Dominators.h revision 3a723ab344d9835506ed2b52a2ccd75078670fc7
1//===- llvm/Analysis/Dominators.h - Dominator Info Calculation --*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the DominatorTree class, which provides fast and efficient
11// dominance queries.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_ANALYSIS_DOMINATORS_H
16#define LLVM_ANALYSIS_DOMINATORS_H
17
18#include "llvm/Pass.h"
19#include "llvm/Function.h"
20#include "llvm/ADT/DenseMap.h"
21#include "llvm/ADT/DepthFirstIterator.h"
22#include "llvm/ADT/GraphTraits.h"
23#include "llvm/ADT/SmallPtrSet.h"
24#include "llvm/ADT/SmallVector.h"
25#include "llvm/Support/CFG.h"
26#include "llvm/Support/Compiler.h"
27#include "llvm/Support/raw_ostream.h"
28#include <algorithm>
29
30namespace llvm {
31
32//===----------------------------------------------------------------------===//
33/// DominatorBase - Base class that other, more interesting dominator analyses
34/// inherit from.
35///
36template <class NodeT>
37class DominatorBase {
38protected:
39  std::vector<NodeT*> Roots;
40  const bool IsPostDominators;
41  inline explicit DominatorBase(bool isPostDom) :
42    Roots(), IsPostDominators(isPostDom) {}
43public:
44
45  /// getRoots - Return the root blocks of the current CFG.  This may include
46  /// multiple blocks if we are computing post dominators.  For forward
47  /// dominators, this will always be a single block (the entry node).
48  ///
49  inline const std::vector<NodeT*> &getRoots() const { return Roots; }
50
51  /// isPostDominator - Returns true if analysis based of postdoms
52  ///
53  bool isPostDominator() const { return IsPostDominators; }
54};
55
56
57//===----------------------------------------------------------------------===//
58// DomTreeNode - Dominator Tree Node
59template<class NodeT> class DominatorTreeBase;
60struct PostDominatorTree;
61class MachineBasicBlock;
62
63template <class NodeT>
64class DomTreeNodeBase {
65  NodeT *TheBB;
66  DomTreeNodeBase<NodeT> *IDom;
67  std::vector<DomTreeNodeBase<NodeT> *> Children;
68  int DFSNumIn, DFSNumOut;
69
70  template<class N> friend class DominatorTreeBase;
71  friend struct PostDominatorTree;
72public:
73  typedef typename std::vector<DomTreeNodeBase<NodeT> *>::iterator iterator;
74  typedef typename std::vector<DomTreeNodeBase<NodeT> *>::const_iterator
75                   const_iterator;
76
77  iterator begin()             { return Children.begin(); }
78  iterator end()               { return Children.end(); }
79  const_iterator begin() const { return Children.begin(); }
80  const_iterator end()   const { return Children.end(); }
81
82  NodeT *getBlock() const { return TheBB; }
83  DomTreeNodeBase<NodeT> *getIDom() const { return IDom; }
84  const std::vector<DomTreeNodeBase<NodeT>*> &getChildren() const {
85    return Children;
86  }
87
88  DomTreeNodeBase(NodeT *BB, DomTreeNodeBase<NodeT> *iDom)
89    : TheBB(BB), IDom(iDom), DFSNumIn(-1), DFSNumOut(-1) { }
90
91  DomTreeNodeBase<NodeT> *addChild(DomTreeNodeBase<NodeT> *C) {
92    Children.push_back(C);
93    return C;
94  }
95
96  size_t getNumChildren() const {
97    return Children.size();
98  }
99
100  void clearAllChildren() {
101    Children.clear();
102  }
103
104  bool compare(DomTreeNodeBase<NodeT> *Other) {
105    if (getNumChildren() != Other->getNumChildren())
106      return true;
107
108    SmallPtrSet<NodeT *, 4> OtherChildren;
109    for (iterator I = Other->begin(), E = Other->end(); I != E; ++I) {
110      NodeT *Nd = (*I)->getBlock();
111      OtherChildren.insert(Nd);
112    }
113
114    for (iterator I = begin(), E = end(); I != E; ++I) {
115      NodeT *N = (*I)->getBlock();
116      if (OtherChildren.count(N) == 0)
117        return true;
118    }
119    return false;
120  }
121
122  void setIDom(DomTreeNodeBase<NodeT> *NewIDom) {
123    assert(IDom && "No immediate dominator?");
124    if (IDom != NewIDom) {
125      typename std::vector<DomTreeNodeBase<NodeT>*>::iterator I =
126                  std::find(IDom->Children.begin(), IDom->Children.end(), this);
127      assert(I != IDom->Children.end() &&
128             "Not in immediate dominator children set!");
129      // I am no longer your child...
130      IDom->Children.erase(I);
131
132      // Switch to new dominator
133      IDom = NewIDom;
134      IDom->Children.push_back(this);
135    }
136  }
137
138  /// getDFSNumIn/getDFSNumOut - These are an internal implementation detail, do
139  /// not call them.
140  unsigned getDFSNumIn() const { return DFSNumIn; }
141  unsigned getDFSNumOut() const { return DFSNumOut; }
142private:
143  // Return true if this node is dominated by other. Use this only if DFS info
144  // is valid.
145  bool DominatedBy(const DomTreeNodeBase<NodeT> *other) const {
146    return this->DFSNumIn >= other->DFSNumIn &&
147      this->DFSNumOut <= other->DFSNumOut;
148  }
149};
150
151EXTERN_TEMPLATE_INSTANTIATION(class DomTreeNodeBase<BasicBlock>);
152EXTERN_TEMPLATE_INSTANTIATION(class DomTreeNodeBase<MachineBasicBlock>);
153
154template<class NodeT>
155static raw_ostream &operator<<(raw_ostream &o,
156                               const DomTreeNodeBase<NodeT> *Node) {
157  if (Node->getBlock())
158    WriteAsOperand(o, Node->getBlock(), false);
159  else
160    o << " <<exit node>>";
161
162  o << " {" << Node->getDFSNumIn() << "," << Node->getDFSNumOut() << "}";
163
164  return o << "\n";
165}
166
167template<class NodeT>
168static void PrintDomTree(const DomTreeNodeBase<NodeT> *N, raw_ostream &o,
169                         unsigned Lev) {
170  o.indent(2*Lev) << "[" << Lev << "] " << N;
171  for (typename DomTreeNodeBase<NodeT>::const_iterator I = N->begin(),
172       E = N->end(); I != E; ++I)
173    PrintDomTree<NodeT>(*I, o, Lev+1);
174}
175
176typedef DomTreeNodeBase<BasicBlock> DomTreeNode;
177
178//===----------------------------------------------------------------------===//
179/// DominatorTree - Calculate the immediate dominator tree for a function.
180///
181
182template<class FuncT, class N>
183void Calculate(DominatorTreeBase<typename GraphTraits<N>::NodeType>& DT,
184               FuncT& F);
185
186template<class NodeT>
187class DominatorTreeBase : public DominatorBase<NodeT> {
188protected:
189  typedef DenseMap<NodeT*, DomTreeNodeBase<NodeT>*> DomTreeNodeMapType;
190  DomTreeNodeMapType DomTreeNodes;
191  DomTreeNodeBase<NodeT> *RootNode;
192
193  bool DFSInfoValid;
194  unsigned int SlowQueries;
195  // Information record used during immediate dominators computation.
196  struct InfoRec {
197    unsigned DFSNum;
198    unsigned Semi;
199    unsigned Size;
200    NodeT *Label, *Child;
201    unsigned Parent, Ancestor;
202
203    InfoRec() : DFSNum(0), Semi(0), Size(0), Label(0), Child(0), Parent(0),
204                Ancestor(0) {}
205  };
206
207  DenseMap<NodeT*, NodeT*> IDoms;
208
209  // Vertex - Map the DFS number to the BasicBlock*
210  std::vector<NodeT*> Vertex;
211
212  // Info - Collection of information used during the computation of idoms.
213  DenseMap<NodeT*, InfoRec> Info;
214
215  void reset() {
216    for (typename DomTreeNodeMapType::iterator I = this->DomTreeNodes.begin(),
217           E = DomTreeNodes.end(); I != E; ++I)
218      delete I->second;
219    DomTreeNodes.clear();
220    IDoms.clear();
221    this->Roots.clear();
222    Vertex.clear();
223    RootNode = 0;
224  }
225
226  // NewBB is split and now it has one successor. Update dominator tree to
227  // reflect this change.
228  template<class N, class GraphT>
229  void Split(DominatorTreeBase<typename GraphT::NodeType>& DT,
230             typename GraphT::NodeType* NewBB) {
231    assert(std::distance(GraphT::child_begin(NewBB),
232                         GraphT::child_end(NewBB)) == 1 &&
233           "NewBB should have a single successor!");
234    typename GraphT::NodeType* NewBBSucc = *GraphT::child_begin(NewBB);
235
236    std::vector<typename GraphT::NodeType*> PredBlocks;
237    typedef GraphTraits<Inverse<N> > InvTraits;
238    for (typename InvTraits::ChildIteratorType PI =
239         InvTraits::child_begin(NewBB),
240         PE = InvTraits::child_end(NewBB); PI != PE; ++PI)
241      PredBlocks.push_back(*PI);
242
243    assert(!PredBlocks.empty() && "No predblocks?");
244
245    bool NewBBDominatesNewBBSucc = true;
246    for (typename InvTraits::ChildIteratorType PI =
247         InvTraits::child_begin(NewBBSucc),
248         E = InvTraits::child_end(NewBBSucc); PI != E; ++PI) {
249      typename InvTraits::NodeType *ND = *PI;
250      if (ND != NewBB && !DT.dominates(NewBBSucc, ND) &&
251          DT.isReachableFromEntry(ND)) {
252        NewBBDominatesNewBBSucc = false;
253        break;
254      }
255    }
256
257    // Find NewBB's immediate dominator and create new dominator tree node for
258    // NewBB.
259    NodeT *NewBBIDom = 0;
260    unsigned i = 0;
261    for (i = 0; i < PredBlocks.size(); ++i)
262      if (DT.isReachableFromEntry(PredBlocks[i])) {
263        NewBBIDom = PredBlocks[i];
264        break;
265      }
266
267    // It's possible that none of the predecessors of NewBB are reachable;
268    // in that case, NewBB itself is unreachable, so nothing needs to be
269    // changed.
270    if (!NewBBIDom)
271      return;
272
273    for (i = i + 1; i < PredBlocks.size(); ++i) {
274      if (DT.isReachableFromEntry(PredBlocks[i]))
275        NewBBIDom = DT.findNearestCommonDominator(NewBBIDom, PredBlocks[i]);
276    }
277
278    // Create the new dominator tree node... and set the idom of NewBB.
279    DomTreeNodeBase<NodeT> *NewBBNode = DT.addNewBlock(NewBB, NewBBIDom);
280
281    // If NewBB strictly dominates other blocks, then it is now the immediate
282    // dominator of NewBBSucc.  Update the dominator tree as appropriate.
283    if (NewBBDominatesNewBBSucc) {
284      DomTreeNodeBase<NodeT> *NewBBSuccNode = DT.getNode(NewBBSucc);
285      DT.changeImmediateDominator(NewBBSuccNode, NewBBNode);
286    }
287  }
288
289public:
290  explicit DominatorTreeBase(bool isPostDom)
291    : DominatorBase<NodeT>(isPostDom), DFSInfoValid(false), SlowQueries(0) {}
292  virtual ~DominatorTreeBase() { reset(); }
293
294  /// compare - Return false if the other dominator tree base matches this
295  /// dominator tree base. Otherwise return true.
296  bool compare(DominatorTreeBase &Other) const {
297
298    const DomTreeNodeMapType &OtherDomTreeNodes = Other.DomTreeNodes;
299    if (DomTreeNodes.size() != OtherDomTreeNodes.size())
300      return true;
301
302    for (typename DomTreeNodeMapType::const_iterator
303           I = this->DomTreeNodes.begin(),
304           E = this->DomTreeNodes.end(); I != E; ++I) {
305      NodeT *BB = I->first;
306      typename DomTreeNodeMapType::const_iterator OI = OtherDomTreeNodes.find(BB);
307      if (OI == OtherDomTreeNodes.end())
308        return true;
309
310      DomTreeNodeBase<NodeT>* MyNd = I->second;
311      DomTreeNodeBase<NodeT>* OtherNd = OI->second;
312
313      if (MyNd->compare(OtherNd))
314        return true;
315    }
316
317    return false;
318  }
319
320  virtual void releaseMemory() { reset(); }
321
322  /// getNode - return the (Post)DominatorTree node for the specified basic
323  /// block.  This is the same as using operator[] on this class.
324  ///
325  inline DomTreeNodeBase<NodeT> *getNode(NodeT *BB) const {
326    typename DomTreeNodeMapType::const_iterator I = DomTreeNodes.find(BB);
327    return I != DomTreeNodes.end() ? I->second : 0;
328  }
329
330  /// getRootNode - This returns the entry node for the CFG of the function.  If
331  /// this tree represents the post-dominance relations for a function, however,
332  /// this root may be a node with the block == NULL.  This is the case when
333  /// there are multiple exit nodes from a particular function.  Consumers of
334  /// post-dominance information must be capable of dealing with this
335  /// possibility.
336  ///
337  DomTreeNodeBase<NodeT> *getRootNode() { return RootNode; }
338  const DomTreeNodeBase<NodeT> *getRootNode() const { return RootNode; }
339
340  /// properlyDominates - Returns true iff this dominates N and this != N.
341  /// Note that this is not a constant time operation!
342  ///
343  bool properlyDominates(const DomTreeNodeBase<NodeT> *A,
344                         const DomTreeNodeBase<NodeT> *B) const {
345    if (A == 0 || B == 0) return false;
346    return dominatedBySlowTreeWalk(A, B);
347  }
348
349  inline bool properlyDominates(const NodeT *A, const NodeT *B) {
350    if (A == B)
351      return false;
352
353    // Cast away the const qualifiers here. This is ok since
354    // this function doesn't actually return the values returned
355    // from getNode.
356    return properlyDominates(getNode(const_cast<NodeT *>(A)),
357                             getNode(const_cast<NodeT *>(B)));
358  }
359
360  bool dominatedBySlowTreeWalk(const DomTreeNodeBase<NodeT> *A,
361                               const DomTreeNodeBase<NodeT> *B) const {
362    const DomTreeNodeBase<NodeT> *IDom;
363    if (A == 0 || B == 0) return false;
364    while ((IDom = B->getIDom()) != 0 && IDom != A && IDom != B)
365      B = IDom;   // Walk up the tree
366    return IDom != 0;
367  }
368
369
370  /// isReachableFromEntry - Return true if A is dominated by the entry
371  /// block of the function containing it.
372  bool isReachableFromEntry(const NodeT* A) {
373    assert(!this->isPostDominator() &&
374           "This is not implemented for post dominators");
375    return dominates(&A->getParent()->front(), A);
376  }
377
378  /// dominates - Returns true iff A dominates B.  Note that this is not a
379  /// constant time operation!
380  ///
381  inline bool dominates(const DomTreeNodeBase<NodeT> *A,
382                        const DomTreeNodeBase<NodeT> *B) {
383    if (B == A)
384      return true;  // A node trivially dominates itself.
385
386    if (A == 0 || B == 0)
387      return false;
388
389    // Compare the result of the tree walk and the dfs numbers, if expensive
390    // checks are enabled.
391#ifdef XDEBUG
392    assert((!DFSInfoValid ||
393            (dominatedBySlowTreeWalk(A, B) == B->DominatedBy(A))) &&
394           "Tree walk disagrees with dfs numbers!");
395#endif
396
397    if (DFSInfoValid)
398      return B->DominatedBy(A);
399
400    // If we end up with too many slow queries, just update the
401    // DFS numbers on the theory that we are going to keep querying.
402    SlowQueries++;
403    if (SlowQueries > 32) {
404      updateDFSNumbers();
405      return B->DominatedBy(A);
406    }
407
408    return dominatedBySlowTreeWalk(A, B);
409  }
410
411  inline bool dominates(const NodeT *A, const NodeT *B) {
412    if (A == B)
413      return true;
414
415    // Cast away the const qualifiers here. This is ok since
416    // this function doesn't actually return the values returned
417    // from getNode.
418    return dominates(getNode(const_cast<NodeT *>(A)),
419                     getNode(const_cast<NodeT *>(B)));
420  }
421
422  NodeT *getRoot() const {
423    assert(this->Roots.size() == 1 && "Should always have entry node!");
424    return this->Roots[0];
425  }
426
427  /// findNearestCommonDominator - Find nearest common dominator basic block
428  /// for basic block A and B. If there is no such block then return NULL.
429  NodeT *findNearestCommonDominator(NodeT *A, NodeT *B) {
430    assert(A->getParent() == B->getParent() &&
431           "Two blocks are not in same function");
432
433    // If either A or B is a entry block then it is nearest common dominator
434    // (for forward-dominators).
435    if (!this->isPostDominator()) {
436      NodeT &Entry = A->getParent()->front();
437      if (A == &Entry || B == &Entry)
438        return &Entry;
439    }
440
441    // If B dominates A then B is nearest common dominator.
442    if (dominates(B, A))
443      return B;
444
445    // If A dominates B then A is nearest common dominator.
446    if (dominates(A, B))
447      return A;
448
449    DomTreeNodeBase<NodeT> *NodeA = getNode(A);
450    DomTreeNodeBase<NodeT> *NodeB = getNode(B);
451
452    // Collect NodeA dominators set.
453    SmallPtrSet<DomTreeNodeBase<NodeT>*, 16> NodeADoms;
454    NodeADoms.insert(NodeA);
455    DomTreeNodeBase<NodeT> *IDomA = NodeA->getIDom();
456    while (IDomA) {
457      NodeADoms.insert(IDomA);
458      IDomA = IDomA->getIDom();
459    }
460
461    // Walk NodeB immediate dominators chain and find common dominator node.
462    DomTreeNodeBase<NodeT> *IDomB = NodeB->getIDom();
463    while (IDomB) {
464      if (NodeADoms.count(IDomB) != 0)
465        return IDomB->getBlock();
466
467      IDomB = IDomB->getIDom();
468    }
469
470    return NULL;
471  }
472
473  const NodeT *findNearestCommonDominator(const NodeT *A, const NodeT *B) {
474    // Cast away the const qualifiers here. This is ok since
475    // const is re-introduced on the return type.
476    return findNearestCommonDominator(const_cast<NodeT *>(A),
477                                      const_cast<NodeT *>(B));
478  }
479
480  //===--------------------------------------------------------------------===//
481  // API to update (Post)DominatorTree information based on modifications to
482  // the CFG...
483
484  /// addNewBlock - Add a new node to the dominator tree information.  This
485  /// creates a new node as a child of DomBB dominator node,linking it into
486  /// the children list of the immediate dominator.
487  DomTreeNodeBase<NodeT> *addNewBlock(NodeT *BB, NodeT *DomBB) {
488    assert(getNode(BB) == 0 && "Block already in dominator tree!");
489    DomTreeNodeBase<NodeT> *IDomNode = getNode(DomBB);
490    assert(IDomNode && "Not immediate dominator specified for block!");
491    DFSInfoValid = false;
492    return DomTreeNodes[BB] =
493      IDomNode->addChild(new DomTreeNodeBase<NodeT>(BB, IDomNode));
494  }
495
496  /// changeImmediateDominator - This method is used to update the dominator
497  /// tree information when a node's immediate dominator changes.
498  ///
499  void changeImmediateDominator(DomTreeNodeBase<NodeT> *N,
500                                DomTreeNodeBase<NodeT> *NewIDom) {
501    assert(N && NewIDom && "Cannot change null node pointers!");
502    DFSInfoValid = false;
503    N->setIDom(NewIDom);
504  }
505
506  void changeImmediateDominator(NodeT *BB, NodeT *NewBB) {
507    changeImmediateDominator(getNode(BB), getNode(NewBB));
508  }
509
510  /// eraseNode - Removes a node from the dominator tree. Block must not
511  /// dominate any other blocks. Removes node from its immediate dominator's
512  /// children list. Deletes dominator node associated with basic block BB.
513  void eraseNode(NodeT *BB) {
514    DomTreeNodeBase<NodeT> *Node = getNode(BB);
515    assert(Node && "Removing node that isn't in dominator tree.");
516    assert(Node->getChildren().empty() && "Node is not a leaf node.");
517
518      // Remove node from immediate dominator's children list.
519    DomTreeNodeBase<NodeT> *IDom = Node->getIDom();
520    if (IDom) {
521      typename std::vector<DomTreeNodeBase<NodeT>*>::iterator I =
522        std::find(IDom->Children.begin(), IDom->Children.end(), Node);
523      assert(I != IDom->Children.end() &&
524             "Not in immediate dominator children set!");
525      // I am no longer your child...
526      IDom->Children.erase(I);
527    }
528
529    DomTreeNodes.erase(BB);
530    delete Node;
531  }
532
533  /// removeNode - Removes a node from the dominator tree.  Block must not
534  /// dominate any other blocks.  Invalidates any node pointing to removed
535  /// block.
536  void removeNode(NodeT *BB) {
537    assert(getNode(BB) && "Removing node that isn't in dominator tree.");
538    DomTreeNodes.erase(BB);
539  }
540
541  /// splitBlock - BB is split and now it has one successor. Update dominator
542  /// tree to reflect this change.
543  void splitBlock(NodeT* NewBB) {
544    if (this->IsPostDominators)
545      this->Split<Inverse<NodeT*>, GraphTraits<Inverse<NodeT*> > >(*this, NewBB);
546    else
547      this->Split<NodeT*, GraphTraits<NodeT*> >(*this, NewBB);
548  }
549
550  /// print - Convert to human readable form
551  ///
552  void print(raw_ostream &o) const {
553    o << "=============================--------------------------------\n";
554    if (this->isPostDominator())
555      o << "Inorder PostDominator Tree: ";
556    else
557      o << "Inorder Dominator Tree: ";
558    if (!this->DFSInfoValid)
559      o << "DFSNumbers invalid: " << SlowQueries << " slow queries.";
560    o << "\n";
561
562    // The postdom tree can have a null root if there are no returns.
563    if (getRootNode())
564      PrintDomTree<NodeT>(getRootNode(), o, 1);
565  }
566
567protected:
568  template<class GraphT>
569  friend void Compress(DominatorTreeBase<typename GraphT::NodeType>& DT,
570                       typename GraphT::NodeType* VIn);
571
572  template<class GraphT>
573  friend typename GraphT::NodeType* Eval(
574                               DominatorTreeBase<typename GraphT::NodeType>& DT,
575                                         typename GraphT::NodeType* V);
576
577  template<class GraphT>
578  friend void Link(DominatorTreeBase<typename GraphT::NodeType>& DT,
579                   unsigned DFSNumV, typename GraphT::NodeType* W,
580         typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &WInfo);
581
582  template<class GraphT>
583  friend unsigned DFSPass(DominatorTreeBase<typename GraphT::NodeType>& DT,
584                          typename GraphT::NodeType* V,
585                          unsigned N);
586
587  template<class FuncT, class N>
588  friend void Calculate(DominatorTreeBase<typename GraphTraits<N>::NodeType>& DT,
589                        FuncT& F);
590
591  /// updateDFSNumbers - Assign In and Out numbers to the nodes while walking
592  /// dominator tree in dfs order.
593  void updateDFSNumbers() {
594    unsigned DFSNum = 0;
595
596    SmallVector<std::pair<DomTreeNodeBase<NodeT>*,
597                typename DomTreeNodeBase<NodeT>::iterator>, 32> WorkStack;
598
599    DomTreeNodeBase<NodeT> *ThisRoot = getRootNode();
600
601    if (!ThisRoot)
602      return;
603
604    // Even in the case of multiple exits that form the post dominator root
605    // nodes, do not iterate over all exits, but start from the virtual root
606    // node. Otherwise bbs, that are not post dominated by any exit but by the
607    // virtual root node, will never be assigned a DFS number.
608    WorkStack.push_back(std::make_pair(ThisRoot, ThisRoot->begin()));
609    ThisRoot->DFSNumIn = DFSNum++;
610
611    while (!WorkStack.empty()) {
612      DomTreeNodeBase<NodeT> *Node = WorkStack.back().first;
613      typename DomTreeNodeBase<NodeT>::iterator ChildIt =
614        WorkStack.back().second;
615
616      // If we visited all of the children of this node, "recurse" back up the
617      // stack setting the DFOutNum.
618      if (ChildIt == Node->end()) {
619        Node->DFSNumOut = DFSNum++;
620        WorkStack.pop_back();
621      } else {
622        // Otherwise, recursively visit this child.
623        DomTreeNodeBase<NodeT> *Child = *ChildIt;
624        ++WorkStack.back().second;
625
626        WorkStack.push_back(std::make_pair(Child, Child->begin()));
627        Child->DFSNumIn = DFSNum++;
628      }
629    }
630
631    SlowQueries = 0;
632    DFSInfoValid = true;
633  }
634
635  DomTreeNodeBase<NodeT> *getNodeForBlock(NodeT *BB) {
636    typename DomTreeNodeMapType::iterator I = this->DomTreeNodes.find(BB);
637    if (I != this->DomTreeNodes.end() && I->second)
638      return I->second;
639
640    // Haven't calculated this node yet?  Get or calculate the node for the
641    // immediate dominator.
642    NodeT *IDom = getIDom(BB);
643
644    assert(IDom || this->DomTreeNodes[NULL]);
645    DomTreeNodeBase<NodeT> *IDomNode = getNodeForBlock(IDom);
646
647    // Add a new tree node for this BasicBlock, and link it as a child of
648    // IDomNode
649    DomTreeNodeBase<NodeT> *C = new DomTreeNodeBase<NodeT>(BB, IDomNode);
650    return this->DomTreeNodes[BB] = IDomNode->addChild(C);
651  }
652
653  inline NodeT *getIDom(NodeT *BB) const {
654    typename DenseMap<NodeT*, NodeT*>::const_iterator I = IDoms.find(BB);
655    return I != IDoms.end() ? I->second : 0;
656  }
657
658  inline void addRoot(NodeT* BB) {
659    this->Roots.push_back(BB);
660  }
661
662public:
663  /// recalculate - compute a dominator tree for the given function
664  template<class FT>
665  void recalculate(FT& F) {
666    reset();
667    this->Vertex.push_back(0);
668
669    if (!this->IsPostDominators) {
670      // Initialize root
671      this->Roots.push_back(&F.front());
672      this->IDoms[&F.front()] = 0;
673      this->DomTreeNodes[&F.front()] = 0;
674
675      Calculate<FT, NodeT*>(*this, F);
676    } else {
677      // Initialize the roots list
678      for (typename FT::iterator I = F.begin(), E = F.end(); I != E; ++I) {
679        if (std::distance(GraphTraits<FT*>::child_begin(I),
680                          GraphTraits<FT*>::child_end(I)) == 0)
681          addRoot(I);
682
683        // Prepopulate maps so that we don't get iterator invalidation issues later.
684        this->IDoms[I] = 0;
685        this->DomTreeNodes[I] = 0;
686      }
687
688      Calculate<FT, Inverse<NodeT*> >(*this, F);
689    }
690  }
691};
692
693EXTERN_TEMPLATE_INSTANTIATION(class DominatorTreeBase<BasicBlock>);
694
695//===-------------------------------------
696/// DominatorTree Class - Concrete subclass of DominatorTreeBase that is used to
697/// compute a normal dominator tree.
698///
699class DominatorTree : public FunctionPass {
700public:
701  static char ID; // Pass ID, replacement for typeid
702  DominatorTreeBase<BasicBlock>* DT;
703
704  DominatorTree() : FunctionPass(ID) {
705    initializeDominatorTreePass(*PassRegistry::getPassRegistry());
706    DT = new DominatorTreeBase<BasicBlock>(false);
707  }
708
709  ~DominatorTree() {
710    delete DT;
711  }
712
713  DominatorTreeBase<BasicBlock>& getBase() { return *DT; }
714
715  /// getRoots - Return the root blocks of the current CFG.  This may include
716  /// multiple blocks if we are computing post dominators.  For forward
717  /// dominators, this will always be a single block (the entry node).
718  ///
719  inline const std::vector<BasicBlock*> &getRoots() const {
720    return DT->getRoots();
721  }
722
723  inline BasicBlock *getRoot() const {
724    return DT->getRoot();
725  }
726
727  inline DomTreeNode *getRootNode() const {
728    return DT->getRootNode();
729  }
730
731  /// compare - Return false if the other dominator tree matches this
732  /// dominator tree. Otherwise return true.
733  inline bool compare(DominatorTree &Other) const {
734    DomTreeNode *R = getRootNode();
735    DomTreeNode *OtherR = Other.getRootNode();
736
737    if (!R || !OtherR || R->getBlock() != OtherR->getBlock())
738      return true;
739
740    if (DT->compare(Other.getBase()))
741      return true;
742
743    return false;
744  }
745
746  virtual bool runOnFunction(Function &F);
747
748  virtual void verifyAnalysis() const;
749
750  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
751    AU.setPreservesAll();
752  }
753
754  inline bool dominates(const DomTreeNode* A, const DomTreeNode* B) const {
755    return DT->dominates(A, B);
756  }
757
758  inline bool dominates(const BasicBlock* A, const BasicBlock* B) const {
759    return DT->dominates(A, B);
760  }
761
762  // dominates - Return true if A dominates B. This performs the
763  // special checks necessary if A and B are in the same basic block.
764  bool dominates(const Instruction *A, const Instruction *B) const;
765
766  bool properlyDominates(const DomTreeNode *A, const DomTreeNode *B) const {
767    return DT->properlyDominates(A, B);
768  }
769
770  bool properlyDominates(const BasicBlock *A, const BasicBlock *B) const {
771    return DT->properlyDominates(A, B);
772  }
773
774  /// findNearestCommonDominator - Find nearest common dominator basic block
775  /// for basic block A and B. If there is no such block then return NULL.
776  inline BasicBlock *findNearestCommonDominator(BasicBlock *A, BasicBlock *B) {
777    return DT->findNearestCommonDominator(A, B);
778  }
779
780  inline const BasicBlock *findNearestCommonDominator(const BasicBlock *A,
781                                                      const BasicBlock *B) {
782    return DT->findNearestCommonDominator(A, B);
783  }
784
785  inline DomTreeNode *operator[](BasicBlock *BB) const {
786    return DT->getNode(BB);
787  }
788
789  /// getNode - return the (Post)DominatorTree node for the specified basic
790  /// block.  This is the same as using operator[] on this class.
791  ///
792  inline DomTreeNode *getNode(BasicBlock *BB) const {
793    return DT->getNode(BB);
794  }
795
796  /// addNewBlock - Add a new node to the dominator tree information.  This
797  /// creates a new node as a child of DomBB dominator node,linking it into
798  /// the children list of the immediate dominator.
799  inline DomTreeNode *addNewBlock(BasicBlock *BB, BasicBlock *DomBB) {
800    return DT->addNewBlock(BB, DomBB);
801  }
802
803  /// changeImmediateDominator - This method is used to update the dominator
804  /// tree information when a node's immediate dominator changes.
805  ///
806  inline void changeImmediateDominator(BasicBlock *N, BasicBlock* NewIDom) {
807    DT->changeImmediateDominator(N, NewIDom);
808  }
809
810  inline void changeImmediateDominator(DomTreeNode *N, DomTreeNode* NewIDom) {
811    DT->changeImmediateDominator(N, NewIDom);
812  }
813
814  /// eraseNode - Removes a node from the dominator tree. Block must not
815  /// dominate any other blocks. Removes node from its immediate dominator's
816  /// children list. Deletes dominator node associated with basic block BB.
817  inline void eraseNode(BasicBlock *BB) {
818    DT->eraseNode(BB);
819  }
820
821  /// splitBlock - BB is split and now it has one successor. Update dominator
822  /// tree to reflect this change.
823  inline void splitBlock(BasicBlock* NewBB) {
824    DT->splitBlock(NewBB);
825  }
826
827  bool isReachableFromEntry(const BasicBlock* A) {
828    return DT->isReachableFromEntry(A);
829  }
830
831
832  virtual void releaseMemory() {
833    DT->releaseMemory();
834  }
835
836  virtual void print(raw_ostream &OS, const Module* M= 0) const;
837};
838
839//===-------------------------------------
840/// DominatorTree GraphTraits specialization so the DominatorTree can be
841/// iterable by generic graph iterators.
842///
843template <> struct GraphTraits<DomTreeNode*> {
844  typedef DomTreeNode NodeType;
845  typedef NodeType::iterator  ChildIteratorType;
846
847  static NodeType *getEntryNode(NodeType *N) {
848    return N;
849  }
850  static inline ChildIteratorType child_begin(NodeType *N) {
851    return N->begin();
852  }
853  static inline ChildIteratorType child_end(NodeType *N) {
854    return N->end();
855  }
856
857  typedef df_iterator<DomTreeNode*> nodes_iterator;
858
859  static nodes_iterator nodes_begin(DomTreeNode *N) {
860    return df_begin(getEntryNode(N));
861  }
862
863  static nodes_iterator nodes_end(DomTreeNode *N) {
864    return df_end(getEntryNode(N));
865  }
866};
867
868template <> struct GraphTraits<DominatorTree*>
869  : public GraphTraits<DomTreeNode*> {
870  static NodeType *getEntryNode(DominatorTree *DT) {
871    return DT->getRootNode();
872  }
873
874  static nodes_iterator nodes_begin(DominatorTree *N) {
875    return df_begin(getEntryNode(N));
876  }
877
878  static nodes_iterator nodes_end(DominatorTree *N) {
879    return df_end(getEntryNode(N));
880  }
881};
882
883
884} // End llvm namespace
885
886#endif
887