CodeGenModule.cpp revision b80a16eadd0dacabfc1c32412e243ccb99dd664d
1//===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This coordinates the per-module state used while generating code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenModule.h"
15#include "CGCUDARuntime.h"
16#include "CGCXXABI.h"
17#include "CGCall.h"
18#include "CGDebugInfo.h"
19#include "CGObjCRuntime.h"
20#include "CGOpenCLRuntime.h"
21#include "CodeGenFunction.h"
22#include "CodeGenTBAA.h"
23#include "TargetInfo.h"
24#include "clang/AST/ASTContext.h"
25#include "clang/AST/CharUnits.h"
26#include "clang/AST/DeclCXX.h"
27#include "clang/AST/DeclObjC.h"
28#include "clang/AST/DeclTemplate.h"
29#include "clang/AST/Mangle.h"
30#include "clang/AST/RecordLayout.h"
31#include "clang/AST/RecursiveASTVisitor.h"
32#include "clang/Basic/Builtins.h"
33#include "clang/Basic/CharInfo.h"
34#include "clang/Basic/Diagnostic.h"
35#include "clang/Basic/Module.h"
36#include "clang/Basic/SourceManager.h"
37#include "clang/Basic/TargetInfo.h"
38#include "clang/Frontend/CodeGenOptions.h"
39#include "llvm/ADT/APSInt.h"
40#include "llvm/ADT/Triple.h"
41#include "llvm/IR/CallingConv.h"
42#include "llvm/IR/DataLayout.h"
43#include "llvm/IR/Intrinsics.h"
44#include "llvm/IR/LLVMContext.h"
45#include "llvm/IR/Module.h"
46#include "llvm/Support/CallSite.h"
47#include "llvm/Support/ConvertUTF.h"
48#include "llvm/Support/ErrorHandling.h"
49#include "llvm/Target/Mangler.h"
50
51using namespace clang;
52using namespace CodeGen;
53
54static const char AnnotationSection[] = "llvm.metadata";
55
56static CGCXXABI &createCXXABI(CodeGenModule &CGM) {
57  switch (CGM.getTarget().getCXXABI().getKind()) {
58  case TargetCXXABI::GenericAArch64:
59  case TargetCXXABI::GenericARM:
60  case TargetCXXABI::iOS:
61  case TargetCXXABI::GenericItanium:
62    return *CreateItaniumCXXABI(CGM);
63  case TargetCXXABI::Microsoft:
64    return *CreateMicrosoftCXXABI(CGM);
65  }
66
67  llvm_unreachable("invalid C++ ABI kind");
68}
69
70
71CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
72                             llvm::Module &M, const llvm::DataLayout &TD,
73                             DiagnosticsEngine &diags)
74  : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TheModule(M),
75    Diags(diags), TheDataLayout(TD), Target(C.getTargetInfo()),
76    ABI(createCXXABI(*this)), VMContext(M.getContext()), TBAA(0),
77    TheTargetCodeGenInfo(0), Types(*this), VTables(*this),
78    ObjCRuntime(0), OpenCLRuntime(0), CUDARuntime(0),
79    DebugInfo(0), ARCData(0), NoObjCARCExceptionsMetadata(0),
80    RRData(0), CFConstantStringClassRef(0),
81    ConstantStringClassRef(0), NSConstantStringType(0),
82    NSConcreteGlobalBlock(0), NSConcreteStackBlock(0),
83    BlockObjectAssign(0), BlockObjectDispose(0),
84    BlockDescriptorType(0), GenericBlockLiteralType(0),
85    LifetimeStartFn(0), LifetimeEndFn(0),
86    SanitizerBlacklist(CGO.SanitizerBlacklistFile),
87    SanOpts(SanitizerBlacklist.isIn(M) ?
88            SanitizerOptions::Disabled : LangOpts.Sanitize) {
89
90  // Initialize the type cache.
91  llvm::LLVMContext &LLVMContext = M.getContext();
92  VoidTy = llvm::Type::getVoidTy(LLVMContext);
93  Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
94  Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
95  Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
96  Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
97  FloatTy = llvm::Type::getFloatTy(LLVMContext);
98  DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
99  PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
100  PointerAlignInBytes =
101  C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
102  IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
103  IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits);
104  Int8PtrTy = Int8Ty->getPointerTo(0);
105  Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
106
107  RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
108
109  if (LangOpts.ObjC1)
110    createObjCRuntime();
111  if (LangOpts.OpenCL)
112    createOpenCLRuntime();
113  if (LangOpts.CUDA)
114    createCUDARuntime();
115
116  // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
117  if (SanOpts.Thread ||
118      (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
119    TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(),
120                           ABI.getMangleContext());
121
122  // If debug info or coverage generation is enabled, create the CGDebugInfo
123  // object.
124  if (CodeGenOpts.getDebugInfo() != CodeGenOptions::NoDebugInfo ||
125      CodeGenOpts.EmitGcovArcs ||
126      CodeGenOpts.EmitGcovNotes)
127    DebugInfo = new CGDebugInfo(*this);
128
129  Block.GlobalUniqueCount = 0;
130
131  if (C.getLangOpts().ObjCAutoRefCount)
132    ARCData = new ARCEntrypoints();
133  RRData = new RREntrypoints();
134}
135
136CodeGenModule::~CodeGenModule() {
137  delete ObjCRuntime;
138  delete OpenCLRuntime;
139  delete CUDARuntime;
140  delete TheTargetCodeGenInfo;
141  delete &ABI;
142  delete TBAA;
143  delete DebugInfo;
144  delete ARCData;
145  delete RRData;
146}
147
148void CodeGenModule::createObjCRuntime() {
149  // This is just isGNUFamily(), but we want to force implementors of
150  // new ABIs to decide how best to do this.
151  switch (LangOpts.ObjCRuntime.getKind()) {
152  case ObjCRuntime::GNUstep:
153  case ObjCRuntime::GCC:
154  case ObjCRuntime::ObjFW:
155    ObjCRuntime = CreateGNUObjCRuntime(*this);
156    return;
157
158  case ObjCRuntime::FragileMacOSX:
159  case ObjCRuntime::MacOSX:
160  case ObjCRuntime::iOS:
161    ObjCRuntime = CreateMacObjCRuntime(*this);
162    return;
163  }
164  llvm_unreachable("bad runtime kind");
165}
166
167void CodeGenModule::createOpenCLRuntime() {
168  OpenCLRuntime = new CGOpenCLRuntime(*this);
169}
170
171void CodeGenModule::createCUDARuntime() {
172  CUDARuntime = CreateNVCUDARuntime(*this);
173}
174
175void CodeGenModule::Release() {
176  EmitDeferred();
177  EmitCXXGlobalInitFunc();
178  EmitCXXGlobalDtorFunc();
179  EmitCXXThreadLocalInitFunc();
180  if (ObjCRuntime)
181    if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
182      AddGlobalCtor(ObjCInitFunction);
183  EmitCtorList(GlobalCtors, "llvm.global_ctors");
184  EmitCtorList(GlobalDtors, "llvm.global_dtors");
185  EmitGlobalAnnotations();
186  EmitStaticExternCAliases();
187  EmitLLVMUsed();
188
189  if (CodeGenOpts.Autolink && Context.getLangOpts().Modules) {
190    EmitModuleLinkOptions();
191  }
192
193  SimplifyPersonality();
194
195  if (getCodeGenOpts().EmitDeclMetadata)
196    EmitDeclMetadata();
197
198  if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
199    EmitCoverageFile();
200
201  if (DebugInfo)
202    DebugInfo->finalize();
203}
204
205void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
206  // Make sure that this type is translated.
207  Types.UpdateCompletedType(TD);
208}
209
210llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
211  if (!TBAA)
212    return 0;
213  return TBAA->getTBAAInfo(QTy);
214}
215
216llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() {
217  if (!TBAA)
218    return 0;
219  return TBAA->getTBAAInfoForVTablePtr();
220}
221
222llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
223  if (!TBAA)
224    return 0;
225  return TBAA->getTBAAStructInfo(QTy);
226}
227
228llvm::MDNode *CodeGenModule::getTBAAStructTypeInfo(QualType QTy) {
229  if (!TBAA)
230    return 0;
231  return TBAA->getTBAAStructTypeInfo(QTy);
232}
233
234llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy,
235                                                  llvm::MDNode *AccessN,
236                                                  uint64_t O) {
237  if (!TBAA)
238    return 0;
239  return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O);
240}
241
242/// Decorate the instruction with a TBAA tag. For scalar TBAA, the tag
243/// is the same as the type. For struct-path aware TBAA, the tag
244/// is different from the type: base type, access type and offset.
245/// When ConvertTypeToTag is true, we create a tag based on the scalar type.
246void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst,
247                                        llvm::MDNode *TBAAInfo,
248                                        bool ConvertTypeToTag) {
249  if (ConvertTypeToTag && TBAA && CodeGenOpts.StructPathTBAA)
250    Inst->setMetadata(llvm::LLVMContext::MD_tbaa,
251                      TBAA->getTBAAScalarTagInfo(TBAAInfo));
252  else
253    Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
254}
255
256void CodeGenModule::Error(SourceLocation loc, StringRef error) {
257  unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, error);
258  getDiags().Report(Context.getFullLoc(loc), diagID);
259}
260
261/// ErrorUnsupported - Print out an error that codegen doesn't support the
262/// specified stmt yet.
263void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
264                                     bool OmitOnError) {
265  if (OmitOnError && getDiags().hasErrorOccurred())
266    return;
267  unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
268                                               "cannot compile this %0 yet");
269  std::string Msg = Type;
270  getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
271    << Msg << S->getSourceRange();
272}
273
274/// ErrorUnsupported - Print out an error that codegen doesn't support the
275/// specified decl yet.
276void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
277                                     bool OmitOnError) {
278  if (OmitOnError && getDiags().hasErrorOccurred())
279    return;
280  unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
281                                               "cannot compile this %0 yet");
282  std::string Msg = Type;
283  getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
284}
285
286llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
287  return llvm::ConstantInt::get(SizeTy, size.getQuantity());
288}
289
290void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
291                                        const NamedDecl *D) const {
292  // Internal definitions always have default visibility.
293  if (GV->hasLocalLinkage()) {
294    GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
295    return;
296  }
297
298  // Set visibility for definitions.
299  LinkageInfo LV = D->getLinkageAndVisibility();
300  if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage())
301    GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
302}
303
304static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
305  return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
306      .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
307      .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
308      .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
309      .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
310}
311
312static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
313    CodeGenOptions::TLSModel M) {
314  switch (M) {
315  case CodeGenOptions::GeneralDynamicTLSModel:
316    return llvm::GlobalVariable::GeneralDynamicTLSModel;
317  case CodeGenOptions::LocalDynamicTLSModel:
318    return llvm::GlobalVariable::LocalDynamicTLSModel;
319  case CodeGenOptions::InitialExecTLSModel:
320    return llvm::GlobalVariable::InitialExecTLSModel;
321  case CodeGenOptions::LocalExecTLSModel:
322    return llvm::GlobalVariable::LocalExecTLSModel;
323  }
324  llvm_unreachable("Invalid TLS model!");
325}
326
327void CodeGenModule::setTLSMode(llvm::GlobalVariable *GV,
328                               const VarDecl &D) const {
329  assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
330
331  llvm::GlobalVariable::ThreadLocalMode TLM;
332  TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
333
334  // Override the TLS model if it is explicitly specified.
335  if (D.hasAttr<TLSModelAttr>()) {
336    const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>();
337    TLM = GetLLVMTLSModel(Attr->getModel());
338  }
339
340  GV->setThreadLocalMode(TLM);
341}
342
343/// Set the symbol visibility of type information (vtable and RTTI)
344/// associated with the given type.
345void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV,
346                                      const CXXRecordDecl *RD,
347                                      TypeVisibilityKind TVK) const {
348  setGlobalVisibility(GV, RD);
349
350  if (!CodeGenOpts.HiddenWeakVTables)
351    return;
352
353  // We never want to drop the visibility for RTTI names.
354  if (TVK == TVK_ForRTTIName)
355    return;
356
357  // We want to drop the visibility to hidden for weak type symbols.
358  // This isn't possible if there might be unresolved references
359  // elsewhere that rely on this symbol being visible.
360
361  // This should be kept roughly in sync with setThunkVisibility
362  // in CGVTables.cpp.
363
364  // Preconditions.
365  if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage ||
366      GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility)
367    return;
368
369  // Don't override an explicit visibility attribute.
370  if (RD->getExplicitVisibility(NamedDecl::VisibilityForType))
371    return;
372
373  switch (RD->getTemplateSpecializationKind()) {
374  // We have to disable the optimization if this is an EI definition
375  // because there might be EI declarations in other shared objects.
376  case TSK_ExplicitInstantiationDefinition:
377  case TSK_ExplicitInstantiationDeclaration:
378    return;
379
380  // Every use of a non-template class's type information has to emit it.
381  case TSK_Undeclared:
382    break;
383
384  // In theory, implicit instantiations can ignore the possibility of
385  // an explicit instantiation declaration because there necessarily
386  // must be an EI definition somewhere with default visibility.  In
387  // practice, it's possible to have an explicit instantiation for
388  // an arbitrary template class, and linkers aren't necessarily able
389  // to deal with mixed-visibility symbols.
390  case TSK_ExplicitSpecialization:
391  case TSK_ImplicitInstantiation:
392    return;
393  }
394
395  // If there's a key function, there may be translation units
396  // that don't have the key function's definition.  But ignore
397  // this if we're emitting RTTI under -fno-rtti.
398  if (!(TVK != TVK_ForRTTI) || LangOpts.RTTI) {
399    // FIXME: what should we do if we "lose" the key function during
400    // the emission of the file?
401    if (Context.getCurrentKeyFunction(RD))
402      return;
403  }
404
405  // Otherwise, drop the visibility to hidden.
406  GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
407  GV->setUnnamedAddr(true);
408}
409
410StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
411  const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
412
413  StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()];
414  if (!Str.empty())
415    return Str;
416
417  if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
418    IdentifierInfo *II = ND->getIdentifier();
419    assert(II && "Attempt to mangle unnamed decl.");
420
421    Str = II->getName();
422    return Str;
423  }
424
425  SmallString<256> Buffer;
426  llvm::raw_svector_ostream Out(Buffer);
427  if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
428    getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
429  else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
430    getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
431  else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND))
432    getCXXABI().getMangleContext().mangleBlock(BD, Out,
433      dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()));
434  else
435    getCXXABI().getMangleContext().mangleName(ND, Out);
436
437  // Allocate space for the mangled name.
438  Out.flush();
439  size_t Length = Buffer.size();
440  char *Name = MangledNamesAllocator.Allocate<char>(Length);
441  std::copy(Buffer.begin(), Buffer.end(), Name);
442
443  Str = StringRef(Name, Length);
444
445  return Str;
446}
447
448void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer,
449                                        const BlockDecl *BD) {
450  MangleContext &MangleCtx = getCXXABI().getMangleContext();
451  const Decl *D = GD.getDecl();
452  llvm::raw_svector_ostream Out(Buffer.getBuffer());
453  if (D == 0)
454    MangleCtx.mangleGlobalBlock(BD,
455      dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
456  else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
457    MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
458  else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
459    MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
460  else
461    MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
462}
463
464llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
465  return getModule().getNamedValue(Name);
466}
467
468/// AddGlobalCtor - Add a function to the list that will be called before
469/// main() runs.
470void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
471  // FIXME: Type coercion of void()* types.
472  GlobalCtors.push_back(std::make_pair(Ctor, Priority));
473}
474
475/// AddGlobalDtor - Add a function to the list that will be called
476/// when the module is unloaded.
477void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
478  // FIXME: Type coercion of void()* types.
479  GlobalDtors.push_back(std::make_pair(Dtor, Priority));
480}
481
482void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
483  // Ctor function type is void()*.
484  llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
485  llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
486
487  // Get the type of a ctor entry, { i32, void ()* }.
488  llvm::StructType *CtorStructTy =
489    llvm::StructType::get(Int32Ty, llvm::PointerType::getUnqual(CtorFTy), NULL);
490
491  // Construct the constructor and destructor arrays.
492  SmallVector<llvm::Constant*, 8> Ctors;
493  for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
494    llvm::Constant *S[] = {
495      llvm::ConstantInt::get(Int32Ty, I->second, false),
496      llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)
497    };
498    Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
499  }
500
501  if (!Ctors.empty()) {
502    llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
503    new llvm::GlobalVariable(TheModule, AT, false,
504                             llvm::GlobalValue::AppendingLinkage,
505                             llvm::ConstantArray::get(AT, Ctors),
506                             GlobalName);
507  }
508}
509
510llvm::GlobalValue::LinkageTypes
511CodeGenModule::getFunctionLinkage(const FunctionDecl *D) {
512  GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
513
514  if (Linkage == GVA_Internal)
515    return llvm::Function::InternalLinkage;
516
517  if (D->hasAttr<DLLExportAttr>())
518    return llvm::Function::DLLExportLinkage;
519
520  if (D->hasAttr<WeakAttr>())
521    return llvm::Function::WeakAnyLinkage;
522
523  // In C99 mode, 'inline' functions are guaranteed to have a strong
524  // definition somewhere else, so we can use available_externally linkage.
525  if (Linkage == GVA_C99Inline)
526    return llvm::Function::AvailableExternallyLinkage;
527
528  // Note that Apple's kernel linker doesn't support symbol
529  // coalescing, so we need to avoid linkonce and weak linkages there.
530  // Normally, this means we just map to internal, but for explicit
531  // instantiations we'll map to external.
532
533  // In C++, the compiler has to emit a definition in every translation unit
534  // that references the function.  We should use linkonce_odr because
535  // a) if all references in this translation unit are optimized away, we
536  // don't need to codegen it.  b) if the function persists, it needs to be
537  // merged with other definitions. c) C++ has the ODR, so we know the
538  // definition is dependable.
539  if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
540    return !Context.getLangOpts().AppleKext
541             ? llvm::Function::LinkOnceODRLinkage
542             : llvm::Function::InternalLinkage;
543
544  // An explicit instantiation of a template has weak linkage, since
545  // explicit instantiations can occur in multiple translation units
546  // and must all be equivalent. However, we are not allowed to
547  // throw away these explicit instantiations.
548  if (Linkage == GVA_ExplicitTemplateInstantiation)
549    return !Context.getLangOpts().AppleKext
550             ? llvm::Function::WeakODRLinkage
551             : llvm::Function::ExternalLinkage;
552
553  // Otherwise, we have strong external linkage.
554  assert(Linkage == GVA_StrongExternal);
555  return llvm::Function::ExternalLinkage;
556}
557
558
559/// SetFunctionDefinitionAttributes - Set attributes for a global.
560///
561/// FIXME: This is currently only done for aliases and functions, but not for
562/// variables (these details are set in EmitGlobalVarDefinition for variables).
563void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
564                                                    llvm::GlobalValue *GV) {
565  SetCommonAttributes(D, GV);
566}
567
568void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
569                                              const CGFunctionInfo &Info,
570                                              llvm::Function *F) {
571  unsigned CallingConv;
572  AttributeListType AttributeList;
573  ConstructAttributeList(Info, D, AttributeList, CallingConv, false);
574  F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList));
575  F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
576}
577
578/// Determines whether the language options require us to model
579/// unwind exceptions.  We treat -fexceptions as mandating this
580/// except under the fragile ObjC ABI with only ObjC exceptions
581/// enabled.  This means, for example, that C with -fexceptions
582/// enables this.
583static bool hasUnwindExceptions(const LangOptions &LangOpts) {
584  // If exceptions are completely disabled, obviously this is false.
585  if (!LangOpts.Exceptions) return false;
586
587  // If C++ exceptions are enabled, this is true.
588  if (LangOpts.CXXExceptions) return true;
589
590  // If ObjC exceptions are enabled, this depends on the ABI.
591  if (LangOpts.ObjCExceptions) {
592    return LangOpts.ObjCRuntime.hasUnwindExceptions();
593  }
594
595  return true;
596}
597
598void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
599                                                           llvm::Function *F) {
600  if (CodeGenOpts.UnwindTables)
601    F->setHasUWTable();
602
603  if (!hasUnwindExceptions(LangOpts))
604    F->addFnAttr(llvm::Attribute::NoUnwind);
605
606  if (D->hasAttr<NakedAttr>()) {
607    // Naked implies noinline: we should not be inlining such functions.
608    F->addFnAttr(llvm::Attribute::Naked);
609    F->addFnAttr(llvm::Attribute::NoInline);
610  }
611
612  if (D->hasAttr<NoInlineAttr>())
613    F->addFnAttr(llvm::Attribute::NoInline);
614
615  // (noinline wins over always_inline, and we can't specify both in IR)
616  if ((D->hasAttr<AlwaysInlineAttr>() || D->hasAttr<ForceInlineAttr>()) &&
617      !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex,
618                                       llvm::Attribute::NoInline))
619    F->addFnAttr(llvm::Attribute::AlwaysInline);
620
621  // FIXME: Communicate hot and cold attributes to LLVM more directly.
622  if (D->hasAttr<ColdAttr>())
623    F->addFnAttr(llvm::Attribute::OptimizeForSize);
624
625  if (D->hasAttr<MinSizeAttr>())
626    F->addFnAttr(llvm::Attribute::MinSize);
627
628  if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
629    F->setUnnamedAddr(true);
630
631  if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D))
632    if (MD->isVirtual())
633      F->setUnnamedAddr(true);
634
635  if (LangOpts.getStackProtector() == LangOptions::SSPOn)
636    F->addFnAttr(llvm::Attribute::StackProtect);
637  else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
638    F->addFnAttr(llvm::Attribute::StackProtectReq);
639
640  // Add sanitizer attributes if function is not blacklisted.
641  if (!SanitizerBlacklist.isIn(*F)) {
642    // When AddressSanitizer is enabled, set SanitizeAddress attribute
643    // unless __attribute__((no_sanitize_address)) is used.
644    if (SanOpts.Address && !D->hasAttr<NoSanitizeAddressAttr>())
645      F->addFnAttr(llvm::Attribute::SanitizeAddress);
646    // Same for ThreadSanitizer and __attribute__((no_sanitize_thread))
647    if (SanOpts.Thread && !D->hasAttr<NoSanitizeThreadAttr>()) {
648      F->addFnAttr(llvm::Attribute::SanitizeThread);
649    }
650    // Same for MemorySanitizer and __attribute__((no_sanitize_memory))
651    if (SanOpts.Memory && !D->hasAttr<NoSanitizeMemoryAttr>())
652      F->addFnAttr(llvm::Attribute::SanitizeMemory);
653  }
654
655  unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
656  if (alignment)
657    F->setAlignment(alignment);
658
659  // C++ ABI requires 2-byte alignment for member functions.
660  if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
661    F->setAlignment(2);
662}
663
664void CodeGenModule::SetCommonAttributes(const Decl *D,
665                                        llvm::GlobalValue *GV) {
666  if (const NamedDecl *ND = dyn_cast<NamedDecl>(D))
667    setGlobalVisibility(GV, ND);
668  else
669    GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
670
671  if (D->hasAttr<UsedAttr>())
672    AddUsedGlobal(GV);
673
674  if (const SectionAttr *SA = D->getAttr<SectionAttr>())
675    GV->setSection(SA->getName());
676
677  // Alias cannot have attributes. Filter them here.
678  if (!isa<llvm::GlobalAlias>(GV))
679    getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
680}
681
682void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
683                                                  llvm::Function *F,
684                                                  const CGFunctionInfo &FI) {
685  SetLLVMFunctionAttributes(D, FI, F);
686  SetLLVMFunctionAttributesForDefinition(D, F);
687
688  F->setLinkage(llvm::Function::InternalLinkage);
689
690  SetCommonAttributes(D, F);
691}
692
693void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
694                                          llvm::Function *F,
695                                          bool IsIncompleteFunction) {
696  if (unsigned IID = F->getIntrinsicID()) {
697    // If this is an intrinsic function, set the function's attributes
698    // to the intrinsic's attributes.
699    F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(),
700                                                    (llvm::Intrinsic::ID)IID));
701    return;
702  }
703
704  const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
705
706  if (!IsIncompleteFunction)
707    SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
708
709  // Only a few attributes are set on declarations; these may later be
710  // overridden by a definition.
711
712  if (FD->hasAttr<DLLImportAttr>()) {
713    F->setLinkage(llvm::Function::DLLImportLinkage);
714  } else if (FD->hasAttr<WeakAttr>() ||
715             FD->isWeakImported()) {
716    // "extern_weak" is overloaded in LLVM; we probably should have
717    // separate linkage types for this.
718    F->setLinkage(llvm::Function::ExternalWeakLinkage);
719  } else {
720    F->setLinkage(llvm::Function::ExternalLinkage);
721
722    LinkageInfo LV = FD->getLinkageAndVisibility();
723    if (LV.getLinkage() == ExternalLinkage && LV.isVisibilityExplicit()) {
724      F->setVisibility(GetLLVMVisibility(LV.getVisibility()));
725    }
726  }
727
728  if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
729    F->setSection(SA->getName());
730}
731
732void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
733  assert(!GV->isDeclaration() &&
734         "Only globals with definition can force usage.");
735  LLVMUsed.push_back(GV);
736}
737
738void CodeGenModule::EmitLLVMUsed() {
739  // Don't create llvm.used if there is no need.
740  if (LLVMUsed.empty())
741    return;
742
743  // Convert LLVMUsed to what ConstantArray needs.
744  SmallVector<llvm::Constant*, 8> UsedArray;
745  UsedArray.resize(LLVMUsed.size());
746  for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
747    UsedArray[i] =
748     llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
749                                    Int8PtrTy);
750  }
751
752  if (UsedArray.empty())
753    return;
754  llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size());
755
756  llvm::GlobalVariable *GV =
757    new llvm::GlobalVariable(getModule(), ATy, false,
758                             llvm::GlobalValue::AppendingLinkage,
759                             llvm::ConstantArray::get(ATy, UsedArray),
760                             "llvm.used");
761
762  GV->setSection("llvm.metadata");
763}
764
765/// \brief Add link options implied by the given module, including modules
766/// it depends on, using a postorder walk.
767static void addLinkOptionsPostorder(llvm::LLVMContext &Context,
768                                    Module *Mod,
769                                    SmallVectorImpl<llvm::Value *> &Metadata,
770                                    llvm::SmallPtrSet<Module *, 16> &Visited) {
771  // Import this module's parent.
772  if (Mod->Parent && Visited.insert(Mod->Parent)) {
773    addLinkOptionsPostorder(Context, Mod->Parent, Metadata, Visited);
774  }
775
776  // Import this module's dependencies.
777  for (unsigned I = Mod->Imports.size(); I > 0; --I) {
778    if (Visited.insert(Mod->Imports[I-1]))
779      addLinkOptionsPostorder(Context, Mod->Imports[I-1], Metadata, Visited);
780  }
781
782  // Add linker options to link against the libraries/frameworks
783  // described by this module.
784  for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
785    // FIXME: -lfoo is Unix-centric and -framework Foo is Darwin-centric.
786    // We need to know more about the linker to know how to encode these
787    // options propertly.
788
789    // Link against a framework.
790    if (Mod->LinkLibraries[I-1].IsFramework) {
791      llvm::Value *Args[2] = {
792        llvm::MDString::get(Context, "-framework"),
793        llvm::MDString::get(Context, Mod->LinkLibraries[I-1].Library)
794      };
795
796      Metadata.push_back(llvm::MDNode::get(Context, Args));
797      continue;
798    }
799
800    // Link against a library.
801    llvm::Value *OptString
802    = llvm::MDString::get(Context,
803                          "-l" + Mod->LinkLibraries[I-1].Library);
804    Metadata.push_back(llvm::MDNode::get(Context, OptString));
805  }
806}
807
808void CodeGenModule::EmitModuleLinkOptions() {
809  // Collect the set of all of the modules we want to visit to emit link
810  // options, which is essentially the imported modules and all of their
811  // non-explicit child modules.
812  llvm::SetVector<clang::Module *> LinkModules;
813  llvm::SmallPtrSet<clang::Module *, 16> Visited;
814  SmallVector<clang::Module *, 16> Stack;
815
816  // Seed the stack with imported modules.
817  for (llvm::SetVector<clang::Module *>::iterator M = ImportedModules.begin(),
818                                               MEnd = ImportedModules.end();
819       M != MEnd; ++M) {
820    if (Visited.insert(*M))
821      Stack.push_back(*M);
822  }
823
824  // Find all of the modules to import, making a little effort to prune
825  // non-leaf modules.
826  while (!Stack.empty()) {
827    clang::Module *Mod = Stack.back();
828    Stack.pop_back();
829
830    bool AnyChildren = false;
831
832    // Visit the submodules of this module.
833    for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
834                                        SubEnd = Mod->submodule_end();
835         Sub != SubEnd; ++Sub) {
836      // Skip explicit children; they need to be explicitly imported to be
837      // linked against.
838      if ((*Sub)->IsExplicit)
839        continue;
840
841      if (Visited.insert(*Sub)) {
842        Stack.push_back(*Sub);
843        AnyChildren = true;
844      }
845    }
846
847    // We didn't find any children, so add this module to the list of
848    // modules to link against.
849    if (!AnyChildren) {
850      LinkModules.insert(Mod);
851    }
852  }
853
854  // Add link options for all of the imported modules in reverse topological
855  // order.
856  SmallVector<llvm::Value *, 16> MetadataArgs;
857  Visited.clear();
858  for (llvm::SetVector<clang::Module *>::iterator M = LinkModules.begin(),
859                                               MEnd = LinkModules.end();
860       M != MEnd; ++M) {
861    if (Visited.insert(*M))
862      addLinkOptionsPostorder(getLLVMContext(), *M, MetadataArgs, Visited);
863  }
864  std::reverse(MetadataArgs.begin(), MetadataArgs.end());
865
866  // Add the linker options metadata flag.
867  getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options",
868                            llvm::MDNode::get(getLLVMContext(), MetadataArgs));
869}
870
871void CodeGenModule::EmitDeferred() {
872  // Emit code for any potentially referenced deferred decls.  Since a
873  // previously unused static decl may become used during the generation of code
874  // for a static function, iterate until no changes are made.
875
876  while (true) {
877    if (!DeferredVTables.empty()) {
878      EmitDeferredVTables();
879
880      // Emitting a v-table doesn't directly cause more v-tables to
881      // become deferred, although it can cause functions to be
882      // emitted that then need those v-tables.
883      assert(DeferredVTables.empty());
884    }
885
886    // Stop if we're out of both deferred v-tables and deferred declarations.
887    if (DeferredDeclsToEmit.empty()) break;
888
889    GlobalDecl D = DeferredDeclsToEmit.back();
890    DeferredDeclsToEmit.pop_back();
891
892    // Check to see if we've already emitted this.  This is necessary
893    // for a couple of reasons: first, decls can end up in the
894    // deferred-decls queue multiple times, and second, decls can end
895    // up with definitions in unusual ways (e.g. by an extern inline
896    // function acquiring a strong function redefinition).  Just
897    // ignore these cases.
898    //
899    // TODO: That said, looking this up multiple times is very wasteful.
900    StringRef Name = getMangledName(D);
901    llvm::GlobalValue *CGRef = GetGlobalValue(Name);
902    assert(CGRef && "Deferred decl wasn't referenced?");
903
904    if (!CGRef->isDeclaration())
905      continue;
906
907    // GlobalAlias::isDeclaration() defers to the aliasee, but for our
908    // purposes an alias counts as a definition.
909    if (isa<llvm::GlobalAlias>(CGRef))
910      continue;
911
912    // Otherwise, emit the definition and move on to the next one.
913    EmitGlobalDefinition(D);
914  }
915}
916
917void CodeGenModule::EmitGlobalAnnotations() {
918  if (Annotations.empty())
919    return;
920
921  // Create a new global variable for the ConstantStruct in the Module.
922  llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
923    Annotations[0]->getType(), Annotations.size()), Annotations);
924  llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(),
925    Array->getType(), false, llvm::GlobalValue::AppendingLinkage, Array,
926    "llvm.global.annotations");
927  gv->setSection(AnnotationSection);
928}
929
930llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
931  llvm::StringMap<llvm::Constant*>::iterator i = AnnotationStrings.find(Str);
932  if (i != AnnotationStrings.end())
933    return i->second;
934
935  // Not found yet, create a new global.
936  llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
937  llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), s->getType(),
938    true, llvm::GlobalValue::PrivateLinkage, s, ".str");
939  gv->setSection(AnnotationSection);
940  gv->setUnnamedAddr(true);
941  AnnotationStrings[Str] = gv;
942  return gv;
943}
944
945llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
946  SourceManager &SM = getContext().getSourceManager();
947  PresumedLoc PLoc = SM.getPresumedLoc(Loc);
948  if (PLoc.isValid())
949    return EmitAnnotationString(PLoc.getFilename());
950  return EmitAnnotationString(SM.getBufferName(Loc));
951}
952
953llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
954  SourceManager &SM = getContext().getSourceManager();
955  PresumedLoc PLoc = SM.getPresumedLoc(L);
956  unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
957    SM.getExpansionLineNumber(L);
958  return llvm::ConstantInt::get(Int32Ty, LineNo);
959}
960
961llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
962                                                const AnnotateAttr *AA,
963                                                SourceLocation L) {
964  // Get the globals for file name, annotation, and the line number.
965  llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
966                 *UnitGV = EmitAnnotationUnit(L),
967                 *LineNoCst = EmitAnnotationLineNo(L);
968
969  // Create the ConstantStruct for the global annotation.
970  llvm::Constant *Fields[4] = {
971    llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
972    llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
973    llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
974    LineNoCst
975  };
976  return llvm::ConstantStruct::getAnon(Fields);
977}
978
979void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
980                                         llvm::GlobalValue *GV) {
981  assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
982  // Get the struct elements for these annotations.
983  for (specific_attr_iterator<AnnotateAttr>
984       ai = D->specific_attr_begin<AnnotateAttr>(),
985       ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai)
986    Annotations.push_back(EmitAnnotateAttr(GV, *ai, D->getLocation()));
987}
988
989bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
990  // Never defer when EmitAllDecls is specified.
991  if (LangOpts.EmitAllDecls)
992    return false;
993
994  return !getContext().DeclMustBeEmitted(Global);
995}
996
997llvm::Constant *CodeGenModule::GetAddrOfUuidDescriptor(
998    const CXXUuidofExpr* E) {
999  // Sema has verified that IIDSource has a __declspec(uuid()), and that its
1000  // well-formed.
1001  StringRef Uuid;
1002  if (E->isTypeOperand())
1003    Uuid = CXXUuidofExpr::GetUuidAttrOfType(E->getTypeOperand())->getGuid();
1004  else {
1005    // Special case: __uuidof(0) means an all-zero GUID.
1006    Expr *Op = E->getExprOperand();
1007    if (!Op->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull))
1008      Uuid = CXXUuidofExpr::GetUuidAttrOfType(Op->getType())->getGuid();
1009    else
1010      Uuid = "00000000-0000-0000-0000-000000000000";
1011  }
1012  std::string Name = "__uuid_" + Uuid.str();
1013
1014  // Look for an existing global.
1015  if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
1016    return GV;
1017
1018  llvm::Constant *Init = EmitUuidofInitializer(Uuid, E->getType());
1019  assert(Init && "failed to initialize as constant");
1020
1021  // GUIDs are assumed to be 16 bytes, spread over 4-2-2-8 bytes. However, the
1022  // first field is declared as "long", which for many targets is 8 bytes.
1023  // Those architectures are not supported. (With the MS abi, long is always 4
1024  // bytes.)
1025  llvm::Type *GuidType = getTypes().ConvertType(E->getType());
1026  if (Init->getType() != GuidType) {
1027    DiagnosticsEngine &Diags = getDiags();
1028    unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
1029        "__uuidof codegen is not supported on this architecture");
1030    Diags.Report(E->getExprLoc(), DiagID) << E->getSourceRange();
1031    Init = llvm::UndefValue::get(GuidType);
1032  }
1033
1034  llvm::GlobalVariable *GV = new llvm::GlobalVariable(getModule(), GuidType,
1035      /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage, Init, Name);
1036  GV->setUnnamedAddr(true);
1037  return GV;
1038}
1039
1040llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
1041  const AliasAttr *AA = VD->getAttr<AliasAttr>();
1042  assert(AA && "No alias?");
1043
1044  llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
1045
1046  // See if there is already something with the target's name in the module.
1047  llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
1048  if (Entry) {
1049    unsigned AS = getContext().getTargetAddressSpace(VD->getType());
1050    return llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
1051  }
1052
1053  llvm::Constant *Aliasee;
1054  if (isa<llvm::FunctionType>(DeclTy))
1055    Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
1056                                      GlobalDecl(cast<FunctionDecl>(VD)),
1057                                      /*ForVTable=*/false);
1058  else
1059    Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1060                                    llvm::PointerType::getUnqual(DeclTy), 0);
1061
1062  llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee);
1063  F->setLinkage(llvm::Function::ExternalWeakLinkage);
1064  WeakRefReferences.insert(F);
1065
1066  return Aliasee;
1067}
1068
1069void CodeGenModule::EmitGlobal(GlobalDecl GD) {
1070  const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
1071
1072  // Weak references don't produce any output by themselves.
1073  if (Global->hasAttr<WeakRefAttr>())
1074    return;
1075
1076  // If this is an alias definition (which otherwise looks like a declaration)
1077  // emit it now.
1078  if (Global->hasAttr<AliasAttr>())
1079    return EmitAliasDefinition(GD);
1080
1081  // If this is CUDA, be selective about which declarations we emit.
1082  if (LangOpts.CUDA) {
1083    if (CodeGenOpts.CUDAIsDevice) {
1084      if (!Global->hasAttr<CUDADeviceAttr>() &&
1085          !Global->hasAttr<CUDAGlobalAttr>() &&
1086          !Global->hasAttr<CUDAConstantAttr>() &&
1087          !Global->hasAttr<CUDASharedAttr>())
1088        return;
1089    } else {
1090      if (!Global->hasAttr<CUDAHostAttr>() && (
1091            Global->hasAttr<CUDADeviceAttr>() ||
1092            Global->hasAttr<CUDAConstantAttr>() ||
1093            Global->hasAttr<CUDASharedAttr>()))
1094        return;
1095    }
1096  }
1097
1098  // Ignore declarations, they will be emitted on their first use.
1099  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
1100    // Forward declarations are emitted lazily on first use.
1101    if (!FD->doesThisDeclarationHaveABody()) {
1102      if (!FD->doesDeclarationForceExternallyVisibleDefinition())
1103        return;
1104
1105      const FunctionDecl *InlineDefinition = 0;
1106      FD->getBody(InlineDefinition);
1107
1108      StringRef MangledName = getMangledName(GD);
1109      DeferredDecls.erase(MangledName);
1110      EmitGlobalDefinition(InlineDefinition);
1111      return;
1112    }
1113  } else {
1114    const VarDecl *VD = cast<VarDecl>(Global);
1115    assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
1116
1117    if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
1118      return;
1119  }
1120
1121  // Defer code generation when possible if this is a static definition, inline
1122  // function etc.  These we only want to emit if they are used.
1123  if (!MayDeferGeneration(Global)) {
1124    // Emit the definition if it can't be deferred.
1125    EmitGlobalDefinition(GD);
1126    return;
1127  }
1128
1129  // If we're deferring emission of a C++ variable with an
1130  // initializer, remember the order in which it appeared in the file.
1131  if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
1132      cast<VarDecl>(Global)->hasInit()) {
1133    DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
1134    CXXGlobalInits.push_back(0);
1135  }
1136
1137  // If the value has already been used, add it directly to the
1138  // DeferredDeclsToEmit list.
1139  StringRef MangledName = getMangledName(GD);
1140  if (GetGlobalValue(MangledName))
1141    DeferredDeclsToEmit.push_back(GD);
1142  else {
1143    // Otherwise, remember that we saw a deferred decl with this name.  The
1144    // first use of the mangled name will cause it to move into
1145    // DeferredDeclsToEmit.
1146    DeferredDecls[MangledName] = GD;
1147  }
1148}
1149
1150namespace {
1151  struct FunctionIsDirectlyRecursive :
1152    public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
1153    const StringRef Name;
1154    const Builtin::Context &BI;
1155    bool Result;
1156    FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
1157      Name(N), BI(C), Result(false) {
1158    }
1159    typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
1160
1161    bool TraverseCallExpr(CallExpr *E) {
1162      const FunctionDecl *FD = E->getDirectCallee();
1163      if (!FD)
1164        return true;
1165      AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1166      if (Attr && Name == Attr->getLabel()) {
1167        Result = true;
1168        return false;
1169      }
1170      unsigned BuiltinID = FD->getBuiltinID();
1171      if (!BuiltinID)
1172        return true;
1173      StringRef BuiltinName = BI.GetName(BuiltinID);
1174      if (BuiltinName.startswith("__builtin_") &&
1175          Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
1176        Result = true;
1177        return false;
1178      }
1179      return true;
1180    }
1181  };
1182}
1183
1184// isTriviallyRecursive - Check if this function calls another
1185// decl that, because of the asm attribute or the other decl being a builtin,
1186// ends up pointing to itself.
1187bool
1188CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
1189  StringRef Name;
1190  if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
1191    // asm labels are a special kind of mangling we have to support.
1192    AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1193    if (!Attr)
1194      return false;
1195    Name = Attr->getLabel();
1196  } else {
1197    Name = FD->getName();
1198  }
1199
1200  FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
1201  Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
1202  return Walker.Result;
1203}
1204
1205bool
1206CodeGenModule::shouldEmitFunction(const FunctionDecl *F) {
1207  if (getFunctionLinkage(F) != llvm::Function::AvailableExternallyLinkage)
1208    return true;
1209  if (CodeGenOpts.OptimizationLevel == 0 &&
1210      !F->hasAttr<AlwaysInlineAttr>() && !F->hasAttr<ForceInlineAttr>())
1211    return false;
1212  // PR9614. Avoid cases where the source code is lying to us. An available
1213  // externally function should have an equivalent function somewhere else,
1214  // but a function that calls itself is clearly not equivalent to the real
1215  // implementation.
1216  // This happens in glibc's btowc and in some configure checks.
1217  return !isTriviallyRecursive(F);
1218}
1219
1220void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
1221  const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1222
1223  PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
1224                                 Context.getSourceManager(),
1225                                 "Generating code for declaration");
1226
1227  if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
1228    // At -O0, don't generate IR for functions with available_externally
1229    // linkage.
1230    if (!shouldEmitFunction(Function))
1231      return;
1232
1233    if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
1234      // Make sure to emit the definition(s) before we emit the thunks.
1235      // This is necessary for the generation of certain thunks.
1236      if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method))
1237        EmitCXXConstructor(CD, GD.getCtorType());
1238      else if (const CXXDestructorDecl *DD =dyn_cast<CXXDestructorDecl>(Method))
1239        EmitCXXDestructor(DD, GD.getDtorType());
1240      else
1241        EmitGlobalFunctionDefinition(GD);
1242
1243      if (Method->isVirtual())
1244        getVTables().EmitThunks(GD);
1245
1246      return;
1247    }
1248
1249    return EmitGlobalFunctionDefinition(GD);
1250  }
1251
1252  if (const VarDecl *VD = dyn_cast<VarDecl>(D))
1253    return EmitGlobalVarDefinition(VD);
1254
1255  llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
1256}
1257
1258/// GetOrCreateLLVMFunction - If the specified mangled name is not in the
1259/// module, create and return an llvm Function with the specified type. If there
1260/// is something in the module with the specified name, return it potentially
1261/// bitcasted to the right type.
1262///
1263/// If D is non-null, it specifies a decl that correspond to this.  This is used
1264/// to set the attributes on the function when it is first created.
1265llvm::Constant *
1266CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName,
1267                                       llvm::Type *Ty,
1268                                       GlobalDecl D, bool ForVTable,
1269                                       llvm::AttributeSet ExtraAttrs) {
1270  // Lookup the entry, lazily creating it if necessary.
1271  llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1272  if (Entry) {
1273    if (WeakRefReferences.erase(Entry)) {
1274      const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl());
1275      if (FD && !FD->hasAttr<WeakAttr>())
1276        Entry->setLinkage(llvm::Function::ExternalLinkage);
1277    }
1278
1279    if (Entry->getType()->getElementType() == Ty)
1280      return Entry;
1281
1282    // Make sure the result is of the correct type.
1283    return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
1284  }
1285
1286  // This function doesn't have a complete type (for example, the return
1287  // type is an incomplete struct). Use a fake type instead, and make
1288  // sure not to try to set attributes.
1289  bool IsIncompleteFunction = false;
1290
1291  llvm::FunctionType *FTy;
1292  if (isa<llvm::FunctionType>(Ty)) {
1293    FTy = cast<llvm::FunctionType>(Ty);
1294  } else {
1295    FTy = llvm::FunctionType::get(VoidTy, false);
1296    IsIncompleteFunction = true;
1297  }
1298
1299  llvm::Function *F = llvm::Function::Create(FTy,
1300                                             llvm::Function::ExternalLinkage,
1301                                             MangledName, &getModule());
1302  assert(F->getName() == MangledName && "name was uniqued!");
1303  if (D.getDecl())
1304    SetFunctionAttributes(D, F, IsIncompleteFunction);
1305  if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) {
1306    llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex);
1307    F->addAttributes(llvm::AttributeSet::FunctionIndex,
1308                     llvm::AttributeSet::get(VMContext,
1309                                             llvm::AttributeSet::FunctionIndex,
1310                                             B));
1311  }
1312
1313  // This is the first use or definition of a mangled name.  If there is a
1314  // deferred decl with this name, remember that we need to emit it at the end
1315  // of the file.
1316  llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1317  if (DDI != DeferredDecls.end()) {
1318    // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1319    // list, and remove it from DeferredDecls (since we don't need it anymore).
1320    DeferredDeclsToEmit.push_back(DDI->second);
1321    DeferredDecls.erase(DDI);
1322
1323  // Otherwise, there are cases we have to worry about where we're
1324  // using a declaration for which we must emit a definition but where
1325  // we might not find a top-level definition:
1326  //   - member functions defined inline in their classes
1327  //   - friend functions defined inline in some class
1328  //   - special member functions with implicit definitions
1329  // If we ever change our AST traversal to walk into class methods,
1330  // this will be unnecessary.
1331  //
1332  // We also don't emit a definition for a function if it's going to be an entry
1333  // in a vtable, unless it's already marked as used.
1334  } else if (getLangOpts().CPlusPlus && D.getDecl()) {
1335    // Look for a declaration that's lexically in a record.
1336    const FunctionDecl *FD = cast<FunctionDecl>(D.getDecl());
1337    FD = FD->getMostRecentDecl();
1338    do {
1339      if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
1340        if (FD->isImplicit() && !ForVTable) {
1341          assert(FD->isUsed() && "Sema didn't mark implicit function as used!");
1342          DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
1343          break;
1344        } else if (FD->doesThisDeclarationHaveABody()) {
1345          DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
1346          break;
1347        }
1348      }
1349      FD = FD->getPreviousDecl();
1350    } while (FD);
1351  }
1352
1353  // Make sure the result is of the requested type.
1354  if (!IsIncompleteFunction) {
1355    assert(F->getType()->getElementType() == Ty);
1356    return F;
1357  }
1358
1359  llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
1360  return llvm::ConstantExpr::getBitCast(F, PTy);
1361}
1362
1363/// GetAddrOfFunction - Return the address of the given function.  If Ty is
1364/// non-null, then this function will use the specified type if it has to
1365/// create it (this occurs when we see a definition of the function).
1366llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
1367                                                 llvm::Type *Ty,
1368                                                 bool ForVTable) {
1369  // If there was no specific requested type, just convert it now.
1370  if (!Ty)
1371    Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
1372
1373  StringRef MangledName = getMangledName(GD);
1374  return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable);
1375}
1376
1377/// CreateRuntimeFunction - Create a new runtime function with the specified
1378/// type and name.
1379llvm::Constant *
1380CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy,
1381                                     StringRef Name,
1382                                     llvm::AttributeSet ExtraAttrs) {
1383  llvm::Constant *C
1384    = GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
1385                              ExtraAttrs);
1386  if (llvm::Function *F = dyn_cast<llvm::Function>(C))
1387    if (F->empty())
1388      F->setCallingConv(getRuntimeCC());
1389  return C;
1390}
1391
1392/// isTypeConstant - Determine whether an object of this type can be emitted
1393/// as a constant.
1394///
1395/// If ExcludeCtor is true, the duration when the object's constructor runs
1396/// will not be considered. The caller will need to verify that the object is
1397/// not written to during its construction.
1398bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
1399  if (!Ty.isConstant(Context) && !Ty->isReferenceType())
1400    return false;
1401
1402  if (Context.getLangOpts().CPlusPlus) {
1403    if (const CXXRecordDecl *Record
1404          = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
1405      return ExcludeCtor && !Record->hasMutableFields() &&
1406             Record->hasTrivialDestructor();
1407  }
1408
1409  return true;
1410}
1411
1412/// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
1413/// create and return an llvm GlobalVariable with the specified type.  If there
1414/// is something in the module with the specified name, return it potentially
1415/// bitcasted to the right type.
1416///
1417/// If D is non-null, it specifies a decl that correspond to this.  This is used
1418/// to set the attributes on the global when it is first created.
1419llvm::Constant *
1420CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
1421                                     llvm::PointerType *Ty,
1422                                     const VarDecl *D,
1423                                     bool UnnamedAddr) {
1424  // Lookup the entry, lazily creating it if necessary.
1425  llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1426  if (Entry) {
1427    if (WeakRefReferences.erase(Entry)) {
1428      if (D && !D->hasAttr<WeakAttr>())
1429        Entry->setLinkage(llvm::Function::ExternalLinkage);
1430    }
1431
1432    if (UnnamedAddr)
1433      Entry->setUnnamedAddr(true);
1434
1435    if (Entry->getType() == Ty)
1436      return Entry;
1437
1438    // Make sure the result is of the correct type.
1439    return llvm::ConstantExpr::getBitCast(Entry, Ty);
1440  }
1441
1442  // This is the first use or definition of a mangled name.  If there is a
1443  // deferred decl with this name, remember that we need to emit it at the end
1444  // of the file.
1445  llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1446  if (DDI != DeferredDecls.end()) {
1447    // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1448    // list, and remove it from DeferredDecls (since we don't need it anymore).
1449    DeferredDeclsToEmit.push_back(DDI->second);
1450    DeferredDecls.erase(DDI);
1451  }
1452
1453  unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace());
1454  llvm::GlobalVariable *GV =
1455    new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
1456                             llvm::GlobalValue::ExternalLinkage,
1457                             0, MangledName, 0,
1458                             llvm::GlobalVariable::NotThreadLocal, AddrSpace);
1459
1460  // Handle things which are present even on external declarations.
1461  if (D) {
1462    // FIXME: This code is overly simple and should be merged with other global
1463    // handling.
1464    GV->setConstant(isTypeConstant(D->getType(), false));
1465
1466    // Set linkage and visibility in case we never see a definition.
1467    LinkageInfo LV = D->getLinkageAndVisibility();
1468    if (LV.getLinkage() != ExternalLinkage) {
1469      // Don't set internal linkage on declarations.
1470    } else {
1471      if (D->hasAttr<DLLImportAttr>())
1472        GV->setLinkage(llvm::GlobalValue::DLLImportLinkage);
1473      else if (D->hasAttr<WeakAttr>() || D->isWeakImported())
1474        GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1475
1476      // Set visibility on a declaration only if it's explicit.
1477      if (LV.isVisibilityExplicit())
1478        GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
1479    }
1480
1481    if (D->getTLSKind()) {
1482      CXXThreadLocals.push_back(std::make_pair(D, GV));
1483      setTLSMode(GV, *D);
1484    }
1485  }
1486
1487  if (AddrSpace != Ty->getAddressSpace())
1488    return llvm::ConstantExpr::getBitCast(GV, Ty);
1489  else
1490    return GV;
1491}
1492
1493
1494llvm::GlobalVariable *
1495CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
1496                                      llvm::Type *Ty,
1497                                      llvm::GlobalValue::LinkageTypes Linkage) {
1498  llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
1499  llvm::GlobalVariable *OldGV = 0;
1500
1501
1502  if (GV) {
1503    // Check if the variable has the right type.
1504    if (GV->getType()->getElementType() == Ty)
1505      return GV;
1506
1507    // Because C++ name mangling, the only way we can end up with an already
1508    // existing global with the same name is if it has been declared extern "C".
1509    assert(GV->isDeclaration() && "Declaration has wrong type!");
1510    OldGV = GV;
1511  }
1512
1513  // Create a new variable.
1514  GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
1515                                Linkage, 0, Name);
1516
1517  if (OldGV) {
1518    // Replace occurrences of the old variable if needed.
1519    GV->takeName(OldGV);
1520
1521    if (!OldGV->use_empty()) {
1522      llvm::Constant *NewPtrForOldDecl =
1523      llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
1524      OldGV->replaceAllUsesWith(NewPtrForOldDecl);
1525    }
1526
1527    OldGV->eraseFromParent();
1528  }
1529
1530  return GV;
1531}
1532
1533/// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
1534/// given global variable.  If Ty is non-null and if the global doesn't exist,
1535/// then it will be created with the specified type instead of whatever the
1536/// normal requested type would be.
1537llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
1538                                                  llvm::Type *Ty) {
1539  assert(D->hasGlobalStorage() && "Not a global variable");
1540  QualType ASTTy = D->getType();
1541  if (Ty == 0)
1542    Ty = getTypes().ConvertTypeForMem(ASTTy);
1543
1544  llvm::PointerType *PTy =
1545    llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
1546
1547  StringRef MangledName = getMangledName(D);
1548  return GetOrCreateLLVMGlobal(MangledName, PTy, D);
1549}
1550
1551/// CreateRuntimeVariable - Create a new runtime global variable with the
1552/// specified type and name.
1553llvm::Constant *
1554CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
1555                                     StringRef Name) {
1556  return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0,
1557                               true);
1558}
1559
1560void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
1561  assert(!D->getInit() && "Cannot emit definite definitions here!");
1562
1563  if (MayDeferGeneration(D)) {
1564    // If we have not seen a reference to this variable yet, place it
1565    // into the deferred declarations table to be emitted if needed
1566    // later.
1567    StringRef MangledName = getMangledName(D);
1568    if (!GetGlobalValue(MangledName)) {
1569      DeferredDecls[MangledName] = D;
1570      return;
1571    }
1572  }
1573
1574  // The tentative definition is the only definition.
1575  EmitGlobalVarDefinition(D);
1576}
1577
1578CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
1579    return Context.toCharUnitsFromBits(
1580      TheDataLayout.getTypeStoreSizeInBits(Ty));
1581}
1582
1583llvm::Constant *
1584CodeGenModule::MaybeEmitGlobalStdInitializerListInitializer(const VarDecl *D,
1585                                                       const Expr *rawInit) {
1586  ArrayRef<ExprWithCleanups::CleanupObject> cleanups;
1587  if (const ExprWithCleanups *withCleanups =
1588          dyn_cast<ExprWithCleanups>(rawInit)) {
1589    cleanups = withCleanups->getObjects();
1590    rawInit = withCleanups->getSubExpr();
1591  }
1592
1593  const InitListExpr *init = dyn_cast<InitListExpr>(rawInit);
1594  if (!init || !init->initializesStdInitializerList() ||
1595      init->getNumInits() == 0)
1596    return 0;
1597
1598  ASTContext &ctx = getContext();
1599  unsigned numInits = init->getNumInits();
1600  // FIXME: This check is here because we would otherwise silently miscompile
1601  // nested global std::initializer_lists. Better would be to have a real
1602  // implementation.
1603  for (unsigned i = 0; i < numInits; ++i) {
1604    const InitListExpr *inner = dyn_cast<InitListExpr>(init->getInit(i));
1605    if (inner && inner->initializesStdInitializerList()) {
1606      ErrorUnsupported(inner, "nested global std::initializer_list");
1607      return 0;
1608    }
1609  }
1610
1611  // Synthesize a fake VarDecl for the array and initialize that.
1612  QualType elementType = init->getInit(0)->getType();
1613  llvm::APInt numElements(ctx.getTypeSize(ctx.getSizeType()), numInits);
1614  QualType arrayType = ctx.getConstantArrayType(elementType, numElements,
1615                                                ArrayType::Normal, 0);
1616
1617  IdentifierInfo *name = &ctx.Idents.get(D->getNameAsString() + "__initlist");
1618  TypeSourceInfo *sourceInfo = ctx.getTrivialTypeSourceInfo(
1619                                              arrayType, D->getLocation());
1620  VarDecl *backingArray = VarDecl::Create(ctx, const_cast<DeclContext*>(
1621                                                          D->getDeclContext()),
1622                                          D->getLocStart(), D->getLocation(),
1623                                          name, arrayType, sourceInfo,
1624                                          SC_Static);
1625  backingArray->setTLSKind(D->getTLSKind());
1626
1627  // Now clone the InitListExpr to initialize the array instead.
1628  // Incredible hack: we want to use the existing InitListExpr here, so we need
1629  // to tell it that it no longer initializes a std::initializer_list.
1630  ArrayRef<Expr*> Inits(const_cast<InitListExpr*>(init)->getInits(),
1631                        init->getNumInits());
1632  Expr *arrayInit = new (ctx) InitListExpr(ctx, init->getLBraceLoc(), Inits,
1633                                           init->getRBraceLoc());
1634  arrayInit->setType(arrayType);
1635
1636  if (!cleanups.empty())
1637    arrayInit = ExprWithCleanups::Create(ctx, arrayInit, cleanups);
1638
1639  backingArray->setInit(arrayInit);
1640
1641  // Emit the definition of the array.
1642  EmitGlobalVarDefinition(backingArray);
1643
1644  // Inspect the initializer list to validate it and determine its type.
1645  // FIXME: doing this every time is probably inefficient; caching would be nice
1646  RecordDecl *record = init->getType()->castAs<RecordType>()->getDecl();
1647  RecordDecl::field_iterator field = record->field_begin();
1648  if (field == record->field_end()) {
1649    ErrorUnsupported(D, "weird std::initializer_list");
1650    return 0;
1651  }
1652  QualType elementPtr = ctx.getPointerType(elementType.withConst());
1653  // Start pointer.
1654  if (!ctx.hasSameType(field->getType(), elementPtr)) {
1655    ErrorUnsupported(D, "weird std::initializer_list");
1656    return 0;
1657  }
1658  ++field;
1659  if (field == record->field_end()) {
1660    ErrorUnsupported(D, "weird std::initializer_list");
1661    return 0;
1662  }
1663  bool isStartEnd = false;
1664  if (ctx.hasSameType(field->getType(), elementPtr)) {
1665    // End pointer.
1666    isStartEnd = true;
1667  } else if(!ctx.hasSameType(field->getType(), ctx.getSizeType())) {
1668    ErrorUnsupported(D, "weird std::initializer_list");
1669    return 0;
1670  }
1671
1672  // Now build an APValue representing the std::initializer_list.
1673  APValue initListValue(APValue::UninitStruct(), 0, 2);
1674  APValue &startField = initListValue.getStructField(0);
1675  APValue::LValuePathEntry startOffsetPathEntry;
1676  startOffsetPathEntry.ArrayIndex = 0;
1677  startField = APValue(APValue::LValueBase(backingArray),
1678                       CharUnits::fromQuantity(0),
1679                       llvm::makeArrayRef(startOffsetPathEntry),
1680                       /*IsOnePastTheEnd=*/false, 0);
1681
1682  if (isStartEnd) {
1683    APValue &endField = initListValue.getStructField(1);
1684    APValue::LValuePathEntry endOffsetPathEntry;
1685    endOffsetPathEntry.ArrayIndex = numInits;
1686    endField = APValue(APValue::LValueBase(backingArray),
1687                       ctx.getTypeSizeInChars(elementType) * numInits,
1688                       llvm::makeArrayRef(endOffsetPathEntry),
1689                       /*IsOnePastTheEnd=*/true, 0);
1690  } else {
1691    APValue &sizeField = initListValue.getStructField(1);
1692    sizeField = APValue(llvm::APSInt(numElements));
1693  }
1694
1695  // Emit the constant for the initializer_list.
1696  llvm::Constant *llvmInit =
1697      EmitConstantValueForMemory(initListValue, D->getType());
1698  assert(llvmInit && "failed to initialize as constant");
1699  return llvmInit;
1700}
1701
1702unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D,
1703                                                 unsigned AddrSpace) {
1704  if (LangOpts.CUDA && CodeGenOpts.CUDAIsDevice) {
1705    if (D->hasAttr<CUDAConstantAttr>())
1706      AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant);
1707    else if (D->hasAttr<CUDASharedAttr>())
1708      AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared);
1709    else
1710      AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device);
1711  }
1712
1713  return AddrSpace;
1714}
1715
1716template<typename SomeDecl>
1717void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
1718                                               llvm::GlobalValue *GV) {
1719  if (!getLangOpts().CPlusPlus)
1720    return;
1721
1722  // Must have 'used' attribute, or else inline assembly can't rely on
1723  // the name existing.
1724  if (!D->template hasAttr<UsedAttr>())
1725    return;
1726
1727  // Must have internal linkage and an ordinary name.
1728  if (!D->getIdentifier() || D->getLinkage() != InternalLinkage)
1729    return;
1730
1731  // Must be in an extern "C" context. Entities declared directly within
1732  // a record are not extern "C" even if the record is in such a context.
1733  const DeclContext *DC = D->getFirstDeclaration()->getDeclContext();
1734  if (DC->isRecord() || !DC->isExternCContext())
1735    return;
1736
1737  // OK, this is an internal linkage entity inside an extern "C" linkage
1738  // specification. Make a note of that so we can give it the "expected"
1739  // mangled name if nothing else is using that name.
1740  std::pair<StaticExternCMap::iterator, bool> R =
1741      StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
1742
1743  // If we have multiple internal linkage entities with the same name
1744  // in extern "C" regions, none of them gets that name.
1745  if (!R.second)
1746    R.first->second = 0;
1747}
1748
1749void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1750  llvm::Constant *Init = 0;
1751  QualType ASTTy = D->getType();
1752  CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
1753  bool NeedsGlobalCtor = false;
1754  bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
1755
1756  const VarDecl *InitDecl;
1757  const Expr *InitExpr = D->getAnyInitializer(InitDecl);
1758
1759  if (!InitExpr) {
1760    // This is a tentative definition; tentative definitions are
1761    // implicitly initialized with { 0 }.
1762    //
1763    // Note that tentative definitions are only emitted at the end of
1764    // a translation unit, so they should never have incomplete
1765    // type. In addition, EmitTentativeDefinition makes sure that we
1766    // never attempt to emit a tentative definition if a real one
1767    // exists. A use may still exists, however, so we still may need
1768    // to do a RAUW.
1769    assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1770    Init = EmitNullConstant(D->getType());
1771  } else {
1772    // If this is a std::initializer_list, emit the special initializer.
1773    Init = MaybeEmitGlobalStdInitializerListInitializer(D, InitExpr);
1774    // An empty init list will perform zero-initialization, which happens
1775    // to be exactly what we want.
1776    // FIXME: It does so in a global constructor, which is *not* what we
1777    // want.
1778
1779    if (!Init) {
1780      initializedGlobalDecl = GlobalDecl(D);
1781      Init = EmitConstantInit(*InitDecl);
1782    }
1783    if (!Init) {
1784      QualType T = InitExpr->getType();
1785      if (D->getType()->isReferenceType())
1786        T = D->getType();
1787
1788      if (getLangOpts().CPlusPlus) {
1789        Init = EmitNullConstant(T);
1790        NeedsGlobalCtor = true;
1791      } else {
1792        ErrorUnsupported(D, "static initializer");
1793        Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1794      }
1795    } else {
1796      // We don't need an initializer, so remove the entry for the delayed
1797      // initializer position (just in case this entry was delayed) if we
1798      // also don't need to register a destructor.
1799      if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
1800        DelayedCXXInitPosition.erase(D);
1801    }
1802  }
1803
1804  llvm::Type* InitType = Init->getType();
1805  llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1806
1807  // Strip off a bitcast if we got one back.
1808  if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1809    assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1810           // all zero index gep.
1811           CE->getOpcode() == llvm::Instruction::GetElementPtr);
1812    Entry = CE->getOperand(0);
1813  }
1814
1815  // Entry is now either a Function or GlobalVariable.
1816  llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1817
1818  // We have a definition after a declaration with the wrong type.
1819  // We must make a new GlobalVariable* and update everything that used OldGV
1820  // (a declaration or tentative definition) with the new GlobalVariable*
1821  // (which will be a definition).
1822  //
1823  // This happens if there is a prototype for a global (e.g.
1824  // "extern int x[];") and then a definition of a different type (e.g.
1825  // "int x[10];"). This also happens when an initializer has a different type
1826  // from the type of the global (this happens with unions).
1827  if (GV == 0 ||
1828      GV->getType()->getElementType() != InitType ||
1829      GV->getType()->getAddressSpace() !=
1830       GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) {
1831
1832    // Move the old entry aside so that we'll create a new one.
1833    Entry->setName(StringRef());
1834
1835    // Make a new global with the correct type, this is now guaranteed to work.
1836    GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1837
1838    // Replace all uses of the old global with the new global
1839    llvm::Constant *NewPtrForOldDecl =
1840        llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1841    Entry->replaceAllUsesWith(NewPtrForOldDecl);
1842
1843    // Erase the old global, since it is no longer used.
1844    cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1845  }
1846
1847  MaybeHandleStaticInExternC(D, GV);
1848
1849  if (D->hasAttr<AnnotateAttr>())
1850    AddGlobalAnnotations(D, GV);
1851
1852  GV->setInitializer(Init);
1853
1854  // If it is safe to mark the global 'constant', do so now.
1855  GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
1856                  isTypeConstant(D->getType(), true));
1857
1858  GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1859
1860  // Set the llvm linkage type as appropriate.
1861  llvm::GlobalValue::LinkageTypes Linkage =
1862    GetLLVMLinkageVarDefinition(D, GV);
1863  GV->setLinkage(Linkage);
1864  if (Linkage == llvm::GlobalVariable::CommonLinkage)
1865    // common vars aren't constant even if declared const.
1866    GV->setConstant(false);
1867
1868  SetCommonAttributes(D, GV);
1869
1870  // Emit the initializer function if necessary.
1871  if (NeedsGlobalCtor || NeedsGlobalDtor)
1872    EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
1873
1874  // If we are compiling with ASan, add metadata indicating dynamically
1875  // initialized globals.
1876  if (SanOpts.Address && NeedsGlobalCtor) {
1877    llvm::Module &M = getModule();
1878
1879    llvm::NamedMDNode *DynamicInitializers =
1880        M.getOrInsertNamedMetadata("llvm.asan.dynamically_initialized_globals");
1881    llvm::Value *GlobalToAdd[] = { GV };
1882    llvm::MDNode *ThisGlobal = llvm::MDNode::get(VMContext, GlobalToAdd);
1883    DynamicInitializers->addOperand(ThisGlobal);
1884  }
1885
1886  // Emit global variable debug information.
1887  if (CGDebugInfo *DI = getModuleDebugInfo())
1888    if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
1889      DI->EmitGlobalVariable(GV, D);
1890}
1891
1892llvm::GlobalValue::LinkageTypes
1893CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D,
1894                                           llvm::GlobalVariable *GV) {
1895  GVALinkage Linkage = getContext().GetGVALinkageForVariable(D);
1896  if (Linkage == GVA_Internal)
1897    return llvm::Function::InternalLinkage;
1898  else if (D->hasAttr<DLLImportAttr>())
1899    return llvm::Function::DLLImportLinkage;
1900  else if (D->hasAttr<DLLExportAttr>())
1901    return llvm::Function::DLLExportLinkage;
1902  else if (D->hasAttr<WeakAttr>()) {
1903    if (GV->isConstant())
1904      return llvm::GlobalVariable::WeakODRLinkage;
1905    else
1906      return llvm::GlobalVariable::WeakAnyLinkage;
1907  } else if (Linkage == GVA_TemplateInstantiation ||
1908             Linkage == GVA_ExplicitTemplateInstantiation)
1909    return llvm::GlobalVariable::WeakODRLinkage;
1910  else if (!getLangOpts().CPlusPlus &&
1911           ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) ||
1912             D->getAttr<CommonAttr>()) &&
1913           !D->hasExternalStorage() && !D->getInit() &&
1914           !D->getAttr<SectionAttr>() && !D->getTLSKind() &&
1915           !D->getAttr<WeakImportAttr>()) {
1916    // Thread local vars aren't considered common linkage.
1917    return llvm::GlobalVariable::CommonLinkage;
1918  }
1919  return llvm::GlobalVariable::ExternalLinkage;
1920}
1921
1922/// Replace the uses of a function that was declared with a non-proto type.
1923/// We want to silently drop extra arguments from call sites
1924static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
1925                                          llvm::Function *newFn) {
1926  // Fast path.
1927  if (old->use_empty()) return;
1928
1929  llvm::Type *newRetTy = newFn->getReturnType();
1930  SmallVector<llvm::Value*, 4> newArgs;
1931
1932  for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
1933         ui != ue; ) {
1934    llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
1935    llvm::User *user = *use;
1936
1937    // Recognize and replace uses of bitcasts.  Most calls to
1938    // unprototyped functions will use bitcasts.
1939    if (llvm::ConstantExpr *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
1940      if (bitcast->getOpcode() == llvm::Instruction::BitCast)
1941        replaceUsesOfNonProtoConstant(bitcast, newFn);
1942      continue;
1943    }
1944
1945    // Recognize calls to the function.
1946    llvm::CallSite callSite(user);
1947    if (!callSite) continue;
1948    if (!callSite.isCallee(use)) continue;
1949
1950    // If the return types don't match exactly, then we can't
1951    // transform this call unless it's dead.
1952    if (callSite->getType() != newRetTy && !callSite->use_empty())
1953      continue;
1954
1955    // Get the call site's attribute list.
1956    SmallVector<llvm::AttributeSet, 8> newAttrs;
1957    llvm::AttributeSet oldAttrs = callSite.getAttributes();
1958
1959    // Collect any return attributes from the call.
1960    if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex))
1961      newAttrs.push_back(
1962        llvm::AttributeSet::get(newFn->getContext(),
1963                                oldAttrs.getRetAttributes()));
1964
1965    // If the function was passed too few arguments, don't transform.
1966    unsigned newNumArgs = newFn->arg_size();
1967    if (callSite.arg_size() < newNumArgs) continue;
1968
1969    // If extra arguments were passed, we silently drop them.
1970    // If any of the types mismatch, we don't transform.
1971    unsigned argNo = 0;
1972    bool dontTransform = false;
1973    for (llvm::Function::arg_iterator ai = newFn->arg_begin(),
1974           ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) {
1975      if (callSite.getArgument(argNo)->getType() != ai->getType()) {
1976        dontTransform = true;
1977        break;
1978      }
1979
1980      // Add any parameter attributes.
1981      if (oldAttrs.hasAttributes(argNo + 1))
1982        newAttrs.
1983          push_back(llvm::
1984                    AttributeSet::get(newFn->getContext(),
1985                                      oldAttrs.getParamAttributes(argNo + 1)));
1986    }
1987    if (dontTransform)
1988      continue;
1989
1990    if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex))
1991      newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(),
1992                                                 oldAttrs.getFnAttributes()));
1993
1994    // Okay, we can transform this.  Create the new call instruction and copy
1995    // over the required information.
1996    newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo);
1997
1998    llvm::CallSite newCall;
1999    if (callSite.isCall()) {
2000      newCall = llvm::CallInst::Create(newFn, newArgs, "",
2001                                       callSite.getInstruction());
2002    } else {
2003      llvm::InvokeInst *oldInvoke =
2004        cast<llvm::InvokeInst>(callSite.getInstruction());
2005      newCall = llvm::InvokeInst::Create(newFn,
2006                                         oldInvoke->getNormalDest(),
2007                                         oldInvoke->getUnwindDest(),
2008                                         newArgs, "",
2009                                         callSite.getInstruction());
2010    }
2011    newArgs.clear(); // for the next iteration
2012
2013    if (!newCall->getType()->isVoidTy())
2014      newCall->takeName(callSite.getInstruction());
2015    newCall.setAttributes(
2016                     llvm::AttributeSet::get(newFn->getContext(), newAttrs));
2017    newCall.setCallingConv(callSite.getCallingConv());
2018
2019    // Finally, remove the old call, replacing any uses with the new one.
2020    if (!callSite->use_empty())
2021      callSite->replaceAllUsesWith(newCall.getInstruction());
2022
2023    // Copy debug location attached to CI.
2024    if (!callSite->getDebugLoc().isUnknown())
2025      newCall->setDebugLoc(callSite->getDebugLoc());
2026    callSite->eraseFromParent();
2027  }
2028}
2029
2030/// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
2031/// implement a function with no prototype, e.g. "int foo() {}".  If there are
2032/// existing call uses of the old function in the module, this adjusts them to
2033/// call the new function directly.
2034///
2035/// This is not just a cleanup: the always_inline pass requires direct calls to
2036/// functions to be able to inline them.  If there is a bitcast in the way, it
2037/// won't inline them.  Instcombine normally deletes these calls, but it isn't
2038/// run at -O0.
2039static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2040                                                      llvm::Function *NewFn) {
2041  // If we're redefining a global as a function, don't transform it.
2042  if (!isa<llvm::Function>(Old)) return;
2043
2044  replaceUsesOfNonProtoConstant(Old, NewFn);
2045}
2046
2047void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
2048  TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
2049  // If we have a definition, this might be a deferred decl. If the
2050  // instantiation is explicit, make sure we emit it at the end.
2051  if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
2052    GetAddrOfGlobalVar(VD);
2053
2054  EmitTopLevelDecl(VD);
2055}
2056
2057void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
2058  const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
2059
2060  // Compute the function info and LLVM type.
2061  const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2062  llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2063
2064  // Get or create the prototype for the function.
2065  llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
2066
2067  // Strip off a bitcast if we got one back.
2068  if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
2069    assert(CE->getOpcode() == llvm::Instruction::BitCast);
2070    Entry = CE->getOperand(0);
2071  }
2072
2073
2074  if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
2075    llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
2076
2077    // If the types mismatch then we have to rewrite the definition.
2078    assert(OldFn->isDeclaration() &&
2079           "Shouldn't replace non-declaration");
2080
2081    // F is the Function* for the one with the wrong type, we must make a new
2082    // Function* and update everything that used F (a declaration) with the new
2083    // Function* (which will be a definition).
2084    //
2085    // This happens if there is a prototype for a function
2086    // (e.g. "int f()") and then a definition of a different type
2087    // (e.g. "int f(int x)").  Move the old function aside so that it
2088    // doesn't interfere with GetAddrOfFunction.
2089    OldFn->setName(StringRef());
2090    llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
2091
2092    // This might be an implementation of a function without a
2093    // prototype, in which case, try to do special replacement of
2094    // calls which match the new prototype.  The really key thing here
2095    // is that we also potentially drop arguments from the call site
2096    // so as to make a direct call, which makes the inliner happier
2097    // and suppresses a number of optimizer warnings (!) about
2098    // dropping arguments.
2099    if (!OldFn->use_empty()) {
2100      ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
2101      OldFn->removeDeadConstantUsers();
2102    }
2103
2104    // Replace uses of F with the Function we will endow with a body.
2105    if (!Entry->use_empty()) {
2106      llvm::Constant *NewPtrForOldDecl =
2107        llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
2108      Entry->replaceAllUsesWith(NewPtrForOldDecl);
2109    }
2110
2111    // Ok, delete the old function now, which is dead.
2112    OldFn->eraseFromParent();
2113
2114    Entry = NewFn;
2115  }
2116
2117  // We need to set linkage and visibility on the function before
2118  // generating code for it because various parts of IR generation
2119  // want to propagate this information down (e.g. to local static
2120  // declarations).
2121  llvm::Function *Fn = cast<llvm::Function>(Entry);
2122  setFunctionLinkage(D, Fn);
2123
2124  // FIXME: this is redundant with part of SetFunctionDefinitionAttributes
2125  setGlobalVisibility(Fn, D);
2126
2127  MaybeHandleStaticInExternC(D, Fn);
2128
2129  CodeGenFunction(*this).GenerateCode(D, Fn, FI);
2130
2131  SetFunctionDefinitionAttributes(D, Fn);
2132  SetLLVMFunctionAttributesForDefinition(D, Fn);
2133
2134  if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
2135    AddGlobalCtor(Fn, CA->getPriority());
2136  if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
2137    AddGlobalDtor(Fn, DA->getPriority());
2138  if (D->hasAttr<AnnotateAttr>())
2139    AddGlobalAnnotations(D, Fn);
2140}
2141
2142void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
2143  const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
2144  const AliasAttr *AA = D->getAttr<AliasAttr>();
2145  assert(AA && "Not an alias?");
2146
2147  StringRef MangledName = getMangledName(GD);
2148
2149  // If there is a definition in the module, then it wins over the alias.
2150  // This is dubious, but allow it to be safe.  Just ignore the alias.
2151  llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2152  if (Entry && !Entry->isDeclaration())
2153    return;
2154
2155  llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
2156
2157  // Create a reference to the named value.  This ensures that it is emitted
2158  // if a deferred decl.
2159  llvm::Constant *Aliasee;
2160  if (isa<llvm::FunctionType>(DeclTy))
2161    Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
2162                                      /*ForVTable=*/false);
2163  else
2164    Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
2165                                    llvm::PointerType::getUnqual(DeclTy), 0);
2166
2167  // Create the new alias itself, but don't set a name yet.
2168  llvm::GlobalValue *GA =
2169    new llvm::GlobalAlias(Aliasee->getType(),
2170                          llvm::Function::ExternalLinkage,
2171                          "", Aliasee, &getModule());
2172
2173  if (Entry) {
2174    assert(Entry->isDeclaration());
2175
2176    // If there is a declaration in the module, then we had an extern followed
2177    // by the alias, as in:
2178    //   extern int test6();
2179    //   ...
2180    //   int test6() __attribute__((alias("test7")));
2181    //
2182    // Remove it and replace uses of it with the alias.
2183    GA->takeName(Entry);
2184
2185    Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
2186                                                          Entry->getType()));
2187    Entry->eraseFromParent();
2188  } else {
2189    GA->setName(MangledName);
2190  }
2191
2192  // Set attributes which are particular to an alias; this is a
2193  // specialization of the attributes which may be set on a global
2194  // variable/function.
2195  if (D->hasAttr<DLLExportAttr>()) {
2196    if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2197      // The dllexport attribute is ignored for undefined symbols.
2198      if (FD->hasBody())
2199        GA->setLinkage(llvm::Function::DLLExportLinkage);
2200    } else {
2201      GA->setLinkage(llvm::Function::DLLExportLinkage);
2202    }
2203  } else if (D->hasAttr<WeakAttr>() ||
2204             D->hasAttr<WeakRefAttr>() ||
2205             D->isWeakImported()) {
2206    GA->setLinkage(llvm::Function::WeakAnyLinkage);
2207  }
2208
2209  SetCommonAttributes(D, GA);
2210}
2211
2212llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
2213                                            ArrayRef<llvm::Type*> Tys) {
2214  return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
2215                                         Tys);
2216}
2217
2218static llvm::StringMapEntry<llvm::Constant*> &
2219GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2220                         const StringLiteral *Literal,
2221                         bool TargetIsLSB,
2222                         bool &IsUTF16,
2223                         unsigned &StringLength) {
2224  StringRef String = Literal->getString();
2225  unsigned NumBytes = String.size();
2226
2227  // Check for simple case.
2228  if (!Literal->containsNonAsciiOrNull()) {
2229    StringLength = NumBytes;
2230    return Map.GetOrCreateValue(String);
2231  }
2232
2233  // Otherwise, convert the UTF8 literals into a string of shorts.
2234  IsUTF16 = true;
2235
2236  SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
2237  const UTF8 *FromPtr = (const UTF8 *)String.data();
2238  UTF16 *ToPtr = &ToBuf[0];
2239
2240  (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
2241                           &ToPtr, ToPtr + NumBytes,
2242                           strictConversion);
2243
2244  // ConvertUTF8toUTF16 returns the length in ToPtr.
2245  StringLength = ToPtr - &ToBuf[0];
2246
2247  // Add an explicit null.
2248  *ToPtr = 0;
2249  return Map.
2250    GetOrCreateValue(StringRef(reinterpret_cast<const char *>(ToBuf.data()),
2251                               (StringLength + 1) * 2));
2252}
2253
2254static llvm::StringMapEntry<llvm::Constant*> &
2255GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2256                       const StringLiteral *Literal,
2257                       unsigned &StringLength) {
2258  StringRef String = Literal->getString();
2259  StringLength = String.size();
2260  return Map.GetOrCreateValue(String);
2261}
2262
2263llvm::Constant *
2264CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
2265  unsigned StringLength = 0;
2266  bool isUTF16 = false;
2267  llvm::StringMapEntry<llvm::Constant*> &Entry =
2268    GetConstantCFStringEntry(CFConstantStringMap, Literal,
2269                             getDataLayout().isLittleEndian(),
2270                             isUTF16, StringLength);
2271
2272  if (llvm::Constant *C = Entry.getValue())
2273    return C;
2274
2275  llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2276  llvm::Constant *Zeros[] = { Zero, Zero };
2277  llvm::Value *V;
2278
2279  // If we don't already have it, get __CFConstantStringClassReference.
2280  if (!CFConstantStringClassRef) {
2281    llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2282    Ty = llvm::ArrayType::get(Ty, 0);
2283    llvm::Constant *GV = CreateRuntimeVariable(Ty,
2284                                           "__CFConstantStringClassReference");
2285    // Decay array -> ptr
2286    V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2287    CFConstantStringClassRef = V;
2288  }
2289  else
2290    V = CFConstantStringClassRef;
2291
2292  QualType CFTy = getContext().getCFConstantStringType();
2293
2294  llvm::StructType *STy =
2295    cast<llvm::StructType>(getTypes().ConvertType(CFTy));
2296
2297  llvm::Constant *Fields[4];
2298
2299  // Class pointer.
2300  Fields[0] = cast<llvm::ConstantExpr>(V);
2301
2302  // Flags.
2303  llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2304  Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
2305    llvm::ConstantInt::get(Ty, 0x07C8);
2306
2307  // String pointer.
2308  llvm::Constant *C = 0;
2309  if (isUTF16) {
2310    ArrayRef<uint16_t> Arr =
2311      llvm::makeArrayRef<uint16_t>(reinterpret_cast<uint16_t*>(
2312                                     const_cast<char *>(Entry.getKey().data())),
2313                                   Entry.getKey().size() / 2);
2314    C = llvm::ConstantDataArray::get(VMContext, Arr);
2315  } else {
2316    C = llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2317  }
2318
2319  llvm::GlobalValue::LinkageTypes Linkage;
2320  if (isUTF16)
2321    // FIXME: why do utf strings get "_" labels instead of "L" labels?
2322    Linkage = llvm::GlobalValue::InternalLinkage;
2323  else
2324    // FIXME: With OS X ld 123.2 (xcode 4) and LTO we would get a linker error
2325    // when using private linkage. It is not clear if this is a bug in ld
2326    // or a reasonable new restriction.
2327    Linkage = llvm::GlobalValue::LinkerPrivateLinkage;
2328
2329  // Note: -fwritable-strings doesn't make the backing store strings of
2330  // CFStrings writable. (See <rdar://problem/10657500>)
2331  llvm::GlobalVariable *GV =
2332    new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
2333                             Linkage, C, ".str");
2334  GV->setUnnamedAddr(true);
2335  if (isUTF16) {
2336    CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
2337    GV->setAlignment(Align.getQuantity());
2338  } else {
2339    CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2340    GV->setAlignment(Align.getQuantity());
2341  }
2342
2343  // String.
2344  Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2345
2346  if (isUTF16)
2347    // Cast the UTF16 string to the correct type.
2348    Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy);
2349
2350  // String length.
2351  Ty = getTypes().ConvertType(getContext().LongTy);
2352  Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
2353
2354  // The struct.
2355  C = llvm::ConstantStruct::get(STy, Fields);
2356  GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2357                                llvm::GlobalVariable::PrivateLinkage, C,
2358                                "_unnamed_cfstring_");
2359  if (const char *Sect = getTarget().getCFStringSection())
2360    GV->setSection(Sect);
2361  Entry.setValue(GV);
2362
2363  return GV;
2364}
2365
2366static RecordDecl *
2367CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK,
2368                 DeclContext *DC, IdentifierInfo *Id) {
2369  SourceLocation Loc;
2370  if (Ctx.getLangOpts().CPlusPlus)
2371    return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
2372  else
2373    return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
2374}
2375
2376llvm::Constant *
2377CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
2378  unsigned StringLength = 0;
2379  llvm::StringMapEntry<llvm::Constant*> &Entry =
2380    GetConstantStringEntry(CFConstantStringMap, Literal, StringLength);
2381
2382  if (llvm::Constant *C = Entry.getValue())
2383    return C;
2384
2385  llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2386  llvm::Constant *Zeros[] = { Zero, Zero };
2387  llvm::Value *V;
2388  // If we don't already have it, get _NSConstantStringClassReference.
2389  if (!ConstantStringClassRef) {
2390    std::string StringClass(getLangOpts().ObjCConstantStringClass);
2391    llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2392    llvm::Constant *GV;
2393    if (LangOpts.ObjCRuntime.isNonFragile()) {
2394      std::string str =
2395        StringClass.empty() ? "OBJC_CLASS_$_NSConstantString"
2396                            : "OBJC_CLASS_$_" + StringClass;
2397      GV = getObjCRuntime().GetClassGlobal(str);
2398      // Make sure the result is of the correct type.
2399      llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
2400      V = llvm::ConstantExpr::getBitCast(GV, PTy);
2401      ConstantStringClassRef = V;
2402    } else {
2403      std::string str =
2404        StringClass.empty() ? "_NSConstantStringClassReference"
2405                            : "_" + StringClass + "ClassReference";
2406      llvm::Type *PTy = llvm::ArrayType::get(Ty, 0);
2407      GV = CreateRuntimeVariable(PTy, str);
2408      // Decay array -> ptr
2409      V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2410      ConstantStringClassRef = V;
2411    }
2412  }
2413  else
2414    V = ConstantStringClassRef;
2415
2416  if (!NSConstantStringType) {
2417    // Construct the type for a constant NSString.
2418    RecordDecl *D = CreateRecordDecl(Context, TTK_Struct,
2419                                     Context.getTranslationUnitDecl(),
2420                                   &Context.Idents.get("__builtin_NSString"));
2421    D->startDefinition();
2422
2423    QualType FieldTypes[3];
2424
2425    // const int *isa;
2426    FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst());
2427    // const char *str;
2428    FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst());
2429    // unsigned int length;
2430    FieldTypes[2] = Context.UnsignedIntTy;
2431
2432    // Create fields
2433    for (unsigned i = 0; i < 3; ++i) {
2434      FieldDecl *Field = FieldDecl::Create(Context, D,
2435                                           SourceLocation(),
2436                                           SourceLocation(), 0,
2437                                           FieldTypes[i], /*TInfo=*/0,
2438                                           /*BitWidth=*/0,
2439                                           /*Mutable=*/false,
2440                                           ICIS_NoInit);
2441      Field->setAccess(AS_public);
2442      D->addDecl(Field);
2443    }
2444
2445    D->completeDefinition();
2446    QualType NSTy = Context.getTagDeclType(D);
2447    NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy));
2448  }
2449
2450  llvm::Constant *Fields[3];
2451
2452  // Class pointer.
2453  Fields[0] = cast<llvm::ConstantExpr>(V);
2454
2455  // String pointer.
2456  llvm::Constant *C =
2457    llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2458
2459  llvm::GlobalValue::LinkageTypes Linkage;
2460  bool isConstant;
2461  Linkage = llvm::GlobalValue::PrivateLinkage;
2462  isConstant = !LangOpts.WritableStrings;
2463
2464  llvm::GlobalVariable *GV =
2465  new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
2466                           ".str");
2467  GV->setUnnamedAddr(true);
2468  CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2469  GV->setAlignment(Align.getQuantity());
2470  Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2471
2472  // String length.
2473  llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2474  Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
2475
2476  // The struct.
2477  C = llvm::ConstantStruct::get(NSConstantStringType, Fields);
2478  GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2479                                llvm::GlobalVariable::PrivateLinkage, C,
2480                                "_unnamed_nsstring_");
2481  // FIXME. Fix section.
2482  if (const char *Sect =
2483        LangOpts.ObjCRuntime.isNonFragile()
2484          ? getTarget().getNSStringNonFragileABISection()
2485          : getTarget().getNSStringSection())
2486    GV->setSection(Sect);
2487  Entry.setValue(GV);
2488
2489  return GV;
2490}
2491
2492QualType CodeGenModule::getObjCFastEnumerationStateType() {
2493  if (ObjCFastEnumerationStateType.isNull()) {
2494    RecordDecl *D = CreateRecordDecl(Context, TTK_Struct,
2495                                     Context.getTranslationUnitDecl(),
2496                      &Context.Idents.get("__objcFastEnumerationState"));
2497    D->startDefinition();
2498
2499    QualType FieldTypes[] = {
2500      Context.UnsignedLongTy,
2501      Context.getPointerType(Context.getObjCIdType()),
2502      Context.getPointerType(Context.UnsignedLongTy),
2503      Context.getConstantArrayType(Context.UnsignedLongTy,
2504                           llvm::APInt(32, 5), ArrayType::Normal, 0)
2505    };
2506
2507    for (size_t i = 0; i < 4; ++i) {
2508      FieldDecl *Field = FieldDecl::Create(Context,
2509                                           D,
2510                                           SourceLocation(),
2511                                           SourceLocation(), 0,
2512                                           FieldTypes[i], /*TInfo=*/0,
2513                                           /*BitWidth=*/0,
2514                                           /*Mutable=*/false,
2515                                           ICIS_NoInit);
2516      Field->setAccess(AS_public);
2517      D->addDecl(Field);
2518    }
2519
2520    D->completeDefinition();
2521    ObjCFastEnumerationStateType = Context.getTagDeclType(D);
2522  }
2523
2524  return ObjCFastEnumerationStateType;
2525}
2526
2527llvm::Constant *
2528CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
2529  assert(!E->getType()->isPointerType() && "Strings are always arrays");
2530
2531  // Don't emit it as the address of the string, emit the string data itself
2532  // as an inline array.
2533  if (E->getCharByteWidth() == 1) {
2534    SmallString<64> Str(E->getString());
2535
2536    // Resize the string to the right size, which is indicated by its type.
2537    const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
2538    Str.resize(CAT->getSize().getZExtValue());
2539    return llvm::ConstantDataArray::getString(VMContext, Str, false);
2540  }
2541
2542  llvm::ArrayType *AType =
2543    cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
2544  llvm::Type *ElemTy = AType->getElementType();
2545  unsigned NumElements = AType->getNumElements();
2546
2547  // Wide strings have either 2-byte or 4-byte elements.
2548  if (ElemTy->getPrimitiveSizeInBits() == 16) {
2549    SmallVector<uint16_t, 32> Elements;
2550    Elements.reserve(NumElements);
2551
2552    for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2553      Elements.push_back(E->getCodeUnit(i));
2554    Elements.resize(NumElements);
2555    return llvm::ConstantDataArray::get(VMContext, Elements);
2556  }
2557
2558  assert(ElemTy->getPrimitiveSizeInBits() == 32);
2559  SmallVector<uint32_t, 32> Elements;
2560  Elements.reserve(NumElements);
2561
2562  for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2563    Elements.push_back(E->getCodeUnit(i));
2564  Elements.resize(NumElements);
2565  return llvm::ConstantDataArray::get(VMContext, Elements);
2566}
2567
2568/// GetAddrOfConstantStringFromLiteral - Return a pointer to a
2569/// constant array for the given string literal.
2570llvm::Constant *
2571CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
2572  CharUnits Align = getContext().getTypeAlignInChars(S->getType());
2573  if (S->isAscii() || S->isUTF8()) {
2574    SmallString<64> Str(S->getString());
2575
2576    // Resize the string to the right size, which is indicated by its type.
2577    const ConstantArrayType *CAT = Context.getAsConstantArrayType(S->getType());
2578    Str.resize(CAT->getSize().getZExtValue());
2579    return GetAddrOfConstantString(Str, /*GlobalName*/ 0, Align.getQuantity());
2580  }
2581
2582  // FIXME: the following does not memoize wide strings.
2583  llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
2584  llvm::GlobalVariable *GV =
2585    new llvm::GlobalVariable(getModule(),C->getType(),
2586                             !LangOpts.WritableStrings,
2587                             llvm::GlobalValue::PrivateLinkage,
2588                             C,".str");
2589
2590  GV->setAlignment(Align.getQuantity());
2591  GV->setUnnamedAddr(true);
2592  return GV;
2593}
2594
2595/// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
2596/// array for the given ObjCEncodeExpr node.
2597llvm::Constant *
2598CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
2599  std::string Str;
2600  getContext().getObjCEncodingForType(E->getEncodedType(), Str);
2601
2602  return GetAddrOfConstantCString(Str);
2603}
2604
2605
2606/// GenerateWritableString -- Creates storage for a string literal.
2607static llvm::GlobalVariable *GenerateStringLiteral(StringRef str,
2608                                             bool constant,
2609                                             CodeGenModule &CGM,
2610                                             const char *GlobalName,
2611                                             unsigned Alignment) {
2612  // Create Constant for this string literal. Don't add a '\0'.
2613  llvm::Constant *C =
2614      llvm::ConstantDataArray::getString(CGM.getLLVMContext(), str, false);
2615
2616  // Create a global variable for this string
2617  llvm::GlobalVariable *GV =
2618    new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
2619                             llvm::GlobalValue::PrivateLinkage,
2620                             C, GlobalName);
2621  GV->setAlignment(Alignment);
2622  GV->setUnnamedAddr(true);
2623  return GV;
2624}
2625
2626/// GetAddrOfConstantString - Returns a pointer to a character array
2627/// containing the literal. This contents are exactly that of the
2628/// given string, i.e. it will not be null terminated automatically;
2629/// see GetAddrOfConstantCString. Note that whether the result is
2630/// actually a pointer to an LLVM constant depends on
2631/// Feature.WriteableStrings.
2632///
2633/// The result has pointer to array type.
2634llvm::Constant *CodeGenModule::GetAddrOfConstantString(StringRef Str,
2635                                                       const char *GlobalName,
2636                                                       unsigned Alignment) {
2637  // Get the default prefix if a name wasn't specified.
2638  if (!GlobalName)
2639    GlobalName = ".str";
2640
2641  // Don't share any string literals if strings aren't constant.
2642  if (LangOpts.WritableStrings)
2643    return GenerateStringLiteral(Str, false, *this, GlobalName, Alignment);
2644
2645  llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
2646    ConstantStringMap.GetOrCreateValue(Str);
2647
2648  if (llvm::GlobalVariable *GV = Entry.getValue()) {
2649    if (Alignment > GV->getAlignment()) {
2650      GV->setAlignment(Alignment);
2651    }
2652    return GV;
2653  }
2654
2655  // Create a global variable for this.
2656  llvm::GlobalVariable *GV = GenerateStringLiteral(Str, true, *this, GlobalName,
2657                                                   Alignment);
2658  Entry.setValue(GV);
2659  return GV;
2660}
2661
2662/// GetAddrOfConstantCString - Returns a pointer to a character
2663/// array containing the literal and a terminating '\0'
2664/// character. The result has pointer to array type.
2665llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str,
2666                                                        const char *GlobalName,
2667                                                        unsigned Alignment) {
2668  StringRef StrWithNull(Str.c_str(), Str.size() + 1);
2669  return GetAddrOfConstantString(StrWithNull, GlobalName, Alignment);
2670}
2671
2672/// EmitObjCPropertyImplementations - Emit information for synthesized
2673/// properties for an implementation.
2674void CodeGenModule::EmitObjCPropertyImplementations(const
2675                                                    ObjCImplementationDecl *D) {
2676  for (ObjCImplementationDecl::propimpl_iterator
2677         i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
2678    ObjCPropertyImplDecl *PID = *i;
2679
2680    // Dynamic is just for type-checking.
2681    if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
2682      ObjCPropertyDecl *PD = PID->getPropertyDecl();
2683
2684      // Determine which methods need to be implemented, some may have
2685      // been overridden. Note that ::isPropertyAccessor is not the method
2686      // we want, that just indicates if the decl came from a
2687      // property. What we want to know is if the method is defined in
2688      // this implementation.
2689      if (!D->getInstanceMethod(PD->getGetterName()))
2690        CodeGenFunction(*this).GenerateObjCGetter(
2691                                 const_cast<ObjCImplementationDecl *>(D), PID);
2692      if (!PD->isReadOnly() &&
2693          !D->getInstanceMethod(PD->getSetterName()))
2694        CodeGenFunction(*this).GenerateObjCSetter(
2695                                 const_cast<ObjCImplementationDecl *>(D), PID);
2696    }
2697  }
2698}
2699
2700static bool needsDestructMethod(ObjCImplementationDecl *impl) {
2701  const ObjCInterfaceDecl *iface = impl->getClassInterface();
2702  for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
2703       ivar; ivar = ivar->getNextIvar())
2704    if (ivar->getType().isDestructedType())
2705      return true;
2706
2707  return false;
2708}
2709
2710/// EmitObjCIvarInitializations - Emit information for ivar initialization
2711/// for an implementation.
2712void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
2713  // We might need a .cxx_destruct even if we don't have any ivar initializers.
2714  if (needsDestructMethod(D)) {
2715    IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
2716    Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2717    ObjCMethodDecl *DTORMethod =
2718      ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
2719                             cxxSelector, getContext().VoidTy, 0, D,
2720                             /*isInstance=*/true, /*isVariadic=*/false,
2721                          /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
2722                             /*isDefined=*/false, ObjCMethodDecl::Required);
2723    D->addInstanceMethod(DTORMethod);
2724    CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
2725    D->setHasDestructors(true);
2726  }
2727
2728  // If the implementation doesn't have any ivar initializers, we don't need
2729  // a .cxx_construct.
2730  if (D->getNumIvarInitializers() == 0)
2731    return;
2732
2733  IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
2734  Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2735  // The constructor returns 'self'.
2736  ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
2737                                                D->getLocation(),
2738                                                D->getLocation(),
2739                                                cxxSelector,
2740                                                getContext().getObjCIdType(), 0,
2741                                                D, /*isInstance=*/true,
2742                                                /*isVariadic=*/false,
2743                                                /*isPropertyAccessor=*/true,
2744                                                /*isImplicitlyDeclared=*/true,
2745                                                /*isDefined=*/false,
2746                                                ObjCMethodDecl::Required);
2747  D->addInstanceMethod(CTORMethod);
2748  CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
2749  D->setHasNonZeroConstructors(true);
2750}
2751
2752/// EmitNamespace - Emit all declarations in a namespace.
2753void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
2754  for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
2755       I != E; ++I)
2756    EmitTopLevelDecl(*I);
2757}
2758
2759// EmitLinkageSpec - Emit all declarations in a linkage spec.
2760void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
2761  if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
2762      LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
2763    ErrorUnsupported(LSD, "linkage spec");
2764    return;
2765  }
2766
2767  for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
2768       I != E; ++I) {
2769    // Meta-data for ObjC class includes references to implemented methods.
2770    // Generate class's method definitions first.
2771    if (ObjCImplDecl *OID = dyn_cast<ObjCImplDecl>(*I)) {
2772      for (ObjCContainerDecl::method_iterator M = OID->meth_begin(),
2773           MEnd = OID->meth_end();
2774           M != MEnd; ++M)
2775        EmitTopLevelDecl(*M);
2776    }
2777    EmitTopLevelDecl(*I);
2778  }
2779}
2780
2781/// EmitTopLevelDecl - Emit code for a single top level declaration.
2782void CodeGenModule::EmitTopLevelDecl(Decl *D) {
2783  // If an error has occurred, stop code generation, but continue
2784  // parsing and semantic analysis (to ensure all warnings and errors
2785  // are emitted).
2786  if (Diags.hasErrorOccurred())
2787    return;
2788
2789  // Ignore dependent declarations.
2790  if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
2791    return;
2792
2793  switch (D->getKind()) {
2794  case Decl::CXXConversion:
2795  case Decl::CXXMethod:
2796  case Decl::Function:
2797    // Skip function templates
2798    if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2799        cast<FunctionDecl>(D)->isLateTemplateParsed())
2800      return;
2801
2802    EmitGlobal(cast<FunctionDecl>(D));
2803    break;
2804
2805  case Decl::Var:
2806    EmitGlobal(cast<VarDecl>(D));
2807    break;
2808
2809  // Indirect fields from global anonymous structs and unions can be
2810  // ignored; only the actual variable requires IR gen support.
2811  case Decl::IndirectField:
2812    break;
2813
2814  // C++ Decls
2815  case Decl::Namespace:
2816    EmitNamespace(cast<NamespaceDecl>(D));
2817    break;
2818    // No code generation needed.
2819  case Decl::UsingShadow:
2820  case Decl::Using:
2821  case Decl::UsingDirective:
2822  case Decl::ClassTemplate:
2823  case Decl::FunctionTemplate:
2824  case Decl::TypeAliasTemplate:
2825  case Decl::NamespaceAlias:
2826  case Decl::Block:
2827  case Decl::Empty:
2828    break;
2829  case Decl::CXXConstructor:
2830    // Skip function templates
2831    if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2832        cast<FunctionDecl>(D)->isLateTemplateParsed())
2833      return;
2834
2835    EmitCXXConstructors(cast<CXXConstructorDecl>(D));
2836    break;
2837  case Decl::CXXDestructor:
2838    if (cast<FunctionDecl>(D)->isLateTemplateParsed())
2839      return;
2840    EmitCXXDestructors(cast<CXXDestructorDecl>(D));
2841    break;
2842
2843  case Decl::StaticAssert:
2844    // Nothing to do.
2845    break;
2846
2847  // Objective-C Decls
2848
2849  // Forward declarations, no (immediate) code generation.
2850  case Decl::ObjCInterface:
2851  case Decl::ObjCCategory:
2852    break;
2853
2854  case Decl::ObjCProtocol: {
2855    ObjCProtocolDecl *Proto = cast<ObjCProtocolDecl>(D);
2856    if (Proto->isThisDeclarationADefinition())
2857      ObjCRuntime->GenerateProtocol(Proto);
2858    break;
2859  }
2860
2861  case Decl::ObjCCategoryImpl:
2862    // Categories have properties but don't support synthesize so we
2863    // can ignore them here.
2864    ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
2865    break;
2866
2867  case Decl::ObjCImplementation: {
2868    ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
2869    EmitObjCPropertyImplementations(OMD);
2870    EmitObjCIvarInitializations(OMD);
2871    ObjCRuntime->GenerateClass(OMD);
2872    // Emit global variable debug information.
2873    if (CGDebugInfo *DI = getModuleDebugInfo())
2874      if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
2875        DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
2876            OMD->getClassInterface()), OMD->getLocation());
2877    break;
2878  }
2879  case Decl::ObjCMethod: {
2880    ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
2881    // If this is not a prototype, emit the body.
2882    if (OMD->getBody())
2883      CodeGenFunction(*this).GenerateObjCMethod(OMD);
2884    break;
2885  }
2886  case Decl::ObjCCompatibleAlias:
2887    ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
2888    break;
2889
2890  case Decl::LinkageSpec:
2891    EmitLinkageSpec(cast<LinkageSpecDecl>(D));
2892    break;
2893
2894  case Decl::FileScopeAsm: {
2895    FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
2896    StringRef AsmString = AD->getAsmString()->getString();
2897
2898    const std::string &S = getModule().getModuleInlineAsm();
2899    if (S.empty())
2900      getModule().setModuleInlineAsm(AsmString);
2901    else if (S.end()[-1] == '\n')
2902      getModule().setModuleInlineAsm(S + AsmString.str());
2903    else
2904      getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
2905    break;
2906  }
2907
2908  case Decl::Import: {
2909    ImportDecl *Import = cast<ImportDecl>(D);
2910
2911    // Ignore import declarations that come from imported modules.
2912    if (clang::Module *Owner = Import->getOwningModule()) {
2913      if (getLangOpts().CurrentModule.empty() ||
2914          Owner->getTopLevelModule()->Name == getLangOpts().CurrentModule)
2915        break;
2916    }
2917
2918    ImportedModules.insert(Import->getImportedModule());
2919    break;
2920 }
2921
2922  default:
2923    // Make sure we handled everything we should, every other kind is a
2924    // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
2925    // function. Need to recode Decl::Kind to do that easily.
2926    assert(isa<TypeDecl>(D) && "Unsupported decl kind");
2927  }
2928}
2929
2930/// Turns the given pointer into a constant.
2931static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
2932                                          const void *Ptr) {
2933  uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
2934  llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
2935  return llvm::ConstantInt::get(i64, PtrInt);
2936}
2937
2938static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
2939                                   llvm::NamedMDNode *&GlobalMetadata,
2940                                   GlobalDecl D,
2941                                   llvm::GlobalValue *Addr) {
2942  if (!GlobalMetadata)
2943    GlobalMetadata =
2944      CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
2945
2946  // TODO: should we report variant information for ctors/dtors?
2947  llvm::Value *Ops[] = {
2948    Addr,
2949    GetPointerConstant(CGM.getLLVMContext(), D.getDecl())
2950  };
2951  GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
2952}
2953
2954/// For each function which is declared within an extern "C" region and marked
2955/// as 'used', but has internal linkage, create an alias from the unmangled
2956/// name to the mangled name if possible. People expect to be able to refer
2957/// to such functions with an unmangled name from inline assembly within the
2958/// same translation unit.
2959void CodeGenModule::EmitStaticExternCAliases() {
2960  for (StaticExternCMap::iterator I = StaticExternCValues.begin(),
2961                                  E = StaticExternCValues.end();
2962       I != E; ++I) {
2963    IdentifierInfo *Name = I->first;
2964    llvm::GlobalValue *Val = I->second;
2965    if (Val && !getModule().getNamedValue(Name->getName()))
2966      AddUsedGlobal(new llvm::GlobalAlias(Val->getType(), Val->getLinkage(),
2967                                          Name->getName(), Val, &getModule()));
2968  }
2969}
2970
2971/// Emits metadata nodes associating all the global values in the
2972/// current module with the Decls they came from.  This is useful for
2973/// projects using IR gen as a subroutine.
2974///
2975/// Since there's currently no way to associate an MDNode directly
2976/// with an llvm::GlobalValue, we create a global named metadata
2977/// with the name 'clang.global.decl.ptrs'.
2978void CodeGenModule::EmitDeclMetadata() {
2979  llvm::NamedMDNode *GlobalMetadata = 0;
2980
2981  // StaticLocalDeclMap
2982  for (llvm::DenseMap<GlobalDecl,StringRef>::iterator
2983         I = MangledDeclNames.begin(), E = MangledDeclNames.end();
2984       I != E; ++I) {
2985    llvm::GlobalValue *Addr = getModule().getNamedValue(I->second);
2986    EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr);
2987  }
2988}
2989
2990/// Emits metadata nodes for all the local variables in the current
2991/// function.
2992void CodeGenFunction::EmitDeclMetadata() {
2993  if (LocalDeclMap.empty()) return;
2994
2995  llvm::LLVMContext &Context = getLLVMContext();
2996
2997  // Find the unique metadata ID for this name.
2998  unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
2999
3000  llvm::NamedMDNode *GlobalMetadata = 0;
3001
3002  for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator
3003         I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) {
3004    const Decl *D = I->first;
3005    llvm::Value *Addr = I->second;
3006
3007    if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
3008      llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
3009      Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr));
3010    } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
3011      GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
3012      EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
3013    }
3014  }
3015}
3016
3017void CodeGenModule::EmitCoverageFile() {
3018  if (!getCodeGenOpts().CoverageFile.empty()) {
3019    if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) {
3020      llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
3021      llvm::LLVMContext &Ctx = TheModule.getContext();
3022      llvm::MDString *CoverageFile =
3023          llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile);
3024      for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
3025        llvm::MDNode *CU = CUNode->getOperand(i);
3026        llvm::Value *node[] = { CoverageFile, CU };
3027        llvm::MDNode *N = llvm::MDNode::get(Ctx, node);
3028        GCov->addOperand(N);
3029      }
3030    }
3031  }
3032}
3033
3034llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid,
3035                                                     QualType GuidType) {
3036  // Sema has checked that all uuid strings are of the form
3037  // "12345678-1234-1234-1234-1234567890ab".
3038  assert(Uuid.size() == 36);
3039  const char *Uuidstr = Uuid.data();
3040  for (int i = 0; i < 36; ++i) {
3041    if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuidstr[i] == '-');
3042    else                                         assert(isHexDigit(Uuidstr[i]));
3043  }
3044
3045  llvm::APInt Field0(32, StringRef(Uuidstr     , 8), 16);
3046  llvm::APInt Field1(16, StringRef(Uuidstr +  9, 4), 16);
3047  llvm::APInt Field2(16, StringRef(Uuidstr + 14, 4), 16);
3048  static const int Field3ValueOffsets[] = { 19, 21, 24, 26, 28, 30, 32, 34 };
3049
3050  APValue InitStruct(APValue::UninitStruct(), /*NumBases=*/0, /*NumFields=*/4);
3051  InitStruct.getStructField(0) = APValue(llvm::APSInt(Field0));
3052  InitStruct.getStructField(1) = APValue(llvm::APSInt(Field1));
3053  InitStruct.getStructField(2) = APValue(llvm::APSInt(Field2));
3054  APValue& Arr = InitStruct.getStructField(3);
3055  Arr = APValue(APValue::UninitArray(), 8, 8);
3056  for (int t = 0; t < 8; ++t)
3057    Arr.getArrayInitializedElt(t) = APValue(llvm::APSInt(
3058          llvm::APInt(8, StringRef(Uuidstr + Field3ValueOffsets[t], 2), 16)));
3059
3060  return EmitConstantValue(InitStruct, GuidType);
3061}
3062