CodeGenTypes.cpp revision 6217b80b7a1379b74cced1c076338262c3c980b3
1//===--- CodeGenTypes.cpp - Type translation for LLVM CodeGen -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This is the code that handles AST -> LLVM type lowering.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenTypes.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/DeclObjC.h"
17#include "clang/AST/DeclCXX.h"
18#include "clang/AST/Expr.h"
19#include "clang/AST/RecordLayout.h"
20#include "llvm/DerivedTypes.h"
21#include "llvm/Module.h"
22#include "llvm/Target/TargetData.h"
23
24#include "CGCall.h"
25#include "CGRecordLayoutBuilder.h"
26
27using namespace clang;
28using namespace CodeGen;
29
30CodeGenTypes::CodeGenTypes(ASTContext &Ctx, llvm::Module& M,
31                           const llvm::TargetData &TD)
32  : Context(Ctx), Target(Ctx.Target), TheModule(M), TheTargetData(TD),
33    TheABIInfo(0) {
34}
35
36CodeGenTypes::~CodeGenTypes() {
37  for(llvm::DenseMap<const Type *, CGRecordLayout *>::iterator
38        I = CGRecordLayouts.begin(), E = CGRecordLayouts.end();
39      I != E; ++I)
40    delete I->second;
41  CGRecordLayouts.clear();
42}
43
44/// ConvertType - Convert the specified type to its LLVM form.
45const llvm::Type *CodeGenTypes::ConvertType(QualType T) {
46  llvm::PATypeHolder Result = ConvertTypeRecursive(T);
47
48  // Any pointers that were converted defered evaluation of their pointee type,
49  // creating an opaque type instead.  This is in order to avoid problems with
50  // circular types.  Loop through all these defered pointees, if any, and
51  // resolve them now.
52  while (!PointersToResolve.empty()) {
53    std::pair<QualType, llvm::OpaqueType*> P =
54      PointersToResolve.back();
55    PointersToResolve.pop_back();
56    // We can handle bare pointers here because we know that the only pointers
57    // to the Opaque type are P.second and from other types.  Refining the
58    // opqaue type away will invalidate P.second, but we don't mind :).
59    const llvm::Type *NT = ConvertTypeForMemRecursive(P.first);
60    P.second->refineAbstractTypeTo(NT);
61  }
62
63  return Result;
64}
65
66const llvm::Type *CodeGenTypes::ConvertTypeRecursive(QualType T) {
67  T = Context.getCanonicalType(T);
68
69  // See if type is already cached.
70  llvm::DenseMap<Type *, llvm::PATypeHolder>::iterator
71    I = TypeCache.find(T.getTypePtr());
72  // If type is found in map and this is not a definition for a opaque
73  // place holder type then use it. Otherwise, convert type T.
74  if (I != TypeCache.end())
75    return I->second.get();
76
77  const llvm::Type *ResultType = ConvertNewType(T);
78  TypeCache.insert(std::make_pair(T.getTypePtr(),
79                                  llvm::PATypeHolder(ResultType)));
80  return ResultType;
81}
82
83const llvm::Type *CodeGenTypes::ConvertTypeForMemRecursive(QualType T) {
84  const llvm::Type *ResultType = ConvertTypeRecursive(T);
85  if (ResultType == llvm::Type::Int1Ty)
86    return llvm::IntegerType::get((unsigned)Context.getTypeSize(T));
87  return ResultType;
88}
89
90/// ConvertTypeForMem - Convert type T into a llvm::Type.  This differs from
91/// ConvertType in that it is used to convert to the memory representation for
92/// a type.  For example, the scalar representation for _Bool is i1, but the
93/// memory representation is usually i8 or i32, depending on the target.
94const llvm::Type *CodeGenTypes::ConvertTypeForMem(QualType T) {
95  const llvm::Type *R = ConvertType(T);
96
97  // If this is a non-bool type, don't map it.
98  if (R != llvm::Type::Int1Ty)
99    return R;
100
101  // Otherwise, return an integer of the target-specified size.
102  return llvm::IntegerType::get((unsigned)Context.getTypeSize(T));
103
104}
105
106// Code to verify a given function type is complete, i.e. the return type
107// and all of the argument types are complete.
108static const TagType *VerifyFuncTypeComplete(const Type* T) {
109  const FunctionType *FT = cast<FunctionType>(T);
110  if (const TagType* TT = FT->getResultType()->getAs<TagType>())
111    if (!TT->getDecl()->isDefinition())
112      return TT;
113  if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(T))
114    for (unsigned i = 0; i < FPT->getNumArgs(); i++)
115      if (const TagType* TT = FPT->getArgType(i)->getAs<TagType>())
116        if (!TT->getDecl()->isDefinition())
117          return TT;
118  return 0;
119}
120
121/// UpdateCompletedType - When we find the full definition for a TagDecl,
122/// replace the 'opaque' type we previously made for it if applicable.
123void CodeGenTypes::UpdateCompletedType(const TagDecl *TD) {
124  const Type *Key =
125    Context.getTagDeclType(const_cast<TagDecl*>(TD)).getTypePtr();
126  llvm::DenseMap<const Type*, llvm::PATypeHolder>::iterator TDTI =
127    TagDeclTypes.find(Key);
128  if (TDTI == TagDeclTypes.end()) return;
129
130  // Remember the opaque LLVM type for this tagdecl.
131  llvm::PATypeHolder OpaqueHolder = TDTI->second;
132  assert(isa<llvm::OpaqueType>(OpaqueHolder.get()) &&
133         "Updating compilation of an already non-opaque type?");
134
135  // Remove it from TagDeclTypes so that it will be regenerated.
136  TagDeclTypes.erase(TDTI);
137
138  // Generate the new type.
139  const llvm::Type *NT = ConvertTagDeclType(TD);
140
141  // Refine the old opaque type to its new definition.
142  cast<llvm::OpaqueType>(OpaqueHolder.get())->refineAbstractTypeTo(NT);
143
144  // Since we just completed a tag type, check to see if any function types
145  // were completed along with the tag type.
146  // FIXME: This is very inefficient; if we track which function types depend
147  // on which tag types, though, it should be reasonably efficient.
148  llvm::DenseMap<const Type*, llvm::PATypeHolder>::iterator i;
149  for (i = FunctionTypes.begin(); i != FunctionTypes.end(); ++i) {
150    if (const TagType* TT = VerifyFuncTypeComplete(i->first)) {
151      // This function type still depends on an incomplete tag type; make sure
152      // that tag type has an associated opaque type.
153      ConvertTagDeclType(TT->getDecl());
154    } else {
155      // This function no longer depends on an incomplete tag type; create the
156      // function type, and refine the opaque type to the new function type.
157      llvm::PATypeHolder OpaqueHolder = i->second;
158      const llvm::Type *NFT = ConvertNewType(QualType(i->first, 0));
159      cast<llvm::OpaqueType>(OpaqueHolder.get())->refineAbstractTypeTo(NFT);
160      FunctionTypes.erase(i);
161    }
162  }
163}
164
165static const llvm::Type* getTypeForFormat(const llvm::fltSemantics &format) {
166  if (&format == &llvm::APFloat::IEEEsingle)
167    return llvm::Type::FloatTy;
168  if (&format == &llvm::APFloat::IEEEdouble)
169    return llvm::Type::DoubleTy;
170  if (&format == &llvm::APFloat::IEEEquad)
171    return llvm::Type::FP128Ty;
172  if (&format == &llvm::APFloat::PPCDoubleDouble)
173    return llvm::Type::PPC_FP128Ty;
174  if (&format == &llvm::APFloat::x87DoubleExtended)
175    return llvm::Type::X86_FP80Ty;
176  assert(0 && "Unknown float format!");
177  return 0;
178}
179
180const llvm::Type *CodeGenTypes::ConvertNewType(QualType T) {
181  const clang::Type &Ty = *Context.getCanonicalType(T);
182
183  switch (Ty.getTypeClass()) {
184#define TYPE(Class, Base)
185#define ABSTRACT_TYPE(Class, Base)
186#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
187#define DEPENDENT_TYPE(Class, Base) case Type::Class:
188#include "clang/AST/TypeNodes.def"
189    assert(false && "Non-canonical or dependent types aren't possible.");
190    break;
191
192  case Type::Builtin: {
193    switch (cast<BuiltinType>(Ty).getKind()) {
194    default: assert(0 && "Unknown builtin type!");
195    case BuiltinType::Void:
196    case BuiltinType::ObjCId:
197    case BuiltinType::ObjCClass:
198      // LLVM void type can only be used as the result of a function call.  Just
199      // map to the same as char.
200      return llvm::IntegerType::get(8);
201
202    case BuiltinType::Bool:
203      // Note that we always return bool as i1 for use as a scalar type.
204      return llvm::Type::Int1Ty;
205
206    case BuiltinType::Char_S:
207    case BuiltinType::Char_U:
208    case BuiltinType::SChar:
209    case BuiltinType::UChar:
210    case BuiltinType::Short:
211    case BuiltinType::UShort:
212    case BuiltinType::Int:
213    case BuiltinType::UInt:
214    case BuiltinType::Long:
215    case BuiltinType::ULong:
216    case BuiltinType::LongLong:
217    case BuiltinType::ULongLong:
218    case BuiltinType::WChar:
219    case BuiltinType::Char16:
220    case BuiltinType::Char32:
221      return llvm::IntegerType::get(
222        static_cast<unsigned>(Context.getTypeSize(T)));
223
224    case BuiltinType::Float:
225    case BuiltinType::Double:
226    case BuiltinType::LongDouble:
227      return getTypeForFormat(Context.getFloatTypeSemantics(T));
228
229    case BuiltinType::UInt128:
230    case BuiltinType::Int128:
231      return llvm::IntegerType::get(128);
232    }
233    break;
234  }
235  case Type::FixedWidthInt:
236    return llvm::IntegerType::get(cast<FixedWidthIntType>(T)->getWidth());
237  case Type::Complex: {
238    const llvm::Type *EltTy =
239      ConvertTypeRecursive(cast<ComplexType>(Ty).getElementType());
240    return llvm::StructType::get(EltTy, EltTy, NULL);
241  }
242  case Type::LValueReference:
243  case Type::RValueReference: {
244    const ReferenceType &RTy = cast<ReferenceType>(Ty);
245    QualType ETy = RTy.getPointeeType();
246    llvm::OpaqueType *PointeeType = llvm::OpaqueType::get();
247    PointersToResolve.push_back(std::make_pair(ETy, PointeeType));
248    return llvm::PointerType::get(PointeeType, ETy.getAddressSpace());
249  }
250  case Type::Pointer: {
251    const PointerType &PTy = cast<PointerType>(Ty);
252    QualType ETy = PTy.getPointeeType();
253    llvm::OpaqueType *PointeeType = llvm::OpaqueType::get();
254    PointersToResolve.push_back(std::make_pair(ETy, PointeeType));
255    return llvm::PointerType::get(PointeeType, ETy.getAddressSpace());
256  }
257
258  case Type::VariableArray: {
259    const VariableArrayType &A = cast<VariableArrayType>(Ty);
260    assert(A.getIndexTypeQualifier() == 0 &&
261           "FIXME: We only handle trivial array types so far!");
262    // VLAs resolve to the innermost element type; this matches
263    // the return of alloca, and there isn't any obviously better choice.
264    return ConvertTypeForMemRecursive(A.getElementType());
265  }
266  case Type::IncompleteArray: {
267    const IncompleteArrayType &A = cast<IncompleteArrayType>(Ty);
268    assert(A.getIndexTypeQualifier() == 0 &&
269           "FIXME: We only handle trivial array types so far!");
270    // int X[] -> [0 x int]
271    return llvm::ArrayType::get(ConvertTypeForMemRecursive(A.getElementType()), 0);
272  }
273  case Type::ConstantArray: {
274    const ConstantArrayType &A = cast<ConstantArrayType>(Ty);
275    const llvm::Type *EltTy = ConvertTypeForMemRecursive(A.getElementType());
276    return llvm::ArrayType::get(EltTy, A.getSize().getZExtValue());
277  }
278  case Type::ExtVector:
279  case Type::Vector: {
280    const VectorType &VT = cast<VectorType>(Ty);
281    return llvm::VectorType::get(ConvertTypeRecursive(VT.getElementType()),
282                                 VT.getNumElements());
283  }
284  case Type::FunctionNoProto:
285  case Type::FunctionProto: {
286    // First, check whether we can build the full function type.
287    if (const TagType* TT = VerifyFuncTypeComplete(&Ty)) {
288      // This function's type depends on an incomplete tag type; make sure
289      // we have an opaque type corresponding to the tag type.
290      ConvertTagDeclType(TT->getDecl());
291      // Create an opaque type for this function type, save it, and return it.
292      llvm::Type *ResultType = llvm::OpaqueType::get();
293      FunctionTypes.insert(std::make_pair(&Ty, ResultType));
294      return ResultType;
295    }
296    // The function type can be built; call the appropriate routines to
297    // build it.
298    if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(&Ty))
299      return GetFunctionType(getFunctionInfo(FPT), FPT->isVariadic());
300
301    const FunctionNoProtoType *FNPT = cast<FunctionNoProtoType>(&Ty);
302    return GetFunctionType(getFunctionInfo(FNPT), true);
303  }
304
305  case Type::ExtQual:
306    return
307      ConvertTypeRecursive(QualType(cast<ExtQualType>(Ty).getBaseType(), 0));
308
309  case Type::ObjCInterface: {
310    // Objective-C interfaces are always opaque (outside of the
311    // runtime, which can do whatever it likes); we never refine
312    // these.
313    const llvm::Type *&T = InterfaceTypes[cast<ObjCInterfaceType>(&Ty)];
314    if (!T)
315        T = llvm::OpaqueType::get();
316    return T;
317  }
318
319  case Type::ObjCObjectPointer: {
320    // Protocol qualifications do not influence the LLVM type, we just return a
321    // pointer to the underlying interface type. We don't need to worry about
322    // recursive conversion.
323    const llvm::Type *T =
324      ConvertTypeRecursive(cast<ObjCObjectPointerType>(Ty).getPointeeType());
325    return llvm::PointerType::getUnqual(T);
326  }
327
328  case Type::Record:
329  case Type::Enum: {
330    const TagDecl *TD = cast<TagType>(Ty).getDecl();
331    const llvm::Type *Res = ConvertTagDeclType(TD);
332
333    std::string TypeName(TD->getKindName());
334    TypeName += '.';
335
336    // Name the codegen type after the typedef name
337    // if there is no tag type name available
338    if (TD->getIdentifier())
339      TypeName += TD->getNameAsString();
340    else if (const TypedefType *TdT = dyn_cast<TypedefType>(T))
341      TypeName += TdT->getDecl()->getNameAsString();
342    else
343      TypeName += "anon";
344
345    TheModule.addTypeName(TypeName, Res);
346    return Res;
347  }
348
349  case Type::BlockPointer: {
350    const QualType FTy = cast<BlockPointerType>(Ty).getPointeeType();
351    llvm::OpaqueType *PointeeType = llvm::OpaqueType::get();
352    PointersToResolve.push_back(std::make_pair(FTy, PointeeType));
353    return llvm::PointerType::get(PointeeType, FTy.getAddressSpace());
354  }
355
356  case Type::MemberPointer: {
357    // FIXME: This is ABI dependent. We use the Itanium C++ ABI.
358    // http://www.codesourcery.com/public/cxx-abi/abi.html#member-pointers
359    // If we ever want to support other ABIs this needs to be abstracted.
360
361    QualType ETy = cast<MemberPointerType>(Ty).getPointeeType();
362    if (ETy->isFunctionType()) {
363      return llvm::StructType::get(ConvertType(Context.getPointerDiffType()),
364                                   ConvertType(Context.getPointerDiffType()),
365                                   NULL);
366    } else
367      return ConvertType(Context.getPointerDiffType());
368  }
369
370  case Type::TemplateSpecialization:
371    assert(false && "Dependent types can't get here");
372  }
373
374  // FIXME: implement.
375  return llvm::OpaqueType::get();
376}
377
378/// ConvertTagDeclType - Lay out a tagged decl type like struct or union or
379/// enum.
380const llvm::Type *CodeGenTypes::ConvertTagDeclType(const TagDecl *TD) {
381
382  // FIXME. This may have to move to a better place.
383  if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TD)) {
384    assert(!RD->isPolymorphic() &&
385           "FIXME: We don't support polymorphic classes yet!");
386    for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
387         e = RD->bases_end(); i != e; ++i) {
388      if (!i->isVirtual()) {
389        const CXXRecordDecl *Base =
390          cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
391        ConvertTagDeclType(Base);
392      }
393    }
394  }
395
396  // TagDecl's are not necessarily unique, instead use the (clang)
397  // type connected to the decl.
398  const Type *Key =
399    Context.getTagDeclType(const_cast<TagDecl*>(TD)).getTypePtr();
400  llvm::DenseMap<const Type*, llvm::PATypeHolder>::iterator TDTI =
401    TagDeclTypes.find(Key);
402
403  // If we've already compiled this tag type, use the previous definition.
404  if (TDTI != TagDeclTypes.end())
405    return TDTI->second;
406
407  // If this is still a forward definition, just define an opaque type to use
408  // for this tagged decl.
409  if (!TD->isDefinition()) {
410    llvm::Type *ResultType = llvm::OpaqueType::get();
411    TagDeclTypes.insert(std::make_pair(Key, ResultType));
412    return ResultType;
413  }
414
415  // Okay, this is a definition of a type.  Compile the implementation now.
416
417  if (TD->isEnum()) {
418    // Don't bother storing enums in TagDeclTypes.
419    return ConvertTypeRecursive(cast<EnumDecl>(TD)->getIntegerType());
420  }
421
422  // This decl could well be recursive.  In this case, insert an opaque
423  // definition of this type, which the recursive uses will get.  We will then
424  // refine this opaque version later.
425
426  // Create new OpaqueType now for later use in case this is a recursive
427  // type.  This will later be refined to the actual type.
428  llvm::PATypeHolder ResultHolder = llvm::OpaqueType::get();
429  TagDeclTypes.insert(std::make_pair(Key, ResultHolder));
430
431  const llvm::Type *ResultType;
432  const RecordDecl *RD = cast<const RecordDecl>(TD);
433
434  // Layout fields.
435  CGRecordLayout *Layout =
436    CGRecordLayoutBuilder::ComputeLayout(*this, RD);
437
438  CGRecordLayouts[Key] = Layout;
439  ResultType = Layout->getLLVMType();
440
441  // Refine our Opaque type to ResultType.  This can invalidate ResultType, so
442  // make sure to read the result out of the holder.
443  cast<llvm::OpaqueType>(ResultHolder.get())
444    ->refineAbstractTypeTo(ResultType);
445
446  return ResultHolder.get();
447}
448
449/// getLLVMFieldNo - Return llvm::StructType element number
450/// that corresponds to the field FD.
451unsigned CodeGenTypes::getLLVMFieldNo(const FieldDecl *FD) {
452  assert(!FD->isBitField() && "Don't use getLLVMFieldNo on bit fields!");
453
454  llvm::DenseMap<const FieldDecl*, unsigned>::iterator I = FieldInfo.find(FD);
455  assert (I != FieldInfo.end()  && "Unable to find field info");
456  return I->second;
457}
458
459/// addFieldInfo - Assign field number to field FD.
460void CodeGenTypes::addFieldInfo(const FieldDecl *FD, unsigned No) {
461  FieldInfo[FD] = No;
462}
463
464/// getBitFieldInfo - Return the BitFieldInfo  that corresponds to the field FD.
465CodeGenTypes::BitFieldInfo CodeGenTypes::getBitFieldInfo(const FieldDecl *FD) {
466  llvm::DenseMap<const FieldDecl *, BitFieldInfo>::iterator
467    I = BitFields.find(FD);
468  assert (I != BitFields.end()  && "Unable to find bitfield info");
469  return I->second;
470}
471
472/// addBitFieldInfo - Assign a start bit and a size to field FD.
473void CodeGenTypes::addBitFieldInfo(const FieldDecl *FD, unsigned FieldNo,
474                                   unsigned Start, unsigned Size) {
475  BitFields.insert(std::make_pair(FD, BitFieldInfo(FieldNo, Start, Size)));
476}
477
478/// getCGRecordLayout - Return record layout info for the given llvm::Type.
479const CGRecordLayout *
480CodeGenTypes::getCGRecordLayout(const TagDecl *TD) const {
481  const Type *Key =
482    Context.getTagDeclType(const_cast<TagDecl*>(TD)).getTypePtr();
483  llvm::DenseMap<const Type*, CGRecordLayout *>::iterator I
484    = CGRecordLayouts.find(Key);
485  assert (I != CGRecordLayouts.end()
486          && "Unable to find record layout information for type");
487  return I->second;
488}
489