CGStmt.cpp revision 01234bbc1cb94946df8046ad95e17537082b4f71
1//===--- CGStmt.cpp - Emit LLVM Code from Statements ----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This contains code to emit Stmt nodes as LLVM code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CGDebugInfo.h"
15#include "CodeGenModule.h"
16#include "CodeGenFunction.h"
17#include "clang/AST/StmtVisitor.h"
18#include "clang/Basic/PrettyStackTrace.h"
19#include "clang/Basic/TargetInfo.h"
20#include "llvm/ADT/StringExtras.h"
21#include "llvm/InlineAsm.h"
22#include "llvm/Intrinsics.h"
23#include "llvm/Target/TargetData.h"
24using namespace clang;
25using namespace CodeGen;
26
27//===----------------------------------------------------------------------===//
28//                              Statement Emission
29//===----------------------------------------------------------------------===//
30
31void CodeGenFunction::EmitStopPoint(const Stmt *S) {
32  if (CGDebugInfo *DI = getDebugInfo()) {
33    DI->setLocation(S->getLocStart());
34    DI->EmitStopPoint(CurFn, Builder);
35  }
36}
37
38void CodeGenFunction::EmitStmt(const Stmt *S) {
39  assert(S && "Null statement?");
40
41  // Check if we can handle this without bothering to generate an
42  // insert point or debug info.
43  if (EmitSimpleStmt(S))
44    return;
45
46  // Check if we are generating unreachable code.
47  if (!HaveInsertPoint()) {
48    // If so, and the statement doesn't contain a label, then we do not need to
49    // generate actual code. This is safe because (1) the current point is
50    // unreachable, so we don't need to execute the code, and (2) we've already
51    // handled the statements which update internal data structures (like the
52    // local variable map) which could be used by subsequent statements.
53    if (!ContainsLabel(S)) {
54      // Verify that any decl statements were handled as simple, they may be in
55      // scope of subsequent reachable statements.
56      assert(!isa<DeclStmt>(*S) && "Unexpected DeclStmt!");
57      return;
58    }
59
60    // Otherwise, make a new block to hold the code.
61    EnsureInsertPoint();
62  }
63
64  // Generate a stoppoint if we are emitting debug info.
65  EmitStopPoint(S);
66
67  switch (S->getStmtClass()) {
68  default:
69    // Must be an expression in a stmt context.  Emit the value (to get
70    // side-effects) and ignore the result.
71    if (!isa<Expr>(S))
72      ErrorUnsupported(S, "statement");
73
74    EmitAnyExpr(cast<Expr>(S), 0, false, true);
75
76    // Expression emitters don't handle unreachable blocks yet, so look for one
77    // explicitly here. This handles the common case of a call to a noreturn
78    // function.
79    if (llvm::BasicBlock *CurBB = Builder.GetInsertBlock()) {
80      if (CurBB->empty() && CurBB->use_empty()) {
81        CurBB->eraseFromParent();
82        Builder.ClearInsertionPoint();
83      }
84    }
85    break;
86  case Stmt::IndirectGotoStmtClass:
87    EmitIndirectGotoStmt(cast<IndirectGotoStmt>(*S)); break;
88
89  case Stmt::IfStmtClass:       EmitIfStmt(cast<IfStmt>(*S));             break;
90  case Stmt::WhileStmtClass:    EmitWhileStmt(cast<WhileStmt>(*S));       break;
91  case Stmt::DoStmtClass:       EmitDoStmt(cast<DoStmt>(*S));             break;
92  case Stmt::ForStmtClass:      EmitForStmt(cast<ForStmt>(*S));           break;
93
94  case Stmt::ReturnStmtClass:   EmitReturnStmt(cast<ReturnStmt>(*S));     break;
95
96  case Stmt::SwitchStmtClass:   EmitSwitchStmt(cast<SwitchStmt>(*S));     break;
97  case Stmt::AsmStmtClass:      EmitAsmStmt(cast<AsmStmt>(*S));           break;
98
99  case Stmt::ObjCAtTryStmtClass:
100    EmitObjCAtTryStmt(cast<ObjCAtTryStmt>(*S));
101    break;
102  case Stmt::ObjCAtCatchStmtClass:
103    assert(0 && "@catch statements should be handled by EmitObjCAtTryStmt");
104    break;
105  case Stmt::ObjCAtFinallyStmtClass:
106    assert(0 && "@finally statements should be handled by EmitObjCAtTryStmt");
107    break;
108  case Stmt::ObjCAtThrowStmtClass:
109    EmitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(*S));
110    break;
111  case Stmt::ObjCAtSynchronizedStmtClass:
112    EmitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(*S));
113    break;
114  case Stmt::ObjCForCollectionStmtClass:
115    EmitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(*S));
116    break;
117
118  case Stmt::CXXTryStmtClass:
119    EmitCXXTryStmt(cast<CXXTryStmt>(*S));
120    break;
121  }
122}
123
124bool CodeGenFunction::EmitSimpleStmt(const Stmt *S) {
125  switch (S->getStmtClass()) {
126  default: return false;
127  case Stmt::NullStmtClass: break;
128  case Stmt::CompoundStmtClass: EmitCompoundStmt(cast<CompoundStmt>(*S)); break;
129  case Stmt::DeclStmtClass:     EmitDeclStmt(cast<DeclStmt>(*S));         break;
130  case Stmt::LabelStmtClass:    EmitLabelStmt(cast<LabelStmt>(*S));       break;
131  case Stmt::GotoStmtClass:     EmitGotoStmt(cast<GotoStmt>(*S));         break;
132  case Stmt::BreakStmtClass:    EmitBreakStmt(cast<BreakStmt>(*S));       break;
133  case Stmt::ContinueStmtClass: EmitContinueStmt(cast<ContinueStmt>(*S)); break;
134  case Stmt::DefaultStmtClass:  EmitDefaultStmt(cast<DefaultStmt>(*S));   break;
135  case Stmt::CaseStmtClass:     EmitCaseStmt(cast<CaseStmt>(*S));         break;
136  }
137
138  return true;
139}
140
141/// EmitCompoundStmt - Emit a compound statement {..} node.  If GetLast is true,
142/// this captures the expression result of the last sub-statement and returns it
143/// (for use by the statement expression extension).
144RValue CodeGenFunction::EmitCompoundStmt(const CompoundStmt &S, bool GetLast,
145                                         llvm::Value *AggLoc, bool isAggVol) {
146  PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),S.getLBracLoc(),
147                             "LLVM IR generation of compound statement ('{}')");
148
149  CGDebugInfo *DI = getDebugInfo();
150  if (DI) {
151    DI->setLocation(S.getLBracLoc());
152    DI->EmitRegionStart(CurFn, Builder);
153  }
154
155  // Keep track of the current cleanup stack depth.
156  CleanupScope Scope(*this);
157
158  for (CompoundStmt::const_body_iterator I = S.body_begin(),
159       E = S.body_end()-GetLast; I != E; ++I)
160    EmitStmt(*I);
161
162  if (DI) {
163    DI->setLocation(S.getLBracLoc());
164    DI->EmitRegionEnd(CurFn, Builder);
165  }
166
167  RValue RV;
168  if (!GetLast)
169    RV = RValue::get(0);
170  else {
171    // We have to special case labels here.  They are statements, but when put
172    // at the end of a statement expression, they yield the value of their
173    // subexpression.  Handle this by walking through all labels we encounter,
174    // emitting them before we evaluate the subexpr.
175    const Stmt *LastStmt = S.body_back();
176    while (const LabelStmt *LS = dyn_cast<LabelStmt>(LastStmt)) {
177      EmitLabel(*LS);
178      LastStmt = LS->getSubStmt();
179    }
180
181    EnsureInsertPoint();
182
183    RV = EmitAnyExpr(cast<Expr>(LastStmt), AggLoc);
184  }
185
186  return RV;
187}
188
189void CodeGenFunction::SimplifyForwardingBlocks(llvm::BasicBlock *BB) {
190  llvm::BranchInst *BI = dyn_cast<llvm::BranchInst>(BB->getTerminator());
191
192  // If there is a cleanup stack, then we it isn't worth trying to
193  // simplify this block (we would need to remove it from the scope map
194  // and cleanup entry).
195  if (!CleanupEntries.empty())
196    return;
197
198  // Can only simplify direct branches.
199  if (!BI || !BI->isUnconditional())
200    return;
201
202  BB->replaceAllUsesWith(BI->getSuccessor(0));
203  BI->eraseFromParent();
204  BB->eraseFromParent();
205}
206
207void CodeGenFunction::EmitBlock(llvm::BasicBlock *BB, bool IsFinished) {
208  // Fall out of the current block (if necessary).
209  EmitBranch(BB);
210
211  if (IsFinished && BB->use_empty()) {
212    delete BB;
213    return;
214  }
215
216  // If necessary, associate the block with the cleanup stack size.
217  if (!CleanupEntries.empty()) {
218    // Check if the basic block has already been inserted.
219    BlockScopeMap::iterator I = BlockScopes.find(BB);
220    if (I != BlockScopes.end()) {
221      assert(I->second == CleanupEntries.size() - 1);
222    } else {
223      BlockScopes[BB] = CleanupEntries.size() - 1;
224      CleanupEntries.back().Blocks.push_back(BB);
225    }
226  }
227
228  CurFn->getBasicBlockList().push_back(BB);
229  Builder.SetInsertPoint(BB);
230}
231
232void CodeGenFunction::EmitBranch(llvm::BasicBlock *Target) {
233  // Emit a branch from the current block to the target one if this
234  // was a real block.  If this was just a fall-through block after a
235  // terminator, don't emit it.
236  llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
237
238  if (!CurBB || CurBB->getTerminator()) {
239    // If there is no insert point or the previous block is already
240    // terminated, don't touch it.
241  } else {
242    // Otherwise, create a fall-through branch.
243    Builder.CreateBr(Target);
244  }
245
246  Builder.ClearInsertionPoint();
247}
248
249void CodeGenFunction::EmitLabel(const LabelStmt &S) {
250  EmitBlock(getBasicBlockForLabel(&S));
251}
252
253
254void CodeGenFunction::EmitLabelStmt(const LabelStmt &S) {
255  EmitLabel(S);
256  EmitStmt(S.getSubStmt());
257}
258
259void CodeGenFunction::EmitGotoStmt(const GotoStmt &S) {
260  // If this code is reachable then emit a stop point (if generating
261  // debug info). We have to do this ourselves because we are on the
262  // "simple" statement path.
263  if (HaveInsertPoint())
264    EmitStopPoint(&S);
265
266  EmitBranchThroughCleanup(getBasicBlockForLabel(S.getLabel()));
267}
268
269
270void CodeGenFunction::EmitIndirectGotoStmt(const IndirectGotoStmt &S) {
271  // Ensure that we have an i8* for our PHI node.
272  llvm::Value *V = Builder.CreateBitCast(EmitScalarExpr(S.getTarget()),
273                                         llvm::Type::getInt8PtrTy(VMContext),
274                                          "addr");
275  llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
276
277
278  // Get the basic block for the indirect goto.
279  llvm::BasicBlock *IndGotoBB = GetIndirectGotoBlock();
280
281  // The first instruction in the block has to be the PHI for the switch dest,
282  // add an entry for this branch.
283  cast<llvm::PHINode>(IndGotoBB->begin())->addIncoming(V, CurBB);
284
285  EmitBranch(IndGotoBB);
286}
287
288void CodeGenFunction::EmitIfStmt(const IfStmt &S) {
289  // C99 6.8.4.1: The first substatement is executed if the expression compares
290  // unequal to 0.  The condition must be a scalar type.
291  CleanupScope ConditionScope(*this);
292
293  if (S.getConditionVariable())
294    EmitLocalBlockVarDecl(*S.getConditionVariable());
295
296  // If the condition constant folds and can be elided, try to avoid emitting
297  // the condition and the dead arm of the if/else.
298  if (int Cond = ConstantFoldsToSimpleInteger(S.getCond())) {
299    // Figure out which block (then or else) is executed.
300    const Stmt *Executed = S.getThen(), *Skipped  = S.getElse();
301    if (Cond == -1)  // Condition false?
302      std::swap(Executed, Skipped);
303
304    // If the skipped block has no labels in it, just emit the executed block.
305    // This avoids emitting dead code and simplifies the CFG substantially.
306    if (!ContainsLabel(Skipped)) {
307      if (Executed) {
308        CleanupScope ExecutedScope(*this);
309        EmitStmt(Executed);
310      }
311      return;
312    }
313  }
314
315  // Otherwise, the condition did not fold, or we couldn't elide it.  Just emit
316  // the conditional branch.
317  llvm::BasicBlock *ThenBlock = createBasicBlock("if.then");
318  llvm::BasicBlock *ContBlock = createBasicBlock("if.end");
319  llvm::BasicBlock *ElseBlock = ContBlock;
320  if (S.getElse())
321    ElseBlock = createBasicBlock("if.else");
322  EmitBranchOnBoolExpr(S.getCond(), ThenBlock, ElseBlock);
323
324  // Emit the 'then' code.
325  EmitBlock(ThenBlock);
326  {
327    CleanupScope ThenScope(*this);
328    EmitStmt(S.getThen());
329  }
330  EmitBranch(ContBlock);
331
332  // Emit the 'else' code if present.
333  if (const Stmt *Else = S.getElse()) {
334    EmitBlock(ElseBlock);
335    {
336      CleanupScope ElseScope(*this);
337      EmitStmt(Else);
338    }
339    EmitBranch(ContBlock);
340  }
341
342  // Emit the continuation block for code after the if.
343  EmitBlock(ContBlock, true);
344}
345
346void CodeGenFunction::EmitWhileStmt(const WhileStmt &S) {
347  // Emit the header for the loop, insert it, which will create an uncond br to
348  // it.
349  llvm::BasicBlock *LoopHeader = createBasicBlock("while.cond");
350  EmitBlock(LoopHeader);
351
352  // Create an exit block for when the condition fails, create a block for the
353  // body of the loop.
354  llvm::BasicBlock *ExitBlock = createBasicBlock("while.end");
355  llvm::BasicBlock *LoopBody  = createBasicBlock("while.body");
356
357  // Store the blocks to use for break and continue.
358  BreakContinueStack.push_back(BreakContinue(ExitBlock, LoopHeader));
359
360  // Evaluate the conditional in the while header.  C99 6.8.5.1: The
361  // evaluation of the controlling expression takes place before each
362  // execution of the loop body.
363  llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
364
365  // while(1) is common, avoid extra exit blocks.  Be sure
366  // to correctly handle break/continue though.
367  bool EmitBoolCondBranch = true;
368  if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal))
369    if (C->isOne())
370      EmitBoolCondBranch = false;
371
372  // As long as the condition is true, go to the loop body.
373  if (EmitBoolCondBranch)
374    Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock);
375
376  // Emit the loop body.
377  EmitBlock(LoopBody);
378  EmitStmt(S.getBody());
379
380  BreakContinueStack.pop_back();
381
382  // Cycle to the condition.
383  EmitBranch(LoopHeader);
384
385  // Emit the exit block.
386  EmitBlock(ExitBlock, true);
387
388  // The LoopHeader typically is just a branch if we skipped emitting
389  // a branch, try to erase it.
390  if (!EmitBoolCondBranch)
391    SimplifyForwardingBlocks(LoopHeader);
392}
393
394void CodeGenFunction::EmitDoStmt(const DoStmt &S) {
395  // Emit the body for the loop, insert it, which will create an uncond br to
396  // it.
397  llvm::BasicBlock *LoopBody = createBasicBlock("do.body");
398  llvm::BasicBlock *AfterDo = createBasicBlock("do.end");
399  EmitBlock(LoopBody);
400
401  llvm::BasicBlock *DoCond = createBasicBlock("do.cond");
402
403  // Store the blocks to use for break and continue.
404  BreakContinueStack.push_back(BreakContinue(AfterDo, DoCond));
405
406  // Emit the body of the loop into the block.
407  EmitStmt(S.getBody());
408
409  BreakContinueStack.pop_back();
410
411  EmitBlock(DoCond);
412
413  // C99 6.8.5.2: "The evaluation of the controlling expression takes place
414  // after each execution of the loop body."
415
416  // Evaluate the conditional in the while header.
417  // C99 6.8.5p2/p4: The first substatement is executed if the expression
418  // compares unequal to 0.  The condition must be a scalar type.
419  llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
420
421  // "do {} while (0)" is common in macros, avoid extra blocks.  Be sure
422  // to correctly handle break/continue though.
423  bool EmitBoolCondBranch = true;
424  if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal))
425    if (C->isZero())
426      EmitBoolCondBranch = false;
427
428  // As long as the condition is true, iterate the loop.
429  if (EmitBoolCondBranch)
430    Builder.CreateCondBr(BoolCondVal, LoopBody, AfterDo);
431
432  // Emit the exit block.
433  EmitBlock(AfterDo);
434
435  // The DoCond block typically is just a branch if we skipped
436  // emitting a branch, try to erase it.
437  if (!EmitBoolCondBranch)
438    SimplifyForwardingBlocks(DoCond);
439}
440
441void CodeGenFunction::EmitForStmt(const ForStmt &S) {
442  // FIXME: What do we do if the increment (f.e.) contains a stmt expression,
443  // which contains a continue/break?
444
445  // Evaluate the first part before the loop.
446  if (S.getInit())
447    EmitStmt(S.getInit());
448
449  // Start the loop with a block that tests the condition.
450  llvm::BasicBlock *CondBlock = createBasicBlock("for.cond");
451  llvm::BasicBlock *AfterFor = createBasicBlock("for.end");
452
453  EmitBlock(CondBlock);
454
455  // Evaluate the condition if present.  If not, treat it as a
456  // non-zero-constant according to 6.8.5.3p2, aka, true.
457  if (S.getCond()) {
458    // As long as the condition is true, iterate the loop.
459    llvm::BasicBlock *ForBody = createBasicBlock("for.body");
460
461    // C99 6.8.5p2/p4: The first substatement is executed if the expression
462    // compares unequal to 0.  The condition must be a scalar type.
463    EmitBranchOnBoolExpr(S.getCond(), ForBody, AfterFor);
464
465    EmitBlock(ForBody);
466  } else {
467    // Treat it as a non-zero constant.  Don't even create a new block for the
468    // body, just fall into it.
469  }
470
471  // If the for loop doesn't have an increment we can just use the
472  // condition as the continue block.
473  llvm::BasicBlock *ContinueBlock;
474  if (S.getInc())
475    ContinueBlock = createBasicBlock("for.inc");
476  else
477    ContinueBlock = CondBlock;
478
479  // Store the blocks to use for break and continue.
480  BreakContinueStack.push_back(BreakContinue(AfterFor, ContinueBlock));
481
482  // If the condition is true, execute the body of the for stmt.
483  CGDebugInfo *DI = getDebugInfo();
484  if (DI) {
485    DI->setLocation(S.getSourceRange().getBegin());
486    DI->EmitRegionStart(CurFn, Builder);
487  }
488  EmitStmt(S.getBody());
489
490  BreakContinueStack.pop_back();
491
492  // If there is an increment, emit it next.
493  if (S.getInc()) {
494    EmitBlock(ContinueBlock);
495    EmitStmt(S.getInc());
496  }
497
498  // Finally, branch back up to the condition for the next iteration.
499  EmitBranch(CondBlock);
500  if (DI) {
501    DI->setLocation(S.getSourceRange().getEnd());
502    DI->EmitRegionEnd(CurFn, Builder);
503  }
504
505  // Emit the fall-through block.
506  EmitBlock(AfterFor, true);
507}
508
509void CodeGenFunction::EmitReturnOfRValue(RValue RV, QualType Ty) {
510  if (RV.isScalar()) {
511    Builder.CreateStore(RV.getScalarVal(), ReturnValue);
512  } else if (RV.isAggregate()) {
513    EmitAggregateCopy(ReturnValue, RV.getAggregateAddr(), Ty);
514  } else {
515    StoreComplexToAddr(RV.getComplexVal(), ReturnValue, false);
516  }
517  EmitBranchThroughCleanup(ReturnBlock);
518}
519
520/// EmitReturnStmt - Note that due to GCC extensions, this can have an operand
521/// if the function returns void, or may be missing one if the function returns
522/// non-void.  Fun stuff :).
523void CodeGenFunction::EmitReturnStmt(const ReturnStmt &S) {
524  // Emit the result value, even if unused, to evalute the side effects.
525  const Expr *RV = S.getRetValue();
526
527  // FIXME: Clean this up by using an LValue for ReturnTemp,
528  // EmitStoreThroughLValue, and EmitAnyExpr.
529  if (!ReturnValue) {
530    // Make sure not to return anything, but evaluate the expression
531    // for side effects.
532    if (RV)
533      EmitAnyExpr(RV);
534  } else if (RV == 0) {
535    // Do nothing (return value is left uninitialized)
536  } else if (FnRetTy->isReferenceType()) {
537    // If this function returns a reference, take the address of the expression
538    // rather than the value.
539    Builder.CreateStore(EmitLValue(RV).getAddress(), ReturnValue);
540  } else if (!hasAggregateLLVMType(RV->getType())) {
541    Builder.CreateStore(EmitScalarExpr(RV), ReturnValue);
542  } else if (RV->getType()->isAnyComplexType()) {
543    EmitComplexExprIntoAddr(RV, ReturnValue, false);
544  } else {
545    EmitAggExpr(RV, ReturnValue, false);
546  }
547
548  EmitBranchThroughCleanup(ReturnBlock);
549}
550
551void CodeGenFunction::EmitDeclStmt(const DeclStmt &S) {
552  // As long as debug info is modeled with instructions, we have to ensure we
553  // have a place to insert here and write the stop point here.
554  if (getDebugInfo()) {
555    EnsureInsertPoint();
556    EmitStopPoint(&S);
557  }
558
559  for (DeclStmt::const_decl_iterator I = S.decl_begin(), E = S.decl_end();
560       I != E; ++I)
561    EmitDecl(**I);
562}
563
564void CodeGenFunction::EmitBreakStmt(const BreakStmt &S) {
565  assert(!BreakContinueStack.empty() && "break stmt not in a loop or switch!");
566
567  // If this code is reachable then emit a stop point (if generating
568  // debug info). We have to do this ourselves because we are on the
569  // "simple" statement path.
570  if (HaveInsertPoint())
571    EmitStopPoint(&S);
572
573  llvm::BasicBlock *Block = BreakContinueStack.back().BreakBlock;
574  EmitBranchThroughCleanup(Block);
575}
576
577void CodeGenFunction::EmitContinueStmt(const ContinueStmt &S) {
578  assert(!BreakContinueStack.empty() && "continue stmt not in a loop!");
579
580  // If this code is reachable then emit a stop point (if generating
581  // debug info). We have to do this ourselves because we are on the
582  // "simple" statement path.
583  if (HaveInsertPoint())
584    EmitStopPoint(&S);
585
586  llvm::BasicBlock *Block = BreakContinueStack.back().ContinueBlock;
587  EmitBranchThroughCleanup(Block);
588}
589
590/// EmitCaseStmtRange - If case statement range is not too big then
591/// add multiple cases to switch instruction, one for each value within
592/// the range. If range is too big then emit "if" condition check.
593void CodeGenFunction::EmitCaseStmtRange(const CaseStmt &S) {
594  assert(S.getRHS() && "Expected RHS value in CaseStmt");
595
596  llvm::APSInt LHS = S.getLHS()->EvaluateAsInt(getContext());
597  llvm::APSInt RHS = S.getRHS()->EvaluateAsInt(getContext());
598
599  // Emit the code for this case. We do this first to make sure it is
600  // properly chained from our predecessor before generating the
601  // switch machinery to enter this block.
602  EmitBlock(createBasicBlock("sw.bb"));
603  llvm::BasicBlock *CaseDest = Builder.GetInsertBlock();
604  EmitStmt(S.getSubStmt());
605
606  // If range is empty, do nothing.
607  if (LHS.isSigned() ? RHS.slt(LHS) : RHS.ult(LHS))
608    return;
609
610  llvm::APInt Range = RHS - LHS;
611  // FIXME: parameters such as this should not be hardcoded.
612  if (Range.ult(llvm::APInt(Range.getBitWidth(), 64))) {
613    // Range is small enough to add multiple switch instruction cases.
614    for (unsigned i = 0, e = Range.getZExtValue() + 1; i != e; ++i) {
615      SwitchInsn->addCase(llvm::ConstantInt::get(VMContext, LHS), CaseDest);
616      LHS++;
617    }
618    return;
619  }
620
621  // The range is too big. Emit "if" condition into a new block,
622  // making sure to save and restore the current insertion point.
623  llvm::BasicBlock *RestoreBB = Builder.GetInsertBlock();
624
625  // Push this test onto the chain of range checks (which terminates
626  // in the default basic block). The switch's default will be changed
627  // to the top of this chain after switch emission is complete.
628  llvm::BasicBlock *FalseDest = CaseRangeBlock;
629  CaseRangeBlock = createBasicBlock("sw.caserange");
630
631  CurFn->getBasicBlockList().push_back(CaseRangeBlock);
632  Builder.SetInsertPoint(CaseRangeBlock);
633
634  // Emit range check.
635  llvm::Value *Diff =
636    Builder.CreateSub(SwitchInsn->getCondition(),
637                      llvm::ConstantInt::get(VMContext, LHS),  "tmp");
638  llvm::Value *Cond =
639    Builder.CreateICmpULE(Diff,
640                          llvm::ConstantInt::get(VMContext, Range), "tmp");
641  Builder.CreateCondBr(Cond, CaseDest, FalseDest);
642
643  // Restore the appropriate insertion point.
644  if (RestoreBB)
645    Builder.SetInsertPoint(RestoreBB);
646  else
647    Builder.ClearInsertionPoint();
648}
649
650void CodeGenFunction::EmitCaseStmt(const CaseStmt &S) {
651  if (S.getRHS()) {
652    EmitCaseStmtRange(S);
653    return;
654  }
655
656  EmitBlock(createBasicBlock("sw.bb"));
657  llvm::BasicBlock *CaseDest = Builder.GetInsertBlock();
658  llvm::APSInt CaseVal = S.getLHS()->EvaluateAsInt(getContext());
659  SwitchInsn->addCase(llvm::ConstantInt::get(VMContext, CaseVal), CaseDest);
660
661  // Recursively emitting the statement is acceptable, but is not wonderful for
662  // code where we have many case statements nested together, i.e.:
663  //  case 1:
664  //    case 2:
665  //      case 3: etc.
666  // Handling this recursively will create a new block for each case statement
667  // that falls through to the next case which is IR intensive.  It also causes
668  // deep recursion which can run into stack depth limitations.  Handle
669  // sequential non-range case statements specially.
670  const CaseStmt *CurCase = &S;
671  const CaseStmt *NextCase = dyn_cast<CaseStmt>(S.getSubStmt());
672
673  // Otherwise, iteratively add consequtive cases to this switch stmt.
674  while (NextCase && NextCase->getRHS() == 0) {
675    CurCase = NextCase;
676    CaseVal = CurCase->getLHS()->EvaluateAsInt(getContext());
677    SwitchInsn->addCase(llvm::ConstantInt::get(VMContext, CaseVal), CaseDest);
678
679    NextCase = dyn_cast<CaseStmt>(CurCase->getSubStmt());
680  }
681
682  // Normal default recursion for non-cases.
683  EmitStmt(CurCase->getSubStmt());
684}
685
686void CodeGenFunction::EmitDefaultStmt(const DefaultStmt &S) {
687  llvm::BasicBlock *DefaultBlock = SwitchInsn->getDefaultDest();
688  assert(DefaultBlock->empty() &&
689         "EmitDefaultStmt: Default block already defined?");
690  EmitBlock(DefaultBlock);
691  EmitStmt(S.getSubStmt());
692}
693
694void CodeGenFunction::EmitSwitchStmt(const SwitchStmt &S) {
695  llvm::Value *CondV = EmitScalarExpr(S.getCond());
696
697  // Handle nested switch statements.
698  llvm::SwitchInst *SavedSwitchInsn = SwitchInsn;
699  llvm::BasicBlock *SavedCRBlock = CaseRangeBlock;
700
701  // Create basic block to hold stuff that comes after switch
702  // statement. We also need to create a default block now so that
703  // explicit case ranges tests can have a place to jump to on
704  // failure.
705  llvm::BasicBlock *NextBlock = createBasicBlock("sw.epilog");
706  llvm::BasicBlock *DefaultBlock = createBasicBlock("sw.default");
707  SwitchInsn = Builder.CreateSwitch(CondV, DefaultBlock);
708  CaseRangeBlock = DefaultBlock;
709
710  // Clear the insertion point to indicate we are in unreachable code.
711  Builder.ClearInsertionPoint();
712
713  // All break statements jump to NextBlock. If BreakContinueStack is non empty
714  // then reuse last ContinueBlock.
715  llvm::BasicBlock *ContinueBlock = 0;
716  if (!BreakContinueStack.empty())
717    ContinueBlock = BreakContinueStack.back().ContinueBlock;
718
719  // Ensure any vlas created between there and here, are undone
720  BreakContinueStack.push_back(BreakContinue(NextBlock, ContinueBlock));
721
722  // Emit switch body.
723  EmitStmt(S.getBody());
724
725  BreakContinueStack.pop_back();
726
727  // Update the default block in case explicit case range tests have
728  // been chained on top.
729  SwitchInsn->setSuccessor(0, CaseRangeBlock);
730
731  // If a default was never emitted then reroute any jumps to it and
732  // discard.
733  if (!DefaultBlock->getParent()) {
734    DefaultBlock->replaceAllUsesWith(NextBlock);
735    delete DefaultBlock;
736  }
737
738  // Emit continuation.
739  EmitBlock(NextBlock, true);
740
741  SwitchInsn = SavedSwitchInsn;
742  CaseRangeBlock = SavedCRBlock;
743}
744
745static std::string
746SimplifyConstraint(const char *Constraint, const TargetInfo &Target,
747                 llvm::SmallVectorImpl<TargetInfo::ConstraintInfo> *OutCons=0) {
748  std::string Result;
749
750  while (*Constraint) {
751    switch (*Constraint) {
752    default:
753      Result += Target.convertConstraint(*Constraint);
754      break;
755    // Ignore these
756    case '*':
757    case '?':
758    case '!':
759      break;
760    case 'g':
761      Result += "imr";
762      break;
763    case '[': {
764      assert(OutCons &&
765             "Must pass output names to constraints with a symbolic name");
766      unsigned Index;
767      bool result = Target.resolveSymbolicName(Constraint,
768                                               &(*OutCons)[0],
769                                               OutCons->size(), Index);
770      assert(result && "Could not resolve symbolic name"); result=result;
771      Result += llvm::utostr(Index);
772      break;
773    }
774    }
775
776    Constraint++;
777  }
778
779  return Result;
780}
781
782llvm::Value* CodeGenFunction::EmitAsmInput(const AsmStmt &S,
783                                         const TargetInfo::ConstraintInfo &Info,
784                                           const Expr *InputExpr,
785                                           std::string &ConstraintStr) {
786  llvm::Value *Arg;
787  if (Info.allowsRegister() || !Info.allowsMemory()) {
788    const llvm::Type *Ty = ConvertType(InputExpr->getType());
789
790    if (Ty->isSingleValueType()) {
791      Arg = EmitScalarExpr(InputExpr);
792    } else {
793      InputExpr = InputExpr->IgnoreParenNoopCasts(getContext());
794      LValue Dest = EmitLValue(InputExpr);
795
796      uint64_t Size = CGM.getTargetData().getTypeSizeInBits(Ty);
797      if (Size <= 64 && llvm::isPowerOf2_64(Size)) {
798        Ty = llvm::IntegerType::get(VMContext, Size);
799        Ty = llvm::PointerType::getUnqual(Ty);
800
801        Arg = Builder.CreateLoad(Builder.CreateBitCast(Dest.getAddress(), Ty));
802      } else {
803        Arg = Dest.getAddress();
804        ConstraintStr += '*';
805      }
806    }
807  } else {
808    InputExpr = InputExpr->IgnoreParenNoopCasts(getContext());
809    LValue Dest = EmitLValue(InputExpr);
810    Arg = Dest.getAddress();
811    ConstraintStr += '*';
812  }
813
814  return Arg;
815}
816
817void CodeGenFunction::EmitAsmStmt(const AsmStmt &S) {
818  // Analyze the asm string to decompose it into its pieces.  We know that Sema
819  // has already done this, so it is guaranteed to be successful.
820  llvm::SmallVector<AsmStmt::AsmStringPiece, 4> Pieces;
821  unsigned DiagOffs;
822  S.AnalyzeAsmString(Pieces, getContext(), DiagOffs);
823
824  // Assemble the pieces into the final asm string.
825  std::string AsmString;
826  for (unsigned i = 0, e = Pieces.size(); i != e; ++i) {
827    if (Pieces[i].isString())
828      AsmString += Pieces[i].getString();
829    else if (Pieces[i].getModifier() == '\0')
830      AsmString += '$' + llvm::utostr(Pieces[i].getOperandNo());
831    else
832      AsmString += "${" + llvm::utostr(Pieces[i].getOperandNo()) + ':' +
833                   Pieces[i].getModifier() + '}';
834  }
835
836  // Get all the output and input constraints together.
837  llvm::SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
838  llvm::SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;
839
840  for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
841    TargetInfo::ConstraintInfo Info(S.getOutputConstraint(i),
842                                    S.getOutputName(i));
843    bool result = Target.validateOutputConstraint(Info);
844    assert(result && "Failed to parse output constraint"); result=result;
845    OutputConstraintInfos.push_back(Info);
846  }
847
848  for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
849    TargetInfo::ConstraintInfo Info(S.getInputConstraint(i),
850                                    S.getInputName(i));
851    bool result = Target.validateInputConstraint(OutputConstraintInfos.data(),
852                                                 S.getNumOutputs(),
853                                                 Info); result=result;
854    assert(result && "Failed to parse input constraint");
855    InputConstraintInfos.push_back(Info);
856  }
857
858  std::string Constraints;
859
860  std::vector<LValue> ResultRegDests;
861  std::vector<QualType> ResultRegQualTys;
862  std::vector<const llvm::Type *> ResultRegTypes;
863  std::vector<const llvm::Type *> ResultTruncRegTypes;
864  std::vector<const llvm::Type*> ArgTypes;
865  std::vector<llvm::Value*> Args;
866
867  // Keep track of inout constraints.
868  std::string InOutConstraints;
869  std::vector<llvm::Value*> InOutArgs;
870  std::vector<const llvm::Type*> InOutArgTypes;
871
872  for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
873    TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i];
874
875    // Simplify the output constraint.
876    std::string OutputConstraint(S.getOutputConstraint(i));
877    OutputConstraint = SimplifyConstraint(OutputConstraint.c_str() + 1, Target);
878
879    const Expr *OutExpr = S.getOutputExpr(i);
880    OutExpr = OutExpr->IgnoreParenNoopCasts(getContext());
881
882    LValue Dest = EmitLValue(OutExpr);
883    if (!Constraints.empty())
884      Constraints += ',';
885
886    // If this is a register output, then make the inline asm return it
887    // by-value.  If this is a memory result, return the value by-reference.
888    if (!Info.allowsMemory() && !hasAggregateLLVMType(OutExpr->getType())) {
889      Constraints += "=" + OutputConstraint;
890      ResultRegQualTys.push_back(OutExpr->getType());
891      ResultRegDests.push_back(Dest);
892      ResultRegTypes.push_back(ConvertTypeForMem(OutExpr->getType()));
893      ResultTruncRegTypes.push_back(ResultRegTypes.back());
894
895      // If this output is tied to an input, and if the input is larger, then
896      // we need to set the actual result type of the inline asm node to be the
897      // same as the input type.
898      if (Info.hasMatchingInput()) {
899        unsigned InputNo;
900        for (InputNo = 0; InputNo != S.getNumInputs(); ++InputNo) {
901          TargetInfo::ConstraintInfo &Input = InputConstraintInfos[InputNo];
902          if (Input.hasTiedOperand() &&
903              Input.getTiedOperand() == i)
904            break;
905        }
906        assert(InputNo != S.getNumInputs() && "Didn't find matching input!");
907
908        QualType InputTy = S.getInputExpr(InputNo)->getType();
909        QualType OutputTy = OutExpr->getType();
910
911        uint64_t InputSize = getContext().getTypeSize(InputTy);
912        if (getContext().getTypeSize(OutputTy) < InputSize) {
913          // Form the asm to return the value as a larger integer type.
914          ResultRegTypes.back() = llvm::IntegerType::get(VMContext, (unsigned)InputSize);
915        }
916      }
917    } else {
918      ArgTypes.push_back(Dest.getAddress()->getType());
919      Args.push_back(Dest.getAddress());
920      Constraints += "=*";
921      Constraints += OutputConstraint;
922    }
923
924    if (Info.isReadWrite()) {
925      InOutConstraints += ',';
926
927      const Expr *InputExpr = S.getOutputExpr(i);
928      llvm::Value *Arg = EmitAsmInput(S, Info, InputExpr, InOutConstraints);
929
930      if (Info.allowsRegister())
931        InOutConstraints += llvm::utostr(i);
932      else
933        InOutConstraints += OutputConstraint;
934
935      InOutArgTypes.push_back(Arg->getType());
936      InOutArgs.push_back(Arg);
937    }
938  }
939
940  unsigned NumConstraints = S.getNumOutputs() + S.getNumInputs();
941
942  for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
943    const Expr *InputExpr = S.getInputExpr(i);
944
945    TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
946
947    if (!Constraints.empty())
948      Constraints += ',';
949
950    // Simplify the input constraint.
951    std::string InputConstraint(S.getInputConstraint(i));
952    InputConstraint = SimplifyConstraint(InputConstraint.c_str(), Target,
953                                         &OutputConstraintInfos);
954
955    llvm::Value *Arg = EmitAsmInput(S, Info, InputExpr, Constraints);
956
957    // If this input argument is tied to a larger output result, extend the
958    // input to be the same size as the output.  The LLVM backend wants to see
959    // the input and output of a matching constraint be the same size.  Note
960    // that GCC does not define what the top bits are here.  We use zext because
961    // that is usually cheaper, but LLVM IR should really get an anyext someday.
962    if (Info.hasTiedOperand()) {
963      unsigned Output = Info.getTiedOperand();
964      QualType OutputTy = S.getOutputExpr(Output)->getType();
965      QualType InputTy = InputExpr->getType();
966
967      if (getContext().getTypeSize(OutputTy) >
968          getContext().getTypeSize(InputTy)) {
969        // Use ptrtoint as appropriate so that we can do our extension.
970        if (isa<llvm::PointerType>(Arg->getType()))
971          Arg = Builder.CreatePtrToInt(Arg,
972                                      llvm::IntegerType::get(VMContext, LLVMPointerWidth));
973        unsigned OutputSize = (unsigned)getContext().getTypeSize(OutputTy);
974        Arg = Builder.CreateZExt(Arg, llvm::IntegerType::get(VMContext, OutputSize));
975      }
976    }
977
978
979    ArgTypes.push_back(Arg->getType());
980    Args.push_back(Arg);
981    Constraints += InputConstraint;
982  }
983
984  // Append the "input" part of inout constraints last.
985  for (unsigned i = 0, e = InOutArgs.size(); i != e; i++) {
986    ArgTypes.push_back(InOutArgTypes[i]);
987    Args.push_back(InOutArgs[i]);
988  }
989  Constraints += InOutConstraints;
990
991  // Clobbers
992  for (unsigned i = 0, e = S.getNumClobbers(); i != e; i++) {
993    std::string Clobber(S.getClobber(i)->getStrData(),
994                        S.getClobber(i)->getByteLength());
995
996    Clobber = Target.getNormalizedGCCRegisterName(Clobber.c_str());
997
998    if (i != 0 || NumConstraints != 0)
999      Constraints += ',';
1000
1001    Constraints += "~{";
1002    Constraints += Clobber;
1003    Constraints += '}';
1004  }
1005
1006  // Add machine specific clobbers
1007  std::string MachineClobbers = Target.getClobbers();
1008  if (!MachineClobbers.empty()) {
1009    if (!Constraints.empty())
1010      Constraints += ',';
1011    Constraints += MachineClobbers;
1012  }
1013
1014  const llvm::Type *ResultType;
1015  if (ResultRegTypes.empty())
1016    ResultType = llvm::Type::getVoidTy(VMContext);
1017  else if (ResultRegTypes.size() == 1)
1018    ResultType = ResultRegTypes[0];
1019  else
1020    ResultType = llvm::StructType::get(VMContext, ResultRegTypes);
1021
1022  const llvm::FunctionType *FTy =
1023    llvm::FunctionType::get(ResultType, ArgTypes, false);
1024
1025  llvm::InlineAsm *IA =
1026    llvm::InlineAsm::get(FTy, AsmString, Constraints,
1027                         S.isVolatile() || S.getNumOutputs() == 0);
1028  llvm::CallInst *Result = Builder.CreateCall(IA, Args.begin(), Args.end());
1029  Result->addAttribute(~0, llvm::Attribute::NoUnwind);
1030
1031
1032  // Extract all of the register value results from the asm.
1033  std::vector<llvm::Value*> RegResults;
1034  if (ResultRegTypes.size() == 1) {
1035    RegResults.push_back(Result);
1036  } else {
1037    for (unsigned i = 0, e = ResultRegTypes.size(); i != e; ++i) {
1038      llvm::Value *Tmp = Builder.CreateExtractValue(Result, i, "asmresult");
1039      RegResults.push_back(Tmp);
1040    }
1041  }
1042
1043  for (unsigned i = 0, e = RegResults.size(); i != e; ++i) {
1044    llvm::Value *Tmp = RegResults[i];
1045
1046    // If the result type of the LLVM IR asm doesn't match the result type of
1047    // the expression, do the conversion.
1048    if (ResultRegTypes[i] != ResultTruncRegTypes[i]) {
1049      const llvm::Type *TruncTy = ResultTruncRegTypes[i];
1050      // Truncate the integer result to the right size, note that
1051      // ResultTruncRegTypes can be a pointer.
1052      uint64_t ResSize = CGM.getTargetData().getTypeSizeInBits(TruncTy);
1053      Tmp = Builder.CreateTrunc(Tmp, llvm::IntegerType::get(VMContext, (unsigned)ResSize));
1054
1055      if (Tmp->getType() != TruncTy) {
1056        assert(isa<llvm::PointerType>(TruncTy));
1057        Tmp = Builder.CreateIntToPtr(Tmp, TruncTy);
1058      }
1059    }
1060
1061    EmitStoreThroughLValue(RValue::get(Tmp), ResultRegDests[i],
1062                           ResultRegQualTys[i]);
1063  }
1064}
1065