Dominators.h revision b5c26ef9da16052597d59a412eaae32098aa1be0
1//===- llvm/Analysis/Dominators.h - Dominator Info Calculation --*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the DominatorTree class, which provides fast and efficient
11// dominance queries.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_ANALYSIS_DOMINATORS_H
16#define LLVM_ANALYSIS_DOMINATORS_H
17
18#include "llvm/Pass.h"
19#include "llvm/Function.h"
20#include "llvm/ADT/DenseMap.h"
21#include "llvm/ADT/DepthFirstIterator.h"
22#include "llvm/ADT/GraphTraits.h"
23#include "llvm/ADT/SmallPtrSet.h"
24#include "llvm/ADT/SmallVector.h"
25#include "llvm/Support/CFG.h"
26#include "llvm/Support/Compiler.h"
27#include "llvm/Support/raw_ostream.h"
28#include <algorithm>
29
30namespace llvm {
31
32//===----------------------------------------------------------------------===//
33/// DominatorBase - Base class that other, more interesting dominator analyses
34/// inherit from.
35///
36template <class NodeT>
37class DominatorBase {
38protected:
39  std::vector<NodeT*> Roots;
40  const bool IsPostDominators;
41  inline explicit DominatorBase(bool isPostDom) :
42    Roots(), IsPostDominators(isPostDom) {}
43public:
44
45  /// getRoots - Return the root blocks of the current CFG.  This may include
46  /// multiple blocks if we are computing post dominators.  For forward
47  /// dominators, this will always be a single block (the entry node).
48  ///
49  inline const std::vector<NodeT*> &getRoots() const { return Roots; }
50
51  /// isPostDominator - Returns true if analysis based of postdoms
52  ///
53  bool isPostDominator() const { return IsPostDominators; }
54};
55
56
57//===----------------------------------------------------------------------===//
58// DomTreeNode - Dominator Tree Node
59template<class NodeT> class DominatorTreeBase;
60struct PostDominatorTree;
61class MachineBasicBlock;
62
63template <class NodeT>
64class DomTreeNodeBase {
65  NodeT *TheBB;
66  DomTreeNodeBase<NodeT> *IDom;
67  std::vector<DomTreeNodeBase<NodeT> *> Children;
68  int DFSNumIn, DFSNumOut;
69
70  template<class N> friend class DominatorTreeBase;
71  friend struct PostDominatorTree;
72public:
73  typedef typename std::vector<DomTreeNodeBase<NodeT> *>::iterator iterator;
74  typedef typename std::vector<DomTreeNodeBase<NodeT> *>::const_iterator
75                   const_iterator;
76
77  iterator begin()             { return Children.begin(); }
78  iterator end()               { return Children.end(); }
79  const_iterator begin() const { return Children.begin(); }
80  const_iterator end()   const { return Children.end(); }
81
82  NodeT *getBlock() const { return TheBB; }
83  DomTreeNodeBase<NodeT> *getIDom() const { return IDom; }
84  const std::vector<DomTreeNodeBase<NodeT>*> &getChildren() const {
85    return Children;
86  }
87
88  DomTreeNodeBase(NodeT *BB, DomTreeNodeBase<NodeT> *iDom)
89    : TheBB(BB), IDom(iDom), DFSNumIn(-1), DFSNumOut(-1) { }
90
91  DomTreeNodeBase<NodeT> *addChild(DomTreeNodeBase<NodeT> *C) {
92    Children.push_back(C);
93    return C;
94  }
95
96  size_t getNumChildren() const {
97    return Children.size();
98  }
99
100  void clearAllChildren() {
101    Children.clear();
102  }
103
104  bool compare(DomTreeNodeBase<NodeT> *Other) {
105    if (getNumChildren() != Other->getNumChildren())
106      return true;
107
108    SmallPtrSet<NodeT *, 4> OtherChildren;
109    for (iterator I = Other->begin(), E = Other->end(); I != E; ++I) {
110      NodeT *Nd = (*I)->getBlock();
111      OtherChildren.insert(Nd);
112    }
113
114    for (iterator I = begin(), E = end(); I != E; ++I) {
115      NodeT *N = (*I)->getBlock();
116      if (OtherChildren.count(N) == 0)
117        return true;
118    }
119    return false;
120  }
121
122  void setIDom(DomTreeNodeBase<NodeT> *NewIDom) {
123    assert(IDom && "No immediate dominator?");
124    if (IDom != NewIDom) {
125      typename std::vector<DomTreeNodeBase<NodeT>*>::iterator I =
126                  std::find(IDom->Children.begin(), IDom->Children.end(), this);
127      assert(I != IDom->Children.end() &&
128             "Not in immediate dominator children set!");
129      // I am no longer your child...
130      IDom->Children.erase(I);
131
132      // Switch to new dominator
133      IDom = NewIDom;
134      IDom->Children.push_back(this);
135    }
136  }
137
138  /// getDFSNumIn/getDFSNumOut - These are an internal implementation detail, do
139  /// not call them.
140  unsigned getDFSNumIn() const { return DFSNumIn; }
141  unsigned getDFSNumOut() const { return DFSNumOut; }
142private:
143  // Return true if this node is dominated by other. Use this only if DFS info
144  // is valid.
145  bool DominatedBy(const DomTreeNodeBase<NodeT> *other) const {
146    return this->DFSNumIn >= other->DFSNumIn &&
147      this->DFSNumOut <= other->DFSNumOut;
148  }
149};
150
151EXTERN_TEMPLATE_INSTANTIATION(class DomTreeNodeBase<BasicBlock>);
152EXTERN_TEMPLATE_INSTANTIATION(class DomTreeNodeBase<MachineBasicBlock>);
153
154template<class NodeT>
155static raw_ostream &operator<<(raw_ostream &o,
156                               const DomTreeNodeBase<NodeT> *Node) {
157  if (Node->getBlock())
158    WriteAsOperand(o, Node->getBlock(), false);
159  else
160    o << " <<exit node>>";
161
162  o << " {" << Node->getDFSNumIn() << "," << Node->getDFSNumOut() << "}";
163
164  return o << "\n";
165}
166
167template<class NodeT>
168static void PrintDomTree(const DomTreeNodeBase<NodeT> *N, raw_ostream &o,
169                         unsigned Lev) {
170  o.indent(2*Lev) << "[" << Lev << "] " << N;
171  for (typename DomTreeNodeBase<NodeT>::const_iterator I = N->begin(),
172       E = N->end(); I != E; ++I)
173    PrintDomTree<NodeT>(*I, o, Lev+1);
174}
175
176typedef DomTreeNodeBase<BasicBlock> DomTreeNode;
177
178//===----------------------------------------------------------------------===//
179/// DominatorTree - Calculate the immediate dominator tree for a function.
180///
181
182template<class FuncT, class N>
183void Calculate(DominatorTreeBase<typename GraphTraits<N>::NodeType>& DT,
184               FuncT& F);
185
186template<class NodeT>
187class DominatorTreeBase : public DominatorBase<NodeT> {
188protected:
189  typedef DenseMap<NodeT*, DomTreeNodeBase<NodeT>*> DomTreeNodeMapType;
190  DomTreeNodeMapType DomTreeNodes;
191  DomTreeNodeBase<NodeT> *RootNode;
192
193  bool DFSInfoValid;
194  unsigned int SlowQueries;
195  // Information record used during immediate dominators computation.
196  struct InfoRec {
197    unsigned DFSNum;
198    unsigned Parent;
199    unsigned Semi;
200    NodeT *Label;
201
202    InfoRec() : DFSNum(0), Parent(0), Semi(0), Label(0) {}
203  };
204
205  DenseMap<NodeT*, NodeT*> IDoms;
206
207  // Vertex - Map the DFS number to the BasicBlock*
208  std::vector<NodeT*> Vertex;
209
210  // Info - Collection of information used during the computation of idoms.
211  DenseMap<NodeT*, InfoRec> Info;
212
213  void reset() {
214    for (typename DomTreeNodeMapType::iterator I = this->DomTreeNodes.begin(),
215           E = DomTreeNodes.end(); I != E; ++I)
216      delete I->second;
217    DomTreeNodes.clear();
218    IDoms.clear();
219    this->Roots.clear();
220    Vertex.clear();
221    RootNode = 0;
222  }
223
224  // NewBB is split and now it has one successor. Update dominator tree to
225  // reflect this change.
226  template<class N, class GraphT>
227  void Split(DominatorTreeBase<typename GraphT::NodeType>& DT,
228             typename GraphT::NodeType* NewBB) {
229    assert(std::distance(GraphT::child_begin(NewBB),
230                         GraphT::child_end(NewBB)) == 1 &&
231           "NewBB should have a single successor!");
232    typename GraphT::NodeType* NewBBSucc = *GraphT::child_begin(NewBB);
233
234    std::vector<typename GraphT::NodeType*> PredBlocks;
235    typedef GraphTraits<Inverse<N> > InvTraits;
236    for (typename InvTraits::ChildIteratorType PI =
237         InvTraits::child_begin(NewBB),
238         PE = InvTraits::child_end(NewBB); PI != PE; ++PI)
239      PredBlocks.push_back(*PI);
240
241    assert(!PredBlocks.empty() && "No predblocks?");
242
243    bool NewBBDominatesNewBBSucc = true;
244    for (typename InvTraits::ChildIteratorType PI =
245         InvTraits::child_begin(NewBBSucc),
246         E = InvTraits::child_end(NewBBSucc); PI != E; ++PI) {
247      typename InvTraits::NodeType *ND = *PI;
248      if (ND != NewBB && !DT.dominates(NewBBSucc, ND) &&
249          DT.isReachableFromEntry(ND)) {
250        NewBBDominatesNewBBSucc = false;
251        break;
252      }
253    }
254
255    // Find NewBB's immediate dominator and create new dominator tree node for
256    // NewBB.
257    NodeT *NewBBIDom = 0;
258    unsigned i = 0;
259    for (i = 0; i < PredBlocks.size(); ++i)
260      if (DT.isReachableFromEntry(PredBlocks[i])) {
261        NewBBIDom = PredBlocks[i];
262        break;
263      }
264
265    // It's possible that none of the predecessors of NewBB are reachable;
266    // in that case, NewBB itself is unreachable, so nothing needs to be
267    // changed.
268    if (!NewBBIDom)
269      return;
270
271    for (i = i + 1; i < PredBlocks.size(); ++i) {
272      if (DT.isReachableFromEntry(PredBlocks[i]))
273        NewBBIDom = DT.findNearestCommonDominator(NewBBIDom, PredBlocks[i]);
274    }
275
276    // Create the new dominator tree node... and set the idom of NewBB.
277    DomTreeNodeBase<NodeT> *NewBBNode = DT.addNewBlock(NewBB, NewBBIDom);
278
279    // If NewBB strictly dominates other blocks, then it is now the immediate
280    // dominator of NewBBSucc.  Update the dominator tree as appropriate.
281    if (NewBBDominatesNewBBSucc) {
282      DomTreeNodeBase<NodeT> *NewBBSuccNode = DT.getNode(NewBBSucc);
283      DT.changeImmediateDominator(NewBBSuccNode, NewBBNode);
284    }
285  }
286
287public:
288  explicit DominatorTreeBase(bool isPostDom)
289    : DominatorBase<NodeT>(isPostDom), DFSInfoValid(false), SlowQueries(0) {}
290  virtual ~DominatorTreeBase() { reset(); }
291
292  /// compare - Return false if the other dominator tree base matches this
293  /// dominator tree base. Otherwise return true.
294  bool compare(DominatorTreeBase &Other) const {
295
296    const DomTreeNodeMapType &OtherDomTreeNodes = Other.DomTreeNodes;
297    if (DomTreeNodes.size() != OtherDomTreeNodes.size())
298      return true;
299
300    for (typename DomTreeNodeMapType::const_iterator
301           I = this->DomTreeNodes.begin(),
302           E = this->DomTreeNodes.end(); I != E; ++I) {
303      NodeT *BB = I->first;
304      typename DomTreeNodeMapType::const_iterator OI = OtherDomTreeNodes.find(BB);
305      if (OI == OtherDomTreeNodes.end())
306        return true;
307
308      DomTreeNodeBase<NodeT>* MyNd = I->second;
309      DomTreeNodeBase<NodeT>* OtherNd = OI->second;
310
311      if (MyNd->compare(OtherNd))
312        return true;
313    }
314
315    return false;
316  }
317
318  virtual void releaseMemory() { reset(); }
319
320  /// getNode - return the (Post)DominatorTree node for the specified basic
321  /// block.  This is the same as using operator[] on this class.
322  ///
323  inline DomTreeNodeBase<NodeT> *getNode(NodeT *BB) const {
324    return DomTreeNodes.lookup(BB);
325  }
326
327  /// getRootNode - This returns the entry node for the CFG of the function.  If
328  /// this tree represents the post-dominance relations for a function, however,
329  /// this root may be a node with the block == NULL.  This is the case when
330  /// there are multiple exit nodes from a particular function.  Consumers of
331  /// post-dominance information must be capable of dealing with this
332  /// possibility.
333  ///
334  DomTreeNodeBase<NodeT> *getRootNode() { return RootNode; }
335  const DomTreeNodeBase<NodeT> *getRootNode() const { return RootNode; }
336
337  /// properlyDominates - Returns true iff this dominates N and this != N.
338  /// Note that this is not a constant time operation!
339  ///
340  bool properlyDominates(const DomTreeNodeBase<NodeT> *A,
341                         const DomTreeNodeBase<NodeT> *B) const {
342    if (A == 0 || B == 0) return false;
343    return dominatedBySlowTreeWalk(A, B);
344  }
345
346  inline bool properlyDominates(const NodeT *A, const NodeT *B) {
347    if (A == B)
348      return false;
349
350    // Cast away the const qualifiers here. This is ok since
351    // this function doesn't actually return the values returned
352    // from getNode.
353    return properlyDominates(getNode(const_cast<NodeT *>(A)),
354                             getNode(const_cast<NodeT *>(B)));
355  }
356
357  bool dominatedBySlowTreeWalk(const DomTreeNodeBase<NodeT> *A,
358                               const DomTreeNodeBase<NodeT> *B) const {
359    const DomTreeNodeBase<NodeT> *IDom;
360    if (A == 0 || B == 0) return false;
361    while ((IDom = B->getIDom()) != 0 && IDom != A && IDom != B)
362      B = IDom;   // Walk up the tree
363    return IDom != 0;
364  }
365
366
367  /// isReachableFromEntry - Return true if A is dominated by the entry
368  /// block of the function containing it.
369  bool isReachableFromEntry(const NodeT* A) {
370    assert(!this->isPostDominator() &&
371           "This is not implemented for post dominators");
372    return dominates(&A->getParent()->front(), A);
373  }
374
375  /// dominates - Returns true iff A dominates B.  Note that this is not a
376  /// constant time operation!
377  ///
378  inline bool dominates(const DomTreeNodeBase<NodeT> *A,
379                        const DomTreeNodeBase<NodeT> *B) {
380    if (B == A)
381      return true;  // A node trivially dominates itself.
382
383    if (A == 0 || B == 0)
384      return false;
385
386    // Compare the result of the tree walk and the dfs numbers, if expensive
387    // checks are enabled.
388#ifdef XDEBUG
389    assert((!DFSInfoValid ||
390            (dominatedBySlowTreeWalk(A, B) == B->DominatedBy(A))) &&
391           "Tree walk disagrees with dfs numbers!");
392#endif
393
394    if (DFSInfoValid)
395      return B->DominatedBy(A);
396
397    // If we end up with too many slow queries, just update the
398    // DFS numbers on the theory that we are going to keep querying.
399    SlowQueries++;
400    if (SlowQueries > 32) {
401      updateDFSNumbers();
402      return B->DominatedBy(A);
403    }
404
405    return dominatedBySlowTreeWalk(A, B);
406  }
407
408  inline bool dominates(const NodeT *A, const NodeT *B) {
409    if (A == B)
410      return true;
411
412    // Cast away the const qualifiers here. This is ok since
413    // this function doesn't actually return the values returned
414    // from getNode.
415    return dominates(getNode(const_cast<NodeT *>(A)),
416                     getNode(const_cast<NodeT *>(B)));
417  }
418
419  NodeT *getRoot() const {
420    assert(this->Roots.size() == 1 && "Should always have entry node!");
421    return this->Roots[0];
422  }
423
424  /// findNearestCommonDominator - Find nearest common dominator basic block
425  /// for basic block A and B. If there is no such block then return NULL.
426  NodeT *findNearestCommonDominator(NodeT *A, NodeT *B) {
427    assert(A->getParent() == B->getParent() &&
428           "Two blocks are not in same function");
429
430    // If either A or B is a entry block then it is nearest common dominator
431    // (for forward-dominators).
432    if (!this->isPostDominator()) {
433      NodeT &Entry = A->getParent()->front();
434      if (A == &Entry || B == &Entry)
435        return &Entry;
436    }
437
438    // If B dominates A then B is nearest common dominator.
439    if (dominates(B, A))
440      return B;
441
442    // If A dominates B then A is nearest common dominator.
443    if (dominates(A, B))
444      return A;
445
446    DomTreeNodeBase<NodeT> *NodeA = getNode(A);
447    DomTreeNodeBase<NodeT> *NodeB = getNode(B);
448
449    // Collect NodeA dominators set.
450    SmallPtrSet<DomTreeNodeBase<NodeT>*, 16> NodeADoms;
451    NodeADoms.insert(NodeA);
452    DomTreeNodeBase<NodeT> *IDomA = NodeA->getIDom();
453    while (IDomA) {
454      NodeADoms.insert(IDomA);
455      IDomA = IDomA->getIDom();
456    }
457
458    // Walk NodeB immediate dominators chain and find common dominator node.
459    DomTreeNodeBase<NodeT> *IDomB = NodeB->getIDom();
460    while (IDomB) {
461      if (NodeADoms.count(IDomB) != 0)
462        return IDomB->getBlock();
463
464      IDomB = IDomB->getIDom();
465    }
466
467    return NULL;
468  }
469
470  const NodeT *findNearestCommonDominator(const NodeT *A, const NodeT *B) {
471    // Cast away the const qualifiers here. This is ok since
472    // const is re-introduced on the return type.
473    return findNearestCommonDominator(const_cast<NodeT *>(A),
474                                      const_cast<NodeT *>(B));
475  }
476
477  //===--------------------------------------------------------------------===//
478  // API to update (Post)DominatorTree information based on modifications to
479  // the CFG...
480
481  /// addNewBlock - Add a new node to the dominator tree information.  This
482  /// creates a new node as a child of DomBB dominator node,linking it into
483  /// the children list of the immediate dominator.
484  DomTreeNodeBase<NodeT> *addNewBlock(NodeT *BB, NodeT *DomBB) {
485    assert(getNode(BB) == 0 && "Block already in dominator tree!");
486    DomTreeNodeBase<NodeT> *IDomNode = getNode(DomBB);
487    assert(IDomNode && "Not immediate dominator specified for block!");
488    DFSInfoValid = false;
489    return DomTreeNodes[BB] =
490      IDomNode->addChild(new DomTreeNodeBase<NodeT>(BB, IDomNode));
491  }
492
493  /// changeImmediateDominator - This method is used to update the dominator
494  /// tree information when a node's immediate dominator changes.
495  ///
496  void changeImmediateDominator(DomTreeNodeBase<NodeT> *N,
497                                DomTreeNodeBase<NodeT> *NewIDom) {
498    assert(N && NewIDom && "Cannot change null node pointers!");
499    DFSInfoValid = false;
500    N->setIDom(NewIDom);
501  }
502
503  void changeImmediateDominator(NodeT *BB, NodeT *NewBB) {
504    changeImmediateDominator(getNode(BB), getNode(NewBB));
505  }
506
507  /// eraseNode - Removes a node from the dominator tree. Block must not
508  /// dominate any other blocks. Removes node from its immediate dominator's
509  /// children list. Deletes dominator node associated with basic block BB.
510  void eraseNode(NodeT *BB) {
511    DomTreeNodeBase<NodeT> *Node = getNode(BB);
512    assert(Node && "Removing node that isn't in dominator tree.");
513    assert(Node->getChildren().empty() && "Node is not a leaf node.");
514
515      // Remove node from immediate dominator's children list.
516    DomTreeNodeBase<NodeT> *IDom = Node->getIDom();
517    if (IDom) {
518      typename std::vector<DomTreeNodeBase<NodeT>*>::iterator I =
519        std::find(IDom->Children.begin(), IDom->Children.end(), Node);
520      assert(I != IDom->Children.end() &&
521             "Not in immediate dominator children set!");
522      // I am no longer your child...
523      IDom->Children.erase(I);
524    }
525
526    DomTreeNodes.erase(BB);
527    delete Node;
528  }
529
530  /// removeNode - Removes a node from the dominator tree.  Block must not
531  /// dominate any other blocks.  Invalidates any node pointing to removed
532  /// block.
533  void removeNode(NodeT *BB) {
534    assert(getNode(BB) && "Removing node that isn't in dominator tree.");
535    DomTreeNodes.erase(BB);
536  }
537
538  /// splitBlock - BB is split and now it has one successor. Update dominator
539  /// tree to reflect this change.
540  void splitBlock(NodeT* NewBB) {
541    if (this->IsPostDominators)
542      this->Split<Inverse<NodeT*>, GraphTraits<Inverse<NodeT*> > >(*this, NewBB);
543    else
544      this->Split<NodeT*, GraphTraits<NodeT*> >(*this, NewBB);
545  }
546
547  /// print - Convert to human readable form
548  ///
549  void print(raw_ostream &o) const {
550    o << "=============================--------------------------------\n";
551    if (this->isPostDominator())
552      o << "Inorder PostDominator Tree: ";
553    else
554      o << "Inorder Dominator Tree: ";
555    if (!this->DFSInfoValid)
556      o << "DFSNumbers invalid: " << SlowQueries << " slow queries.";
557    o << "\n";
558
559    // The postdom tree can have a null root if there are no returns.
560    if (getRootNode())
561      PrintDomTree<NodeT>(getRootNode(), o, 1);
562  }
563
564protected:
565  template<class GraphT>
566  friend typename GraphT::NodeType* Eval(
567                               DominatorTreeBase<typename GraphT::NodeType>& DT,
568                                         typename GraphT::NodeType* V,
569                                         unsigned LastLinked);
570
571  template<class GraphT>
572  friend unsigned DFSPass(DominatorTreeBase<typename GraphT::NodeType>& DT,
573                          typename GraphT::NodeType* V,
574                          unsigned N);
575
576  template<class FuncT, class N>
577  friend void Calculate(DominatorTreeBase<typename GraphTraits<N>::NodeType>& DT,
578                        FuncT& F);
579
580  /// updateDFSNumbers - Assign In and Out numbers to the nodes while walking
581  /// dominator tree in dfs order.
582  void updateDFSNumbers() {
583    unsigned DFSNum = 0;
584
585    SmallVector<std::pair<DomTreeNodeBase<NodeT>*,
586                typename DomTreeNodeBase<NodeT>::iterator>, 32> WorkStack;
587
588    DomTreeNodeBase<NodeT> *ThisRoot = getRootNode();
589
590    if (!ThisRoot)
591      return;
592
593    // Even in the case of multiple exits that form the post dominator root
594    // nodes, do not iterate over all exits, but start from the virtual root
595    // node. Otherwise bbs, that are not post dominated by any exit but by the
596    // virtual root node, will never be assigned a DFS number.
597    WorkStack.push_back(std::make_pair(ThisRoot, ThisRoot->begin()));
598    ThisRoot->DFSNumIn = DFSNum++;
599
600    while (!WorkStack.empty()) {
601      DomTreeNodeBase<NodeT> *Node = WorkStack.back().first;
602      typename DomTreeNodeBase<NodeT>::iterator ChildIt =
603        WorkStack.back().second;
604
605      // If we visited all of the children of this node, "recurse" back up the
606      // stack setting the DFOutNum.
607      if (ChildIt == Node->end()) {
608        Node->DFSNumOut = DFSNum++;
609        WorkStack.pop_back();
610      } else {
611        // Otherwise, recursively visit this child.
612        DomTreeNodeBase<NodeT> *Child = *ChildIt;
613        ++WorkStack.back().second;
614
615        WorkStack.push_back(std::make_pair(Child, Child->begin()));
616        Child->DFSNumIn = DFSNum++;
617      }
618    }
619
620    SlowQueries = 0;
621    DFSInfoValid = true;
622  }
623
624  DomTreeNodeBase<NodeT> *getNodeForBlock(NodeT *BB) {
625    if (DomTreeNodeBase<NodeT> *Node = getNode(BB))
626      return Node;
627
628    // Haven't calculated this node yet?  Get or calculate the node for the
629    // immediate dominator.
630    NodeT *IDom = getIDom(BB);
631
632    assert(IDom || this->DomTreeNodes[NULL]);
633    DomTreeNodeBase<NodeT> *IDomNode = getNodeForBlock(IDom);
634
635    // Add a new tree node for this BasicBlock, and link it as a child of
636    // IDomNode
637    DomTreeNodeBase<NodeT> *C = new DomTreeNodeBase<NodeT>(BB, IDomNode);
638    return this->DomTreeNodes[BB] = IDomNode->addChild(C);
639  }
640
641  inline NodeT *getIDom(NodeT *BB) const {
642    return IDoms.lookup(BB);
643  }
644
645  inline void addRoot(NodeT* BB) {
646    this->Roots.push_back(BB);
647  }
648
649public:
650  /// recalculate - compute a dominator tree for the given function
651  template<class FT>
652  void recalculate(FT& F) {
653    typedef GraphTraits<FT*> TraitsTy;
654    reset();
655    this->Vertex.push_back(0);
656
657    if (!this->IsPostDominators) {
658      // Initialize root
659      NodeT *entry = TraitsTy::getEntryNode(&F);
660      this->Roots.push_back(entry);
661      this->IDoms[entry] = 0;
662      this->DomTreeNodes[entry] = 0;
663
664      Calculate<FT, NodeT*>(*this, F);
665    } else {
666      // Initialize the roots list
667      for (typename TraitsTy::nodes_iterator I = TraitsTy::nodes_begin(&F),
668                                        E = TraitsTy::nodes_end(&F); I != E; ++I) {
669        if (std::distance(TraitsTy::child_begin(I),
670                          TraitsTy::child_end(I)) == 0)
671          addRoot(I);
672
673        // Prepopulate maps so that we don't get iterator invalidation issues later.
674        this->IDoms[I] = 0;
675        this->DomTreeNodes[I] = 0;
676      }
677
678      Calculate<FT, Inverse<NodeT*> >(*this, F);
679    }
680  }
681};
682
683EXTERN_TEMPLATE_INSTANTIATION(class DominatorTreeBase<BasicBlock>);
684
685//===-------------------------------------
686/// DominatorTree Class - Concrete subclass of DominatorTreeBase that is used to
687/// compute a normal dominator tree.
688///
689class DominatorTree : public FunctionPass {
690public:
691  static char ID; // Pass ID, replacement for typeid
692  DominatorTreeBase<BasicBlock>* DT;
693
694  DominatorTree() : FunctionPass(ID) {
695    initializeDominatorTreePass(*PassRegistry::getPassRegistry());
696    DT = new DominatorTreeBase<BasicBlock>(false);
697  }
698
699  ~DominatorTree() {
700    delete DT;
701  }
702
703  DominatorTreeBase<BasicBlock>& getBase() { return *DT; }
704
705  /// getRoots - Return the root blocks of the current CFG.  This may include
706  /// multiple blocks if we are computing post dominators.  For forward
707  /// dominators, this will always be a single block (the entry node).
708  ///
709  inline const std::vector<BasicBlock*> &getRoots() const {
710    return DT->getRoots();
711  }
712
713  inline BasicBlock *getRoot() const {
714    return DT->getRoot();
715  }
716
717  inline DomTreeNode *getRootNode() const {
718    return DT->getRootNode();
719  }
720
721  /// compare - Return false if the other dominator tree matches this
722  /// dominator tree. Otherwise return true.
723  inline bool compare(DominatorTree &Other) const {
724    DomTreeNode *R = getRootNode();
725    DomTreeNode *OtherR = Other.getRootNode();
726
727    if (!R || !OtherR || R->getBlock() != OtherR->getBlock())
728      return true;
729
730    if (DT->compare(Other.getBase()))
731      return true;
732
733    return false;
734  }
735
736  virtual bool runOnFunction(Function &F);
737
738  virtual void verifyAnalysis() const;
739
740  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
741    AU.setPreservesAll();
742  }
743
744  inline bool dominates(const DomTreeNode* A, const DomTreeNode* B) const {
745    return DT->dominates(A, B);
746  }
747
748  inline bool dominates(const BasicBlock* A, const BasicBlock* B) const {
749    return DT->dominates(A, B);
750  }
751
752  // dominates - Return true if A dominates B. This performs the
753  // special checks necessary if A and B are in the same basic block.
754  bool dominates(const Instruction *A, const Instruction *B) const;
755
756  /// properlyDominates - Use this instead of dominates() to determine whether a
757  /// user of A can be hoisted above B.
758  bool properlyDominates(const Instruction *A, const Instruction *B) const {
759    return A != B && dominates(A, B);
760  }
761
762  bool properlyDominates(const DomTreeNode *A, const DomTreeNode *B) const {
763    return DT->properlyDominates(A, B);
764  }
765
766  bool properlyDominates(const BasicBlock *A, const BasicBlock *B) const {
767    return DT->properlyDominates(A, B);
768  }
769
770  /// findNearestCommonDominator - Find nearest common dominator basic block
771  /// for basic block A and B. If there is no such block then return NULL.
772  inline BasicBlock *findNearestCommonDominator(BasicBlock *A, BasicBlock *B) {
773    return DT->findNearestCommonDominator(A, B);
774  }
775
776  inline const BasicBlock *findNearestCommonDominator(const BasicBlock *A,
777                                                      const BasicBlock *B) {
778    return DT->findNearestCommonDominator(A, B);
779  }
780
781  inline DomTreeNode *operator[](BasicBlock *BB) const {
782    return DT->getNode(BB);
783  }
784
785  /// getNode - return the (Post)DominatorTree node for the specified basic
786  /// block.  This is the same as using operator[] on this class.
787  ///
788  inline DomTreeNode *getNode(BasicBlock *BB) const {
789    return DT->getNode(BB);
790  }
791
792  /// addNewBlock - Add a new node to the dominator tree information.  This
793  /// creates a new node as a child of DomBB dominator node,linking it into
794  /// the children list of the immediate dominator.
795  inline DomTreeNode *addNewBlock(BasicBlock *BB, BasicBlock *DomBB) {
796    return DT->addNewBlock(BB, DomBB);
797  }
798
799  /// changeImmediateDominator - This method is used to update the dominator
800  /// tree information when a node's immediate dominator changes.
801  ///
802  inline void changeImmediateDominator(BasicBlock *N, BasicBlock* NewIDom) {
803    DT->changeImmediateDominator(N, NewIDom);
804  }
805
806  inline void changeImmediateDominator(DomTreeNode *N, DomTreeNode* NewIDom) {
807    DT->changeImmediateDominator(N, NewIDom);
808  }
809
810  /// eraseNode - Removes a node from the dominator tree. Block must not
811  /// dominate any other blocks. Removes node from its immediate dominator's
812  /// children list. Deletes dominator node associated with basic block BB.
813  inline void eraseNode(BasicBlock *BB) {
814    DT->eraseNode(BB);
815  }
816
817  /// splitBlock - BB is split and now it has one successor. Update dominator
818  /// tree to reflect this change.
819  inline void splitBlock(BasicBlock* NewBB) {
820    DT->splitBlock(NewBB);
821  }
822
823  bool isReachableFromEntry(const BasicBlock* A) {
824    return DT->isReachableFromEntry(A);
825  }
826
827
828  virtual void releaseMemory() {
829    DT->releaseMemory();
830  }
831
832  virtual void print(raw_ostream &OS, const Module* M= 0) const;
833};
834
835//===-------------------------------------
836/// DominatorTree GraphTraits specialization so the DominatorTree can be
837/// iterable by generic graph iterators.
838///
839template <> struct GraphTraits<DomTreeNode*> {
840  typedef DomTreeNode NodeType;
841  typedef NodeType::iterator  ChildIteratorType;
842
843  static NodeType *getEntryNode(NodeType *N) {
844    return N;
845  }
846  static inline ChildIteratorType child_begin(NodeType *N) {
847    return N->begin();
848  }
849  static inline ChildIteratorType child_end(NodeType *N) {
850    return N->end();
851  }
852
853  typedef df_iterator<DomTreeNode*> nodes_iterator;
854
855  static nodes_iterator nodes_begin(DomTreeNode *N) {
856    return df_begin(getEntryNode(N));
857  }
858
859  static nodes_iterator nodes_end(DomTreeNode *N) {
860    return df_end(getEntryNode(N));
861  }
862};
863
864template <> struct GraphTraits<DominatorTree*>
865  : public GraphTraits<DomTreeNode*> {
866  static NodeType *getEntryNode(DominatorTree *DT) {
867    return DT->getRootNode();
868  }
869
870  static nodes_iterator nodes_begin(DominatorTree *N) {
871    return df_begin(getEntryNode(N));
872  }
873
874  static nodes_iterator nodes_end(DominatorTree *N) {
875    return df_end(getEntryNode(N));
876  }
877};
878
879
880} // End llvm namespace
881
882#endif
883