Dominators.h revision 1cee94f04111cfd7114979d6dfddce2669c9380d
1//===- llvm/Analysis/Dominators.h - Dominator Info Calculation --*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the following classes:
11//  1. DominatorTree: Represent dominators as an explicit tree structure.
12//  2. DominanceFrontier: Calculate and hold the dominance frontier for a
13//     function.
14//
15//  These data structures are listed in increasing order of complexity.  It
16//  takes longer to calculate the dominator frontier, for example, than the
17//  DominatorTree mapping.
18//
19//===----------------------------------------------------------------------===//
20
21#ifndef LLVM_ANALYSIS_DOMINATORS_H
22#define LLVM_ANALYSIS_DOMINATORS_H
23
24#include "llvm/Pass.h"
25#include "llvm/BasicBlock.h"
26#include "llvm/Function.h"
27#include "llvm/Instruction.h"
28#include "llvm/Instructions.h"
29#include "llvm/ADT/DenseMap.h"
30#include "llvm/ADT/GraphTraits.h"
31#include "llvm/ADT/SmallPtrSet.h"
32#include "llvm/ADT/SmallVector.h"
33#include "llvm/Assembly/Writer.h"
34#include "llvm/Support/CFG.h"
35#include "llvm/Support/Compiler.h"
36#include <algorithm>
37#include <set>
38
39namespace llvm {
40
41//===----------------------------------------------------------------------===//
42/// DominatorBase - Base class that other, more interesting dominator analyses
43/// inherit from.
44///
45template <class NodeT>
46class DominatorBase {
47protected:
48  std::vector<NodeT*> Roots;
49  const bool IsPostDominators;
50  inline DominatorBase(bool isPostDom) :
51    Roots(), IsPostDominators(isPostDom) {}
52public:
53
54  /// getRoots -  Return the root blocks of the current CFG.  This may include
55  /// multiple blocks if we are computing post dominators.  For forward
56  /// dominators, this will always be a single block (the entry node).
57  ///
58  inline const std::vector<NodeT*> &getRoots() const { return Roots; }
59
60  /// isPostDominator - Returns true if analysis based of postdoms
61  ///
62  bool isPostDominator() const { return IsPostDominators; }
63};
64
65
66//===----------------------------------------------------------------------===//
67// DomTreeNode - Dominator Tree Node
68template<class NodeT> class DominatorTreeBase;
69struct PostDominatorTree;
70class MachineBasicBlock;
71
72template <class NodeT>
73class DomTreeNodeBase {
74  NodeT *TheBB;
75  DomTreeNodeBase<NodeT> *IDom;
76  std::vector<DomTreeNodeBase<NodeT> *> Children;
77  int DFSNumIn, DFSNumOut;
78
79  template<class N> friend class DominatorTreeBase;
80  friend struct PostDominatorTree;
81public:
82  typedef typename std::vector<DomTreeNodeBase<NodeT> *>::iterator iterator;
83  typedef typename std::vector<DomTreeNodeBase<NodeT> *>::const_iterator
84                   const_iterator;
85
86  iterator begin()             { return Children.begin(); }
87  iterator end()               { return Children.end(); }
88  const_iterator begin() const { return Children.begin(); }
89  const_iterator end()   const { return Children.end(); }
90
91  NodeT *getBlock() const { return TheBB; }
92  DomTreeNodeBase<NodeT> *getIDom() const { return IDom; }
93  const std::vector<DomTreeNodeBase<NodeT>*> &getChildren() const {
94    return Children;
95  }
96
97  DomTreeNodeBase(NodeT *BB, DomTreeNodeBase<NodeT> *iDom)
98    : TheBB(BB), IDom(iDom), DFSNumIn(-1), DFSNumOut(-1) { }
99
100  DomTreeNodeBase<NodeT> *addChild(DomTreeNodeBase<NodeT> *C) {
101    Children.push_back(C);
102    return C;
103  }
104
105  void setIDom(DomTreeNodeBase<NodeT> *NewIDom) {
106    assert(IDom && "No immediate dominator?");
107    if (IDom != NewIDom) {
108      typename std::vector<DomTreeNodeBase<NodeT>*>::iterator I =
109                  std::find(IDom->Children.begin(), IDom->Children.end(), this);
110      assert(I != IDom->Children.end() &&
111             "Not in immediate dominator children set!");
112      // I am no longer your child...
113      IDom->Children.erase(I);
114
115      // Switch to new dominator
116      IDom = NewIDom;
117      IDom->Children.push_back(this);
118    }
119  }
120
121  /// getDFSNumIn/getDFSNumOut - These are an internal implementation detail, do
122  /// not call them.
123  unsigned getDFSNumIn() const { return DFSNumIn; }
124  unsigned getDFSNumOut() const { return DFSNumOut; }
125private:
126  // Return true if this node is dominated by other. Use this only if DFS info
127  // is valid.
128  bool DominatedBy(const DomTreeNodeBase<NodeT> *other) const {
129    return this->DFSNumIn >= other->DFSNumIn &&
130      this->DFSNumOut <= other->DFSNumOut;
131  }
132};
133
134EXTERN_TEMPLATE_INSTANTIATION(class DomTreeNodeBase<BasicBlock>);
135EXTERN_TEMPLATE_INSTANTIATION(class DomTreeNodeBase<MachineBasicBlock>);
136
137template<class NodeT>
138static std::ostream &operator<<(std::ostream &o,
139                                const DomTreeNodeBase<NodeT> *Node) {
140  if (Node->getBlock())
141    WriteAsOperand(o, Node->getBlock(), false);
142  else
143    o << " <<exit node>>";
144
145  o << " {" << Node->getDFSNumIn() << "," << Node->getDFSNumOut() << "}";
146
147  return o << "\n";
148}
149
150template<class NodeT>
151static void PrintDomTree(const DomTreeNodeBase<NodeT> *N, std::ostream &o,
152                         unsigned Lev) {
153  o << std::string(2*Lev, ' ') << "[" << Lev << "] " << N;
154  for (typename DomTreeNodeBase<NodeT>::const_iterator I = N->begin(),
155       E = N->end(); I != E; ++I)
156    PrintDomTree<NodeT>(*I, o, Lev+1);
157}
158
159typedef DomTreeNodeBase<BasicBlock> DomTreeNode;
160
161//===----------------------------------------------------------------------===//
162/// DominatorTree - Calculate the immediate dominator tree for a function.
163///
164
165template<class FuncT, class N>
166void Calculate(DominatorTreeBase<typename GraphTraits<N>::NodeType>& DT,
167               FuncT& F);
168
169template<class NodeT>
170class DominatorTreeBase : public DominatorBase<NodeT> {
171protected:
172  typedef DenseMap<NodeT*, DomTreeNodeBase<NodeT>*> DomTreeNodeMapType;
173  DomTreeNodeMapType DomTreeNodes;
174  DomTreeNodeBase<NodeT> *RootNode;
175
176  bool DFSInfoValid;
177  unsigned int SlowQueries;
178  // Information record used during immediate dominators computation.
179  struct InfoRec {
180    unsigned Semi;
181    unsigned Size;
182    NodeT *Label, *Parent, *Child, *Ancestor;
183
184    std::vector<NodeT*> Bucket;
185
186    InfoRec() : Semi(0), Size(0), Label(0), Parent(0), Child(0), Ancestor(0) {}
187  };
188
189  DenseMap<NodeT*, NodeT*> IDoms;
190
191  // Vertex - Map the DFS number to the BasicBlock*
192  std::vector<NodeT*> Vertex;
193
194  // Info - Collection of information used during the computation of idoms.
195  DenseMap<NodeT*, InfoRec> Info;
196
197  void reset() {
198    for (typename DomTreeNodeMapType::iterator I = this->DomTreeNodes.begin(),
199           E = DomTreeNodes.end(); I != E; ++I)
200      delete I->second;
201    DomTreeNodes.clear();
202    IDoms.clear();
203    this->Roots.clear();
204    Vertex.clear();
205    RootNode = 0;
206  }
207
208  // NewBB is split and now it has one successor. Update dominator tree to
209  // reflect this change.
210  template<class N, class GraphT>
211  void Split(DominatorTreeBase<typename GraphT::NodeType>& DT,
212             typename GraphT::NodeType* NewBB) {
213    assert(std::distance(GraphT::child_begin(NewBB), GraphT::child_end(NewBB)) == 1
214           && "NewBB should have a single successor!");
215    typename GraphT::NodeType* NewBBSucc = *GraphT::child_begin(NewBB);
216
217    std::vector<typename GraphT::NodeType*> PredBlocks;
218    for (typename GraphTraits<Inverse<N> >::ChildIteratorType PI =
219         GraphTraits<Inverse<N> >::child_begin(NewBB),
220         PE = GraphTraits<Inverse<N> >::child_end(NewBB); PI != PE; ++PI)
221      PredBlocks.push_back(*PI);
222
223      assert(!PredBlocks.empty() && "No predblocks??");
224
225      // The newly inserted basic block will dominate existing basic blocks iff the
226      // PredBlocks dominate all of the non-pred blocks.  If all predblocks dominate
227      // the non-pred blocks, then they all must be the same block!
228      //
229      bool NewBBDominatesNewBBSucc = true;
230      {
231        typename GraphT::NodeType* OnePred = PredBlocks[0];
232        unsigned i = 1, e = PredBlocks.size();
233        for (i = 1; !DT.isReachableFromEntry(OnePred); ++i) {
234          assert(i != e && "Didn't find reachable pred?");
235          OnePred = PredBlocks[i];
236        }
237
238        for (; i != e; ++i)
239          if (PredBlocks[i] != OnePred && DT.isReachableFromEntry(OnePred)) {
240            NewBBDominatesNewBBSucc = false;
241            break;
242          }
243
244      if (NewBBDominatesNewBBSucc)
245        for (typename GraphTraits<Inverse<N> >::ChildIteratorType PI =
246             GraphTraits<Inverse<N> >::child_begin(NewBBSucc),
247             E = GraphTraits<Inverse<N> >::child_end(NewBBSucc); PI != E; ++PI)
248          if (*PI != NewBB && !DT.dominates(NewBBSucc, *PI)) {
249            NewBBDominatesNewBBSucc = false;
250            break;
251          }
252    }
253
254    // The other scenario where the new block can dominate its successors are when
255    // all predecessors of NewBBSucc that are not NewBB are dominated by NewBBSucc
256    // already.
257    if (!NewBBDominatesNewBBSucc) {
258      NewBBDominatesNewBBSucc = true;
259      for (typename GraphTraits<Inverse<N> >::ChildIteratorType PI =
260           GraphTraits<Inverse<N> >::child_begin(NewBBSucc),
261           E = GraphTraits<Inverse<N> >::child_end(NewBBSucc); PI != E; ++PI)
262         if (*PI != NewBB && !DT.dominates(NewBBSucc, *PI)) {
263          NewBBDominatesNewBBSucc = false;
264          break;
265        }
266    }
267
268    // Find NewBB's immediate dominator and create new dominator tree node for
269    // NewBB.
270    NodeT *NewBBIDom = 0;
271    unsigned i = 0;
272    for (i = 0; i < PredBlocks.size(); ++i)
273      if (DT.isReachableFromEntry(PredBlocks[i])) {
274        NewBBIDom = PredBlocks[i];
275        break;
276      }
277    assert(i != PredBlocks.size() && "No reachable preds?");
278    for (i = i + 1; i < PredBlocks.size(); ++i) {
279      if (DT.isReachableFromEntry(PredBlocks[i]))
280        NewBBIDom = DT.findNearestCommonDominator(NewBBIDom, PredBlocks[i]);
281    }
282    assert(NewBBIDom && "No immediate dominator found??");
283
284    // Create the new dominator tree node... and set the idom of NewBB.
285    DomTreeNodeBase<NodeT> *NewBBNode = DT.addNewBlock(NewBB, NewBBIDom);
286
287    // If NewBB strictly dominates other blocks, then it is now the immediate
288    // dominator of NewBBSucc.  Update the dominator tree as appropriate.
289    if (NewBBDominatesNewBBSucc) {
290      DomTreeNodeBase<NodeT> *NewBBSuccNode = DT.getNode(NewBBSucc);
291      DT.changeImmediateDominator(NewBBSuccNode, NewBBNode);
292    }
293  }
294
295public:
296  DominatorTreeBase(bool isPostDom)
297    : DominatorBase<NodeT>(isPostDom), DFSInfoValid(false), SlowQueries(0) {}
298  virtual ~DominatorTreeBase() { reset(); }
299
300  // FIXME: Should remove this
301  virtual bool runOnFunction(Function &F) { return false; }
302
303  /// isAnalysis - Return true if this pass is  implementing an analysis pass.
304  virtual bool isAnalysis() const { return true; }
305
306  virtual void releaseMemory() { reset(); }
307
308  /// getNode - return the (Post)DominatorTree node for the specified basic
309  /// block.  This is the same as using operator[] on this class.
310  ///
311  inline DomTreeNodeBase<NodeT> *getNode(NodeT *BB) const {
312    typename DomTreeNodeMapType::const_iterator I = DomTreeNodes.find(BB);
313    return I != DomTreeNodes.end() ? I->second : 0;
314  }
315
316  /// getRootNode - This returns the entry node for the CFG of the function.  If
317  /// this tree represents the post-dominance relations for a function, however,
318  /// this root may be a node with the block == NULL.  This is the case when
319  /// there are multiple exit nodes from a particular function.  Consumers of
320  /// post-dominance information must be capable of dealing with this
321  /// possibility.
322  ///
323  DomTreeNodeBase<NodeT> *getRootNode() { return RootNode; }
324  const DomTreeNodeBase<NodeT> *getRootNode() const { return RootNode; }
325
326  /// properlyDominates - Returns true iff this dominates N and this != N.
327  /// Note that this is not a constant time operation!
328  ///
329  bool properlyDominates(const DomTreeNodeBase<NodeT> *A,
330                         DomTreeNodeBase<NodeT> *B) const {
331    if (A == 0 || B == 0) return false;
332    return dominatedBySlowTreeWalk(A, B);
333  }
334
335  inline bool properlyDominates(NodeT *A, NodeT *B) {
336    return properlyDominates(getNode(A), getNode(B));
337  }
338
339  bool dominatedBySlowTreeWalk(const DomTreeNodeBase<NodeT> *A,
340                               const DomTreeNodeBase<NodeT> *B) const {
341    const DomTreeNodeBase<NodeT> *IDom;
342    if (A == 0 || B == 0) return false;
343    while ((IDom = B->getIDom()) != 0 && IDom != A && IDom != B)
344      B = IDom;   // Walk up the tree
345    return IDom != 0;
346  }
347
348
349  /// isReachableFromEntry - Return true if A is dominated by the entry
350  /// block of the function containing it.
351  bool isReachableFromEntry(NodeT* A) {
352    assert (!this->isPostDominator()
353            && "This is not implemented for post dominators");
354    return dominates(&A->getParent()->front(), A);
355  }
356
357  /// dominates - Returns true iff A dominates B.  Note that this is not a
358  /// constant time operation!
359  ///
360  inline bool dominates(const DomTreeNodeBase<NodeT> *A,
361                        DomTreeNodeBase<NodeT> *B) {
362    if (B == A)
363      return true;  // A node trivially dominates itself.
364
365    if (A == 0 || B == 0)
366      return false;
367
368    if (DFSInfoValid)
369      return B->DominatedBy(A);
370
371    // If we end up with too many slow queries, just update the
372    // DFS numbers on the theory that we are going to keep querying.
373    SlowQueries++;
374    if (SlowQueries > 32) {
375      updateDFSNumbers();
376      return B->DominatedBy(A);
377    }
378
379    return dominatedBySlowTreeWalk(A, B);
380  }
381
382  inline bool dominates(NodeT *A, NodeT *B) {
383    if (A == B)
384      return true;
385
386    return dominates(getNode(A), getNode(B));
387  }
388
389  NodeT *getRoot() const {
390    assert(this->Roots.size() == 1 && "Should always have entry node!");
391    return this->Roots[0];
392  }
393
394  /// findNearestCommonDominator - Find nearest common dominator basic block
395  /// for basic block A and B. If there is no such block then return NULL.
396  NodeT *findNearestCommonDominator(NodeT *A, NodeT *B) {
397
398    assert (!this->isPostDominator()
399            && "This is not implemented for post dominators");
400    assert (A->getParent() == B->getParent()
401            && "Two blocks are not in same function");
402
403    // If either A or B is a entry block then it is nearest common dominator.
404    NodeT &Entry  = A->getParent()->front();
405    if (A == &Entry || B == &Entry)
406      return &Entry;
407
408    // If B dominates A then B is nearest common dominator.
409    if (dominates(B, A))
410      return B;
411
412    // If A dominates B then A is nearest common dominator.
413    if (dominates(A, B))
414      return A;
415
416    DomTreeNodeBase<NodeT> *NodeA = getNode(A);
417    DomTreeNodeBase<NodeT> *NodeB = getNode(B);
418
419    // Collect NodeA dominators set.
420    SmallPtrSet<DomTreeNodeBase<NodeT>*, 16> NodeADoms;
421    NodeADoms.insert(NodeA);
422    DomTreeNodeBase<NodeT> *IDomA = NodeA->getIDom();
423    while (IDomA) {
424      NodeADoms.insert(IDomA);
425      IDomA = IDomA->getIDom();
426    }
427
428    // Walk NodeB immediate dominators chain and find common dominator node.
429    DomTreeNodeBase<NodeT> *IDomB = NodeB->getIDom();
430    while(IDomB) {
431      if (NodeADoms.count(IDomB) != 0)
432        return IDomB->getBlock();
433
434      IDomB = IDomB->getIDom();
435    }
436
437    return NULL;
438  }
439
440  //===--------------------------------------------------------------------===//
441  // API to update (Post)DominatorTree information based on modifications to
442  // the CFG...
443
444  /// addNewBlock - Add a new node to the dominator tree information.  This
445  /// creates a new node as a child of DomBB dominator node,linking it into
446  /// the children list of the immediate dominator.
447  DomTreeNodeBase<NodeT> *addNewBlock(NodeT *BB, NodeT *DomBB) {
448    assert(getNode(BB) == 0 && "Block already in dominator tree!");
449    DomTreeNodeBase<NodeT> *IDomNode = getNode(DomBB);
450    assert(IDomNode && "Not immediate dominator specified for block!");
451    DFSInfoValid = false;
452    return DomTreeNodes[BB] =
453      IDomNode->addChild(new DomTreeNodeBase<NodeT>(BB, IDomNode));
454  }
455
456  /// changeImmediateDominator - This method is used to update the dominator
457  /// tree information when a node's immediate dominator changes.
458  ///
459  void changeImmediateDominator(DomTreeNodeBase<NodeT> *N,
460                                DomTreeNodeBase<NodeT> *NewIDom) {
461    assert(N && NewIDom && "Cannot change null node pointers!");
462    DFSInfoValid = false;
463    N->setIDom(NewIDom);
464  }
465
466  void changeImmediateDominator(NodeT *BB, NodeT *NewBB) {
467    changeImmediateDominator(getNode(BB), getNode(NewBB));
468  }
469
470  /// eraseNode - Removes a node from  the dominator tree. Block must not
471  /// domiante any other blocks. Removes node from its immediate dominator's
472  /// children list. Deletes dominator node associated with basic block BB.
473  void eraseNode(NodeT *BB) {
474    DomTreeNodeBase<NodeT> *Node = getNode(BB);
475    assert (Node && "Removing node that isn't in dominator tree.");
476    assert (Node->getChildren().empty() && "Node is not a leaf node.");
477
478      // Remove node from immediate dominator's children list.
479    DomTreeNodeBase<NodeT> *IDom = Node->getIDom();
480    if (IDom) {
481      typename std::vector<DomTreeNodeBase<NodeT>*>::iterator I =
482        std::find(IDom->Children.begin(), IDom->Children.end(), Node);
483      assert(I != IDom->Children.end() &&
484             "Not in immediate dominator children set!");
485      // I am no longer your child...
486      IDom->Children.erase(I);
487    }
488
489    DomTreeNodes.erase(BB);
490    delete Node;
491  }
492
493  /// removeNode - Removes a node from the dominator tree.  Block must not
494  /// dominate any other blocks.  Invalidates any node pointing to removed
495  /// block.
496  void removeNode(NodeT *BB) {
497    assert(getNode(BB) && "Removing node that isn't in dominator tree.");
498    DomTreeNodes.erase(BB);
499  }
500
501  /// splitBlock - BB is split and now it has one successor. Update dominator
502  /// tree to reflect this change.
503  void splitBlock(NodeT* NewBB) {
504    if (this->IsPostDominators)
505      this->Split<Inverse<NodeT*>, GraphTraits<Inverse<NodeT*> > >(*this, NewBB);
506    else
507      this->Split<NodeT*, GraphTraits<NodeT*> >(*this, NewBB);
508  }
509
510  /// print - Convert to human readable form
511  ///
512  virtual void print(std::ostream &o, const Module* ) const {
513    o << "=============================--------------------------------\n";
514    if (this->isPostDominator())
515      o << "Inorder PostDominator Tree: ";
516    else
517      o << "Inorder Dominator Tree: ";
518    if (this->DFSInfoValid)
519      o << "DFSNumbers invalid: " << SlowQueries << " slow queries.";
520    o << "\n";
521
522    PrintDomTree<NodeT>(getRootNode(), o, 1);
523  }
524
525  void print(std::ostream *OS, const Module* M = 0) const {
526    if (OS) print(*OS, M);
527  }
528
529  virtual void dump() {
530    print(llvm::cerr);
531  }
532
533protected:
534  template<class GraphT>
535  friend void Compress(DominatorTreeBase<typename GraphT::NodeType>& DT,
536                       typename GraphT::NodeType* VIn);
537
538  template<class GraphT>
539  friend typename GraphT::NodeType* Eval(
540                               DominatorTreeBase<typename GraphT::NodeType>& DT,
541                                         typename GraphT::NodeType* V);
542
543  template<class GraphT>
544  friend void Link(DominatorTreeBase<typename GraphT::NodeType>& DT,
545                   typename GraphT::NodeType* V,
546                   typename GraphT::NodeType* W,
547         typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &WInfo);
548
549  template<class GraphT>
550  friend unsigned DFSPass(DominatorTreeBase<typename GraphT::NodeType>& DT,
551                          typename GraphT::NodeType* V,
552                          unsigned N);
553
554  template<class FuncT, class N>
555  friend void Calculate(DominatorTreeBase<typename GraphTraits<N>::NodeType>& DT,
556                        FuncT& F);
557
558  /// updateDFSNumbers - Assign In and Out numbers to the nodes while walking
559  /// dominator tree in dfs order.
560  void updateDFSNumbers() {
561    unsigned DFSNum = 0;
562
563    SmallVector<std::pair<DomTreeNodeBase<NodeT>*,
564                typename DomTreeNodeBase<NodeT>::iterator>, 32> WorkStack;
565
566    for (unsigned i = 0, e = this->Roots.size(); i != e; ++i) {
567      DomTreeNodeBase<NodeT> *ThisRoot = getNode(this->Roots[i]);
568      WorkStack.push_back(std::make_pair(ThisRoot, ThisRoot->begin()));
569      ThisRoot->DFSNumIn = DFSNum++;
570
571      while (!WorkStack.empty()) {
572        DomTreeNodeBase<NodeT> *Node = WorkStack.back().first;
573        typename DomTreeNodeBase<NodeT>::iterator ChildIt =
574                                                        WorkStack.back().second;
575
576        // If we visited all of the children of this node, "recurse" back up the
577        // stack setting the DFOutNum.
578        if (ChildIt == Node->end()) {
579          Node->DFSNumOut = DFSNum++;
580          WorkStack.pop_back();
581        } else {
582          // Otherwise, recursively visit this child.
583          DomTreeNodeBase<NodeT> *Child = *ChildIt;
584          ++WorkStack.back().second;
585
586          WorkStack.push_back(std::make_pair(Child, Child->begin()));
587          Child->DFSNumIn = DFSNum++;
588        }
589      }
590    }
591
592    SlowQueries = 0;
593    DFSInfoValid = true;
594  }
595
596  DomTreeNodeBase<NodeT> *getNodeForBlock(NodeT *BB) {
597    if (DomTreeNodeBase<NodeT> *BBNode = this->DomTreeNodes[BB])
598      return BBNode;
599
600    // Haven't calculated this node yet?  Get or calculate the node for the
601    // immediate dominator.
602    NodeT *IDom = getIDom(BB);
603    DomTreeNodeBase<NodeT> *IDomNode = getNodeForBlock(IDom);
604
605    // Add a new tree node for this BasicBlock, and link it as a child of
606    // IDomNode
607    DomTreeNodeBase<NodeT> *C = new DomTreeNodeBase<NodeT>(BB, IDomNode);
608    return this->DomTreeNodes[BB] = IDomNode->addChild(C);
609  }
610
611  inline NodeT *getIDom(NodeT *BB) const {
612    typename DenseMap<NodeT*, NodeT*>::const_iterator I = IDoms.find(BB);
613    return I != IDoms.end() ? I->second : 0;
614  }
615
616  inline void addRoot(NodeT* BB) {
617    // Unreachable block is not a root node.
618    if (!isa<UnreachableInst>(&BB->back()))
619      this->Roots.push_back(BB);
620  }
621
622public:
623  /// recalculate - compute a dominator tree for the given function
624  template<class FT>
625  void recalculate(FT& F) {
626    if (!this->IsPostDominators) {
627      reset();
628
629      // Initialize roots
630      this->Roots.push_back(&F.front());
631      this->IDoms[&F.front()] = 0;
632      this->DomTreeNodes[&F.front()] = 0;
633      this->Vertex.push_back(0);
634
635      Calculate<FT, NodeT*>(*this, F);
636
637      updateDFSNumbers();
638    } else {
639      reset();     // Reset from the last time we were run...
640
641      // Initialize the roots list
642      for (typename FT::iterator I = F.begin(), E = F.end(); I != E; ++I) {
643        if (std::distance(GraphTraits<FT*>::child_begin(I),
644                          GraphTraits<FT*>::child_end(I)) == 0)
645          addRoot(I);
646
647        // Prepopulate maps so that we don't get iterator invalidation issues later.
648        this->IDoms[I] = 0;
649        this->DomTreeNodes[I] = 0;
650      }
651
652      this->Vertex.push_back(0);
653
654      Calculate<FT, Inverse<NodeT*> >(*this, F);
655    }
656  }
657};
658
659EXTERN_TEMPLATE_INSTANTIATION(class DominatorTreeBase<BasicBlock>);
660
661//===-------------------------------------
662/// DominatorTree Class - Concrete subclass of DominatorTreeBase that is used to
663/// compute a normal dominator tree.
664///
665class DominatorTree : public FunctionPass {
666public:
667  static char ID; // Pass ID, replacement for typeid
668  DominatorTreeBase<BasicBlock>* DT;
669
670  DominatorTree() : FunctionPass(intptr_t(&ID)) {
671    DT = new DominatorTreeBase<BasicBlock>(false);
672  }
673
674  ~DominatorTree() {
675    DT->releaseMemory();
676    delete DT;
677  }
678
679  DominatorTreeBase<BasicBlock>& getBase() { return *DT; }
680
681  /// getRoots -  Return the root blocks of the current CFG.  This may include
682  /// multiple blocks if we are computing post dominators.  For forward
683  /// dominators, this will always be a single block (the entry node).
684  ///
685  inline const std::vector<BasicBlock*> &getRoots() const {
686    return DT->getRoots();
687  }
688
689  inline BasicBlock *getRoot() const {
690    return DT->getRoot();
691  }
692
693  inline DomTreeNode *getRootNode() const {
694    return DT->getRootNode();
695  }
696
697  /// isAnalysis - Return true if this pass is  implementing an analysis pass.
698  virtual bool isAnalysis() const { return true; }
699
700  virtual bool runOnFunction(Function &F);
701
702  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
703    AU.setPreservesAll();
704  }
705
706  inline bool dominates(DomTreeNode* A, DomTreeNode* B) const {
707    return DT->dominates(A, B);
708  }
709
710  inline bool dominates(BasicBlock* A, BasicBlock* B) const {
711    return DT->dominates(A, B);
712  }
713
714  // dominates - Return true if A dominates B. This performs the
715  // special checks necessary if A and B are in the same basic block.
716  bool dominates(Instruction *A, Instruction *B) const {
717    BasicBlock *BBA = A->getParent(), *BBB = B->getParent();
718    if (BBA != BBB) return DT->dominates(BBA, BBB);
719
720    // It is not possible to determine dominance between two PHI nodes
721    // based on their ordering.
722    if (isa<PHINode>(A) && isa<PHINode>(B))
723      return false;
724
725    // Loop through the basic block until we find A or B.
726    BasicBlock::iterator I = BBA->begin();
727    for (; &*I != A && &*I != B; ++I) /*empty*/;
728
729    //if(!DT.IsPostDominators) {
730      // A dominates B if it is found first in the basic block.
731      return &*I == A;
732    //} else {
733    //  // A post-dominates B if B is found first in the basic block.
734    //  return &*I == B;
735    //}
736  }
737
738  inline bool properlyDominates(const DomTreeNode* A, DomTreeNode* B) const {
739    return DT->properlyDominates(A, B);
740  }
741
742  inline bool properlyDominates(BasicBlock* A, BasicBlock* B) const {
743    return DT->properlyDominates(A, B);
744  }
745
746  /// findNearestCommonDominator - Find nearest common dominator basic block
747  /// for basic block A and B. If there is no such block then return NULL.
748  inline BasicBlock *findNearestCommonDominator(BasicBlock *A, BasicBlock *B) {
749    return DT->findNearestCommonDominator(A, B);
750  }
751
752  inline DomTreeNode *operator[](BasicBlock *BB) const {
753    return DT->getNode(BB);
754  }
755
756  /// getNode - return the (Post)DominatorTree node for the specified basic
757  /// block.  This is the same as using operator[] on this class.
758  ///
759  inline DomTreeNode *getNode(BasicBlock *BB) const {
760    return DT->getNode(BB);
761  }
762
763  /// addNewBlock - Add a new node to the dominator tree information.  This
764  /// creates a new node as a child of DomBB dominator node,linking it into
765  /// the children list of the immediate dominator.
766  inline DomTreeNode *addNewBlock(BasicBlock *BB, BasicBlock *DomBB) {
767    return DT->addNewBlock(BB, DomBB);
768  }
769
770  /// changeImmediateDominator - This method is used to update the dominator
771  /// tree information when a node's immediate dominator changes.
772  ///
773  inline void changeImmediateDominator(BasicBlock *N, BasicBlock* NewIDom) {
774    DT->changeImmediateDominator(N, NewIDom);
775  }
776
777  inline void changeImmediateDominator(DomTreeNode *N, DomTreeNode* NewIDom) {
778    DT->changeImmediateDominator(N, NewIDom);
779  }
780
781  /// eraseNode - Removes a node from  the dominator tree. Block must not
782  /// domiante any other blocks. Removes node from its immediate dominator's
783  /// children list. Deletes dominator node associated with basic block BB.
784  inline void eraseNode(BasicBlock *BB) {
785    DT->eraseNode(BB);
786  }
787
788  /// splitBlock - BB is split and now it has one successor. Update dominator
789  /// tree to reflect this change.
790  inline void splitBlock(BasicBlock* NewBB) {
791    DT->splitBlock(NewBB);
792  }
793
794
795  virtual void releaseMemory() {
796    DT->releaseMemory();
797  }
798
799  virtual void print(std::ostream &OS, const Module* M= 0) const {
800    DT->print(OS, M);
801  }
802};
803
804//===-------------------------------------
805/// DominatorTree GraphTraits specialization so the DominatorTree can be
806/// iterable by generic graph iterators.
807///
808template <> struct GraphTraits<DomTreeNode *> {
809  typedef DomTreeNode NodeType;
810  typedef NodeType::iterator  ChildIteratorType;
811
812  static NodeType *getEntryNode(NodeType *N) {
813    return N;
814  }
815  static inline ChildIteratorType child_begin(NodeType* N) {
816    return N->begin();
817  }
818  static inline ChildIteratorType child_end(NodeType* N) {
819    return N->end();
820  }
821};
822
823template <> struct GraphTraits<DominatorTree*>
824  : public GraphTraits<DomTreeNode *> {
825  static NodeType *getEntryNode(DominatorTree *DT) {
826    return DT->getRootNode();
827  }
828};
829
830
831//===----------------------------------------------------------------------===//
832/// DominanceFrontierBase - Common base class for computing forward and inverse
833/// dominance frontiers for a function.
834///
835class DominanceFrontierBase : public FunctionPass {
836public:
837  typedef std::set<BasicBlock*>             DomSetType;    // Dom set for a bb
838  typedef std::map<BasicBlock*, DomSetType> DomSetMapType; // Dom set map
839protected:
840  DomSetMapType Frontiers;
841    std::vector<BasicBlock*> Roots;
842    const bool IsPostDominators;
843
844public:
845  DominanceFrontierBase(intptr_t ID, bool isPostDom)
846    : FunctionPass(ID), IsPostDominators(isPostDom) {}
847
848  /// getRoots -  Return the root blocks of the current CFG.  This may include
849  /// multiple blocks if we are computing post dominators.  For forward
850  /// dominators, this will always be a single block (the entry node).
851  ///
852  inline const std::vector<BasicBlock*> &getRoots() const { return Roots; }
853
854  /// isPostDominator - Returns true if analysis based of postdoms
855  ///
856  bool isPostDominator() const { return IsPostDominators; }
857
858  virtual void releaseMemory() { Frontiers.clear(); }
859
860  // Accessor interface:
861  typedef DomSetMapType::iterator iterator;
862  typedef DomSetMapType::const_iterator const_iterator;
863  iterator       begin()       { return Frontiers.begin(); }
864  const_iterator begin() const { return Frontiers.begin(); }
865  iterator       end()         { return Frontiers.end(); }
866  const_iterator end()   const { return Frontiers.end(); }
867  iterator       find(BasicBlock *B)       { return Frontiers.find(B); }
868  const_iterator find(BasicBlock *B) const { return Frontiers.find(B); }
869
870  void addBasicBlock(BasicBlock *BB, const DomSetType &frontier) {
871    assert(find(BB) == end() && "Block already in DominanceFrontier!");
872    Frontiers.insert(std::make_pair(BB, frontier));
873  }
874
875  /// removeBlock - Remove basic block BB's frontier.
876  void removeBlock(BasicBlock *BB) {
877    assert(find(BB) != end() && "Block is not in DominanceFrontier!");
878    for (iterator I = begin(), E = end(); I != E; ++I)
879      I->second.erase(BB);
880    Frontiers.erase(BB);
881  }
882
883  void addToFrontier(iterator I, BasicBlock *Node) {
884    assert(I != end() && "BB is not in DominanceFrontier!");
885    I->second.insert(Node);
886  }
887
888  void removeFromFrontier(iterator I, BasicBlock *Node) {
889    assert(I != end() && "BB is not in DominanceFrontier!");
890    assert(I->second.count(Node) && "Node is not in DominanceFrontier of BB");
891    I->second.erase(Node);
892  }
893
894  /// print - Convert to human readable form
895  ///
896  virtual void print(std::ostream &OS, const Module* = 0) const;
897  void print(std::ostream *OS, const Module* M = 0) const {
898    if (OS) print(*OS, M);
899  }
900  virtual void dump();
901};
902
903
904//===-------------------------------------
905/// DominanceFrontier Class - Concrete subclass of DominanceFrontierBase that is
906/// used to compute a forward dominator frontiers.
907///
908class DominanceFrontier : public DominanceFrontierBase {
909public:
910  static char ID; // Pass ID, replacement for typeid
911  DominanceFrontier() :
912    DominanceFrontierBase(intptr_t(&ID), false) {}
913
914  BasicBlock *getRoot() const {
915    assert(Roots.size() == 1 && "Should always have entry node!");
916    return Roots[0];
917  }
918
919  /// isAnalysis - Return true if this pass is  implementing an analysis pass.
920  virtual bool isAnalysis() const { return true; }
921
922  virtual bool runOnFunction(Function &) {
923    Frontiers.clear();
924    DominatorTree &DT = getAnalysis<DominatorTree>();
925    Roots = DT.getRoots();
926    assert(Roots.size() == 1 && "Only one entry block for forward domfronts!");
927    calculate(DT, DT[Roots[0]]);
928    return false;
929  }
930
931  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
932    AU.setPreservesAll();
933    AU.addRequired<DominatorTree>();
934  }
935
936  /// splitBlock - BB is split and now it has one successor. Update dominance
937  /// frontier to reflect this change.
938  void splitBlock(BasicBlock *BB);
939
940  /// BasicBlock BB's new dominator is NewBB. Update BB's dominance frontier
941  /// to reflect this change.
942  void changeImmediateDominator(BasicBlock *BB, BasicBlock *NewBB,
943                                DominatorTree *DT) {
944    // NewBB is now  dominating BB. Which means BB's dominance
945    // frontier is now part of NewBB's dominance frontier. However, BB
946    // itself is not member of NewBB's dominance frontier.
947    DominanceFrontier::iterator NewDFI = find(NewBB);
948    DominanceFrontier::iterator DFI = find(BB);
949    DominanceFrontier::DomSetType BBSet = DFI->second;
950    for (DominanceFrontier::DomSetType::iterator BBSetI = BBSet.begin(),
951           BBSetE = BBSet.end(); BBSetI != BBSetE; ++BBSetI) {
952      BasicBlock *DFMember = *BBSetI;
953      // Insert only if NewBB dominates DFMember.
954      if (!DT->dominates(NewBB, DFMember))
955        NewDFI->second.insert(DFMember);
956    }
957    NewDFI->second.erase(BB);
958  }
959
960private:
961  const DomSetType &calculate(const DominatorTree &DT,
962                              const DomTreeNode *Node);
963};
964
965
966} // End llvm namespace
967
968#endif
969