Dominators.h revision 08895f886655d7d8368d2fdb513dcc963b681a74
1//===- llvm/Analysis/Dominators.h - Dominator Info Calculation --*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the following classes:
11//  1. DominatorTree: Represent dominators as an explicit tree structure.
12//  2. DominanceFrontier: Calculate and hold the dominance frontier for a
13//     function.
14//
15//  These data structures are listed in increasing order of complexity.  It
16//  takes longer to calculate the dominator frontier, for example, than the
17//  DominatorTree mapping.
18//
19//===----------------------------------------------------------------------===//
20
21#ifndef LLVM_ANALYSIS_DOMINATORS_H
22#define LLVM_ANALYSIS_DOMINATORS_H
23
24#include "llvm/Pass.h"
25#include "llvm/BasicBlock.h"
26#include "llvm/Function.h"
27#include "llvm/Instruction.h"
28#include "llvm/Instructions.h"
29#include "llvm/ADT/DenseMap.h"
30#include "llvm/ADT/GraphTraits.h"
31#include "llvm/ADT/SmallPtrSet.h"
32#include "llvm/ADT/SmallVector.h"
33#include "llvm/Assembly/Writer.h"
34#include "llvm/Support/CFG.h"
35#include "llvm/Support/Compiler.h"
36#include <algorithm>
37#include <set>
38
39namespace llvm {
40
41//===----------------------------------------------------------------------===//
42/// DominatorBase - Base class that other, more interesting dominator analyses
43/// inherit from.
44///
45template <class NodeT>
46class DominatorBase {
47protected:
48  std::vector<NodeT*> Roots;
49  const bool IsPostDominators;
50  inline DominatorBase(bool isPostDom) :
51    Roots(), IsPostDominators(isPostDom) {}
52public:
53
54  /// getRoots -  Return the root blocks of the current CFG.  This may include
55  /// multiple blocks if we are computing post dominators.  For forward
56  /// dominators, this will always be a single block (the entry node).
57  ///
58  inline const std::vector<NodeT*> &getRoots() const { return Roots; }
59
60  /// isPostDominator - Returns true if analysis based of postdoms
61  ///
62  bool isPostDominator() const { return IsPostDominators; }
63};
64
65
66//===----------------------------------------------------------------------===//
67// DomTreeNode - Dominator Tree Node
68template<class NodeT> class DominatorTreeBase;
69struct PostDominatorTree;
70class MachineBasicBlock;
71
72template <class NodeT>
73class DomTreeNodeBase {
74  NodeT *TheBB;
75  DomTreeNodeBase<NodeT> *IDom;
76  std::vector<DomTreeNodeBase<NodeT> *> Children;
77  int DFSNumIn, DFSNumOut;
78
79  template<class N> friend class DominatorTreeBase;
80  friend struct PostDominatorTree;
81public:
82  typedef typename std::vector<DomTreeNodeBase<NodeT> *>::iterator iterator;
83  typedef typename std::vector<DomTreeNodeBase<NodeT> *>::const_iterator
84                   const_iterator;
85
86  iterator begin()             { return Children.begin(); }
87  iterator end()               { return Children.end(); }
88  const_iterator begin() const { return Children.begin(); }
89  const_iterator end()   const { return Children.end(); }
90
91  NodeT *getBlock() const { return TheBB; }
92  DomTreeNodeBase<NodeT> *getIDom() const { return IDom; }
93  const std::vector<DomTreeNodeBase<NodeT>*> &getChildren() const {
94    return Children;
95  }
96
97  DomTreeNodeBase(NodeT *BB, DomTreeNodeBase<NodeT> *iDom)
98    : TheBB(BB), IDom(iDom), DFSNumIn(-1), DFSNumOut(-1) { }
99
100  DomTreeNodeBase<NodeT> *addChild(DomTreeNodeBase<NodeT> *C) {
101    Children.push_back(C);
102    return C;
103  }
104
105  void setIDom(DomTreeNodeBase<NodeT> *NewIDom) {
106    assert(IDom && "No immediate dominator?");
107    if (IDom != NewIDom) {
108      typename std::vector<DomTreeNodeBase<NodeT>*>::iterator I =
109                  std::find(IDom->Children.begin(), IDom->Children.end(), this);
110      assert(I != IDom->Children.end() &&
111             "Not in immediate dominator children set!");
112      // I am no longer your child...
113      IDom->Children.erase(I);
114
115      // Switch to new dominator
116      IDom = NewIDom;
117      IDom->Children.push_back(this);
118    }
119  }
120
121  /// getDFSNumIn/getDFSNumOut - These are an internal implementation detail, do
122  /// not call them.
123  unsigned getDFSNumIn() const { return DFSNumIn; }
124  unsigned getDFSNumOut() const { return DFSNumOut; }
125private:
126  // Return true if this node is dominated by other. Use this only if DFS info
127  // is valid.
128  bool DominatedBy(const DomTreeNodeBase<NodeT> *other) const {
129    return this->DFSNumIn >= other->DFSNumIn &&
130      this->DFSNumOut <= other->DFSNumOut;
131  }
132};
133
134EXTERN_TEMPLATE_INSTANTIATION(class DomTreeNodeBase<BasicBlock>);
135
136template<class NodeT>
137static std::ostream &operator<<(std::ostream &o,
138                                const DomTreeNodeBase<NodeT> *Node) {
139  if (Node->getBlock())
140    WriteAsOperand(o, Node->getBlock(), false);
141  else
142    o << " <<exit node>>";
143
144  o << " {" << Node->getDFSNumIn() << "," << Node->getDFSNumOut() << "}";
145
146  return o << "\n";
147}
148
149template<class NodeT>
150static void PrintDomTree(const DomTreeNodeBase<NodeT> *N, std::ostream &o,
151                         unsigned Lev) {
152  o << std::string(2*Lev, ' ') << "[" << Lev << "] " << N;
153  for (typename DomTreeNodeBase<NodeT>::const_iterator I = N->begin(),
154       E = N->end(); I != E; ++I)
155    PrintDomTree<NodeT>(*I, o, Lev+1);
156}
157
158typedef DomTreeNodeBase<BasicBlock> DomTreeNode;
159typedef DomTreeNodeBase<MachineBasicBlock> MachineDomTreeNode;
160
161//===----------------------------------------------------------------------===//
162/// DominatorTree - Calculate the immediate dominator tree for a function.
163///
164
165template<class FuncT, class N>
166void Calculate(DominatorTreeBase<typename GraphTraits<N>::NodeType>& DT,
167               FuncT& F);
168
169template<class NodeT>
170class DominatorTreeBase : public DominatorBase<NodeT> {
171protected:
172  typedef DenseMap<NodeT*, DomTreeNodeBase<NodeT>*> DomTreeNodeMapType;
173  DomTreeNodeMapType DomTreeNodes;
174  DomTreeNodeBase<NodeT> *RootNode;
175
176  bool DFSInfoValid;
177  unsigned int SlowQueries;
178  // Information record used during immediate dominators computation.
179  struct InfoRec {
180    unsigned Semi;
181    unsigned Size;
182    NodeT *Label, *Parent, *Child, *Ancestor;
183
184    std::vector<NodeT*> Bucket;
185
186    InfoRec() : Semi(0), Size(0), Label(0), Parent(0), Child(0), Ancestor(0) {}
187  };
188
189  DenseMap<NodeT*, NodeT*> IDoms;
190
191  // Vertex - Map the DFS number to the BasicBlock*
192  std::vector<NodeT*> Vertex;
193
194  // Info - Collection of information used during the computation of idoms.
195  DenseMap<NodeT*, InfoRec> Info;
196
197  void reset() {
198    for (typename DomTreeNodeMapType::iterator I = this->DomTreeNodes.begin(),
199           E = DomTreeNodes.end(); I != E; ++I)
200      delete I->second;
201    DomTreeNodes.clear();
202    IDoms.clear();
203    this->Roots.clear();
204    Vertex.clear();
205    RootNode = 0;
206  }
207
208  // NewBB is split and now it has one successor. Update dominator tree to
209  // reflect this change.
210  template<class N, class GraphT>
211  void Split(DominatorTreeBase<typename GraphT::NodeType>& DT,
212             typename GraphT::NodeType* NewBB) {
213    assert(std::distance(GraphT::child_begin(NewBB), GraphT::child_end(NewBB)) == 1
214           && "NewBB should have a single successor!");
215    typename GraphT::NodeType* NewBBSucc = *GraphT::child_begin(NewBB);
216
217    std::vector<typename GraphT::NodeType*> PredBlocks;
218    for (typename GraphTraits<Inverse<N> >::ChildIteratorType PI =
219         GraphTraits<Inverse<N> >::child_begin(NewBB),
220         PE = GraphTraits<Inverse<N> >::child_end(NewBB); PI != PE; ++PI)
221      PredBlocks.push_back(*PI);
222
223      assert(!PredBlocks.empty() && "No predblocks??");
224
225      // The newly inserted basic block will dominate existing basic blocks iff the
226      // PredBlocks dominate all of the non-pred blocks.  If all predblocks dominate
227      // the non-pred blocks, then they all must be the same block!
228      //
229      bool NewBBDominatesNewBBSucc = true;
230      {
231        typename GraphT::NodeType* OnePred = PredBlocks[0];
232        unsigned i = 1, e = PredBlocks.size();
233        for (i = 1; !DT.isReachableFromEntry(OnePred); ++i) {
234          assert(i != e && "Didn't find reachable pred?");
235          OnePred = PredBlocks[i];
236        }
237
238        for (; i != e; ++i)
239          if (PredBlocks[i] != OnePred && DT.isReachableFromEntry(OnePred)) {
240            NewBBDominatesNewBBSucc = false;
241            break;
242          }
243
244      if (NewBBDominatesNewBBSucc)
245        for (typename GraphTraits<Inverse<N> >::ChildIteratorType PI =
246             GraphTraits<Inverse<N> >::child_begin(NewBBSucc),
247             E = GraphTraits<Inverse<N> >::child_end(NewBBSucc); PI != E; ++PI)
248          if (*PI != NewBB && !DT.dominates(NewBBSucc, *PI)) {
249            NewBBDominatesNewBBSucc = false;
250            break;
251          }
252    }
253
254    // The other scenario where the new block can dominate its successors are when
255    // all predecessors of NewBBSucc that are not NewBB are dominated by NewBBSucc
256    // already.
257    if (!NewBBDominatesNewBBSucc) {
258      NewBBDominatesNewBBSucc = true;
259      for (typename GraphTraits<Inverse<N> >::ChildIteratorType PI =
260           GraphTraits<Inverse<N> >::child_begin(NewBBSucc),
261           E = GraphTraits<Inverse<N> >::child_end(NewBBSucc); PI != E; ++PI)
262         if (*PI != NewBB && !DT.dominates(NewBBSucc, *PI)) {
263          NewBBDominatesNewBBSucc = false;
264          break;
265        }
266    }
267
268    // Find NewBB's immediate dominator and create new dominator tree node for
269    // NewBB.
270    NodeT *NewBBIDom = 0;
271    unsigned i = 0;
272    for (i = 0; i < PredBlocks.size(); ++i)
273      if (DT.isReachableFromEntry(PredBlocks[i])) {
274        NewBBIDom = PredBlocks[i];
275        break;
276      }
277    assert(i != PredBlocks.size() && "No reachable preds?");
278    for (i = i + 1; i < PredBlocks.size(); ++i) {
279      if (DT.isReachableFromEntry(PredBlocks[i]))
280        NewBBIDom = DT.findNearestCommonDominator(NewBBIDom, PredBlocks[i]);
281    }
282    assert(NewBBIDom && "No immediate dominator found??");
283
284    // Create the new dominator tree node... and set the idom of NewBB.
285    DomTreeNodeBase<NodeT> *NewBBNode = DT.addNewBlock(NewBB, NewBBIDom);
286
287    // If NewBB strictly dominates other blocks, then it is now the immediate
288    // dominator of NewBBSucc.  Update the dominator tree as appropriate.
289    if (NewBBDominatesNewBBSucc) {
290      DomTreeNodeBase<NodeT> *NewBBSuccNode = DT.getNode(NewBBSucc);
291      DT.changeImmediateDominator(NewBBSuccNode, NewBBNode);
292    }
293  }
294
295public:
296  DominatorTreeBase(bool isPostDom)
297    : DominatorBase<NodeT>(isPostDom), DFSInfoValid(false), SlowQueries(0) {}
298  virtual ~DominatorTreeBase() { reset(); }
299
300  // FIXME: Should remove this
301  virtual bool runOnFunction(Function &F) { return false; }
302
303  virtual void releaseMemory() { reset(); }
304
305  /// getNode - return the (Post)DominatorTree node for the specified basic
306  /// block.  This is the same as using operator[] on this class.
307  ///
308  inline DomTreeNodeBase<NodeT> *getNode(NodeT *BB) const {
309    typename DomTreeNodeMapType::const_iterator I = DomTreeNodes.find(BB);
310    return I != DomTreeNodes.end() ? I->second : 0;
311  }
312
313  /// getRootNode - This returns the entry node for the CFG of the function.  If
314  /// this tree represents the post-dominance relations for a function, however,
315  /// this root may be a node with the block == NULL.  This is the case when
316  /// there are multiple exit nodes from a particular function.  Consumers of
317  /// post-dominance information must be capable of dealing with this
318  /// possibility.
319  ///
320  DomTreeNodeBase<NodeT> *getRootNode() { return RootNode; }
321  const DomTreeNodeBase<NodeT> *getRootNode() const { return RootNode; }
322
323  /// properlyDominates - Returns true iff this dominates N and this != N.
324  /// Note that this is not a constant time operation!
325  ///
326  bool properlyDominates(const DomTreeNodeBase<NodeT> *A,
327                         DomTreeNodeBase<NodeT> *B) const {
328    if (A == 0 || B == 0) return false;
329    return dominatedBySlowTreeWalk(A, B);
330  }
331
332  inline bool properlyDominates(NodeT *A, NodeT *B) {
333    return properlyDominates(getNode(A), getNode(B));
334  }
335
336  bool dominatedBySlowTreeWalk(const DomTreeNodeBase<NodeT> *A,
337                               const DomTreeNodeBase<NodeT> *B) const {
338    const DomTreeNodeBase<NodeT> *IDom;
339    if (A == 0 || B == 0) return false;
340    while ((IDom = B->getIDom()) != 0 && IDom != A && IDom != B)
341      B = IDom;   // Walk up the tree
342    return IDom != 0;
343  }
344
345
346  /// isReachableFromEntry - Return true if A is dominated by the entry
347  /// block of the function containing it.
348  const bool isReachableFromEntry(NodeT* A) {
349    assert (!this->isPostDominator()
350            && "This is not implemented for post dominators");
351    return dominates(&A->getParent()->front(), A);
352  }
353
354  /// dominates - Returns true iff A dominates B.  Note that this is not a
355  /// constant time operation!
356  ///
357  inline bool dominates(const DomTreeNodeBase<NodeT> *A,
358                        DomTreeNodeBase<NodeT> *B) {
359    if (B == A)
360      return true;  // A node trivially dominates itself.
361
362    if (A == 0 || B == 0)
363      return false;
364
365    if (DFSInfoValid)
366      return B->DominatedBy(A);
367
368    // If we end up with too many slow queries, just update the
369    // DFS numbers on the theory that we are going to keep querying.
370    SlowQueries++;
371    if (SlowQueries > 32) {
372      updateDFSNumbers();
373      return B->DominatedBy(A);
374    }
375
376    return dominatedBySlowTreeWalk(A, B);
377  }
378
379  inline bool dominates(NodeT *A, NodeT *B) {
380    if (A == B)
381      return true;
382
383    return dominates(getNode(A), getNode(B));
384  }
385
386  NodeT *getRoot() const {
387    assert(this->Roots.size() == 1 && "Should always have entry node!");
388    return this->Roots[0];
389  }
390
391  /// findNearestCommonDominator - Find nearest common dominator basic block
392  /// for basic block A and B. If there is no such block then return NULL.
393  NodeT *findNearestCommonDominator(NodeT *A, NodeT *B) {
394
395    assert (!this->isPostDominator()
396            && "This is not implemented for post dominators");
397    assert (A->getParent() == B->getParent()
398            && "Two blocks are not in same function");
399
400    // If either A or B is a entry block then it is nearest common dominator.
401    NodeT &Entry  = A->getParent()->front();
402    if (A == &Entry || B == &Entry)
403      return &Entry;
404
405    // If B dominates A then B is nearest common dominator.
406    if (dominates(B, A))
407      return B;
408
409    // If A dominates B then A is nearest common dominator.
410    if (dominates(A, B))
411      return A;
412
413    DomTreeNodeBase<NodeT> *NodeA = getNode(A);
414    DomTreeNodeBase<NodeT> *NodeB = getNode(B);
415
416    // Collect NodeA dominators set.
417    SmallPtrSet<DomTreeNodeBase<NodeT>*, 16> NodeADoms;
418    NodeADoms.insert(NodeA);
419    DomTreeNodeBase<NodeT> *IDomA = NodeA->getIDom();
420    while (IDomA) {
421      NodeADoms.insert(IDomA);
422      IDomA = IDomA->getIDom();
423    }
424
425    // Walk NodeB immediate dominators chain and find common dominator node.
426    DomTreeNodeBase<NodeT> *IDomB = NodeB->getIDom();
427    while(IDomB) {
428      if (NodeADoms.count(IDomB) != 0)
429        return IDomB->getBlock();
430
431      IDomB = IDomB->getIDom();
432    }
433
434    return NULL;
435  }
436
437  //===--------------------------------------------------------------------===//
438  // API to update (Post)DominatorTree information based on modifications to
439  // the CFG...
440
441  /// addNewBlock - Add a new node to the dominator tree information.  This
442  /// creates a new node as a child of DomBB dominator node,linking it into
443  /// the children list of the immediate dominator.
444  DomTreeNodeBase<NodeT> *addNewBlock(NodeT *BB, NodeT *DomBB) {
445    assert(getNode(BB) == 0 && "Block already in dominator tree!");
446    DomTreeNodeBase<NodeT> *IDomNode = getNode(DomBB);
447    assert(IDomNode && "Not immediate dominator specified for block!");
448    DFSInfoValid = false;
449    return DomTreeNodes[BB] =
450      IDomNode->addChild(new DomTreeNodeBase<NodeT>(BB, IDomNode));
451  }
452
453  /// changeImmediateDominator - This method is used to update the dominator
454  /// tree information when a node's immediate dominator changes.
455  ///
456  void changeImmediateDominator(DomTreeNodeBase<NodeT> *N,
457                                DomTreeNodeBase<NodeT> *NewIDom) {
458    assert(N && NewIDom && "Cannot change null node pointers!");
459    DFSInfoValid = false;
460    N->setIDom(NewIDom);
461  }
462
463  void changeImmediateDominator(NodeT *BB, NodeT *NewBB) {
464    changeImmediateDominator(getNode(BB), getNode(NewBB));
465  }
466
467  /// eraseNode - Removes a node from  the dominator tree. Block must not
468  /// domiante any other blocks. Removes node from its immediate dominator's
469  /// children list. Deletes dominator node associated with basic block BB.
470  void eraseNode(NodeT *BB) {
471    DomTreeNodeBase<NodeT> *Node = getNode(BB);
472    assert (Node && "Removing node that isn't in dominator tree.");
473    assert (Node->getChildren().empty() && "Node is not a leaf node.");
474
475      // Remove node from immediate dominator's children list.
476    DomTreeNodeBase<NodeT> *IDom = Node->getIDom();
477    if (IDom) {
478      typename std::vector<DomTreeNodeBase<NodeT>*>::iterator I =
479        std::find(IDom->Children.begin(), IDom->Children.end(), Node);
480      assert(I != IDom->Children.end() &&
481             "Not in immediate dominator children set!");
482      // I am no longer your child...
483      IDom->Children.erase(I);
484    }
485
486    DomTreeNodes.erase(BB);
487    delete Node;
488  }
489
490  /// removeNode - Removes a node from the dominator tree.  Block must not
491  /// dominate any other blocks.  Invalidates any node pointing to removed
492  /// block.
493  void removeNode(NodeT *BB) {
494    assert(getNode(BB) && "Removing node that isn't in dominator tree.");
495    DomTreeNodes.erase(BB);
496  }
497
498  /// splitBlock - BB is split and now it has one successor. Update dominator
499  /// tree to reflect this change.
500  void splitBlock(NodeT* NewBB) {
501    if (this->IsPostDominators)
502      this->Split<Inverse<NodeT*>, GraphTraits<Inverse<NodeT*> > >(*this, NewBB);
503    else
504      this->Split<NodeT*, GraphTraits<NodeT*> >(*this, NewBB);
505  }
506
507  /// print - Convert to human readable form
508  ///
509  virtual void print(std::ostream &o, const Module* ) const {
510    o << "=============================--------------------------------\n";
511    o << "Inorder Dominator Tree: ";
512    if (this->DFSInfoValid)
513      o << "DFSNumbers invalid: " << SlowQueries << " slow queries.";
514    o << "\n";
515
516    PrintDomTree<NodeT>(getRootNode(), o, 1);
517  }
518
519  void print(std::ostream *OS, const Module* M = 0) const {
520    if (OS) print(*OS, M);
521  }
522
523  virtual void dump() {
524    print(llvm::cerr);
525  }
526
527protected:
528  template<class GraphT>
529  friend void Compress(DominatorTreeBase<typename GraphT::NodeType>& DT,
530                       typename GraphT::NodeType* VIn);
531
532  template<class GraphT>
533  friend typename GraphT::NodeType* Eval(
534                               DominatorTreeBase<typename GraphT::NodeType>& DT,
535                                         typename GraphT::NodeType* V);
536
537  template<class GraphT>
538  friend void Link(DominatorTreeBase<typename GraphT::NodeType>& DT,
539                   typename GraphT::NodeType* V,
540                   typename GraphT::NodeType* W,
541         typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &WInfo);
542
543  template<class GraphT>
544  friend unsigned DFSPass(DominatorTreeBase<typename GraphT::NodeType>& DT,
545                          typename GraphT::NodeType* V,
546                          unsigned N);
547
548  template<class FuncT, class N>
549  friend void Calculate(DominatorTreeBase<typename GraphTraits<N>::NodeType>& DT,
550                        FuncT& F);
551
552  /// updateDFSNumbers - Assign In and Out numbers to the nodes while walking
553  /// dominator tree in dfs order.
554  void updateDFSNumbers() {
555    unsigned DFSNum = 0;
556
557    SmallVector<std::pair<DomTreeNodeBase<NodeT>*,
558                typename DomTreeNodeBase<NodeT>::iterator>, 32> WorkStack;
559
560    for (unsigned i = 0, e = this->Roots.size(); i != e; ++i) {
561      DomTreeNodeBase<NodeT> *ThisRoot = getNode(this->Roots[i]);
562      WorkStack.push_back(std::make_pair(ThisRoot, ThisRoot->begin()));
563      ThisRoot->DFSNumIn = DFSNum++;
564
565      while (!WorkStack.empty()) {
566        DomTreeNodeBase<NodeT> *Node = WorkStack.back().first;
567        typename DomTreeNodeBase<NodeT>::iterator ChildIt =
568                                                        WorkStack.back().second;
569
570        // If we visited all of the children of this node, "recurse" back up the
571        // stack setting the DFOutNum.
572        if (ChildIt == Node->end()) {
573          Node->DFSNumOut = DFSNum++;
574          WorkStack.pop_back();
575        } else {
576          // Otherwise, recursively visit this child.
577          DomTreeNodeBase<NodeT> *Child = *ChildIt;
578          ++WorkStack.back().second;
579
580          WorkStack.push_back(std::make_pair(Child, Child->begin()));
581          Child->DFSNumIn = DFSNum++;
582        }
583      }
584    }
585
586    SlowQueries = 0;
587    DFSInfoValid = true;
588  }
589
590  DomTreeNodeBase<NodeT> *getNodeForBlock(NodeT *BB) {
591    if (DomTreeNodeBase<NodeT> *BBNode = this->DomTreeNodes[BB])
592      return BBNode;
593
594    // Haven't calculated this node yet?  Get or calculate the node for the
595    // immediate dominator.
596    NodeT *IDom = getIDom(BB);
597    DomTreeNodeBase<NodeT> *IDomNode = getNodeForBlock(IDom);
598
599    // Add a new tree node for this BasicBlock, and link it as a child of
600    // IDomNode
601    DomTreeNodeBase<NodeT> *C = new DomTreeNodeBase<NodeT>(BB, IDomNode);
602    return this->DomTreeNodes[BB] = IDomNode->addChild(C);
603  }
604
605  inline NodeT *getIDom(NodeT *BB) const {
606    typename DenseMap<NodeT*, NodeT*>::const_iterator I = IDoms.find(BB);
607    return I != IDoms.end() ? I->second : 0;
608  }
609
610public:
611  /// recalculate - compute a dominator tree for the given function
612  template<class FT>
613  void recalculate(FT& F) {
614    if (!this->IsPostDominators) {
615      reset();
616
617      // Initialize roots
618      this->Roots.push_back(&F.getEntryBlock());
619      this->IDoms[&F.getEntryBlock()] = 0;
620      this->DomTreeNodes[&F.getEntryBlock()] = 0;
621      this->Vertex.push_back(0);
622
623      Calculate<FT, NodeT*>(*this, F);
624
625      updateDFSNumbers();
626    } else {
627      reset();     // Reset from the last time we were run...
628
629      // Initialize the roots list
630      for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) {
631        TerminatorInst *Insn = I->getTerminator();
632        if (Insn->getNumSuccessors() == 0) {
633          // Unreachable block is not a root node.
634          if (!isa<UnreachableInst>(Insn))
635            this->Roots.push_back(I);
636        }
637
638        // Prepopulate maps so that we don't get iterator invalidation issues later.
639        this->IDoms[I] = 0;
640        this->DomTreeNodes[I] = 0;
641      }
642
643      this->Vertex.push_back(0);
644
645      Calculate<FT, Inverse<NodeT*> >(*this, F);
646    }
647  }
648};
649
650EXTERN_TEMPLATE_INSTANTIATION(class DominatorTreeBase<BasicBlock>);
651
652//===-------------------------------------
653/// DominatorTree Class - Concrete subclass of DominatorTreeBase that is used to
654/// compute a normal dominator tree.
655///
656class DominatorTree : public FunctionPass {
657public:
658  static char ID; // Pass ID, replacement for typeid
659  DominatorTreeBase<BasicBlock>* DT;
660
661  DominatorTree() : FunctionPass(intptr_t(&ID)) {
662    DT = new DominatorTreeBase<BasicBlock>(false);
663  }
664
665  ~DominatorTree() {
666    DT->releaseMemory();
667    delete DT;
668  }
669
670  /// getRoots -  Return the root blocks of the current CFG.  This may include
671  /// multiple blocks if we are computing post dominators.  For forward
672  /// dominators, this will always be a single block (the entry node).
673  ///
674  inline const std::vector<BasicBlock*> &getRoots() const {
675    return DT->getRoots();
676  }
677
678  inline BasicBlock *getRoot() const {
679    return DT->getRoot();
680  }
681
682  inline DomTreeNode *getRootNode() const {
683    return DT->getRootNode();
684  }
685
686  virtual bool runOnFunction(Function &F);
687
688  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
689    AU.setPreservesAll();
690  }
691
692  inline bool dominates(DomTreeNode* A, DomTreeNode* B) const {
693    return DT->dominates(A, B);
694  }
695
696  inline bool dominates(BasicBlock* A, BasicBlock* B) const {
697    return DT->dominates(A, B);
698  }
699
700  // dominates - Return true if A dominates B. This performs the
701  // special checks necessary if A and B are in the same basic block.
702  bool dominates(Instruction *A, Instruction *B) const {
703    BasicBlock *BBA = A->getParent(), *BBB = B->getParent();
704    if (BBA != BBB) return DT->dominates(BBA, BBB);
705
706    // It is not possible to determine dominance between two PHI nodes
707    // based on their ordering.
708    if (isa<PHINode>(A) && isa<PHINode>(B))
709      return false;
710
711    // Loop through the basic block until we find A or B.
712    BasicBlock::iterator I = BBA->begin();
713    for (; &*I != A && &*I != B; ++I) /*empty*/;
714
715    //if(!DT.IsPostDominators) {
716      // A dominates B if it is found first in the basic block.
717      return &*I == A;
718    //} else {
719    //  // A post-dominates B if B is found first in the basic block.
720    //  return &*I == B;
721    //}
722  }
723
724  inline bool properlyDominates(const DomTreeNode* A, DomTreeNode* B) const {
725    return DT->properlyDominates(A, B);
726  }
727
728  inline bool properlyDominates(BasicBlock* A, BasicBlock* B) const {
729    return DT->properlyDominates(A, B);
730  }
731
732  /// findNearestCommonDominator - Find nearest common dominator basic block
733  /// for basic block A and B. If there is no such block then return NULL.
734  inline BasicBlock *findNearestCommonDominator(BasicBlock *A, BasicBlock *B) {
735    return DT->findNearestCommonDominator(A, B);
736  }
737
738  inline DomTreeNode *operator[](BasicBlock *BB) const {
739    return DT->getNode(BB);
740  }
741
742  /// getNode - return the (Post)DominatorTree node for the specified basic
743  /// block.  This is the same as using operator[] on this class.
744  ///
745  inline DomTreeNode *getNode(BasicBlock *BB) const {
746    return DT->getNode(BB);
747  }
748
749  /// addNewBlock - Add a new node to the dominator tree information.  This
750  /// creates a new node as a child of DomBB dominator node,linking it into
751  /// the children list of the immediate dominator.
752  inline DomTreeNode *addNewBlock(BasicBlock *BB, BasicBlock *DomBB) {
753    return DT->addNewBlock(BB, DomBB);
754  }
755
756  /// changeImmediateDominator - This method is used to update the dominator
757  /// tree information when a node's immediate dominator changes.
758  ///
759  inline void changeImmediateDominator(BasicBlock *N, BasicBlock* NewIDom) {
760    DT->changeImmediateDominator(N, NewIDom);
761  }
762
763  inline void changeImmediateDominator(DomTreeNode *N, DomTreeNode* NewIDom) {
764    DT->changeImmediateDominator(N, NewIDom);
765  }
766
767  /// eraseNode - Removes a node from  the dominator tree. Block must not
768  /// domiante any other blocks. Removes node from its immediate dominator's
769  /// children list. Deletes dominator node associated with basic block BB.
770  inline void eraseNode(BasicBlock *BB) {
771    DT->eraseNode(BB);
772  }
773
774  /// splitBlock - BB is split and now it has one successor. Update dominator
775  /// tree to reflect this change.
776  inline void splitBlock(BasicBlock* NewBB) {
777    DT->splitBlock(NewBB);
778  }
779
780
781  virtual void releaseMemory() {
782    DT->releaseMemory();
783  }
784
785  virtual void print(std::ostream &OS, const Module* M= 0) const {
786    DT->print(OS, M);
787  }
788};
789
790//===-------------------------------------
791/// DominatorTree GraphTraits specialization so the DominatorTree can be
792/// iterable by generic graph iterators.
793///
794template <> struct GraphTraits<DomTreeNode *> {
795  typedef DomTreeNode NodeType;
796  typedef NodeType::iterator  ChildIteratorType;
797
798  static NodeType *getEntryNode(NodeType *N) {
799    return N;
800  }
801  static inline ChildIteratorType child_begin(NodeType* N) {
802    return N->begin();
803  }
804  static inline ChildIteratorType child_end(NodeType* N) {
805    return N->end();
806  }
807};
808
809template <> struct GraphTraits<DominatorTree*>
810  : public GraphTraits<DomTreeNode *> {
811  static NodeType *getEntryNode(DominatorTree *DT) {
812    return DT->getRootNode();
813  }
814};
815
816
817//===----------------------------------------------------------------------===//
818/// DominanceFrontierBase - Common base class for computing forward and inverse
819/// dominance frontiers for a function.
820///
821class DominanceFrontierBase : public FunctionPass {
822public:
823  typedef std::set<BasicBlock*>             DomSetType;    // Dom set for a bb
824  typedef std::map<BasicBlock*, DomSetType> DomSetMapType; // Dom set map
825protected:
826  DomSetMapType Frontiers;
827    std::vector<BasicBlock*> Roots;
828    const bool IsPostDominators;
829
830public:
831  DominanceFrontierBase(intptr_t ID, bool isPostDom)
832    : FunctionPass(ID), IsPostDominators(isPostDom) {}
833
834  /// getRoots -  Return the root blocks of the current CFG.  This may include
835  /// multiple blocks if we are computing post dominators.  For forward
836  /// dominators, this will always be a single block (the entry node).
837  ///
838  inline const std::vector<BasicBlock*> &getRoots() const { return Roots; }
839
840  /// isPostDominator - Returns true if analysis based of postdoms
841  ///
842  bool isPostDominator() const { return IsPostDominators; }
843
844  virtual void releaseMemory() { Frontiers.clear(); }
845
846  // Accessor interface:
847  typedef DomSetMapType::iterator iterator;
848  typedef DomSetMapType::const_iterator const_iterator;
849  iterator       begin()       { return Frontiers.begin(); }
850  const_iterator begin() const { return Frontiers.begin(); }
851  iterator       end()         { return Frontiers.end(); }
852  const_iterator end()   const { return Frontiers.end(); }
853  iterator       find(BasicBlock *B)       { return Frontiers.find(B); }
854  const_iterator find(BasicBlock *B) const { return Frontiers.find(B); }
855
856  void addBasicBlock(BasicBlock *BB, const DomSetType &frontier) {
857    assert(find(BB) == end() && "Block already in DominanceFrontier!");
858    Frontiers.insert(std::make_pair(BB, frontier));
859  }
860
861  /// removeBlock - Remove basic block BB's frontier.
862  void removeBlock(BasicBlock *BB) {
863    assert(find(BB) != end() && "Block is not in DominanceFrontier!");
864    for (iterator I = begin(), E = end(); I != E; ++I)
865      I->second.erase(BB);
866    Frontiers.erase(BB);
867  }
868
869  void addToFrontier(iterator I, BasicBlock *Node) {
870    assert(I != end() && "BB is not in DominanceFrontier!");
871    I->second.insert(Node);
872  }
873
874  void removeFromFrontier(iterator I, BasicBlock *Node) {
875    assert(I != end() && "BB is not in DominanceFrontier!");
876    assert(I->second.count(Node) && "Node is not in DominanceFrontier of BB");
877    I->second.erase(Node);
878  }
879
880  /// print - Convert to human readable form
881  ///
882  virtual void print(std::ostream &OS, const Module* = 0) const;
883  void print(std::ostream *OS, const Module* M = 0) const {
884    if (OS) print(*OS, M);
885  }
886  virtual void dump();
887};
888
889
890//===-------------------------------------
891/// DominanceFrontier Class - Concrete subclass of DominanceFrontierBase that is
892/// used to compute a forward dominator frontiers.
893///
894class DominanceFrontier : public DominanceFrontierBase {
895public:
896  static char ID; // Pass ID, replacement for typeid
897  DominanceFrontier() :
898    DominanceFrontierBase(intptr_t(&ID), false) {}
899
900  BasicBlock *getRoot() const {
901    assert(Roots.size() == 1 && "Should always have entry node!");
902    return Roots[0];
903  }
904
905  virtual bool runOnFunction(Function &) {
906    Frontiers.clear();
907    DominatorTree &DT = getAnalysis<DominatorTree>();
908    Roots = DT.getRoots();
909    assert(Roots.size() == 1 && "Only one entry block for forward domfronts!");
910    calculate(DT, DT[Roots[0]]);
911    return false;
912  }
913
914  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
915    AU.setPreservesAll();
916    AU.addRequired<DominatorTree>();
917  }
918
919  /// splitBlock - BB is split and now it has one successor. Update dominance
920  /// frontier to reflect this change.
921  void splitBlock(BasicBlock *BB);
922
923  /// BasicBlock BB's new dominator is NewBB. Update BB's dominance frontier
924  /// to reflect this change.
925  void changeImmediateDominator(BasicBlock *BB, BasicBlock *NewBB,
926                                DominatorTree *DT) {
927    // NewBB is now  dominating BB. Which means BB's dominance
928    // frontier is now part of NewBB's dominance frontier. However, BB
929    // itself is not member of NewBB's dominance frontier.
930    DominanceFrontier::iterator NewDFI = find(NewBB);
931    DominanceFrontier::iterator DFI = find(BB);
932    DominanceFrontier::DomSetType BBSet = DFI->second;
933    for (DominanceFrontier::DomSetType::iterator BBSetI = BBSet.begin(),
934           BBSetE = BBSet.end(); BBSetI != BBSetE; ++BBSetI) {
935      BasicBlock *DFMember = *BBSetI;
936      // Insert only if NewBB dominates DFMember.
937      if (!DT->dominates(NewBB, DFMember))
938        NewDFI->second.insert(DFMember);
939    }
940    NewDFI->second.erase(BB);
941  }
942
943private:
944  const DomSetType &calculate(const DominatorTree &DT,
945                              const DomTreeNode *Node);
946};
947
948
949} // End llvm namespace
950
951#endif
952