Dominators.h revision 3445d9a72aec68512df265705e2be7704496f541
1//===- llvm/Analysis/Dominators.h - Dominator Info Calculation --*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the following classes:
11//  1. DominatorTree: Represent dominators as an explicit tree structure.
12//  2. DominanceFrontier: Calculate and hold the dominance frontier for a
13//     function.
14//
15//  These data structures are listed in increasing order of complexity.  It
16//  takes longer to calculate the dominator frontier, for example, than the
17//  DominatorTree mapping.
18//
19//===----------------------------------------------------------------------===//
20
21#ifndef LLVM_ANALYSIS_DOMINATORS_H
22#define LLVM_ANALYSIS_DOMINATORS_H
23
24#include "llvm/Pass.h"
25#include "llvm/Function.h"
26#include "llvm/Instructions.h"
27#include "llvm/ADT/DenseMap.h"
28#include "llvm/ADT/GraphTraits.h"
29#include "llvm/ADT/SmallPtrSet.h"
30#include "llvm/ADT/SmallVector.h"
31#include "llvm/Assembly/Writer.h"
32#include "llvm/Support/CFG.h"
33#include "llvm/Support/Compiler.h"
34#include "llvm/Support/raw_ostream.h"
35#include <algorithm>
36#include <map>
37#include <set>
38
39namespace llvm {
40
41//===----------------------------------------------------------------------===//
42/// DominatorBase - Base class that other, more interesting dominator analyses
43/// inherit from.
44///
45template <class NodeT>
46class DominatorBase {
47protected:
48  std::vector<NodeT*> Roots;
49  const bool IsPostDominators;
50  inline explicit DominatorBase(bool isPostDom) :
51    Roots(), IsPostDominators(isPostDom) {}
52public:
53
54  /// getRoots -  Return the root blocks of the current CFG.  This may include
55  /// multiple blocks if we are computing post dominators.  For forward
56  /// dominators, this will always be a single block (the entry node).
57  ///
58  inline const std::vector<NodeT*> &getRoots() const { return Roots; }
59
60  /// isPostDominator - Returns true if analysis based of postdoms
61  ///
62  bool isPostDominator() const { return IsPostDominators; }
63};
64
65
66//===----------------------------------------------------------------------===//
67// DomTreeNode - Dominator Tree Node
68template<class NodeT> class DominatorTreeBase;
69struct PostDominatorTree;
70class MachineBasicBlock;
71
72template <class NodeT>
73class DomTreeNodeBase {
74  NodeT *TheBB;
75  DomTreeNodeBase<NodeT> *IDom;
76  std::vector<DomTreeNodeBase<NodeT> *> Children;
77  int DFSNumIn, DFSNumOut;
78
79  template<class N> friend class DominatorTreeBase;
80  friend struct PostDominatorTree;
81public:
82  typedef typename std::vector<DomTreeNodeBase<NodeT> *>::iterator iterator;
83  typedef typename std::vector<DomTreeNodeBase<NodeT> *>::const_iterator
84                   const_iterator;
85
86  iterator begin()             { return Children.begin(); }
87  iterator end()               { return Children.end(); }
88  const_iterator begin() const { return Children.begin(); }
89  const_iterator end()   const { return Children.end(); }
90
91  NodeT *getBlock() const { return TheBB; }
92  DomTreeNodeBase<NodeT> *getIDom() const { return IDom; }
93  const std::vector<DomTreeNodeBase<NodeT>*> &getChildren() const {
94    return Children;
95  }
96
97  DomTreeNodeBase(NodeT *BB, DomTreeNodeBase<NodeT> *iDom)
98    : TheBB(BB), IDom(iDom), DFSNumIn(-1), DFSNumOut(-1) { }
99
100  DomTreeNodeBase<NodeT> *addChild(DomTreeNodeBase<NodeT> *C) {
101    Children.push_back(C);
102    return C;
103  }
104
105  size_t getNumChildren() const {
106    return Children.size();
107  }
108
109  void clearAllChildren() {
110    Children.clear();
111  }
112
113  bool compare(DomTreeNodeBase<NodeT> *Other) {
114    if (getNumChildren() != Other->getNumChildren())
115      return true;
116
117    SmallPtrSet<NodeT *, 4> OtherChildren;
118    for(iterator I = Other->begin(), E = Other->end(); I != E; ++I) {
119      NodeT *Nd = (*I)->getBlock();
120      OtherChildren.insert(Nd);
121    }
122
123    for(iterator I = begin(), E = end(); I != E; ++I) {
124      NodeT *N = (*I)->getBlock();
125      if (OtherChildren.count(N) == 0)
126        return true;
127    }
128    return false;
129  }
130
131  void setIDom(DomTreeNodeBase<NodeT> *NewIDom) {
132    assert(IDom && "No immediate dominator?");
133    if (IDom != NewIDom) {
134      typename std::vector<DomTreeNodeBase<NodeT>*>::iterator I =
135                  std::find(IDom->Children.begin(), IDom->Children.end(), this);
136      assert(I != IDom->Children.end() &&
137             "Not in immediate dominator children set!");
138      // I am no longer your child...
139      IDom->Children.erase(I);
140
141      // Switch to new dominator
142      IDom = NewIDom;
143      IDom->Children.push_back(this);
144    }
145  }
146
147  /// getDFSNumIn/getDFSNumOut - These are an internal implementation detail, do
148  /// not call them.
149  unsigned getDFSNumIn() const { return DFSNumIn; }
150  unsigned getDFSNumOut() const { return DFSNumOut; }
151private:
152  // Return true if this node is dominated by other. Use this only if DFS info
153  // is valid.
154  bool DominatedBy(const DomTreeNodeBase<NodeT> *other) const {
155    return this->DFSNumIn >= other->DFSNumIn &&
156      this->DFSNumOut <= other->DFSNumOut;
157  }
158};
159
160EXTERN_TEMPLATE_INSTANTIATION(class DomTreeNodeBase<BasicBlock>);
161EXTERN_TEMPLATE_INSTANTIATION(class DomTreeNodeBase<MachineBasicBlock>);
162
163template<class NodeT>
164static raw_ostream &operator<<(raw_ostream &o,
165                               const DomTreeNodeBase<NodeT> *Node) {
166  if (Node->getBlock())
167    WriteAsOperand(o, Node->getBlock(), false);
168  else
169    o << " <<exit node>>";
170
171  o << " {" << Node->getDFSNumIn() << "," << Node->getDFSNumOut() << "}";
172
173  return o << "\n";
174}
175
176template<class NodeT>
177static void PrintDomTree(const DomTreeNodeBase<NodeT> *N, raw_ostream &o,
178                         unsigned Lev) {
179  o.indent(2*Lev) << "[" << Lev << "] " << N;
180  for (typename DomTreeNodeBase<NodeT>::const_iterator I = N->begin(),
181       E = N->end(); I != E; ++I)
182    PrintDomTree<NodeT>(*I, o, Lev+1);
183}
184
185typedef DomTreeNodeBase<BasicBlock> DomTreeNode;
186
187//===----------------------------------------------------------------------===//
188/// DominatorTree - Calculate the immediate dominator tree for a function.
189///
190
191template<class FuncT, class N>
192void Calculate(DominatorTreeBase<typename GraphTraits<N>::NodeType>& DT,
193               FuncT& F);
194
195template<class NodeT>
196class DominatorTreeBase : public DominatorBase<NodeT> {
197protected:
198  typedef DenseMap<NodeT*, DomTreeNodeBase<NodeT>*> DomTreeNodeMapType;
199  DomTreeNodeMapType DomTreeNodes;
200  DomTreeNodeBase<NodeT> *RootNode;
201
202  bool DFSInfoValid;
203  unsigned int SlowQueries;
204  // Information record used during immediate dominators computation.
205  struct InfoRec {
206    unsigned DFSNum;
207    unsigned Semi;
208    unsigned Size;
209    NodeT *Label, *Child;
210    unsigned Parent, Ancestor;
211
212    std::vector<NodeT*> Bucket;
213
214    InfoRec() : DFSNum(0), Semi(0), Size(0), Label(0), Child(0), Parent(0),
215                Ancestor(0) {}
216  };
217
218  DenseMap<NodeT*, NodeT*> IDoms;
219
220  // Vertex - Map the DFS number to the BasicBlock*
221  std::vector<NodeT*> Vertex;
222
223  // Info - Collection of information used during the computation of idoms.
224  DenseMap<NodeT*, InfoRec> Info;
225
226  void reset() {
227    for (typename DomTreeNodeMapType::iterator I = this->DomTreeNodes.begin(),
228           E = DomTreeNodes.end(); I != E; ++I)
229      delete I->second;
230    DomTreeNodes.clear();
231    IDoms.clear();
232    this->Roots.clear();
233    Vertex.clear();
234    RootNode = 0;
235  }
236
237  // NewBB is split and now it has one successor. Update dominator tree to
238  // reflect this change.
239  template<class N, class GraphT>
240  void Split(DominatorTreeBase<typename GraphT::NodeType>& DT,
241             typename GraphT::NodeType* NewBB) {
242    assert(std::distance(GraphT::child_begin(NewBB), GraphT::child_end(NewBB)) == 1
243           && "NewBB should have a single successor!");
244    typename GraphT::NodeType* NewBBSucc = *GraphT::child_begin(NewBB);
245
246    std::vector<typename GraphT::NodeType*> PredBlocks;
247    for (typename GraphTraits<Inverse<N> >::ChildIteratorType PI =
248         GraphTraits<Inverse<N> >::child_begin(NewBB),
249         PE = GraphTraits<Inverse<N> >::child_end(NewBB); PI != PE; ++PI)
250      PredBlocks.push_back(*PI);
251
252    assert(!PredBlocks.empty() && "No predblocks??");
253
254    bool NewBBDominatesNewBBSucc = true;
255    for (typename GraphTraits<Inverse<N> >::ChildIteratorType PI =
256         GraphTraits<Inverse<N> >::child_begin(NewBBSucc),
257         E = GraphTraits<Inverse<N> >::child_end(NewBBSucc); PI != E; ++PI)
258      if (*PI != NewBB && !DT.dominates(NewBBSucc, *PI) &&
259          DT.isReachableFromEntry(*PI)) {
260        NewBBDominatesNewBBSucc = false;
261        break;
262      }
263
264    // Find NewBB's immediate dominator and create new dominator tree node for
265    // NewBB.
266    NodeT *NewBBIDom = 0;
267    unsigned i = 0;
268    for (i = 0; i < PredBlocks.size(); ++i)
269      if (DT.isReachableFromEntry(PredBlocks[i])) {
270        NewBBIDom = PredBlocks[i];
271        break;
272      }
273
274    // It's possible that none of the predecessors of NewBB are reachable;
275    // in that case, NewBB itself is unreachable, so nothing needs to be
276    // changed.
277    if (!NewBBIDom)
278      return;
279
280    for (i = i + 1; i < PredBlocks.size(); ++i) {
281      if (DT.isReachableFromEntry(PredBlocks[i]))
282        NewBBIDom = DT.findNearestCommonDominator(NewBBIDom, PredBlocks[i]);
283    }
284
285    // Create the new dominator tree node... and set the idom of NewBB.
286    DomTreeNodeBase<NodeT> *NewBBNode = DT.addNewBlock(NewBB, NewBBIDom);
287
288    // If NewBB strictly dominates other blocks, then it is now the immediate
289    // dominator of NewBBSucc.  Update the dominator tree as appropriate.
290    if (NewBBDominatesNewBBSucc) {
291      DomTreeNodeBase<NodeT> *NewBBSuccNode = DT.getNode(NewBBSucc);
292      DT.changeImmediateDominator(NewBBSuccNode, NewBBNode);
293    }
294  }
295
296public:
297  explicit DominatorTreeBase(bool isPostDom)
298    : DominatorBase<NodeT>(isPostDom), DFSInfoValid(false), SlowQueries(0) {}
299  virtual ~DominatorTreeBase() { reset(); }
300
301  // FIXME: Should remove this
302  virtual bool runOnFunction(Function &F) { return false; }
303
304  /// compare - Return false if the other dominator tree base matches this
305  /// dominator tree base. Otherwise return true.
306  bool compare(DominatorTreeBase &Other) const {
307
308    const DomTreeNodeMapType &OtherDomTreeNodes = Other.DomTreeNodes;
309    if (DomTreeNodes.size() != OtherDomTreeNodes.size())
310      return true;
311
312    SmallPtrSet<const NodeT *,4> MyBBs;
313    for (typename DomTreeNodeMapType::const_iterator
314           I = this->DomTreeNodes.begin(),
315           E = this->DomTreeNodes.end(); I != E; ++I) {
316      NodeT *BB = I->first;
317      typename DomTreeNodeMapType::const_iterator OI = OtherDomTreeNodes.find(BB);
318      if (OI == OtherDomTreeNodes.end())
319        return true;
320
321      DomTreeNodeBase<NodeT>* MyNd = I->second;
322      DomTreeNodeBase<NodeT>* OtherNd = OI->second;
323
324      if (MyNd->compare(OtherNd))
325        return true;
326    }
327
328    return false;
329  }
330
331  virtual void releaseMemory() { reset(); }
332
333  /// getNode - return the (Post)DominatorTree node for the specified basic
334  /// block.  This is the same as using operator[] on this class.
335  ///
336  inline DomTreeNodeBase<NodeT> *getNode(NodeT *BB) const {
337    typename DomTreeNodeMapType::const_iterator I = DomTreeNodes.find(BB);
338    return I != DomTreeNodes.end() ? I->second : 0;
339  }
340
341  /// getRootNode - This returns the entry node for the CFG of the function.  If
342  /// this tree represents the post-dominance relations for a function, however,
343  /// this root may be a node with the block == NULL.  This is the case when
344  /// there are multiple exit nodes from a particular function.  Consumers of
345  /// post-dominance information must be capable of dealing with this
346  /// possibility.
347  ///
348  DomTreeNodeBase<NodeT> *getRootNode() { return RootNode; }
349  const DomTreeNodeBase<NodeT> *getRootNode() const { return RootNode; }
350
351  /// properlyDominates - Returns true iff this dominates N and this != N.
352  /// Note that this is not a constant time operation!
353  ///
354  bool properlyDominates(const DomTreeNodeBase<NodeT> *A,
355                         const DomTreeNodeBase<NodeT> *B) const {
356    if (A == 0 || B == 0) return false;
357    return dominatedBySlowTreeWalk(A, B);
358  }
359
360  inline bool properlyDominates(NodeT *A, NodeT *B) {
361    return properlyDominates(getNode(A), getNode(B));
362  }
363
364  bool dominatedBySlowTreeWalk(const DomTreeNodeBase<NodeT> *A,
365                               const DomTreeNodeBase<NodeT> *B) const {
366    const DomTreeNodeBase<NodeT> *IDom;
367    if (A == 0 || B == 0) return false;
368    while ((IDom = B->getIDom()) != 0 && IDom != A && IDom != B)
369      B = IDom;   // Walk up the tree
370    return IDom != 0;
371  }
372
373
374  /// isReachableFromEntry - Return true if A is dominated by the entry
375  /// block of the function containing it.
376  bool isReachableFromEntry(NodeT* A) {
377    assert (!this->isPostDominator()
378            && "This is not implemented for post dominators");
379    return dominates(&A->getParent()->front(), A);
380  }
381
382  /// dominates - Returns true iff A dominates B.  Note that this is not a
383  /// constant time operation!
384  ///
385  inline bool dominates(const DomTreeNodeBase<NodeT> *A,
386                        const DomTreeNodeBase<NodeT> *B) {
387    if (B == A)
388      return true;  // A node trivially dominates itself.
389
390    if (A == 0 || B == 0)
391      return false;
392
393    if (DFSInfoValid)
394      return B->DominatedBy(A);
395
396    // If we end up with too many slow queries, just update the
397    // DFS numbers on the theory that we are going to keep querying.
398    SlowQueries++;
399    if (SlowQueries > 32) {
400      updateDFSNumbers();
401      return B->DominatedBy(A);
402    }
403
404    return dominatedBySlowTreeWalk(A, B);
405  }
406
407  inline bool dominates(const NodeT *A, const NodeT *B) {
408    if (A == B)
409      return true;
410
411    // Cast away the const qualifiers here. This is ok since
412    // this function doesn't actually return the values returned
413    // from getNode.
414    return dominates(getNode(const_cast<NodeT *>(A)),
415                     getNode(const_cast<NodeT *>(B)));
416  }
417
418  NodeT *getRoot() const {
419    assert(this->Roots.size() == 1 && "Should always have entry node!");
420    return this->Roots[0];
421  }
422
423  /// findNearestCommonDominator - Find nearest common dominator basic block
424  /// for basic block A and B. If there is no such block then return NULL.
425  NodeT *findNearestCommonDominator(NodeT *A, NodeT *B) {
426
427    assert (!this->isPostDominator()
428            && "This is not implemented for post dominators");
429    assert (A->getParent() == B->getParent()
430            && "Two blocks are not in same function");
431
432    // If either A or B is a entry block then it is nearest common dominator.
433    NodeT &Entry  = A->getParent()->front();
434    if (A == &Entry || B == &Entry)
435      return &Entry;
436
437    // If B dominates A then B is nearest common dominator.
438    if (dominates(B, A))
439      return B;
440
441    // If A dominates B then A is nearest common dominator.
442    if (dominates(A, B))
443      return A;
444
445    DomTreeNodeBase<NodeT> *NodeA = getNode(A);
446    DomTreeNodeBase<NodeT> *NodeB = getNode(B);
447
448    // Collect NodeA dominators set.
449    SmallPtrSet<DomTreeNodeBase<NodeT>*, 16> NodeADoms;
450    NodeADoms.insert(NodeA);
451    DomTreeNodeBase<NodeT> *IDomA = NodeA->getIDom();
452    while (IDomA) {
453      NodeADoms.insert(IDomA);
454      IDomA = IDomA->getIDom();
455    }
456
457    // Walk NodeB immediate dominators chain and find common dominator node.
458    DomTreeNodeBase<NodeT> *IDomB = NodeB->getIDom();
459    while(IDomB) {
460      if (NodeADoms.count(IDomB) != 0)
461        return IDomB->getBlock();
462
463      IDomB = IDomB->getIDom();
464    }
465
466    return NULL;
467  }
468
469  //===--------------------------------------------------------------------===//
470  // API to update (Post)DominatorTree information based on modifications to
471  // the CFG...
472
473  /// addNewBlock - Add a new node to the dominator tree information.  This
474  /// creates a new node as a child of DomBB dominator node,linking it into
475  /// the children list of the immediate dominator.
476  DomTreeNodeBase<NodeT> *addNewBlock(NodeT *BB, NodeT *DomBB) {
477    assert(getNode(BB) == 0 && "Block already in dominator tree!");
478    DomTreeNodeBase<NodeT> *IDomNode = getNode(DomBB);
479    assert(IDomNode && "Not immediate dominator specified for block!");
480    DFSInfoValid = false;
481    return DomTreeNodes[BB] =
482      IDomNode->addChild(new DomTreeNodeBase<NodeT>(BB, IDomNode));
483  }
484
485  /// changeImmediateDominator - This method is used to update the dominator
486  /// tree information when a node's immediate dominator changes.
487  ///
488  void changeImmediateDominator(DomTreeNodeBase<NodeT> *N,
489                                DomTreeNodeBase<NodeT> *NewIDom) {
490    assert(N && NewIDom && "Cannot change null node pointers!");
491    DFSInfoValid = false;
492    N->setIDom(NewIDom);
493  }
494
495  void changeImmediateDominator(NodeT *BB, NodeT *NewBB) {
496    changeImmediateDominator(getNode(BB), getNode(NewBB));
497  }
498
499  /// eraseNode - Removes a node from  the dominator tree. Block must not
500  /// domiante any other blocks. Removes node from its immediate dominator's
501  /// children list. Deletes dominator node associated with basic block BB.
502  void eraseNode(NodeT *BB) {
503    DomTreeNodeBase<NodeT> *Node = getNode(BB);
504    assert (Node && "Removing node that isn't in dominator tree.");
505    assert (Node->getChildren().empty() && "Node is not a leaf node.");
506
507      // Remove node from immediate dominator's children list.
508    DomTreeNodeBase<NodeT> *IDom = Node->getIDom();
509    if (IDom) {
510      typename std::vector<DomTreeNodeBase<NodeT>*>::iterator I =
511        std::find(IDom->Children.begin(), IDom->Children.end(), Node);
512      assert(I != IDom->Children.end() &&
513             "Not in immediate dominator children set!");
514      // I am no longer your child...
515      IDom->Children.erase(I);
516    }
517
518    DomTreeNodes.erase(BB);
519    delete Node;
520  }
521
522  /// removeNode - Removes a node from the dominator tree.  Block must not
523  /// dominate any other blocks.  Invalidates any node pointing to removed
524  /// block.
525  void removeNode(NodeT *BB) {
526    assert(getNode(BB) && "Removing node that isn't in dominator tree.");
527    DomTreeNodes.erase(BB);
528  }
529
530  /// splitBlock - BB is split and now it has one successor. Update dominator
531  /// tree to reflect this change.
532  void splitBlock(NodeT* NewBB) {
533    if (this->IsPostDominators)
534      this->Split<Inverse<NodeT*>, GraphTraits<Inverse<NodeT*> > >(*this, NewBB);
535    else
536      this->Split<NodeT*, GraphTraits<NodeT*> >(*this, NewBB);
537  }
538
539  /// print - Convert to human readable form
540  ///
541  void print(raw_ostream &o) const {
542    o << "=============================--------------------------------\n";
543    if (this->isPostDominator())
544      o << "Inorder PostDominator Tree: ";
545    else
546      o << "Inorder Dominator Tree: ";
547    if (this->DFSInfoValid)
548      o << "DFSNumbers invalid: " << SlowQueries << " slow queries.";
549    o << "\n";
550
551    PrintDomTree<NodeT>(getRootNode(), o, 1);
552  }
553
554protected:
555  template<class GraphT>
556  friend void Compress(DominatorTreeBase<typename GraphT::NodeType>& DT,
557                       typename GraphT::NodeType* VIn);
558
559  template<class GraphT>
560  friend typename GraphT::NodeType* Eval(
561                               DominatorTreeBase<typename GraphT::NodeType>& DT,
562                                         typename GraphT::NodeType* V);
563
564  template<class GraphT>
565  friend void Link(DominatorTreeBase<typename GraphT::NodeType>& DT,
566                   unsigned DFSNumV, typename GraphT::NodeType* W,
567         typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &WInfo);
568
569  template<class GraphT>
570  friend unsigned DFSPass(DominatorTreeBase<typename GraphT::NodeType>& DT,
571                          typename GraphT::NodeType* V,
572                          unsigned N);
573
574  template<class FuncT, class N>
575  friend void Calculate(DominatorTreeBase<typename GraphTraits<N>::NodeType>& DT,
576                        FuncT& F);
577
578  /// updateDFSNumbers - Assign In and Out numbers to the nodes while walking
579  /// dominator tree in dfs order.
580  void updateDFSNumbers() {
581    unsigned DFSNum = 0;
582
583    SmallVector<std::pair<DomTreeNodeBase<NodeT>*,
584                typename DomTreeNodeBase<NodeT>::iterator>, 32> WorkStack;
585
586    for (unsigned i = 0, e = (unsigned)this->Roots.size(); i != e; ++i) {
587      DomTreeNodeBase<NodeT> *ThisRoot = getNode(this->Roots[i]);
588      WorkStack.push_back(std::make_pair(ThisRoot, ThisRoot->begin()));
589      ThisRoot->DFSNumIn = DFSNum++;
590
591      while (!WorkStack.empty()) {
592        DomTreeNodeBase<NodeT> *Node = WorkStack.back().first;
593        typename DomTreeNodeBase<NodeT>::iterator ChildIt =
594                                                        WorkStack.back().second;
595
596        // If we visited all of the children of this node, "recurse" back up the
597        // stack setting the DFOutNum.
598        if (ChildIt == Node->end()) {
599          Node->DFSNumOut = DFSNum++;
600          WorkStack.pop_back();
601        } else {
602          // Otherwise, recursively visit this child.
603          DomTreeNodeBase<NodeT> *Child = *ChildIt;
604          ++WorkStack.back().second;
605
606          WorkStack.push_back(std::make_pair(Child, Child->begin()));
607          Child->DFSNumIn = DFSNum++;
608        }
609      }
610    }
611
612    SlowQueries = 0;
613    DFSInfoValid = true;
614  }
615
616  DomTreeNodeBase<NodeT> *getNodeForBlock(NodeT *BB) {
617    typename DomTreeNodeMapType::iterator I = this->DomTreeNodes.find(BB);
618    if (I != this->DomTreeNodes.end() && I->second)
619      return I->second;
620
621    // Haven't calculated this node yet?  Get or calculate the node for the
622    // immediate dominator.
623    NodeT *IDom = getIDom(BB);
624
625    assert(IDom || this->DomTreeNodes[NULL]);
626    DomTreeNodeBase<NodeT> *IDomNode = getNodeForBlock(IDom);
627
628    // Add a new tree node for this BasicBlock, and link it as a child of
629    // IDomNode
630    DomTreeNodeBase<NodeT> *C = new DomTreeNodeBase<NodeT>(BB, IDomNode);
631    return this->DomTreeNodes[BB] = IDomNode->addChild(C);
632  }
633
634  inline NodeT *getIDom(NodeT *BB) const {
635    typename DenseMap<NodeT*, NodeT*>::const_iterator I = IDoms.find(BB);
636    return I != IDoms.end() ? I->second : 0;
637  }
638
639  inline void addRoot(NodeT* BB) {
640    this->Roots.push_back(BB);
641  }
642
643public:
644  /// recalculate - compute a dominator tree for the given function
645  template<class FT>
646  void recalculate(FT& F) {
647    if (!this->IsPostDominators) {
648      reset();
649
650      // Initialize roots
651      this->Roots.push_back(&F.front());
652      this->IDoms[&F.front()] = 0;
653      this->DomTreeNodes[&F.front()] = 0;
654      this->Vertex.push_back(0);
655
656      Calculate<FT, NodeT*>(*this, F);
657
658      updateDFSNumbers();
659    } else {
660      reset();     // Reset from the last time we were run...
661
662      // Initialize the roots list
663      for (typename FT::iterator I = F.begin(), E = F.end(); I != E; ++I) {
664        if (std::distance(GraphTraits<FT*>::child_begin(I),
665                          GraphTraits<FT*>::child_end(I)) == 0)
666          addRoot(I);
667
668        // Prepopulate maps so that we don't get iterator invalidation issues later.
669        this->IDoms[I] = 0;
670        this->DomTreeNodes[I] = 0;
671      }
672
673      this->Vertex.push_back(0);
674
675      Calculate<FT, Inverse<NodeT*> >(*this, F);
676    }
677  }
678};
679
680EXTERN_TEMPLATE_INSTANTIATION(class DominatorTreeBase<BasicBlock>);
681
682//===-------------------------------------
683/// DominatorTree Class - Concrete subclass of DominatorTreeBase that is used to
684/// compute a normal dominator tree.
685///
686class DominatorTree : public FunctionPass {
687public:
688  static char ID; // Pass ID, replacement for typeid
689  DominatorTreeBase<BasicBlock>* DT;
690
691  DominatorTree() : FunctionPass(&ID) {
692    DT = new DominatorTreeBase<BasicBlock>(false);
693  }
694
695  ~DominatorTree() {
696    DT->releaseMemory();
697    delete DT;
698  }
699
700  DominatorTreeBase<BasicBlock>& getBase() { return *DT; }
701
702  /// getRoots -  Return the root blocks of the current CFG.  This may include
703  /// multiple blocks if we are computing post dominators.  For forward
704  /// dominators, this will always be a single block (the entry node).
705  ///
706  inline const std::vector<BasicBlock*> &getRoots() const {
707    return DT->getRoots();
708  }
709
710  inline BasicBlock *getRoot() const {
711    return DT->getRoot();
712  }
713
714  inline DomTreeNode *getRootNode() const {
715    return DT->getRootNode();
716  }
717
718  /// compare - Return false if the other dominator tree matches this
719  /// dominator tree. Otherwise return true.
720  inline bool compare(DominatorTree &Other) const {
721    DomTreeNode *R = getRootNode();
722    DomTreeNode *OtherR = Other.getRootNode();
723
724    if (!R || !OtherR || R->getBlock() != OtherR->getBlock())
725      return true;
726
727    if (DT->compare(Other.getBase()))
728      return true;
729
730    return false;
731  }
732
733  virtual bool runOnFunction(Function &F);
734
735  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
736    AU.setPreservesAll();
737  }
738
739  inline bool dominates(DomTreeNode* A, DomTreeNode* B) const {
740    return DT->dominates(A, B);
741  }
742
743  inline bool dominates(const BasicBlock* A, const BasicBlock* B) const {
744    return DT->dominates(A, B);
745  }
746
747  // dominates - Return true if A dominates B. This performs the
748  // special checks necessary if A and B are in the same basic block.
749  bool dominates(const Instruction *A, const Instruction *B) const {
750    const BasicBlock *BBA = A->getParent(), *BBB = B->getParent();
751    if (BBA != BBB) return dominates(BBA, BBB);
752
753    // It is not possible to determine dominance between two PHI nodes
754    // based on their ordering.
755    if (isa<PHINode>(A) && isa<PHINode>(B))
756      return false;
757
758    // Loop through the basic block until we find A or B.
759    BasicBlock::const_iterator I = BBA->begin();
760    for (; &*I != A && &*I != B; ++I) /*empty*/;
761
762    //if(!DT.IsPostDominators) {
763      // A dominates B if it is found first in the basic block.
764      return &*I == A;
765    //} else {
766    //  // A post-dominates B if B is found first in the basic block.
767    //  return &*I == B;
768    //}
769  }
770
771  inline bool properlyDominates(const DomTreeNode* A,
772                                const DomTreeNode* B) const {
773    return DT->properlyDominates(A, B);
774  }
775
776  inline bool properlyDominates(BasicBlock* A, BasicBlock* B) const {
777    return DT->properlyDominates(A, B);
778  }
779
780  /// findNearestCommonDominator - Find nearest common dominator basic block
781  /// for basic block A and B. If there is no such block then return NULL.
782  inline BasicBlock *findNearestCommonDominator(BasicBlock *A, BasicBlock *B) {
783    return DT->findNearestCommonDominator(A, B);
784  }
785
786  inline DomTreeNode *operator[](BasicBlock *BB) const {
787    return DT->getNode(BB);
788  }
789
790  /// getNode - return the (Post)DominatorTree node for the specified basic
791  /// block.  This is the same as using operator[] on this class.
792  ///
793  inline DomTreeNode *getNode(BasicBlock *BB) const {
794    return DT->getNode(BB);
795  }
796
797  /// addNewBlock - Add a new node to the dominator tree information.  This
798  /// creates a new node as a child of DomBB dominator node,linking it into
799  /// the children list of the immediate dominator.
800  inline DomTreeNode *addNewBlock(BasicBlock *BB, BasicBlock *DomBB) {
801    return DT->addNewBlock(BB, DomBB);
802  }
803
804  /// changeImmediateDominator - This method is used to update the dominator
805  /// tree information when a node's immediate dominator changes.
806  ///
807  inline void changeImmediateDominator(BasicBlock *N, BasicBlock* NewIDom) {
808    DT->changeImmediateDominator(N, NewIDom);
809  }
810
811  inline void changeImmediateDominator(DomTreeNode *N, DomTreeNode* NewIDom) {
812    DT->changeImmediateDominator(N, NewIDom);
813  }
814
815  /// eraseNode - Removes a node from  the dominator tree. Block must not
816  /// domiante any other blocks. Removes node from its immediate dominator's
817  /// children list. Deletes dominator node associated with basic block BB.
818  inline void eraseNode(BasicBlock *BB) {
819    DT->eraseNode(BB);
820  }
821
822  /// splitBlock - BB is split and now it has one successor. Update dominator
823  /// tree to reflect this change.
824  inline void splitBlock(BasicBlock* NewBB) {
825    DT->splitBlock(NewBB);
826  }
827
828  bool isReachableFromEntry(BasicBlock* A) {
829    return DT->isReachableFromEntry(A);
830  }
831
832
833  virtual void releaseMemory() {
834    DT->releaseMemory();
835  }
836
837  virtual void print(raw_ostream &OS, const Module* M= 0) const;
838};
839
840//===-------------------------------------
841/// DominatorTree GraphTraits specialization so the DominatorTree can be
842/// iterable by generic graph iterators.
843///
844template <> struct GraphTraits<DomTreeNode *> {
845  typedef DomTreeNode NodeType;
846  typedef NodeType::iterator  ChildIteratorType;
847
848  static NodeType *getEntryNode(NodeType *N) {
849    return N;
850  }
851  static inline ChildIteratorType child_begin(NodeType* N) {
852    return N->begin();
853  }
854  static inline ChildIteratorType child_end(NodeType* N) {
855    return N->end();
856  }
857};
858
859template <> struct GraphTraits<DominatorTree*>
860  : public GraphTraits<DomTreeNode *> {
861  static NodeType *getEntryNode(DominatorTree *DT) {
862    return DT->getRootNode();
863  }
864};
865
866
867//===----------------------------------------------------------------------===//
868/// DominanceFrontierBase - Common base class for computing forward and inverse
869/// dominance frontiers for a function.
870///
871class DominanceFrontierBase : public FunctionPass {
872public:
873  typedef std::set<BasicBlock*>             DomSetType;    // Dom set for a bb
874  typedef std::map<BasicBlock*, DomSetType> DomSetMapType; // Dom set map
875protected:
876  DomSetMapType Frontiers;
877  std::vector<BasicBlock*> Roots;
878  const bool IsPostDominators;
879
880public:
881  DominanceFrontierBase(void *ID, bool isPostDom)
882    : FunctionPass(ID), IsPostDominators(isPostDom) {}
883
884  /// getRoots -  Return the root blocks of the current CFG.  This may include
885  /// multiple blocks if we are computing post dominators.  For forward
886  /// dominators, this will always be a single block (the entry node).
887  ///
888  inline const std::vector<BasicBlock*> &getRoots() const { return Roots; }
889
890  /// isPostDominator - Returns true if analysis based of postdoms
891  ///
892  bool isPostDominator() const { return IsPostDominators; }
893
894  virtual void releaseMemory() { Frontiers.clear(); }
895
896  // Accessor interface:
897  typedef DomSetMapType::iterator iterator;
898  typedef DomSetMapType::const_iterator const_iterator;
899  iterator       begin()       { return Frontiers.begin(); }
900  const_iterator begin() const { return Frontiers.begin(); }
901  iterator       end()         { return Frontiers.end(); }
902  const_iterator end()   const { return Frontiers.end(); }
903  iterator       find(BasicBlock *B)       { return Frontiers.find(B); }
904  const_iterator find(BasicBlock *B) const { return Frontiers.find(B); }
905
906  void addBasicBlock(BasicBlock *BB, const DomSetType &frontier) {
907    assert(find(BB) == end() && "Block already in DominanceFrontier!");
908    Frontiers.insert(std::make_pair(BB, frontier));
909  }
910
911  /// removeBlock - Remove basic block BB's frontier.
912  void removeBlock(BasicBlock *BB) {
913    assert(find(BB) != end() && "Block is not in DominanceFrontier!");
914    for (iterator I = begin(), E = end(); I != E; ++I)
915      I->second.erase(BB);
916    Frontiers.erase(BB);
917  }
918
919  void addToFrontier(iterator I, BasicBlock *Node) {
920    assert(I != end() && "BB is not in DominanceFrontier!");
921    I->second.insert(Node);
922  }
923
924  void removeFromFrontier(iterator I, BasicBlock *Node) {
925    assert(I != end() && "BB is not in DominanceFrontier!");
926    assert(I->second.count(Node) && "Node is not in DominanceFrontier of BB");
927    I->second.erase(Node);
928  }
929
930  /// compareDomSet - Return false if two domsets match. Otherwise
931  /// return true;
932  bool compareDomSet(DomSetType &DS1, const DomSetType &DS2) const {
933    std::set<BasicBlock *> tmpSet;
934    for (DomSetType::const_iterator I = DS2.begin(),
935           E = DS2.end(); I != E; ++I)
936      tmpSet.insert(*I);
937
938    for (DomSetType::const_iterator I = DS1.begin(),
939           E = DS1.end(); I != E; ) {
940      BasicBlock *Node = *I++;
941
942      if (tmpSet.erase(Node) == 0)
943        // Node is in DS1 but not in DS2.
944        return true;
945    }
946
947    if(!tmpSet.empty())
948      // There are nodes that are in DS2 but not in DS1.
949      return true;
950
951    // DS1 and DS2 matches.
952    return false;
953  }
954
955  /// compare - Return true if the other dominance frontier base matches
956  /// this dominance frontier base. Otherwise return false.
957  bool compare(DominanceFrontierBase &Other) const {
958    DomSetMapType tmpFrontiers;
959    for (DomSetMapType::const_iterator I = Other.begin(),
960           E = Other.end(); I != E; ++I)
961      tmpFrontiers.insert(std::make_pair(I->first, I->second));
962
963    for (DomSetMapType::iterator I = tmpFrontiers.begin(),
964           E = tmpFrontiers.end(); I != E; ) {
965      BasicBlock *Node = I->first;
966      const_iterator DFI = find(Node);
967      if (DFI == end())
968        return true;
969
970      if (compareDomSet(I->second, DFI->second))
971        return true;
972
973      ++I;
974      tmpFrontiers.erase(Node);
975    }
976
977    if (!tmpFrontiers.empty())
978      return true;
979
980    return false;
981  }
982
983  /// print - Convert to human readable form
984  ///
985  virtual void print(raw_ostream &OS, const Module* = 0) const;
986};
987
988
989//===-------------------------------------
990/// DominanceFrontier Class - Concrete subclass of DominanceFrontierBase that is
991/// used to compute a forward dominator frontiers.
992///
993class DominanceFrontier : public DominanceFrontierBase {
994public:
995  static char ID; // Pass ID, replacement for typeid
996  DominanceFrontier() :
997    DominanceFrontierBase(&ID, false) {}
998
999  BasicBlock *getRoot() const {
1000    assert(Roots.size() == 1 && "Should always have entry node!");
1001    return Roots[0];
1002  }
1003
1004  virtual bool runOnFunction(Function &) {
1005    Frontiers.clear();
1006    DominatorTree &DT = getAnalysis<DominatorTree>();
1007    Roots = DT.getRoots();
1008    assert(Roots.size() == 1 && "Only one entry block for forward domfronts!");
1009    calculate(DT, DT[Roots[0]]);
1010    return false;
1011  }
1012
1013  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
1014    AU.setPreservesAll();
1015    AU.addRequired<DominatorTree>();
1016  }
1017
1018  /// splitBlock - BB is split and now it has one successor. Update dominance
1019  /// frontier to reflect this change.
1020  void splitBlock(BasicBlock *BB);
1021
1022  /// BasicBlock BB's new dominator is NewBB. Update BB's dominance frontier
1023  /// to reflect this change.
1024  void changeImmediateDominator(BasicBlock *BB, BasicBlock *NewBB,
1025                                DominatorTree *DT) {
1026    // NewBB is now  dominating BB. Which means BB's dominance
1027    // frontier is now part of NewBB's dominance frontier. However, BB
1028    // itself is not member of NewBB's dominance frontier.
1029    DominanceFrontier::iterator NewDFI = find(NewBB);
1030    DominanceFrontier::iterator DFI = find(BB);
1031    // If BB was an entry block then its frontier is empty.
1032    if (DFI == end())
1033      return;
1034    DominanceFrontier::DomSetType BBSet = DFI->second;
1035    for (DominanceFrontier::DomSetType::iterator BBSetI = BBSet.begin(),
1036           BBSetE = BBSet.end(); BBSetI != BBSetE; ++BBSetI) {
1037      BasicBlock *DFMember = *BBSetI;
1038      // Insert only if NewBB dominates DFMember.
1039      if (!DT->dominates(NewBB, DFMember))
1040        NewDFI->second.insert(DFMember);
1041    }
1042    NewDFI->second.erase(BB);
1043  }
1044
1045  const DomSetType &calculate(const DominatorTree &DT,
1046                              const DomTreeNode *Node);
1047};
1048
1049
1050} // End llvm namespace
1051
1052#endif
1053