Dominators.h revision 54cdad97eb77caf841ade5827a1d5da6b2d89df3
1//===- llvm/Analysis/Dominators.h - Dominator Info Calculation --*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the DominatorTree class, which provides fast and efficient
11// dominance queries.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_ANALYSIS_DOMINATORS_H
16#define LLVM_ANALYSIS_DOMINATORS_H
17
18#include "llvm/Pass.h"
19#include "llvm/Function.h"
20#include "llvm/ADT/DenseMap.h"
21#include "llvm/ADT/DepthFirstIterator.h"
22#include "llvm/ADT/GraphTraits.h"
23#include "llvm/ADT/SmallPtrSet.h"
24#include "llvm/ADT/SmallVector.h"
25#include "llvm/Support/CFG.h"
26#include "llvm/Support/Compiler.h"
27#include "llvm/Support/raw_ostream.h"
28#include <algorithm>
29
30namespace llvm {
31
32//===----------------------------------------------------------------------===//
33/// DominatorBase - Base class that other, more interesting dominator analyses
34/// inherit from.
35///
36template <class NodeT>
37class DominatorBase {
38protected:
39  std::vector<NodeT*> Roots;
40  const bool IsPostDominators;
41  inline explicit DominatorBase(bool isPostDom) :
42    Roots(), IsPostDominators(isPostDom) {}
43public:
44
45  /// getRoots - Return the root blocks of the current CFG.  This may include
46  /// multiple blocks if we are computing post dominators.  For forward
47  /// dominators, this will always be a single block (the entry node).
48  ///
49  inline const std::vector<NodeT*> &getRoots() const { return Roots; }
50
51  /// isPostDominator - Returns true if analysis based of postdoms
52  ///
53  bool isPostDominator() const { return IsPostDominators; }
54};
55
56
57//===----------------------------------------------------------------------===//
58// DomTreeNode - Dominator Tree Node
59template<class NodeT> class DominatorTreeBase;
60struct PostDominatorTree;
61class MachineBasicBlock;
62
63template <class NodeT>
64class DomTreeNodeBase {
65  NodeT *TheBB;
66  DomTreeNodeBase<NodeT> *IDom;
67  std::vector<DomTreeNodeBase<NodeT> *> Children;
68  int DFSNumIn, DFSNumOut;
69
70  template<class N> friend class DominatorTreeBase;
71  friend struct PostDominatorTree;
72public:
73  typedef typename std::vector<DomTreeNodeBase<NodeT> *>::iterator iterator;
74  typedef typename std::vector<DomTreeNodeBase<NodeT> *>::const_iterator
75                   const_iterator;
76
77  iterator begin()             { return Children.begin(); }
78  iterator end()               { return Children.end(); }
79  const_iterator begin() const { return Children.begin(); }
80  const_iterator end()   const { return Children.end(); }
81
82  NodeT *getBlock() const { return TheBB; }
83  DomTreeNodeBase<NodeT> *getIDom() const { return IDom; }
84  const std::vector<DomTreeNodeBase<NodeT>*> &getChildren() const {
85    return Children;
86  }
87
88  DomTreeNodeBase(NodeT *BB, DomTreeNodeBase<NodeT> *iDom)
89    : TheBB(BB), IDom(iDom), DFSNumIn(-1), DFSNumOut(-1) { }
90
91  DomTreeNodeBase<NodeT> *addChild(DomTreeNodeBase<NodeT> *C) {
92    Children.push_back(C);
93    return C;
94  }
95
96  size_t getNumChildren() const {
97    return Children.size();
98  }
99
100  void clearAllChildren() {
101    Children.clear();
102  }
103
104  bool compare(DomTreeNodeBase<NodeT> *Other) {
105    if (getNumChildren() != Other->getNumChildren())
106      return true;
107
108    SmallPtrSet<NodeT *, 4> OtherChildren;
109    for (iterator I = Other->begin(), E = Other->end(); I != E; ++I) {
110      NodeT *Nd = (*I)->getBlock();
111      OtherChildren.insert(Nd);
112    }
113
114    for (iterator I = begin(), E = end(); I != E; ++I) {
115      NodeT *N = (*I)->getBlock();
116      if (OtherChildren.count(N) == 0)
117        return true;
118    }
119    return false;
120  }
121
122  void setIDom(DomTreeNodeBase<NodeT> *NewIDom) {
123    assert(IDom && "No immediate dominator?");
124    if (IDom != NewIDom) {
125      typename std::vector<DomTreeNodeBase<NodeT>*>::iterator I =
126                  std::find(IDom->Children.begin(), IDom->Children.end(), this);
127      assert(I != IDom->Children.end() &&
128             "Not in immediate dominator children set!");
129      // I am no longer your child...
130      IDom->Children.erase(I);
131
132      // Switch to new dominator
133      IDom = NewIDom;
134      IDom->Children.push_back(this);
135    }
136  }
137
138  /// getDFSNumIn/getDFSNumOut - These are an internal implementation detail, do
139  /// not call them.
140  unsigned getDFSNumIn() const { return DFSNumIn; }
141  unsigned getDFSNumOut() const { return DFSNumOut; }
142private:
143  // Return true if this node is dominated by other. Use this only if DFS info
144  // is valid.
145  bool DominatedBy(const DomTreeNodeBase<NodeT> *other) const {
146    return this->DFSNumIn >= other->DFSNumIn &&
147      this->DFSNumOut <= other->DFSNumOut;
148  }
149};
150
151EXTERN_TEMPLATE_INSTANTIATION(class DomTreeNodeBase<BasicBlock>);
152EXTERN_TEMPLATE_INSTANTIATION(class DomTreeNodeBase<MachineBasicBlock>);
153
154template<class NodeT>
155static raw_ostream &operator<<(raw_ostream &o,
156                               const DomTreeNodeBase<NodeT> *Node) {
157  if (Node->getBlock())
158    WriteAsOperand(o, Node->getBlock(), false);
159  else
160    o << " <<exit node>>";
161
162  o << " {" << Node->getDFSNumIn() << "," << Node->getDFSNumOut() << "}";
163
164  return o << "\n";
165}
166
167template<class NodeT>
168static void PrintDomTree(const DomTreeNodeBase<NodeT> *N, raw_ostream &o,
169                         unsigned Lev) {
170  o.indent(2*Lev) << "[" << Lev << "] " << N;
171  for (typename DomTreeNodeBase<NodeT>::const_iterator I = N->begin(),
172       E = N->end(); I != E; ++I)
173    PrintDomTree<NodeT>(*I, o, Lev+1);
174}
175
176typedef DomTreeNodeBase<BasicBlock> DomTreeNode;
177
178//===----------------------------------------------------------------------===//
179/// DominatorTree - Calculate the immediate dominator tree for a function.
180///
181
182template<class FuncT, class N>
183void Calculate(DominatorTreeBase<typename GraphTraits<N>::NodeType>& DT,
184               FuncT& F);
185
186template<class NodeT>
187class DominatorTreeBase : public DominatorBase<NodeT> {
188protected:
189  typedef DenseMap<NodeT*, DomTreeNodeBase<NodeT>*> DomTreeNodeMapType;
190  DomTreeNodeMapType DomTreeNodes;
191  DomTreeNodeBase<NodeT> *RootNode;
192
193  bool DFSInfoValid;
194  unsigned int SlowQueries;
195  // Information record used during immediate dominators computation.
196  struct InfoRec {
197    unsigned DFSNum;
198    unsigned Parent;
199    unsigned Semi;
200    NodeT *Label;
201
202    InfoRec() : DFSNum(0), Parent(0), Semi(0), Label(0) {}
203  };
204
205  DenseMap<NodeT*, NodeT*> IDoms;
206
207  // Vertex - Map the DFS number to the BasicBlock*
208  std::vector<NodeT*> Vertex;
209
210  // Info - Collection of information used during the computation of idoms.
211  DenseMap<NodeT*, InfoRec> Info;
212
213  void reset() {
214    for (typename DomTreeNodeMapType::iterator I = this->DomTreeNodes.begin(),
215           E = DomTreeNodes.end(); I != E; ++I)
216      delete I->second;
217    DomTreeNodes.clear();
218    IDoms.clear();
219    this->Roots.clear();
220    Vertex.clear();
221    RootNode = 0;
222  }
223
224  // NewBB is split and now it has one successor. Update dominator tree to
225  // reflect this change.
226  template<class N, class GraphT>
227  void Split(DominatorTreeBase<typename GraphT::NodeType>& DT,
228             typename GraphT::NodeType* NewBB) {
229    assert(std::distance(GraphT::child_begin(NewBB),
230                         GraphT::child_end(NewBB)) == 1 &&
231           "NewBB should have a single successor!");
232    typename GraphT::NodeType* NewBBSucc = *GraphT::child_begin(NewBB);
233
234    std::vector<typename GraphT::NodeType*> PredBlocks;
235    typedef GraphTraits<Inverse<N> > InvTraits;
236    for (typename InvTraits::ChildIteratorType PI =
237         InvTraits::child_begin(NewBB),
238         PE = InvTraits::child_end(NewBB); PI != PE; ++PI)
239      PredBlocks.push_back(*PI);
240
241    assert(!PredBlocks.empty() && "No predblocks?");
242
243    bool NewBBDominatesNewBBSucc = true;
244    for (typename InvTraits::ChildIteratorType PI =
245         InvTraits::child_begin(NewBBSucc),
246         E = InvTraits::child_end(NewBBSucc); PI != E; ++PI) {
247      typename InvTraits::NodeType *ND = *PI;
248      if (ND != NewBB && !DT.dominates(NewBBSucc, ND) &&
249          DT.isReachableFromEntry(ND)) {
250        NewBBDominatesNewBBSucc = false;
251        break;
252      }
253    }
254
255    // Find NewBB's immediate dominator and create new dominator tree node for
256    // NewBB.
257    NodeT *NewBBIDom = 0;
258    unsigned i = 0;
259    for (i = 0; i < PredBlocks.size(); ++i)
260      if (DT.isReachableFromEntry(PredBlocks[i])) {
261        NewBBIDom = PredBlocks[i];
262        break;
263      }
264
265    // It's possible that none of the predecessors of NewBB are reachable;
266    // in that case, NewBB itself is unreachable, so nothing needs to be
267    // changed.
268    if (!NewBBIDom)
269      return;
270
271    for (i = i + 1; i < PredBlocks.size(); ++i) {
272      if (DT.isReachableFromEntry(PredBlocks[i]))
273        NewBBIDom = DT.findNearestCommonDominator(NewBBIDom, PredBlocks[i]);
274    }
275
276    // Create the new dominator tree node... and set the idom of NewBB.
277    DomTreeNodeBase<NodeT> *NewBBNode = DT.addNewBlock(NewBB, NewBBIDom);
278
279    // If NewBB strictly dominates other blocks, then it is now the immediate
280    // dominator of NewBBSucc.  Update the dominator tree as appropriate.
281    if (NewBBDominatesNewBBSucc) {
282      DomTreeNodeBase<NodeT> *NewBBSuccNode = DT.getNode(NewBBSucc);
283      DT.changeImmediateDominator(NewBBSuccNode, NewBBNode);
284    }
285  }
286
287public:
288  explicit DominatorTreeBase(bool isPostDom)
289    : DominatorBase<NodeT>(isPostDom), DFSInfoValid(false), SlowQueries(0) {}
290  virtual ~DominatorTreeBase() { reset(); }
291
292  /// compare - Return false if the other dominator tree base matches this
293  /// dominator tree base. Otherwise return true.
294  bool compare(DominatorTreeBase &Other) const {
295
296    const DomTreeNodeMapType &OtherDomTreeNodes = Other.DomTreeNodes;
297    if (DomTreeNodes.size() != OtherDomTreeNodes.size())
298      return true;
299
300    for (typename DomTreeNodeMapType::const_iterator
301           I = this->DomTreeNodes.begin(),
302           E = this->DomTreeNodes.end(); I != E; ++I) {
303      NodeT *BB = I->first;
304      typename DomTreeNodeMapType::const_iterator OI = OtherDomTreeNodes.find(BB);
305      if (OI == OtherDomTreeNodes.end())
306        return true;
307
308      DomTreeNodeBase<NodeT>* MyNd = I->second;
309      DomTreeNodeBase<NodeT>* OtherNd = OI->second;
310
311      if (MyNd->compare(OtherNd))
312        return true;
313    }
314
315    return false;
316  }
317
318  virtual void releaseMemory() { reset(); }
319
320  /// getNode - return the (Post)DominatorTree node for the specified basic
321  /// block.  This is the same as using operator[] on this class.
322  ///
323  inline DomTreeNodeBase<NodeT> *getNode(NodeT *BB) const {
324    typename DomTreeNodeMapType::const_iterator I = DomTreeNodes.find(BB);
325    return I != DomTreeNodes.end() ? I->second : 0;
326  }
327
328  /// getRootNode - This returns the entry node for the CFG of the function.  If
329  /// this tree represents the post-dominance relations for a function, however,
330  /// this root may be a node with the block == NULL.  This is the case when
331  /// there are multiple exit nodes from a particular function.  Consumers of
332  /// post-dominance information must be capable of dealing with this
333  /// possibility.
334  ///
335  DomTreeNodeBase<NodeT> *getRootNode() { return RootNode; }
336  const DomTreeNodeBase<NodeT> *getRootNode() const { return RootNode; }
337
338  /// properlyDominates - Returns true iff this dominates N and this != N.
339  /// Note that this is not a constant time operation!
340  ///
341  bool properlyDominates(const DomTreeNodeBase<NodeT> *A,
342                         const DomTreeNodeBase<NodeT> *B) const {
343    if (A == 0 || B == 0) return false;
344    return dominatedBySlowTreeWalk(A, B);
345  }
346
347  inline bool properlyDominates(const NodeT *A, const NodeT *B) {
348    if (A == B)
349      return false;
350
351    // Cast away the const qualifiers here. This is ok since
352    // this function doesn't actually return the values returned
353    // from getNode.
354    return properlyDominates(getNode(const_cast<NodeT *>(A)),
355                             getNode(const_cast<NodeT *>(B)));
356  }
357
358  bool dominatedBySlowTreeWalk(const DomTreeNodeBase<NodeT> *A,
359                               const DomTreeNodeBase<NodeT> *B) const {
360    const DomTreeNodeBase<NodeT> *IDom;
361    if (A == 0 || B == 0) return false;
362    while ((IDom = B->getIDom()) != 0 && IDom != A && IDom != B)
363      B = IDom;   // Walk up the tree
364    return IDom != 0;
365  }
366
367
368  /// isReachableFromEntry - Return true if A is dominated by the entry
369  /// block of the function containing it.
370  bool isReachableFromEntry(const NodeT* A) {
371    assert(!this->isPostDominator() &&
372           "This is not implemented for post dominators");
373    return dominates(&A->getParent()->front(), A);
374  }
375
376  /// dominates - Returns true iff A dominates B.  Note that this is not a
377  /// constant time operation!
378  ///
379  inline bool dominates(const DomTreeNodeBase<NodeT> *A,
380                        const DomTreeNodeBase<NodeT> *B) {
381    if (B == A)
382      return true;  // A node trivially dominates itself.
383
384    if (A == 0 || B == 0)
385      return false;
386
387    // Compare the result of the tree walk and the dfs numbers, if expensive
388    // checks are enabled.
389#ifdef XDEBUG
390    assert((!DFSInfoValid ||
391            (dominatedBySlowTreeWalk(A, B) == B->DominatedBy(A))) &&
392           "Tree walk disagrees with dfs numbers!");
393#endif
394
395    if (DFSInfoValid)
396      return B->DominatedBy(A);
397
398    // If we end up with too many slow queries, just update the
399    // DFS numbers on the theory that we are going to keep querying.
400    SlowQueries++;
401    if (SlowQueries > 32) {
402      updateDFSNumbers();
403      return B->DominatedBy(A);
404    }
405
406    return dominatedBySlowTreeWalk(A, B);
407  }
408
409  inline bool dominates(const NodeT *A, const NodeT *B) {
410    if (A == B)
411      return true;
412
413    // Cast away the const qualifiers here. This is ok since
414    // this function doesn't actually return the values returned
415    // from getNode.
416    return dominates(getNode(const_cast<NodeT *>(A)),
417                     getNode(const_cast<NodeT *>(B)));
418  }
419
420  NodeT *getRoot() const {
421    assert(this->Roots.size() == 1 && "Should always have entry node!");
422    return this->Roots[0];
423  }
424
425  /// findNearestCommonDominator - Find nearest common dominator basic block
426  /// for basic block A and B. If there is no such block then return NULL.
427  NodeT *findNearestCommonDominator(NodeT *A, NodeT *B) {
428    assert(A->getParent() == B->getParent() &&
429           "Two blocks are not in same function");
430
431    // If either A or B is a entry block then it is nearest common dominator
432    // (for forward-dominators).
433    if (!this->isPostDominator()) {
434      NodeT &Entry = A->getParent()->front();
435      if (A == &Entry || B == &Entry)
436        return &Entry;
437    }
438
439    // If B dominates A then B is nearest common dominator.
440    if (dominates(B, A))
441      return B;
442
443    // If A dominates B then A is nearest common dominator.
444    if (dominates(A, B))
445      return A;
446
447    DomTreeNodeBase<NodeT> *NodeA = getNode(A);
448    DomTreeNodeBase<NodeT> *NodeB = getNode(B);
449
450    // Collect NodeA dominators set.
451    SmallPtrSet<DomTreeNodeBase<NodeT>*, 16> NodeADoms;
452    NodeADoms.insert(NodeA);
453    DomTreeNodeBase<NodeT> *IDomA = NodeA->getIDom();
454    while (IDomA) {
455      NodeADoms.insert(IDomA);
456      IDomA = IDomA->getIDom();
457    }
458
459    // Walk NodeB immediate dominators chain and find common dominator node.
460    DomTreeNodeBase<NodeT> *IDomB = NodeB->getIDom();
461    while (IDomB) {
462      if (NodeADoms.count(IDomB) != 0)
463        return IDomB->getBlock();
464
465      IDomB = IDomB->getIDom();
466    }
467
468    return NULL;
469  }
470
471  const NodeT *findNearestCommonDominator(const NodeT *A, const NodeT *B) {
472    // Cast away the const qualifiers here. This is ok since
473    // const is re-introduced on the return type.
474    return findNearestCommonDominator(const_cast<NodeT *>(A),
475                                      const_cast<NodeT *>(B));
476  }
477
478  //===--------------------------------------------------------------------===//
479  // API to update (Post)DominatorTree information based on modifications to
480  // the CFG...
481
482  /// addNewBlock - Add a new node to the dominator tree information.  This
483  /// creates a new node as a child of DomBB dominator node,linking it into
484  /// the children list of the immediate dominator.
485  DomTreeNodeBase<NodeT> *addNewBlock(NodeT *BB, NodeT *DomBB) {
486    assert(getNode(BB) == 0 && "Block already in dominator tree!");
487    DomTreeNodeBase<NodeT> *IDomNode = getNode(DomBB);
488    assert(IDomNode && "Not immediate dominator specified for block!");
489    DFSInfoValid = false;
490    return DomTreeNodes[BB] =
491      IDomNode->addChild(new DomTreeNodeBase<NodeT>(BB, IDomNode));
492  }
493
494  /// changeImmediateDominator - This method is used to update the dominator
495  /// tree information when a node's immediate dominator changes.
496  ///
497  void changeImmediateDominator(DomTreeNodeBase<NodeT> *N,
498                                DomTreeNodeBase<NodeT> *NewIDom) {
499    assert(N && NewIDom && "Cannot change null node pointers!");
500    DFSInfoValid = false;
501    N->setIDom(NewIDom);
502  }
503
504  void changeImmediateDominator(NodeT *BB, NodeT *NewBB) {
505    changeImmediateDominator(getNode(BB), getNode(NewBB));
506  }
507
508  /// eraseNode - Removes a node from the dominator tree. Block must not
509  /// dominate any other blocks. Removes node from its immediate dominator's
510  /// children list. Deletes dominator node associated with basic block BB.
511  void eraseNode(NodeT *BB) {
512    DomTreeNodeBase<NodeT> *Node = getNode(BB);
513    assert(Node && "Removing node that isn't in dominator tree.");
514    assert(Node->getChildren().empty() && "Node is not a leaf node.");
515
516      // Remove node from immediate dominator's children list.
517    DomTreeNodeBase<NodeT> *IDom = Node->getIDom();
518    if (IDom) {
519      typename std::vector<DomTreeNodeBase<NodeT>*>::iterator I =
520        std::find(IDom->Children.begin(), IDom->Children.end(), Node);
521      assert(I != IDom->Children.end() &&
522             "Not in immediate dominator children set!");
523      // I am no longer your child...
524      IDom->Children.erase(I);
525    }
526
527    DomTreeNodes.erase(BB);
528    delete Node;
529  }
530
531  /// removeNode - Removes a node from the dominator tree.  Block must not
532  /// dominate any other blocks.  Invalidates any node pointing to removed
533  /// block.
534  void removeNode(NodeT *BB) {
535    assert(getNode(BB) && "Removing node that isn't in dominator tree.");
536    DomTreeNodes.erase(BB);
537  }
538
539  /// splitBlock - BB is split and now it has one successor. Update dominator
540  /// tree to reflect this change.
541  void splitBlock(NodeT* NewBB) {
542    if (this->IsPostDominators)
543      this->Split<Inverse<NodeT*>, GraphTraits<Inverse<NodeT*> > >(*this, NewBB);
544    else
545      this->Split<NodeT*, GraphTraits<NodeT*> >(*this, NewBB);
546  }
547
548  /// print - Convert to human readable form
549  ///
550  void print(raw_ostream &o) const {
551    o << "=============================--------------------------------\n";
552    if (this->isPostDominator())
553      o << "Inorder PostDominator Tree: ";
554    else
555      o << "Inorder Dominator Tree: ";
556    if (!this->DFSInfoValid)
557      o << "DFSNumbers invalid: " << SlowQueries << " slow queries.";
558    o << "\n";
559
560    // The postdom tree can have a null root if there are no returns.
561    if (getRootNode())
562      PrintDomTree<NodeT>(getRootNode(), o, 1);
563  }
564
565protected:
566  template<class GraphT>
567  friend typename GraphT::NodeType* Eval(
568                               DominatorTreeBase<typename GraphT::NodeType>& DT,
569                                         typename GraphT::NodeType* V,
570                                         unsigned LastLinked);
571
572  template<class GraphT>
573  friend unsigned DFSPass(DominatorTreeBase<typename GraphT::NodeType>& DT,
574                          typename GraphT::NodeType* V,
575                          unsigned N);
576
577  template<class FuncT, class N>
578  friend void Calculate(DominatorTreeBase<typename GraphTraits<N>::NodeType>& DT,
579                        FuncT& F);
580
581  /// updateDFSNumbers - Assign In and Out numbers to the nodes while walking
582  /// dominator tree in dfs order.
583  void updateDFSNumbers() {
584    unsigned DFSNum = 0;
585
586    SmallVector<std::pair<DomTreeNodeBase<NodeT>*,
587                typename DomTreeNodeBase<NodeT>::iterator>, 32> WorkStack;
588
589    DomTreeNodeBase<NodeT> *ThisRoot = getRootNode();
590
591    if (!ThisRoot)
592      return;
593
594    // Even in the case of multiple exits that form the post dominator root
595    // nodes, do not iterate over all exits, but start from the virtual root
596    // node. Otherwise bbs, that are not post dominated by any exit but by the
597    // virtual root node, will never be assigned a DFS number.
598    WorkStack.push_back(std::make_pair(ThisRoot, ThisRoot->begin()));
599    ThisRoot->DFSNumIn = DFSNum++;
600
601    while (!WorkStack.empty()) {
602      DomTreeNodeBase<NodeT> *Node = WorkStack.back().first;
603      typename DomTreeNodeBase<NodeT>::iterator ChildIt =
604        WorkStack.back().second;
605
606      // If we visited all of the children of this node, "recurse" back up the
607      // stack setting the DFOutNum.
608      if (ChildIt == Node->end()) {
609        Node->DFSNumOut = DFSNum++;
610        WorkStack.pop_back();
611      } else {
612        // Otherwise, recursively visit this child.
613        DomTreeNodeBase<NodeT> *Child = *ChildIt;
614        ++WorkStack.back().second;
615
616        WorkStack.push_back(std::make_pair(Child, Child->begin()));
617        Child->DFSNumIn = DFSNum++;
618      }
619    }
620
621    SlowQueries = 0;
622    DFSInfoValid = true;
623  }
624
625  DomTreeNodeBase<NodeT> *getNodeForBlock(NodeT *BB) {
626    typename DomTreeNodeMapType::iterator I = this->DomTreeNodes.find(BB);
627    if (I != this->DomTreeNodes.end() && I->second)
628      return I->second;
629
630    // Haven't calculated this node yet?  Get or calculate the node for the
631    // immediate dominator.
632    NodeT *IDom = getIDom(BB);
633
634    assert(IDom || this->DomTreeNodes[NULL]);
635    DomTreeNodeBase<NodeT> *IDomNode = getNodeForBlock(IDom);
636
637    // Add a new tree node for this BasicBlock, and link it as a child of
638    // IDomNode
639    DomTreeNodeBase<NodeT> *C = new DomTreeNodeBase<NodeT>(BB, IDomNode);
640    return this->DomTreeNodes[BB] = IDomNode->addChild(C);
641  }
642
643  inline NodeT *getIDom(NodeT *BB) const {
644    typename DenseMap<NodeT*, NodeT*>::const_iterator I = IDoms.find(BB);
645    return I != IDoms.end() ? I->second : 0;
646  }
647
648  inline void addRoot(NodeT* BB) {
649    this->Roots.push_back(BB);
650  }
651
652public:
653  /// recalculate - compute a dominator tree for the given function
654  template<class FT>
655  void recalculate(FT& F) {
656    reset();
657    this->Vertex.push_back(0);
658
659    if (!this->IsPostDominators) {
660      // Initialize root
661      this->Roots.push_back(&F.front());
662      this->IDoms[&F.front()] = 0;
663      this->DomTreeNodes[&F.front()] = 0;
664
665      Calculate<FT, NodeT*>(*this, F);
666    } else {
667      // Initialize the roots list
668      for (typename FT::iterator I = F.begin(), E = F.end(); I != E; ++I) {
669        if (std::distance(GraphTraits<FT*>::child_begin(I),
670                          GraphTraits<FT*>::child_end(I)) == 0)
671          addRoot(I);
672
673        // Prepopulate maps so that we don't get iterator invalidation issues later.
674        this->IDoms[I] = 0;
675        this->DomTreeNodes[I] = 0;
676      }
677
678      Calculate<FT, Inverse<NodeT*> >(*this, F);
679    }
680  }
681};
682
683EXTERN_TEMPLATE_INSTANTIATION(class DominatorTreeBase<BasicBlock>);
684
685//===-------------------------------------
686/// DominatorTree Class - Concrete subclass of DominatorTreeBase that is used to
687/// compute a normal dominator tree.
688///
689class DominatorTree : public FunctionPass {
690public:
691  static char ID; // Pass ID, replacement for typeid
692  DominatorTreeBase<BasicBlock>* DT;
693
694  DominatorTree() : FunctionPass(ID) {
695    initializeDominatorTreePass(*PassRegistry::getPassRegistry());
696    DT = new DominatorTreeBase<BasicBlock>(false);
697  }
698
699  ~DominatorTree() {
700    delete DT;
701  }
702
703  DominatorTreeBase<BasicBlock>& getBase() { return *DT; }
704
705  /// getRoots - Return the root blocks of the current CFG.  This may include
706  /// multiple blocks if we are computing post dominators.  For forward
707  /// dominators, this will always be a single block (the entry node).
708  ///
709  inline const std::vector<BasicBlock*> &getRoots() const {
710    return DT->getRoots();
711  }
712
713  inline BasicBlock *getRoot() const {
714    return DT->getRoot();
715  }
716
717  inline DomTreeNode *getRootNode() const {
718    return DT->getRootNode();
719  }
720
721  /// compare - Return false if the other dominator tree matches this
722  /// dominator tree. Otherwise return true.
723  inline bool compare(DominatorTree &Other) const {
724    DomTreeNode *R = getRootNode();
725    DomTreeNode *OtherR = Other.getRootNode();
726
727    if (!R || !OtherR || R->getBlock() != OtherR->getBlock())
728      return true;
729
730    if (DT->compare(Other.getBase()))
731      return true;
732
733    return false;
734  }
735
736  virtual bool runOnFunction(Function &F);
737
738  virtual void verifyAnalysis() const;
739
740  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
741    AU.setPreservesAll();
742  }
743
744  inline bool dominates(const DomTreeNode* A, const DomTreeNode* B) const {
745    return DT->dominates(A, B);
746  }
747
748  inline bool dominates(const BasicBlock* A, const BasicBlock* B) const {
749    return DT->dominates(A, B);
750  }
751
752  // dominates - Return true if A dominates B. This performs the
753  // special checks necessary if A and B are in the same basic block.
754  bool dominates(const Instruction *A, const Instruction *B) const;
755
756  bool properlyDominates(const DomTreeNode *A, const DomTreeNode *B) const {
757    return DT->properlyDominates(A, B);
758  }
759
760  bool properlyDominates(const BasicBlock *A, const BasicBlock *B) const {
761    return DT->properlyDominates(A, B);
762  }
763
764  /// findNearestCommonDominator - Find nearest common dominator basic block
765  /// for basic block A and B. If there is no such block then return NULL.
766  inline BasicBlock *findNearestCommonDominator(BasicBlock *A, BasicBlock *B) {
767    return DT->findNearestCommonDominator(A, B);
768  }
769
770  inline const BasicBlock *findNearestCommonDominator(const BasicBlock *A,
771                                                      const BasicBlock *B) {
772    return DT->findNearestCommonDominator(A, B);
773  }
774
775  inline DomTreeNode *operator[](BasicBlock *BB) const {
776    return DT->getNode(BB);
777  }
778
779  /// getNode - return the (Post)DominatorTree node for the specified basic
780  /// block.  This is the same as using operator[] on this class.
781  ///
782  inline DomTreeNode *getNode(BasicBlock *BB) const {
783    return DT->getNode(BB);
784  }
785
786  /// addNewBlock - Add a new node to the dominator tree information.  This
787  /// creates a new node as a child of DomBB dominator node,linking it into
788  /// the children list of the immediate dominator.
789  inline DomTreeNode *addNewBlock(BasicBlock *BB, BasicBlock *DomBB) {
790    return DT->addNewBlock(BB, DomBB);
791  }
792
793  /// changeImmediateDominator - This method is used to update the dominator
794  /// tree information when a node's immediate dominator changes.
795  ///
796  inline void changeImmediateDominator(BasicBlock *N, BasicBlock* NewIDom) {
797    DT->changeImmediateDominator(N, NewIDom);
798  }
799
800  inline void changeImmediateDominator(DomTreeNode *N, DomTreeNode* NewIDom) {
801    DT->changeImmediateDominator(N, NewIDom);
802  }
803
804  /// eraseNode - Removes a node from the dominator tree. Block must not
805  /// dominate any other blocks. Removes node from its immediate dominator's
806  /// children list. Deletes dominator node associated with basic block BB.
807  inline void eraseNode(BasicBlock *BB) {
808    DT->eraseNode(BB);
809  }
810
811  /// splitBlock - BB is split and now it has one successor. Update dominator
812  /// tree to reflect this change.
813  inline void splitBlock(BasicBlock* NewBB) {
814    DT->splitBlock(NewBB);
815  }
816
817  bool isReachableFromEntry(const BasicBlock* A) {
818    return DT->isReachableFromEntry(A);
819  }
820
821
822  virtual void releaseMemory() {
823    DT->releaseMemory();
824  }
825
826  virtual void print(raw_ostream &OS, const Module* M= 0) const;
827};
828
829//===-------------------------------------
830/// DominatorTree GraphTraits specialization so the DominatorTree can be
831/// iterable by generic graph iterators.
832///
833template <> struct GraphTraits<DomTreeNode*> {
834  typedef DomTreeNode NodeType;
835  typedef NodeType::iterator  ChildIteratorType;
836
837  static NodeType *getEntryNode(NodeType *N) {
838    return N;
839  }
840  static inline ChildIteratorType child_begin(NodeType *N) {
841    return N->begin();
842  }
843  static inline ChildIteratorType child_end(NodeType *N) {
844    return N->end();
845  }
846
847  typedef df_iterator<DomTreeNode*> nodes_iterator;
848
849  static nodes_iterator nodes_begin(DomTreeNode *N) {
850    return df_begin(getEntryNode(N));
851  }
852
853  static nodes_iterator nodes_end(DomTreeNode *N) {
854    return df_end(getEntryNode(N));
855  }
856};
857
858template <> struct GraphTraits<DominatorTree*>
859  : public GraphTraits<DomTreeNode*> {
860  static NodeType *getEntryNode(DominatorTree *DT) {
861    return DT->getRootNode();
862  }
863
864  static nodes_iterator nodes_begin(DominatorTree *N) {
865    return df_begin(getEntryNode(N));
866  }
867
868  static nodes_iterator nodes_end(DominatorTree *N) {
869    return df_end(getEntryNode(N));
870  }
871};
872
873
874} // End llvm namespace
875
876#endif
877