Dominators.h revision 25abb1dc094a08a3ba5cb426698b4780cbe438bb
1//===- llvm/Analysis/Dominators.h - Dominator Info Calculation --*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the following classes:
11//  1. ImmediateDominators: Calculates and holds a mapping between BasicBlocks
12//     and their immediate dominator.
13//  2. DominatorSet: Calculates the [reverse] dominator set for a function
14//  3. DominatorTree: Represent the ImmediateDominator as an explicit tree
15//     structure.
16//  4. ETForest: Efficient data structure for dominance comparisons and
17//     nearest-common-ancestor queries.
18//  5. DominanceFrontier: Calculate and hold the dominance frontier for a
19//     function.
20//
21//  These data structures are listed in increasing order of complexity.  It
22//  takes longer to calculate the dominator frontier, for example, than the
23//  ImmediateDominator mapping.
24//
25//===----------------------------------------------------------------------===//
26
27#ifndef LLVM_ANALYSIS_DOMINATORS_H
28#define LLVM_ANALYSIS_DOMINATORS_H
29
30#include "llvm/Analysis/ET-Forest.h"
31#include "llvm/Pass.h"
32#include <set>
33
34namespace llvm {
35
36class Instruction;
37
38template <typename GraphType> struct GraphTraits;
39
40//===----------------------------------------------------------------------===//
41/// DominatorBase - Base class that other, more interesting dominator analyses
42/// inherit from.
43///
44class DominatorBase : public FunctionPass {
45protected:
46  std::vector<BasicBlock*> Roots;
47  const bool IsPostDominators;
48
49  inline DominatorBase(bool isPostDom) : Roots(), IsPostDominators(isPostDom) {}
50public:
51  /// getRoots -  Return the root blocks of the current CFG.  This may include
52  /// multiple blocks if we are computing post dominators.  For forward
53  /// dominators, this will always be a single block (the entry node).
54  ///
55  inline const std::vector<BasicBlock*> &getRoots() const { return Roots; }
56
57  /// isPostDominator - Returns true if analysis based of postdoms
58  ///
59  bool isPostDominator() const { return IsPostDominators; }
60};
61
62
63//===----------------------------------------------------------------------===//
64/// ImmediateDominators - Calculate the immediate dominator for each node in a
65/// function.
66///
67class ImmediateDominatorsBase : public DominatorBase {
68protected:
69  std::map<BasicBlock*, BasicBlock*> IDoms;
70public:
71  ImmediateDominatorsBase(bool isPostDom) : DominatorBase(isPostDom) {}
72
73  virtual void releaseMemory() { IDoms.clear(); }
74
75  // Accessor interface:
76  typedef std::map<BasicBlock*, BasicBlock*> IDomMapType;
77  typedef IDomMapType::const_iterator const_iterator;
78  inline const_iterator begin() const { return IDoms.begin(); }
79  inline const_iterator end()   const { return IDoms.end(); }
80  inline const_iterator find(BasicBlock* B) const { return IDoms.find(B);}
81
82  /// operator[] - Return the idom for the specified basic block.  The start
83  /// node returns null, because it does not have an immediate dominator.
84  ///
85  inline BasicBlock *operator[](BasicBlock *BB) const {
86    return get(BB);
87  }
88
89  /// get() - Synonym for operator[].
90  ///
91  inline BasicBlock *get(BasicBlock *BB) const {
92    std::map<BasicBlock*, BasicBlock*>::const_iterator I = IDoms.find(BB);
93    return I != IDoms.end() ? I->second : 0;
94  }
95
96  //===--------------------------------------------------------------------===//
97  // API to update Immediate(Post)Dominators information based on modifications
98  // to the CFG...
99
100  /// addNewBlock - Add a new block to the CFG, with the specified immediate
101  /// dominator.
102  ///
103  void addNewBlock(BasicBlock *BB, BasicBlock *IDom) {
104    assert(get(BB) == 0 && "BasicBlock already in idom info!");
105    IDoms[BB] = IDom;
106  }
107
108  /// setImmediateDominator - Update the immediate dominator information to
109  /// change the current immediate dominator for the specified block to another
110  /// block.  This method requires that BB already have an IDom, otherwise just
111  /// use addNewBlock.
112  ///
113  void setImmediateDominator(BasicBlock *BB, BasicBlock *NewIDom) {
114    assert(IDoms.find(BB) != IDoms.end() && "BB doesn't have idom yet!");
115    IDoms[BB] = NewIDom;
116  }
117
118  /// print - Convert to human readable form
119  ///
120  virtual void print(std::ostream &OS, const Module* = 0) const;
121};
122
123//===-------------------------------------
124/// ImmediateDominators Class - Concrete subclass of ImmediateDominatorsBase
125/// that is used to compute a normal immediate dominator set.
126///
127struct ImmediateDominators : public ImmediateDominatorsBase {
128  ImmediateDominators() : ImmediateDominatorsBase(false) {}
129
130  BasicBlock *getRoot() const {
131    assert(Roots.size() == 1 && "Should always have entry node!");
132    return Roots[0];
133  }
134
135  virtual bool runOnFunction(Function &F);
136
137  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
138    AU.setPreservesAll();
139  }
140
141private:
142  struct InfoRec {
143    unsigned Semi;
144    unsigned Size;
145    BasicBlock *Label, *Parent, *Child, *Ancestor;
146
147    std::vector<BasicBlock*> Bucket;
148
149    InfoRec() : Semi(0), Size(0), Label(0), Parent(0), Child(0), Ancestor(0){}
150  };
151
152  // Vertex - Map the DFS number to the BasicBlock*
153  std::vector<BasicBlock*> Vertex;
154
155  // Info - Collection of information used during the computation of idoms.
156  std::map<BasicBlock*, InfoRec> Info;
157
158  unsigned DFSPass(BasicBlock *V, InfoRec &VInfo, unsigned N);
159  void Compress(BasicBlock *V, InfoRec &VInfo);
160  BasicBlock *Eval(BasicBlock *v);
161  void Link(BasicBlock *V, BasicBlock *W, InfoRec &WInfo);
162};
163
164
165
166//===----------------------------------------------------------------------===//
167/// DominatorSet - Maintain a set<BasicBlock*> for every basic block in a
168/// function, that represents the blocks that dominate the block.  If the block
169/// is unreachable in this function, the set will be empty.  This cannot happen
170/// for reachable code, because every block dominates at least itself.
171///
172struct DominatorSetBase : public DominatorBase {
173  typedef std::set<BasicBlock*> DomSetType;    // Dom set for a bb
174  // Map of dom sets
175  typedef std::map<BasicBlock*, DomSetType> DomSetMapType;
176protected:
177  DomSetMapType Doms;
178public:
179  DominatorSetBase(bool isPostDom) : DominatorBase(isPostDom) {}
180
181  virtual void releaseMemory() { Doms.clear(); }
182
183  // Accessor interface:
184  typedef DomSetMapType::const_iterator const_iterator;
185  typedef DomSetMapType::iterator iterator;
186  inline const_iterator begin() const { return Doms.begin(); }
187  inline       iterator begin()       { return Doms.begin(); }
188  inline const_iterator end()   const { return Doms.end(); }
189  inline       iterator end()         { return Doms.end(); }
190  inline const_iterator find(BasicBlock* B) const { return Doms.find(B); }
191  inline       iterator find(BasicBlock* B)       { return Doms.find(B); }
192
193
194  /// getDominators - Return the set of basic blocks that dominate the specified
195  /// block.
196  ///
197  inline const DomSetType &getDominators(BasicBlock *BB) const {
198    const_iterator I = find(BB);
199    assert(I != end() && "BB not in function!");
200    return I->second;
201  }
202
203  /// isReachable - Return true if the specified basicblock is reachable.  If
204  /// the block is reachable, we have dominator set information for it.
205  ///
206  bool isReachable(BasicBlock *BB) const {
207    return !getDominators(BB).empty();
208  }
209
210  /// dominates - Return true if A dominates B.
211  ///
212  inline bool dominates(BasicBlock *A, BasicBlock *B) const {
213    return getDominators(B).count(A) != 0;
214  }
215
216  /// properlyDominates - Return true if A dominates B and A != B.
217  ///
218  bool properlyDominates(BasicBlock *A, BasicBlock *B) const {
219    return dominates(A, B) && A != B;
220  }
221
222  /// print - Convert to human readable form
223  ///
224  virtual void print(std::ostream &OS, const Module* = 0) const;
225
226  /// dominates - Return true if A dominates B.  This performs the special
227  /// checks necessary if A and B are in the same basic block.
228  ///
229  bool dominates(Instruction *A, Instruction *B) const;
230
231  //===--------------------------------------------------------------------===//
232  // API to update (Post)DominatorSet information based on modifications to
233  // the CFG...
234
235  /// addBasicBlock - Call to update the dominator set with information about a
236  /// new block that was inserted into the function.
237  ///
238  void addBasicBlock(BasicBlock *BB, const DomSetType &Dominators) {
239    assert(find(BB) == end() && "Block already in DominatorSet!");
240    Doms.insert(std::make_pair(BB, Dominators));
241  }
242
243  /// addDominator - If a new block is inserted into the CFG, then method may be
244  /// called to notify the blocks it dominates that it is in their set.
245  ///
246  void addDominator(BasicBlock *BB, BasicBlock *NewDominator) {
247    iterator I = find(BB);
248    assert(I != end() && "BB is not in DominatorSet!");
249    I->second.insert(NewDominator);
250  }
251};
252
253
254//===-------------------------------------
255/// DominatorSet Class - Concrete subclass of DominatorSetBase that is used to
256/// compute a normal dominator set.
257///
258struct DominatorSet : public DominatorSetBase {
259  DominatorSet() : DominatorSetBase(false) {}
260
261  virtual bool runOnFunction(Function &F);
262
263  BasicBlock *getRoot() const {
264    assert(Roots.size() == 1 && "Should always have entry node!");
265    return Roots[0];
266  }
267
268  /// getAnalysisUsage - This simply provides a dominator set
269  ///
270  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
271    AU.addRequired<ImmediateDominators>();
272    AU.setPreservesAll();
273  }
274
275  // stub - dummy function, just ignore it
276  static void stub();
277};
278
279
280//===----------------------------------------------------------------------===//
281/// DominatorTree - Calculate the immediate dominator tree for a function.
282///
283struct DominatorTreeBase : public DominatorBase {
284  class Node;
285protected:
286  std::map<BasicBlock*, Node*> Nodes;
287  void reset();
288  typedef std::map<BasicBlock*, Node*> NodeMapType;
289
290  Node *RootNode;
291public:
292  class Node {
293    friend struct DominatorTree;
294    friend struct PostDominatorTree;
295    friend struct DominatorTreeBase;
296    BasicBlock *TheBB;
297    Node *IDom;
298    std::vector<Node*> Children;
299  public:
300    typedef std::vector<Node*>::iterator iterator;
301    typedef std::vector<Node*>::const_iterator const_iterator;
302
303    iterator begin()             { return Children.begin(); }
304    iterator end()               { return Children.end(); }
305    const_iterator begin() const { return Children.begin(); }
306    const_iterator end()   const { return Children.end(); }
307
308    inline BasicBlock *getBlock() const { return TheBB; }
309    inline Node *getIDom() const { return IDom; }
310    inline const std::vector<Node*> &getChildren() const { return Children; }
311
312    /// properlyDominates - Returns true iff this dominates N and this != N.
313    /// Note that this is not a constant time operation!
314    ///
315    bool properlyDominates(const Node *N) const {
316      const Node *IDom;
317      if (this == 0 || N == 0) return false;
318      while ((IDom = N->getIDom()) != 0 && IDom != this)
319        N = IDom;   // Walk up the tree
320      return IDom != 0;
321    }
322
323    /// dominates - Returns true iff this dominates N.  Note that this is not a
324    /// constant time operation!
325    ///
326    inline bool dominates(const Node *N) const {
327      if (N == this) return true;  // A node trivially dominates itself.
328      return properlyDominates(N);
329    }
330
331  private:
332    inline Node(BasicBlock *BB, Node *iDom) : TheBB(BB), IDom(iDom) {}
333    inline Node *addChild(Node *C) { Children.push_back(C); return C; }
334
335    void setIDom(Node *NewIDom);
336  };
337
338public:
339  DominatorTreeBase(bool isPostDom) : DominatorBase(isPostDom) {}
340  ~DominatorTreeBase() { reset(); }
341
342  virtual void releaseMemory() { reset(); }
343
344  /// getNode - return the (Post)DominatorTree node for the specified basic
345  /// block.  This is the same as using operator[] on this class.
346  ///
347  inline Node *getNode(BasicBlock *BB) const {
348    NodeMapType::const_iterator i = Nodes.find(BB);
349    return (i != Nodes.end()) ? i->second : 0;
350  }
351
352  inline Node *operator[](BasicBlock *BB) const {
353    return getNode(BB);
354  }
355
356  /// getRootNode - This returns the entry node for the CFG of the function.  If
357  /// this tree represents the post-dominance relations for a function, however,
358  /// this root may be a node with the block == NULL.  This is the case when
359  /// there are multiple exit nodes from a particular function.  Consumers of
360  /// post-dominance information must be capable of dealing with this
361  /// possibility.
362  ///
363  Node *getRootNode() { return RootNode; }
364  const Node *getRootNode() const { return RootNode; }
365
366  //===--------------------------------------------------------------------===//
367  // API to update (Post)DominatorTree information based on modifications to
368  // the CFG...
369
370  /// createNewNode - Add a new node to the dominator tree information.  This
371  /// creates a new node as a child of IDomNode, linking it into the children
372  /// list of the immediate dominator.
373  ///
374  Node *createNewNode(BasicBlock *BB, Node *IDomNode) {
375    assert(getNode(BB) == 0 && "Block already in dominator tree!");
376    assert(IDomNode && "Not immediate dominator specified for block!");
377    return Nodes[BB] = IDomNode->addChild(new Node(BB, IDomNode));
378  }
379
380  /// changeImmediateDominator - This method is used to update the dominator
381  /// tree information when a node's immediate dominator changes.
382  ///
383  void changeImmediateDominator(Node *N, Node *NewIDom) {
384    assert(N && NewIDom && "Cannot change null node pointers!");
385    N->setIDom(NewIDom);
386  }
387
388  /// print - Convert to human readable form
389  ///
390  virtual void print(std::ostream &OS, const Module* = 0) const;
391};
392
393
394//===-------------------------------------
395/// ET-Forest Class - Class used to construct forwards and backwards
396/// ET-Forests
397///
398struct ETForestBase : public DominatorBase {
399  ETForestBase(bool isPostDom) : DominatorBase(isPostDom), Nodes(),
400                                 DFSInfoValid(false), SlowQueries(0) {}
401
402  virtual void releaseMemory() { reset(); }
403
404  typedef std::map<BasicBlock*, ETNode*> ETMapType;
405
406  void updateDFSNumbers();
407
408  /// dominates - Return true if A dominates B.
409  ///
410  inline bool dominates(BasicBlock *A, BasicBlock *B) {
411    if (A == B)
412      return true;
413
414    ETNode *NodeA = getNode(A);
415    ETNode *NodeB = getNode(B);
416
417    if (DFSInfoValid)
418      return NodeB->DominatedBy(NodeA);
419    else {
420      // If we end up with too many slow queries, just update the
421      // DFS numbers on the theory that we are going to keep querying.
422      SlowQueries++;
423      if (SlowQueries > 32) {
424        updateDFSNumbers();
425        return NodeB->DominatedBy(NodeA);
426      }
427      return NodeB->DominatedBySlow(NodeA);
428    }
429  }
430
431  /// properlyDominates - Return true if A dominates B and A != B.
432  ///
433  bool properlyDominates(BasicBlock *A, BasicBlock *B) {
434    return dominates(A, B) && A != B;
435  }
436
437  /// Return the nearest common dominator of A and B.
438  BasicBlock *nearestCommonDominator(BasicBlock *A, BasicBlock *B) const  {
439    ETNode *NodeA = getNode(A);
440    ETNode *NodeB = getNode(B);
441
442    ETNode *Common = NodeA->NCA(NodeB);
443    if (!Common)
444      return NULL;
445    return Common->getData<BasicBlock>();
446  }
447
448  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
449    AU.setPreservesAll();
450    AU.addRequired<ImmediateDominators>();
451  }
452  //===--------------------------------------------------------------------===//
453  // API to update Forest information based on modifications
454  // to the CFG...
455
456  /// addNewBlock - Add a new block to the CFG, with the specified immediate
457  /// dominator.
458  ///
459  void addNewBlock(BasicBlock *BB, BasicBlock *IDom);
460
461  /// setImmediateDominator - Update the immediate dominator information to
462  /// change the current immediate dominator for the specified block
463  /// to another block.  This method requires that BB for NewIDom
464  /// already have an ETNode, otherwise just use addNewBlock.
465  ///
466  void setImmediateDominator(BasicBlock *BB, BasicBlock *NewIDom);
467  /// print - Convert to human readable form
468  ///
469  virtual void print(std::ostream &OS, const Module* = 0) const;
470protected:
471  /// getNode - return the (Post)DominatorTree node for the specified basic
472  /// block.  This is the same as using operator[] on this class.
473  ///
474  inline ETNode *getNode(BasicBlock *BB) const {
475    ETMapType::const_iterator i = Nodes.find(BB);
476    return (i != Nodes.end()) ? i->second : 0;
477  }
478
479  inline ETNode *operator[](BasicBlock *BB) const {
480    return getNode(BB);
481  }
482
483  void reset();
484  ETMapType Nodes;
485  bool DFSInfoValid;
486  unsigned int SlowQueries;
487
488};
489
490//==-------------------------------------
491/// ETForest Class - Concrete subclass of ETForestBase that is used to
492/// compute a forwards ET-Forest.
493
494struct ETForest : public ETForestBase {
495  ETForest() : ETForestBase(false) {}
496
497  BasicBlock *getRoot() const {
498    assert(Roots.size() == 1 && "Should always have entry node!");
499    return Roots[0];
500  }
501
502  virtual bool runOnFunction(Function &F) {
503    reset();     // Reset from the last time we were run...
504    ImmediateDominators &ID = getAnalysis<ImmediateDominators>();
505    Roots = ID.getRoots();
506    calculate(ID);
507    return false;
508  }
509
510  void calculate(const ImmediateDominators &ID);
511  ETNode *getNodeForBlock(BasicBlock *BB);
512};
513
514//===-------------------------------------
515/// DominatorTree Class - Concrete subclass of DominatorTreeBase that is used to
516/// compute a normal dominator tree.
517///
518struct DominatorTree : public DominatorTreeBase {
519  DominatorTree() : DominatorTreeBase(false) {}
520
521  BasicBlock *getRoot() const {
522    assert(Roots.size() == 1 && "Should always have entry node!");
523    return Roots[0];
524  }
525
526  virtual bool runOnFunction(Function &F) {
527    reset();     // Reset from the last time we were run...
528    ImmediateDominators &ID = getAnalysis<ImmediateDominators>();
529    Roots = ID.getRoots();
530    calculate(ID);
531    return false;
532  }
533
534  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
535    AU.setPreservesAll();
536    AU.addRequired<ImmediateDominators>();
537  }
538private:
539  void calculate(const ImmediateDominators &ID);
540  Node *getNodeForBlock(BasicBlock *BB);
541};
542
543//===-------------------------------------
544/// DominatorTree GraphTraits specialization so the DominatorTree can be
545/// iterable by generic graph iterators.
546///
547template <> struct GraphTraits<DominatorTree::Node*> {
548  typedef DominatorTree::Node NodeType;
549  typedef NodeType::iterator  ChildIteratorType;
550
551  static NodeType *getEntryNode(NodeType *N) {
552    return N;
553  }
554  static inline ChildIteratorType child_begin(NodeType* N) {
555    return N->begin();
556  }
557  static inline ChildIteratorType child_end(NodeType* N) {
558    return N->end();
559  }
560};
561
562template <> struct GraphTraits<DominatorTree*>
563  : public GraphTraits<DominatorTree::Node*> {
564  static NodeType *getEntryNode(DominatorTree *DT) {
565    return DT->getRootNode();
566  }
567};
568
569//===----------------------------------------------------------------------===//
570/// DominanceFrontier - Calculate the dominance frontiers for a function.
571///
572struct DominanceFrontierBase : public DominatorBase {
573  typedef std::set<BasicBlock*>             DomSetType;    // Dom set for a bb
574  typedef std::map<BasicBlock*, DomSetType> DomSetMapType; // Dom set map
575protected:
576  DomSetMapType Frontiers;
577public:
578  DominanceFrontierBase(bool isPostDom) : DominatorBase(isPostDom) {}
579
580  virtual void releaseMemory() { Frontiers.clear(); }
581
582  // Accessor interface:
583  typedef DomSetMapType::iterator iterator;
584  typedef DomSetMapType::const_iterator const_iterator;
585  iterator       begin()       { return Frontiers.begin(); }
586  const_iterator begin() const { return Frontiers.begin(); }
587  iterator       end()         { return Frontiers.end(); }
588  const_iterator end()   const { return Frontiers.end(); }
589  iterator       find(BasicBlock *B)       { return Frontiers.find(B); }
590  const_iterator find(BasicBlock *B) const { return Frontiers.find(B); }
591
592  void addBasicBlock(BasicBlock *BB, const DomSetType &frontier) {
593    assert(find(BB) == end() && "Block already in DominanceFrontier!");
594    Frontiers.insert(std::make_pair(BB, frontier));
595  }
596
597  void addToFrontier(iterator I, BasicBlock *Node) {
598    assert(I != end() && "BB is not in DominanceFrontier!");
599    I->second.insert(Node);
600  }
601
602  void removeFromFrontier(iterator I, BasicBlock *Node) {
603    assert(I != end() && "BB is not in DominanceFrontier!");
604    assert(I->second.count(Node) && "Node is not in DominanceFrontier of BB");
605    I->second.erase(Node);
606  }
607
608  /// print - Convert to human readable form
609  ///
610  virtual void print(std::ostream &OS, const Module* = 0) const;
611};
612
613
614//===-------------------------------------
615/// DominatorTree Class - Concrete subclass of DominatorTreeBase that is used to
616/// compute a normal dominator tree.
617///
618struct DominanceFrontier : public DominanceFrontierBase {
619  DominanceFrontier() : DominanceFrontierBase(false) {}
620
621  BasicBlock *getRoot() const {
622    assert(Roots.size() == 1 && "Should always have entry node!");
623    return Roots[0];
624  }
625
626  virtual bool runOnFunction(Function &) {
627    Frontiers.clear();
628    DominatorTree &DT = getAnalysis<DominatorTree>();
629    Roots = DT.getRoots();
630    assert(Roots.size() == 1 && "Only one entry block for forward domfronts!");
631    calculate(DT, DT[Roots[0]]);
632    return false;
633  }
634
635  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
636    AU.setPreservesAll();
637    AU.addRequired<DominatorTree>();
638  }
639private:
640  const DomSetType &calculate(const DominatorTree &DT,
641                              const DominatorTree::Node *Node);
642};
643
644
645// Make sure that any clients of this file link in Dominators.cpp
646static IncludeFile
647DOMINATORS_INCLUDE_FILE((void*)&DominatorSet::stub);
648} // End llvm namespace
649
650#endif
651