size() + 1);
2164    ConstantStrings.push_back(NULLPtr);
2165
2166    StringRef StringClass = CGM.getLangOptions().ObjCConstantStringClass;
2167
2168    if (StringClass.empty()) StringClass = "NXConstantString";
2169
2170    Elements.push_back(MakeConstantString(StringClass,
2171                ".objc_static_class_name"));
2172    Elements.push_back(llvm::ConstantArray::get(StaticsArrayTy,
2173       ConstantStrings));
2174    llvm::StructType *StaticsListTy =
2175      llvm::StructType::get(PtrToInt8Ty, StaticsArrayTy, NULL);
2176    llvm::Type *StaticsListPtrTy =
2177      llvm::PointerType::getUnqual(StaticsListTy);
2178    Statics = MakeGlobal(StaticsListTy, Elements, ".objc_statics");
2179    llvm::ArrayType *StaticsListArrayTy =
2180      llvm::ArrayType::get(StaticsListPtrTy, 2);
2181    Elements.clear();
2182    Elements.push_back(Statics);
2183    Elements.push_back(llvm::Constant::getNullValue(StaticsListPtrTy));
2184    Statics = MakeGlobal(StaticsListArrayTy, Elements, ".objc_statics_ptr");
2185    Statics = llvm::ConstantExpr::getBitCast(Statics, PtrTy);
2186  }
2187  // Array of classes, categories, and constant objects
2188  llvm::ArrayType *ClassListTy = llvm::ArrayType::get(PtrToInt8Ty,
2189      Classes.size() + Categories.size()  + 2);
2190  llvm::StructType *SymTabTy = llvm::StructType::get(LongTy, SelStructPtrTy,
2191                                                     llvm::Type::getInt16Ty(VMContext),
2192                                                     llvm::Type::getInt16Ty(VMContext),
2193                                                     ClassListTy, NULL);
2194
2195  Elements.clear();
2196  // Pointer to an array of selectors used in this module.
2197  std::vector<llvm::Constant*> Selectors;
2198  std::vector<llvm::GlobalAlias*> SelectorAliases;
2199  for (SelectorMap::iterator iter = SelectorTable.begin(),
2200      iterEnd = SelectorTable.end(); iter != iterEnd ; ++iter) {
2201
2202    std::string SelNameStr = iter->first.getAsString();
2203    llvm::Constant *SelName = ExportUniqueString(SelNameStr, ".objc_sel_name");
2204
2205    SmallVectorImpl<TypedSelector> &Types = iter->second;
2206    for (SmallVectorImpl<TypedSelector>::iterator i = Types.begin(),
2207        e = Types.end() ; i!=e ; i++) {
2208
2209      llvm::Constant *SelectorTypeEncoding = NULLPtr;
2210      if (!i->first.empty())
2211        SelectorTypeEncoding = MakeConstantString(i->first, ".objc_sel_types");
2212
2213      Elements.push_back(SelName);
2214      Elements.push_back(SelectorTypeEncoding);
2215      Selectors.push_back(llvm::ConstantStruct::get(SelStructTy, Elements));
2216      Elements.clear();
2217
2218      // Store the selector alias for later replacement
2219      SelectorAliases.push_back(i->second);
2220    }
2221  }
2222  unsigned SelectorCount = Selectors.size();
2223  // NULL-terminate the selector list.  This should not actually be required,
2224  // because the selector list has a length field.  Unfortunately, the GCC
2225  // runtime decides to ignore the length field and expects a NULL terminator,
2226  // and GCC cooperates with this by always setting the length to 0.
2227  Elements.push_back(NULLPtr);
2228  Elements.push_back(NULLPtr);
2229  Selectors.push_back(llvm::ConstantStruct::get(SelStructTy, Elements));
2230  Elements.clear();
2231
2232  // Number of static selectors
2233  Elements.push_back(llvm::ConstantInt::get(LongTy, SelectorCount));
2234  llvm::Constant *SelectorList = MakeGlobalArray(SelStructTy, Selectors,
2235          ".objc_selector_list");
2236  Elements.push_back(llvm::ConstantExpr::getBitCast(SelectorList,
2237    SelStructPtrTy));
2238
2239  // Now that all of the static selectors exist, create pointers to them.
2240  for (unsigned int i=0 ; i<SelectorCount ; i++) {
2241
2242    llvm::Constant *Idxs[] = {Zeros[0],
2243      llvm::ConstantInt::get(Int32Ty, i), Zeros[0]};
2244    // FIXME: We're generating redundant loads and stores here!
2245    llvm::Constant *SelPtr = llvm::ConstantExpr::getGetElementPtr(SelectorList,
2246        makeArrayRef(Idxs, 2));
2247    // If selectors are defined as an opaque type, cast the pointer to this
2248    // type.
2249    SelPtr = llvm::ConstantExpr::getBitCast(SelPtr, SelectorTy);
2250    SelectorAliases[i]->replaceAllUsesWith(SelPtr);
2251    SelectorAliases[i]->eraseFromParent();
2252  }
2253
2254  // Number of classes defined.
2255  Elements.push_back(llvm::ConstantInt::get(llvm::Type::getInt16Ty(VMContext),
2256        Classes.size()));
2257  // Number of categories defined
2258  Elements.push_back(llvm::ConstantInt::get(llvm::Type::getInt16Ty(VMContext),
2259        Categories.size()));
2260  // Create an array of classes, then categories, then static object instances
2261  Classes.insert(Classes.end(), Categories.begin(), Categories.end());
2262  //  NULL-terminated list of static object instances (mainly constant strings)
2263  Classes.push_back(Statics);
2264  Classes.push_back(NULLPtr);
2265  llvm::Constant *ClassList = llvm::ConstantArray::get(ClassListTy, Classes);
2266  Elements.push_back(ClassList);
2267  // Construct the symbol table
2268  llvm::Constant *SymTab= MakeGlobal(SymTabTy, Elements);
2269
2270  // The symbol table is contained in a module which has some version-checking
2271  // constants
2272  llvm::StructType * ModuleTy = llvm::StructType::get(LongTy, LongTy,
2273      PtrToInt8Ty, llvm::PointerType::getUnqual(SymTabTy),
2274      (RuntimeVersion >= 10) ? IntTy : NULL, NULL);
2275  Elements.clear();
2276  // Runtime version, used for ABI compatibility checking.
2277  Elements.push_back(llvm::ConstantInt::get(LongTy, RuntimeVersion));
2278  // sizeof(ModuleTy)
2279  llvm::TargetData td(&TheModule);
2280  Elements.push_back(
2281    llvm::ConstantInt::get(LongTy,
2282                           td.getTypeSizeInBits(ModuleTy) /
2283                             CGM.getContext().getCharWidth()));
2284
2285  // The path to the source file where this module was declared
2286  SourceManager &SM = CGM.getContext().getSourceManager();
2287  const FileEntry *mainFile = SM.getFileEntryForID(SM.getMainFileID());
2288  std::string path =
2289    std::string(mainFile->getDir()->getName()) + '/' + mainFile->getName();
2290  Elements.push_back(MakeConstantString(path, ".objc_source_file_name"));
2291  Elements.push_back(SymTab);
2292
2293  if (RuntimeVersion >= 10)
2294    switch (CGM.getLangOptions().getGC()) {
2295      case LangOptions::GCOnly:
2296        Elements.push_back(llvm::ConstantInt::get(IntTy, 2));
2297        break;
2298      case LangOptions::NonGC:
2299        if (CGM.getLangOptions().ObjCAutoRefCount)
2300          Elements.push_back(llvm::ConstantInt::get(IntTy, 1));
2301        else
2302          Elements.push_back(llvm::ConstantInt::get(IntTy, 0));
2303        break;
2304      case LangOptions::HybridGC:
2305          Elements.push_back(llvm::ConstantInt::get(IntTy, 1));
2306        break;
2307    }
2308
2309  llvm::Value *Module = MakeGlobal(ModuleTy, Elements);
2310
2311  // Create the load function calling the runtime entry point with the module
2312  // structure
2313  llvm::Function * LoadFunction = llvm::Function::Create(
2314      llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), false),
2315      llvm::GlobalValue::InternalLinkage, ".objc_load_function",
2316      &TheModule);
2317  llvm::BasicBlock *EntryBB =
2318      llvm::BasicBlock::Create(VMContext, "entry", LoadFunction);
2319  CGBuilderTy Builder(VMContext);
2320  Builder.SetInsertPoint(EntryBB);
2321
2322  llvm::FunctionType *FT =
2323    llvm::FunctionType::get(Builder.getVoidTy(),
2324                            llvm::PointerType::getUnqual(ModuleTy), true);
2325  llvm::Value *Register = CGM.CreateRuntimeFunction(FT, "__objc_exec_class");
2326  Builder.CreateCall(Register, Module);
2327  Builder.CreateRetVoid();
2328
2329  return LoadFunction;
2330}
2331
2332llvm::Function *CGObjCGNU::GenerateMethod(const ObjCMethodDecl *OMD,
2333                                          const ObjCContainerDecl *CD) {
2334  const ObjCCategoryImplDecl *OCD =
2335    dyn_cast<ObjCCategoryImplDecl>(OMD->getDeclContext());
2336  StringRef CategoryName = OCD ? OCD->getName() : "";
2337  StringRef ClassName = CD->getName();
2338  Selector MethodName = OMD->getSelector();
2339  bool isClassMethod = !OMD->isInstanceMethod();
2340
2341  CodeGenTypes &Types = CGM.getTypes();
2342  llvm::FunctionType *MethodTy =
2343    Types.GetFunctionType(Types.getFunctionInfo(OMD), OMD->isVariadic());
2344  std::string FunctionName = SymbolNameForMethod(ClassName, CategoryName,
2345      MethodName, isClassMethod);
2346
2347  llvm::Function *Method
2348    = llvm::Function::Create(MethodTy,
2349                             llvm::GlobalValue::InternalLinkage,
2350                             FunctionName,
2351                             &TheModule);
2352  return Method;
2353}
2354
2355llvm::Constant *CGObjCGNU::GetPropertyGetFunction() {
2356  return GetPropertyFn;
2357}
2358
2359llvm::Constant *CGObjCGNU::GetPropertySetFunction() {
2360  return SetPropertyFn;
2361}
2362
2363llvm::Constant *CGObjCGNU::GetGetStructFunction() {
2364  return GetStructPropertyFn;
2365}
2366llvm::Constant *CGObjCGNU::GetSetStructFunction() {
2367  return SetStructPropertyFn;
2368}
2369
2370llvm::Constant *CGObjCGNU::EnumerationMutationFunction() {
2371  return EnumerationMutationFn;
2372}
2373
2374void CGObjCGNU::EmitSynchronizedStmt(CodeGenFunction &CGF,
2375                                     const ObjCAtSynchronizedStmt &S) {
2376  EmitAtSynchronizedStmt(CGF, S, SyncEnterFn, SyncExitFn);
2377}
2378
2379
2380void CGObjCGNU::EmitTryStmt(CodeGenFunction &CGF,
2381                            const ObjCAtTryStmt &S) {
2382  // Unlike the Apple non-fragile runtimes, which also uses
2383  // unwind-based zero cost exceptions, the GNU Objective C runtime's
2384  // EH support isn't a veneer over C++ EH.  Instead, exception
2385  // objects are created by __objc_exception_throw and destroyed by
2386  // the personality function; this avoids the need for bracketing
2387  // catch handlers with calls to __blah_begin_catch/__blah_end_catch
2388  // (or even _Unwind_DeleteException), but probably doesn't
2389  // interoperate very well with foreign exceptions.
2390  //
2391  // In Objective-C++ mode, we actually emit something equivalent to the C++
2392  // exception handler.
2393  EmitTryCatchStmt(CGF, S, EnterCatchFn, ExitCatchFn, ExceptionReThrowFn);
2394  return ;
2395}
2396
2397void CGObjCGNU::EmitThrowStmt(CodeGenFunction &CGF,
2398                              const ObjCAtThrowStmt &S) {
2399  llvm::Value *ExceptionAsObject;
2400
2401  if (const Expr *ThrowExpr = S.getThrowExpr()) {
2402    llvm::Value *Exception = CGF.EmitObjCThrowOperand(ThrowExpr);
2403    ExceptionAsObject = Exception;
2404  } else {
2405    assert((!CGF.ObjCEHValueStack.empty() && CGF.ObjCEHValueStack.back()) &&
2406           "Unexpected rethrow outside @catch block.");
2407    ExceptionAsObject = CGF.ObjCEHValueStack.back();
2408  }
2409  ExceptionAsObject = CGF.Builder.CreateBitCast(ExceptionAsObject, IdTy);
2410
2411  // Note: This may have to be an invoke, if we want to support constructs like:
2412  // @try {
2413  //  @throw(obj);
2414  // }
2415  // @catch(id) ...
2416  //
2417  // This is effectively turning @throw into an incredibly-expensive goto, but
2418  // it may happen as a result of inlining followed by missed optimizations, or
2419  // as a result of stupidity.
2420  llvm::BasicBlock *UnwindBB = CGF.getInvokeDest();
2421  if (!UnwindBB) {
2422    CGF.Builder.CreateCall(ExceptionThrowFn, ExceptionAsObject);
2423    CGF.Builder.CreateUnreachable();
2424  } else {
2425    CGF.Builder.CreateInvoke(ExceptionThrowFn, UnwindBB, UnwindBB,
2426                             ExceptionAsObject);
2427  }
2428  // Clear the insertion point to indicate we are in unreachable code.
2429  CGF.Builder.ClearInsertionPoint();
2430}
2431
2432llvm::Value * CGObjCGNU::EmitObjCWeakRead(CodeGenFunction &CGF,
2433                                          llvm::Value *AddrWeakObj) {
2434  CGBuilderTy B = CGF.Builder;
2435  AddrWeakObj = EnforceType(B, AddrWeakObj, PtrToIdTy);
2436  return B.CreateCall(WeakReadFn, AddrWeakObj);
2437}
2438
2439void CGObjCGNU::EmitObjCWeakAssign(CodeGenFunction &CGF,
2440                                   llvm::Value *src, llvm::Value *dst) {
2441  CGBuilderTy B = CGF.Builder;
2442  src = EnforceType(B, src, IdTy);
2443  dst = EnforceType(B, dst, PtrToIdTy);
2444  B.CreateCall2(WeakAssignFn, src, dst);
2445}
2446
2447void CGObjCGNU::EmitObjCGlobalAssign(CodeGenFunction &CGF,
2448                                     llvm::Value *src, llvm::Value *dst,
2449                                     bool threadlocal) {
2450  CGBuilderTy B = CGF.Builder;
2451  src = EnforceType(B, src, IdTy);
2452  dst = EnforceType(B, dst, PtrToIdTy);
2453  if (!threadlocal)
2454    B.CreateCall2(GlobalAssignFn, src, dst);
2455  else
2456    // FIXME. Add threadloca assign API
2457    llvm_unreachable("EmitObjCGlobalAssign - Threal Local API NYI");
2458}
2459
2460void CGObjCGNU::EmitObjCIvarAssign(CodeGenFunction &CGF,
2461                                   llvm::Value *src, llvm::Value *dst,
2462                                   llvm::Value *ivarOffset) {
2463  CGBuilderTy B = CGF.Builder;
2464  src = EnforceType(B, src, IdTy);
2465  dst = EnforceType(B, dst, IdTy);
2466  B.CreateCall3(IvarAssignFn, src, dst, ivarOffset);
2467}
2468
2469void CGObjCGNU::EmitObjCStrongCastAssign(CodeGenFunction &CGF,
2470                                         llvm::Value *src, llvm::Value *dst) {
2471  CGBuilderTy B = CGF.Builder;
2472  src = EnforceType(B, src, IdTy);
2473  dst = EnforceType(B, dst, PtrToIdTy);
2474  B.CreateCall2(StrongCastAssignFn, src, dst);
2475}
2476
2477void CGObjCGNU::EmitGCMemmoveCollectable(CodeGenFunction &CGF,
2478                                         llvm::Value *DestPtr,
2479                                         llvm::Value *SrcPtr,
2480                                         llvm::Value *Size) {
2481  CGBuilderTy B = CGF.Builder;
2482  DestPtr = EnforceType(B, DestPtr, PtrTy);
2483  SrcPtr = EnforceType(B, SrcPtr, PtrTy);
2484
2485  B.CreateCall3(MemMoveFn, DestPtr, SrcPtr, Size);
2486}
2487
2488llvm::GlobalVariable *CGObjCGNU::ObjCIvarOffsetVariable(
2489                              const ObjCInterfaceDecl *ID,
2490                              const ObjCIvarDecl *Ivar) {
2491  const std::string Name = "__objc_ivar_offset_" + ID->getNameAsString()
2492    + '.' + Ivar->getNameAsString();
2493  // Emit the variable and initialize it with what we think the correct value
2494  // is.  This allows code compiled with non-fragile ivars to work correctly
2495  // when linked against code which isn't (most of the time).
2496  llvm::GlobalVariable *IvarOffsetPointer = TheModule.getNamedGlobal(Name);
2497  if (!IvarOffsetPointer) {
2498    // This will cause a run-time crash if we accidentally use it.  A value of
2499    // 0 would seem more sensible, but will silently overwrite the isa pointer
2500    // causing a great deal of confusion.
2501    uint64_t Offset = -1;
2502    // We can't call ComputeIvarBaseOffset() here if we have the
2503    // implementation, because it will create an invalid ASTRecordLayout object
2504    // that we are then stuck with forever, so we only initialize the ivar
2505    // offset variable with a guess if we only have the interface.  The
2506    // initializer will be reset later anyway, when we are generating the class
2507    // description.
2508    if (!CGM.getContext().getObjCImplementation(
2509              const_cast<ObjCInterfaceDecl *>(ID)))
2510      Offset = ComputeIvarBaseOffset(CGM, ID, Ivar);
2511
2512    llvm::ConstantInt *OffsetGuess = llvm::ConstantInt::get(Int32Ty, Offset,
2513                             /*isSigned*/true);
2514    // Don't emit the guess in non-PIC code because the linker will not be able
2515    // to replace it with the real version for a library.  In non-PIC code you
2516    // must compile with the fragile ABI if you want to use ivars from a
2517    // GCC-compiled class.
2518    if (CGM.getLangOptions().PICLevel) {
2519      llvm::GlobalVariable *IvarOffsetGV = new llvm::GlobalVariable(TheModule,
2520            Int32Ty, false,
2521            llvm::GlobalValue::PrivateLinkage, OffsetGuess, Name+".guess");
2522      IvarOffsetPointer = new llvm::GlobalVariable(TheModule,
2523            IvarOffsetGV->getType(), false, llvm::GlobalValue::LinkOnceAnyLinkage,
2524            IvarOffsetGV, Name);
2525    } else {
2526      IvarOffsetPointer = new llvm::GlobalVariable(TheModule,
2527              llvm::Type::getInt32PtrTy(VMContext), false,
2528              llvm::GlobalValue::ExternalLinkage, 0, Name);
2529    }
2530  }
2531  return IvarOffsetPointer;
2532}
2533
2534LValue CGObjCGNU::EmitObjCValueForIvar(CodeGenFunction &CGF,
2535                                       QualType ObjectTy,
2536                                       llvm::Value *BaseValue,
2537                                       const ObjCIvarDecl *Ivar,
2538                                       unsigned CVRQualifiers) {
2539  const ObjCInterfaceDecl *ID =
2540    ObjectTy->getAs<ObjCObjectType>()->getInterface();
2541  return EmitValueForIvarAtOffset(CGF, ID, BaseValue, Ivar, CVRQualifiers,
2542                                  EmitIvarOffset(CGF, ID, Ivar));
2543}
2544
2545static const ObjCInterfaceDecl *FindIvarInterface(ASTContext &Context,
2546                                                  const ObjCInterfaceDecl *OID,
2547                                                  const ObjCIvarDecl *OIVD) {
2548  for (const ObjCIvarDecl *next = OID->all_declared_ivar_begin(); next;
2549       next = next->getNextIvar()) {
2550    if (OIVD == next)
2551      return OID;
2552  }
2553
2554  // Otherwise check in the super class.
2555  if (const ObjCInterfaceDecl *Super = OID->getSuperClass())
2556    return FindIvarInterface(Context, Super, OIVD);
2557
2558  return 0;
2559}
2560
2561llvm::Value *CGObjCGNU::EmitIvarOffset(CodeGenFunction &CGF,
2562                         const ObjCInterfaceDecl *Interface,
2563                         const ObjCIvarDecl *Ivar) {
2564  if (CGM.getLangOptions().ObjCNonFragileABI) {
2565    Interface = FindIvarInterface(CGM.getContext(), Interface, Ivar);
2566    if (RuntimeVersion < 10)
2567      return CGF.Builder.CreateZExtOrBitCast(
2568          CGF.Builder.CreateLoad(CGF.Builder.CreateLoad(
2569                  ObjCIvarOffsetVariable(Interface, Ivar), false, "ivar")),
2570          PtrDiffTy);
2571    std::string name = "__objc_ivar_offset_value_" +
2572      Interface->getNameAsString() +"." + Ivar->getNameAsString();
2573    llvm::Value *Offset = TheModule.getGlobalVariable(name);
2574    if (!Offset)
2575      Offset = new llvm::GlobalVariable(TheModule, IntTy,
2576          false, llvm::GlobalValue::LinkOnceAnyLinkage,
2577          llvm::Constant::getNullValue(IntTy), name);
2578    return CGF.Builder.CreateLoad(Offset);
2579  }
2580  uint64_t Offset = ComputeIvarBaseOffset(CGF.CGM, Interface, Ivar);
2581  return llvm::ConstantInt::get(PtrDiffTy, Offset, /*isSigned*/true);
2582}
2583
2584CGObjCRuntime *
2585clang::CodeGen::CreateGNUObjCRuntime(CodeGenModule &CGM) {
2586  if (CGM.getLangOptions().ObjCNonFragileABI)
2587    return new CGObjCGNUstep(CGM);
2588  return new CGObjCGCC(CGM);
2589}
2590