Dominators.h revision 558fc740da62bb93ddfc85f353ab0665b566127f
1//===- llvm/Analysis/Dominators.h - Dominator Info Calculation --*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the following classes:
11//  1. ImmediateDominators: Calculates and holds a mapping between BasicBlocks
12//     and their immediate dominator.
13//  2. DominatorTree: Represent the ImmediateDominator as an explicit tree
14//     structure.
15//  3. ETForest: Efficient data structure for dominance comparisons and
16//     nearest-common-ancestor queries.
17//  4. DominanceFrontier: Calculate and hold the dominance frontier for a
18//     function.
19//
20//  These data structures are listed in increasing order of complexity.  It
21//  takes longer to calculate the dominator frontier, for example, than the
22//  ImmediateDominator mapping.
23//
24//===----------------------------------------------------------------------===//
25
26#ifndef LLVM_ANALYSIS_DOMINATORS_H
27#define LLVM_ANALYSIS_DOMINATORS_H
28
29#include "llvm/Analysis/ET-Forest.h"
30#include "llvm/Function.h"
31#include "llvm/Pass.h"
32#include <set>
33
34namespace llvm {
35
36class Instruction;
37
38template <typename GraphType> struct GraphTraits;
39
40//===----------------------------------------------------------------------===//
41/// DominatorBase - Base class that other, more interesting dominator analyses
42/// inherit from.
43///
44class DominatorBase : public FunctionPass {
45protected:
46  std::vector<BasicBlock*> Roots;
47  const bool IsPostDominators;
48
49  inline DominatorBase(bool isPostDom) : Roots(), IsPostDominators(isPostDom) {}
50public:
51  /// getRoots -  Return the root blocks of the current CFG.  This may include
52  /// multiple blocks if we are computing post dominators.  For forward
53  /// dominators, this will always be a single block (the entry node).
54  ///
55  inline const std::vector<BasicBlock*> &getRoots() const { return Roots; }
56
57  /// isPostDominator - Returns true if analysis based of postdoms
58  ///
59  bool isPostDominator() const { return IsPostDominators; }
60};
61
62
63//===----------------------------------------------------------------------===//
64/// ImmediateDominators - Calculate the immediate dominator for each node in a
65/// function.
66///
67class ImmediateDominatorsBase : public DominatorBase {
68protected:
69  struct InfoRec {
70    unsigned Semi;
71    unsigned Size;
72    BasicBlock *Label, *Parent, *Child, *Ancestor;
73
74    std::vector<BasicBlock*> Bucket;
75
76    InfoRec() : Semi(0), Size(0), Label(0), Parent(0), Child(0), Ancestor(0){}
77  };
78
79  std::map<BasicBlock*, BasicBlock*> IDoms;
80
81  // Vertex - Map the DFS number to the BasicBlock*
82  std::vector<BasicBlock*> Vertex;
83
84  // Info - Collection of information used during the computation of idoms.
85  std::map<BasicBlock*, InfoRec> Info;
86public:
87  ImmediateDominatorsBase(bool isPostDom) : DominatorBase(isPostDom) {}
88
89  virtual void releaseMemory() { IDoms.clear(); }
90
91  // Accessor interface:
92  typedef std::map<BasicBlock*, BasicBlock*> IDomMapType;
93  typedef IDomMapType::const_iterator const_iterator;
94  inline const_iterator begin() const { return IDoms.begin(); }
95  inline const_iterator end()   const { return IDoms.end(); }
96  inline const_iterator find(BasicBlock* B) const { return IDoms.find(B);}
97
98  /// operator[] - Return the idom for the specified basic block.  The start
99  /// node returns null, because it does not have an immediate dominator.
100  ///
101  inline BasicBlock *operator[](BasicBlock *BB) const {
102    return get(BB);
103  }
104
105  /// dominates - Return true if A dominates B.
106  ///
107  bool dominates(BasicBlock *A, BasicBlock *B) const;
108
109  /// properlyDominates - Return true if A dominates B and A != B.
110  ///
111  bool properlyDominates(BasicBlock *A, BasicBlock *B) const {
112    return A != B || properlyDominates(A, B);
113  }
114
115  /// get() - Synonym for operator[].
116  ///
117  inline BasicBlock *get(BasicBlock *BB) const {
118    std::map<BasicBlock*, BasicBlock*>::const_iterator I = IDoms.find(BB);
119    return I != IDoms.end() ? I->second : 0;
120  }
121
122  //===--------------------------------------------------------------------===//
123  // API to update Immediate(Post)Dominators information based on modifications
124  // to the CFG...
125
126  /// addNewBlock - Add a new block to the CFG, with the specified immediate
127  /// dominator.
128  ///
129  void addNewBlock(BasicBlock *BB, BasicBlock *IDom) {
130    assert(get(BB) == 0 && "BasicBlock already in idom info!");
131    IDoms[BB] = IDom;
132  }
133
134  /// setImmediateDominator - Update the immediate dominator information to
135  /// change the current immediate dominator for the specified block to another
136  /// block.  This method requires that BB already have an IDom, otherwise just
137  /// use addNewBlock.
138  ///
139  void setImmediateDominator(BasicBlock *BB, BasicBlock *NewIDom) {
140    assert(IDoms.find(BB) != IDoms.end() && "BB doesn't have idom yet!");
141    IDoms[BB] = NewIDom;
142  }
143
144  /// print - Convert to human readable form
145  ///
146  virtual void print(std::ostream &OS, const Module* = 0) const;
147  void print(std::ostream *OS, const Module* M = 0) const {
148    if (OS) print(*OS, M);
149  }
150};
151
152//===-------------------------------------
153/// ImmediateDominators Class - Concrete subclass of ImmediateDominatorsBase
154/// that is used to compute a normal immediate dominator set.
155///
156class ImmediateDominators : public ImmediateDominatorsBase {
157public:
158  ImmediateDominators() : ImmediateDominatorsBase(false) {}
159
160  BasicBlock *getRoot() const {
161    assert(Roots.size() == 1 && "Should always have entry node!");
162    return Roots[0];
163  }
164
165  virtual bool runOnFunction(Function &F);
166
167  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
168    AU.setPreservesAll();
169  }
170
171private:
172  unsigned DFSPass(BasicBlock *V, InfoRec &VInfo, unsigned N);
173  void Compress(BasicBlock *V, InfoRec &VInfo);
174  BasicBlock *Eval(BasicBlock *v);
175  void Link(BasicBlock *V, BasicBlock *W, InfoRec &WInfo);
176};
177
178
179//===----------------------------------------------------------------------===//
180/// DominatorTree - Calculate the immediate dominator tree for a function.
181///
182class DominatorTreeBase : public DominatorBase {
183public:
184  class Node;
185protected:
186  std::map<BasicBlock*, Node*> Nodes;
187  void reset();
188  typedef std::map<BasicBlock*, Node*> NodeMapType;
189
190  Node *RootNode;
191public:
192  class Node {
193    friend class DominatorTree;
194    friend struct PostDominatorTree;
195    friend class DominatorTreeBase;
196    BasicBlock *TheBB;
197    Node *IDom;
198    std::vector<Node*> Children;
199  public:
200    typedef std::vector<Node*>::iterator iterator;
201    typedef std::vector<Node*>::const_iterator const_iterator;
202
203    iterator begin()             { return Children.begin(); }
204    iterator end()               { return Children.end(); }
205    const_iterator begin() const { return Children.begin(); }
206    const_iterator end()   const { return Children.end(); }
207
208    inline BasicBlock *getBlock() const { return TheBB; }
209    inline Node *getIDom() const { return IDom; }
210    inline const std::vector<Node*> &getChildren() const { return Children; }
211
212    /// properlyDominates - Returns true iff this dominates N and this != N.
213    /// Note that this is not a constant time operation!
214    ///
215    bool properlyDominates(const Node *N) const {
216      const Node *IDom;
217      if (this == 0 || N == 0) return false;
218      while ((IDom = N->getIDom()) != 0 && IDom != this)
219        N = IDom;   // Walk up the tree
220      return IDom != 0;
221    }
222
223    /// dominates - Returns true iff this dominates N.  Note that this is not a
224    /// constant time operation!
225    ///
226    inline bool dominates(const Node *N) const {
227      if (N == this) return true;  // A node trivially dominates itself.
228      return properlyDominates(N);
229    }
230
231  private:
232    inline Node(BasicBlock *BB, Node *iDom) : TheBB(BB), IDom(iDom) {}
233    inline Node *addChild(Node *C) { Children.push_back(C); return C; }
234
235    void setIDom(Node *NewIDom);
236  };
237
238public:
239  DominatorTreeBase(bool isPostDom) : DominatorBase(isPostDom) {}
240  ~DominatorTreeBase() { reset(); }
241
242  virtual void releaseMemory() { reset(); }
243
244  /// getNode - return the (Post)DominatorTree node for the specified basic
245  /// block.  This is the same as using operator[] on this class.
246  ///
247  inline Node *getNode(BasicBlock *BB) const {
248    NodeMapType::const_iterator i = Nodes.find(BB);
249    return (i != Nodes.end()) ? i->second : 0;
250  }
251
252  inline Node *operator[](BasicBlock *BB) const {
253    return getNode(BB);
254  }
255
256  /// getRootNode - This returns the entry node for the CFG of the function.  If
257  /// this tree represents the post-dominance relations for a function, however,
258  /// this root may be a node with the block == NULL.  This is the case when
259  /// there are multiple exit nodes from a particular function.  Consumers of
260  /// post-dominance information must be capable of dealing with this
261  /// possibility.
262  ///
263  Node *getRootNode() { return RootNode; }
264  const Node *getRootNode() const { return RootNode; }
265
266  //===--------------------------------------------------------------------===//
267  // API to update (Post)DominatorTree information based on modifications to
268  // the CFG...
269
270  /// createNewNode - Add a new node to the dominator tree information.  This
271  /// creates a new node as a child of IDomNode, linking it into the children
272  /// list of the immediate dominator.
273  ///
274  Node *createNewNode(BasicBlock *BB, Node *IDomNode) {
275    assert(getNode(BB) == 0 && "Block already in dominator tree!");
276    assert(IDomNode && "Not immediate dominator specified for block!");
277    return Nodes[BB] = IDomNode->addChild(new Node(BB, IDomNode));
278  }
279
280  /// changeImmediateDominator - This method is used to update the dominator
281  /// tree information when a node's immediate dominator changes.
282  ///
283  void changeImmediateDominator(Node *N, Node *NewIDom) {
284    assert(N && NewIDom && "Cannot change null node pointers!");
285    N->setIDom(NewIDom);
286  }
287
288  /// removeNode - Removes a node from the dominator tree.  Block must not
289  /// dominate any other blocks.  Invalidates any node pointing to removed
290  /// block.
291  void removeNode(BasicBlock *BB) {
292    assert(getNode(BB) && "Removing node that isn't in dominator tree.");
293    Nodes.erase(BB);
294  }
295
296  /// print - Convert to human readable form
297  ///
298  virtual void print(std::ostream &OS, const Module* = 0) const;
299  void print(std::ostream *OS, const Module* M = 0) const {
300    if (OS) print(*OS, M);
301  }
302};
303
304//===-------------------------------------
305/// DominatorTree Class - Concrete subclass of DominatorTreeBase that is used to
306/// compute a normal dominator tree.
307///
308class DominatorTree : public DominatorTreeBase {
309public:
310  DominatorTree() : DominatorTreeBase(false) {}
311
312  BasicBlock *getRoot() const {
313    assert(Roots.size() == 1 && "Should always have entry node!");
314    return Roots[0];
315  }
316
317  virtual bool runOnFunction(Function &F) {
318    reset();     // Reset from the last time we were run...
319    ImmediateDominators &ID = getAnalysis<ImmediateDominators>();
320    Roots = ID.getRoots();
321    calculate(ID);
322    return false;
323  }
324
325  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
326    AU.setPreservesAll();
327    AU.addRequired<ImmediateDominators>();
328  }
329private:
330  void calculate(const ImmediateDominators &ID);
331  Node *getNodeForBlock(BasicBlock *BB);
332};
333
334//===-------------------------------------
335/// DominatorTree GraphTraits specialization so the DominatorTree can be
336/// iterable by generic graph iterators.
337///
338template <> struct GraphTraits<DominatorTree::Node*> {
339  typedef DominatorTree::Node NodeType;
340  typedef NodeType::iterator  ChildIteratorType;
341
342  static NodeType *getEntryNode(NodeType *N) {
343    return N;
344  }
345  static inline ChildIteratorType child_begin(NodeType* N) {
346    return N->begin();
347  }
348  static inline ChildIteratorType child_end(NodeType* N) {
349    return N->end();
350  }
351};
352
353template <> struct GraphTraits<DominatorTree*>
354  : public GraphTraits<DominatorTree::Node*> {
355  static NodeType *getEntryNode(DominatorTree *DT) {
356    return DT->getRootNode();
357  }
358};
359
360
361//===-------------------------------------
362/// ET-Forest Class - Class used to construct forwards and backwards
363/// ET-Forests
364///
365class ETForestBase : public DominatorBase {
366public:
367  ETForestBase(bool isPostDom) : DominatorBase(isPostDom), Nodes(),
368                                 DFSInfoValid(false), SlowQueries(0) {}
369
370  virtual void releaseMemory() { reset(); }
371
372  typedef std::map<BasicBlock*, ETNode*> ETMapType;
373
374  void updateDFSNumbers();
375
376  /// dominates - Return true if A dominates B.
377  ///
378  inline bool dominates(BasicBlock *A, BasicBlock *B) {
379    if (A == B)
380      return true;
381
382    ETNode *NodeA = getNode(A);
383    ETNode *NodeB = getNode(B);
384
385    if (DFSInfoValid)
386      return NodeB->DominatedBy(NodeA);
387    else {
388      // If we end up with too many slow queries, just update the
389      // DFS numbers on the theory that we are going to keep querying.
390      SlowQueries++;
391      if (SlowQueries > 32) {
392        updateDFSNumbers();
393        return NodeB->DominatedBy(NodeA);
394      }
395      return NodeB->DominatedBySlow(NodeA);
396    }
397  }
398
399  // dominates - Return true if A dominates B. This performs the
400  // special checks necessary if A and B are in the same basic block.
401  bool dominates(Instruction *A, Instruction *B);
402
403  /// properlyDominates - Return true if A dominates B and A != B.
404  ///
405  bool properlyDominates(BasicBlock *A, BasicBlock *B) {
406    return dominates(A, B) && A != B;
407  }
408
409  /// isReachableFromEntry - Return true if A is dominated by the entry
410  /// block of the function containing it.
411  bool isReachableFromEntry(BasicBlock* A) {
412    return dominates(&A->getParent()->getEntryBlock(), A);
413  }
414
415  /// Return the nearest common dominator of A and B.
416  BasicBlock *nearestCommonDominator(BasicBlock *A, BasicBlock *B) const  {
417    ETNode *NodeA = getNode(A);
418    ETNode *NodeB = getNode(B);
419
420    ETNode *Common = NodeA->NCA(NodeB);
421    if (!Common)
422      return NULL;
423    return Common->getData<BasicBlock>();
424  }
425
426  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
427    AU.setPreservesAll();
428    AU.addRequired<ImmediateDominators>();
429  }
430  //===--------------------------------------------------------------------===//
431  // API to update Forest information based on modifications
432  // to the CFG...
433
434  /// addNewBlock - Add a new block to the CFG, with the specified immediate
435  /// dominator.
436  ///
437  void addNewBlock(BasicBlock *BB, BasicBlock *IDom);
438
439  /// setImmediateDominator - Update the immediate dominator information to
440  /// change the current immediate dominator for the specified block
441  /// to another block.  This method requires that BB for NewIDom
442  /// already have an ETNode, otherwise just use addNewBlock.
443  ///
444  void setImmediateDominator(BasicBlock *BB, BasicBlock *NewIDom);
445  /// print - Convert to human readable form
446  ///
447  virtual void print(std::ostream &OS, const Module* = 0) const;
448  void print(std::ostream *OS, const Module* M = 0) const {
449    if (OS) print(*OS, M);
450  }
451protected:
452  /// getNode - return the (Post)DominatorTree node for the specified basic
453  /// block.  This is the same as using operator[] on this class.
454  ///
455  inline ETNode *getNode(BasicBlock *BB) const {
456    ETMapType::const_iterator i = Nodes.find(BB);
457    return (i != Nodes.end()) ? i->second : 0;
458  }
459
460  inline ETNode *operator[](BasicBlock *BB) const {
461    return getNode(BB);
462  }
463
464  void reset();
465  ETMapType Nodes;
466  bool DFSInfoValid;
467  unsigned int SlowQueries;
468
469};
470
471//==-------------------------------------
472/// ETForest Class - Concrete subclass of ETForestBase that is used to
473/// compute a forwards ET-Forest.
474
475class ETForest : public ETForestBase {
476public:
477  ETForest() : ETForestBase(false) {}
478
479  BasicBlock *getRoot() const {
480    assert(Roots.size() == 1 && "Should always have entry node!");
481    return Roots[0];
482  }
483
484  virtual bool runOnFunction(Function &F) {
485    reset();     // Reset from the last time we were run...
486    ImmediateDominators &ID = getAnalysis<ImmediateDominators>();
487    Roots = ID.getRoots();
488    calculate(ID);
489    return false;
490  }
491
492  void calculate(const ImmediateDominators &ID);
493  ETNode *getNodeForBlock(BasicBlock *BB);
494};
495
496//===----------------------------------------------------------------------===//
497/// DominanceFrontierBase - Common base class for computing forward and inverse
498/// dominance frontiers for a function.
499///
500class DominanceFrontierBase : public DominatorBase {
501public:
502  typedef std::set<BasicBlock*>             DomSetType;    // Dom set for a bb
503  typedef std::map<BasicBlock*, DomSetType> DomSetMapType; // Dom set map
504protected:
505  DomSetMapType Frontiers;
506public:
507  DominanceFrontierBase(bool isPostDom) : DominatorBase(isPostDom) {}
508
509  virtual void releaseMemory() { Frontiers.clear(); }
510
511  // Accessor interface:
512  typedef DomSetMapType::iterator iterator;
513  typedef DomSetMapType::const_iterator const_iterator;
514  iterator       begin()       { return Frontiers.begin(); }
515  const_iterator begin() const { return Frontiers.begin(); }
516  iterator       end()         { return Frontiers.end(); }
517  const_iterator end()   const { return Frontiers.end(); }
518  iterator       find(BasicBlock *B)       { return Frontiers.find(B); }
519  const_iterator find(BasicBlock *B) const { return Frontiers.find(B); }
520
521  void addBasicBlock(BasicBlock *BB, const DomSetType &frontier) {
522    assert(find(BB) == end() && "Block already in DominanceFrontier!");
523    Frontiers.insert(std::make_pair(BB, frontier));
524  }
525
526  void addToFrontier(iterator I, BasicBlock *Node) {
527    assert(I != end() && "BB is not in DominanceFrontier!");
528    I->second.insert(Node);
529  }
530
531  void removeFromFrontier(iterator I, BasicBlock *Node) {
532    assert(I != end() && "BB is not in DominanceFrontier!");
533    assert(I->second.count(Node) && "Node is not in DominanceFrontier of BB");
534    I->second.erase(Node);
535  }
536
537  /// print - Convert to human readable form
538  ///
539  virtual void print(std::ostream &OS, const Module* = 0) const;
540  void print(std::ostream *OS, const Module* M = 0) const {
541    if (OS) print(*OS, M);
542  }
543};
544
545
546//===-------------------------------------
547/// DominanceFrontier Class - Concrete subclass of DominanceFrontierBase that is
548/// used to compute a forward dominator frontiers.
549///
550class DominanceFrontier : public DominanceFrontierBase {
551public:
552  DominanceFrontier() : DominanceFrontierBase(false) {}
553
554  BasicBlock *getRoot() const {
555    assert(Roots.size() == 1 && "Should always have entry node!");
556    return Roots[0];
557  }
558
559  virtual bool runOnFunction(Function &) {
560    Frontiers.clear();
561    DominatorTree &DT = getAnalysis<DominatorTree>();
562    Roots = DT.getRoots();
563    assert(Roots.size() == 1 && "Only one entry block for forward domfronts!");
564    calculate(DT, DT[Roots[0]]);
565    return false;
566  }
567
568  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
569    AU.setPreservesAll();
570    AU.addRequired<DominatorTree>();
571  }
572private:
573  const DomSetType &calculate(const DominatorTree &DT,
574                              const DominatorTree::Node *Node);
575};
576
577
578} // End llvm namespace
579
580#endif
581