Dominators.h revision b5ef06c5090dbc5552dbb132ee86013d4d32872e
1//===- llvm/Analysis/Dominators.h - Dominator Info Calculation --*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the following classes:
11//  1. DominatorTree: Represent dominators as an explicit tree structure.
12//  2. ETForest: Efficient data structure for dominance comparisons and
13//     nearest-common-ancestor queries.
14//  3. DominanceFrontier: Calculate and hold the dominance frontier for a
15//     function.
16//
17//  These data structures are listed in increasing order of complexity.  It
18//  takes longer to calculate the dominator frontier, for example, than the
19//  DominatorTree mapping.
20//
21//===----------------------------------------------------------------------===//
22
23#ifndef LLVM_ANALYSIS_DOMINATORS_H
24#define LLVM_ANALYSIS_DOMINATORS_H
25
26#include "llvm/Analysis/ET-Forest.h"
27#include "llvm/Pass.h"
28#include <set>
29
30namespace llvm {
31
32class Instruction;
33
34template <typename GraphType> struct GraphTraits;
35
36//===----------------------------------------------------------------------===//
37/// DominatorBase - Base class that other, more interesting dominator analyses
38/// inherit from.
39///
40class DominatorBase : public FunctionPass {
41protected:
42  std::vector<BasicBlock*> Roots;
43  const bool IsPostDominators;
44  inline DominatorBase(intptr_t ID, bool isPostDom) :
45    FunctionPass(ID), Roots(), IsPostDominators(isPostDom) {}
46public:
47
48  /// getRoots -  Return the root blocks of the current CFG.  This may include
49  /// multiple blocks if we are computing post dominators.  For forward
50  /// dominators, this will always be a single block (the entry node).
51  ///
52  inline const std::vector<BasicBlock*> &getRoots() const { return Roots; }
53
54  /// isPostDominator - Returns true if analysis based of postdoms
55  ///
56  bool isPostDominator() const { return IsPostDominators; }
57};
58
59
60//===----------------------------------------------------------------------===//
61// DomTreeNode - Dominator Tree Node
62
63class DomTreeNode {
64  BasicBlock *TheBB;
65  DomTreeNode *IDom;
66  ETNode *ETN;
67  std::vector<DomTreeNode*> Children;
68public:
69  typedef std::vector<DomTreeNode*>::iterator iterator;
70  typedef std::vector<DomTreeNode*>::const_iterator const_iterator;
71
72  iterator begin()             { return Children.begin(); }
73  iterator end()               { return Children.end(); }
74  const_iterator begin() const { return Children.begin(); }
75  const_iterator end()   const { return Children.end(); }
76
77  inline BasicBlock *getBlock() const { return TheBB; }
78  inline DomTreeNode *getIDom() const { return IDom; }
79  inline ETNode *getETNode() const { return ETN; }
80  inline const std::vector<DomTreeNode*> &getChildren() const { return Children; }
81
82  inline DomTreeNode(BasicBlock *BB, DomTreeNode *iDom, ETNode *E)
83    : TheBB(BB), IDom(iDom), ETN(E) {
84    if (IDom)
85      ETN->setFather(IDom->getETNode());
86  }
87  inline DomTreeNode *addChild(DomTreeNode *C) { Children.push_back(C); return C; }
88  void setIDom(DomTreeNode *NewIDom);
89};
90
91//===----------------------------------------------------------------------===//
92/// DominatorTree - Calculate the immediate dominator tree for a function.
93///
94class DominatorTreeBase : public DominatorBase {
95
96protected:
97  void reset();
98  typedef std::map<BasicBlock*, DomTreeNode*> DomTreeNodeMapType;
99  DomTreeNodeMapType DomTreeNodes;
100  DomTreeNode *RootNode;
101
102  typedef std::map<BasicBlock*, ETNode*> ETMapType;
103  ETMapType ETNodes;
104
105  bool DFSInfoValid;
106  unsigned int SlowQueries;
107  // Information record used during immediate dominators computation.
108  struct InfoRec {
109    unsigned Semi;
110    unsigned Size;
111    BasicBlock *Label, *Parent, *Child, *Ancestor;
112
113    std::vector<BasicBlock*> Bucket;
114
115    InfoRec() : Semi(0), Size(0), Label(0), Parent(0), Child(0), Ancestor(0){}
116  };
117
118  std::map<BasicBlock*, BasicBlock*> IDoms;
119
120  // Vertex - Map the DFS number to the BasicBlock*
121  std::vector<BasicBlock*> Vertex;
122
123  // Info - Collection of information used during the computation of idoms.
124  std::map<BasicBlock*, InfoRec> Info;
125
126  public:
127  DominatorTreeBase(intptr_t ID, bool isPostDom)
128    : DominatorBase(ID, isPostDom), DFSInfoValid(false), SlowQueries(0) {}
129  ~DominatorTreeBase() { reset(); }
130
131  virtual void releaseMemory() { reset(); }
132
133  /// getNode - return the (Post)DominatorTree node for the specified basic
134  /// block.  This is the same as using operator[] on this class.
135  ///
136  inline DomTreeNode *getNode(BasicBlock *BB) const {
137    DomTreeNodeMapType::const_iterator i = DomTreeNodes.find(BB);
138    return (i != DomTreeNodes.end()) ? i->second : 0;
139  }
140
141  inline DomTreeNode *operator[](BasicBlock *BB) const {
142    return getNode(BB);
143  }
144
145  /// getIDomBlock - return basic block BB's immediate dominator basic block.
146  ///
147  BasicBlock *getIDomBlock(BasicBlock *BB) {
148    DomTreeNode *N = getNode(BB);
149    assert (N && "Missing dominator tree node");
150    DomTreeNode *I = N->getIDom();
151    assert (N && "Missing immediate dominator");
152    return I->getBlock();
153  }
154
155  /// getRootNode - This returns the entry node for the CFG of the function.  If
156  /// this tree represents the post-dominance relations for a function, however,
157  /// this root may be a node with the block == NULL.  This is the case when
158  /// there are multiple exit nodes from a particular function.  Consumers of
159  /// post-dominance information must be capable of dealing with this
160  /// possibility.
161  ///
162  DomTreeNode *getRootNode() { return RootNode; }
163  const DomTreeNode *getRootNode() const { return RootNode; }
164
165  /// properlyDominates - Returns true iff this dominates N and this != N.
166  /// Note that this is not a constant time operation!
167  ///
168  bool properlyDominates(const DomTreeNode *A, DomTreeNode *B) const {
169    if (A == 0 || B == 0) return false;
170    return dominatedBySlowTreeWalk(A, B);
171  }
172
173  inline bool properlyDominates(BasicBlock *A, BasicBlock *B) {
174    return properlyDominates(getNode(A), getNode(B));
175  }
176
177  bool dominatedBySlowTreeWalk(const DomTreeNode *A,
178                               const DomTreeNode *B) const {
179    const DomTreeNode *IDom;
180    if (A == 0 || B == 0) return false;
181    while ((IDom = B->getIDom()) != 0 && IDom != A)
182      B = IDom;   // Walk up the tree
183    return IDom != 0;
184  }
185
186  void updateDFSNumbers();
187
188  /// Return the nearest common dominator of A and B.
189  BasicBlock *nearestCommonDominator(BasicBlock *A, BasicBlock *B) const  {
190    ETNode *NodeA = getNode(A)->getETNode();
191    ETNode *NodeB = getNode(B)->getETNode();
192
193    ETNode *Common = NodeA->NCA(NodeB);
194    if (!Common)
195      return NULL;
196    return Common->getData<BasicBlock>();
197  }
198
199  /// isReachableFromEntry - Return true if A is dominated by the entry
200  /// block of the function containing it.
201  const bool isReachableFromEntry(BasicBlock* A);
202
203  /// dominates - Returns true iff this dominates N.  Note that this is not a
204  /// constant time operation!
205  ///
206  inline bool dominates(const DomTreeNode *A, DomTreeNode *B) {
207    if (B == A)
208      return true;  // A node trivially dominates itself.
209
210    if (A == 0 || B == 0)
211      return false;
212
213    ETNode *NodeA = A->getETNode();
214    ETNode *NodeB = B->getETNode();
215
216    if (DFSInfoValid)
217      return NodeB->DominatedBy(NodeA);
218
219    // If we end up with too many slow queries, just update the
220    // DFS numbers on the theory that we are going to keep querying.
221    SlowQueries++;
222    if (SlowQueries > 32) {
223      updateDFSNumbers();
224      return NodeB->DominatedBy(NodeA);
225    }
226    //return NodeB->DominatedBySlow(NodeA);
227    return dominatedBySlowTreeWalk(A, B);
228  }
229
230  inline bool dominates(BasicBlock *A, BasicBlock *B) {
231    if (A == B)
232      return true;
233
234    return dominates(getNode(A), getNode(B));
235  }
236
237  // dominates - Return true if A dominates B. This performs the
238  // special checks necessary if A and B are in the same basic block.
239  bool dominates(Instruction *A, Instruction *B);
240
241  //===--------------------------------------------------------------------===//
242  // API to update (Post)DominatorTree information based on modifications to
243  // the CFG...
244
245  /// addNewBlock - Add a new node to the dominator tree information.  This
246  /// creates a new node as a child of DomBB dominator node,linking it into
247  /// the children list of the immediate dominator.
248  DomTreeNode *addNewBlock(BasicBlock *BB, BasicBlock *DomBB) {
249    assert(getNode(BB) == 0 && "Block already in dominator tree!");
250    DomTreeNode *IDomNode = getNode(DomBB);
251    assert(IDomNode && "Not immediate dominator specified for block!");
252    DFSInfoValid = false;
253    ETNode *E = new ETNode(BB);
254    ETNodes[BB] = E;
255    return DomTreeNodes[BB] =
256      IDomNode->addChild(new DomTreeNode(BB, IDomNode, E));
257  }
258
259  /// changeImmediateDominator - This method is used to update the dominator
260  /// tree information when a node's immediate dominator changes.
261  ///
262  void changeImmediateDominator(DomTreeNode *N, DomTreeNode *NewIDom) {
263    assert(N && NewIDom && "Cannot change null node pointers!");
264    DFSInfoValid = false;
265    N->setIDom(NewIDom);
266  }
267
268  void changeImmediateDominator(BasicBlock *BB, BasicBlock *NewBB) {
269    changeImmediateDominator(getNode(BB), getNode(NewBB));
270  }
271
272  /// removeNode - Removes a node from the dominator tree.  Block must not
273  /// dominate any other blocks.  Invalidates any node pointing to removed
274  /// block.
275  void removeNode(BasicBlock *BB) {
276    assert(getNode(BB) && "Removing node that isn't in dominator tree.");
277    DomTreeNodes.erase(BB);
278  }
279
280  /// print - Convert to human readable form
281  ///
282  virtual void print(std::ostream &OS, const Module* = 0) const;
283  void print(std::ostream *OS, const Module* M = 0) const {
284    if (OS) print(*OS, M);
285  }
286  virtual void dump();
287};
288
289//===-------------------------------------
290/// DominatorTree Class - Concrete subclass of DominatorTreeBase that is used to
291/// compute a normal dominator tree.
292///
293class DominatorTree : public DominatorTreeBase {
294public:
295  static char ID; // Pass ID, replacement for typeid
296  DominatorTree() : DominatorTreeBase((intptr_t)&ID, false) {}
297
298  BasicBlock *getRoot() const {
299    assert(Roots.size() == 1 && "Should always have entry node!");
300    return Roots[0];
301  }
302
303  virtual bool runOnFunction(Function &F);
304
305  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
306    AU.setPreservesAll();
307  }
308private:
309  void calculate(Function& F);
310  DomTreeNode *getNodeForBlock(BasicBlock *BB);
311  unsigned DFSPass(BasicBlock *V, InfoRec &VInfo, unsigned N);
312  void Compress(BasicBlock *V);
313  BasicBlock *Eval(BasicBlock *v);
314  void Link(BasicBlock *V, BasicBlock *W, InfoRec &WInfo);
315  inline BasicBlock *getIDom(BasicBlock *BB) const {
316      std::map<BasicBlock*, BasicBlock*>::const_iterator I = IDoms.find(BB);
317      return I != IDoms.end() ? I->second : 0;
318    }
319};
320
321//===-------------------------------------
322/// DominatorTree GraphTraits specialization so the DominatorTree can be
323/// iterable by generic graph iterators.
324///
325template <> struct GraphTraits<DomTreeNode*> {
326  typedef DomTreeNode NodeType;
327  typedef NodeType::iterator  ChildIteratorType;
328
329  static NodeType *getEntryNode(NodeType *N) {
330    return N;
331  }
332  static inline ChildIteratorType child_begin(NodeType* N) {
333    return N->begin();
334  }
335  static inline ChildIteratorType child_end(NodeType* N) {
336    return N->end();
337  }
338};
339
340template <> struct GraphTraits<DominatorTree*>
341  : public GraphTraits<DomTreeNode*> {
342  static NodeType *getEntryNode(DominatorTree *DT) {
343    return DT->getRootNode();
344  }
345};
346
347
348//===-------------------------------------
349/// ET-Forest Class - Class used to construct forwards and backwards
350/// ET-Forests
351///
352class ETForestBase : public DominatorBase {
353public:
354  ETForestBase(intptr_t ID, bool isPostDom)
355    : DominatorBase(ID, isPostDom), Nodes(),
356      DFSInfoValid(false), SlowQueries(0) {}
357
358  virtual void releaseMemory() { reset(); }
359
360  typedef std::map<BasicBlock*, ETNode*> ETMapType;
361
362  // FIXME : There is no need to make this interface public.
363  // Fix predicate simplifier.
364  void updateDFSNumbers();
365
366  /// dominates - Return true if A dominates B.
367  ///
368  inline bool dominates(BasicBlock *A, BasicBlock *B) {
369    if (A == B)
370      return true;
371
372    ETNode *NodeA = getNode(A);
373    ETNode *NodeB = getNode(B);
374
375    if (DFSInfoValid)
376      return NodeB->DominatedBy(NodeA);
377    else {
378      // If we end up with too many slow queries, just update the
379      // DFS numbers on the theory that we are going to keep querying.
380      SlowQueries++;
381      if (SlowQueries > 32) {
382        updateDFSNumbers();
383        return NodeB->DominatedBy(NodeA);
384      }
385      return NodeB->DominatedBySlow(NodeA);
386    }
387  }
388
389  // dominates - Return true if A dominates B. This performs the
390  // special checks necessary if A and B are in the same basic block.
391  bool dominates(Instruction *A, Instruction *B);
392
393  /// properlyDominates - Return true if A dominates B and A != B.
394  ///
395  bool properlyDominates(BasicBlock *A, BasicBlock *B) {
396    return dominates(A, B) && A != B;
397  }
398
399  /// isReachableFromEntry - Return true if A is dominated by the entry
400  /// block of the function containing it.
401  const bool isReachableFromEntry(BasicBlock* A);
402
403  /// Return the nearest common dominator of A and B.
404  BasicBlock *nearestCommonDominator(BasicBlock *A, BasicBlock *B) const  {
405    ETNode *NodeA = getNode(A);
406    ETNode *NodeB = getNode(B);
407
408    ETNode *Common = NodeA->NCA(NodeB);
409    if (!Common)
410      return NULL;
411    return Common->getData<BasicBlock>();
412  }
413
414  /// Return the immediate dominator of A.
415  BasicBlock *getIDom(BasicBlock *A) const {
416    ETNode *NodeA = getNode(A);
417    if (!NodeA) return 0;
418    const ETNode *idom = NodeA->getFather();
419    return idom ? idom->getData<BasicBlock>() : 0;
420  }
421
422  void getETNodeChildren(BasicBlock *A, std::vector<BasicBlock*>& children) const {
423    ETNode *NodeA = getNode(A);
424    if (!NodeA) return;
425    const ETNode* son = NodeA->getSon();
426
427    if (!son) return;
428    children.push_back(son->getData<BasicBlock>());
429
430    const ETNode* brother = son->getBrother();
431    while (brother != son) {
432      children.push_back(brother->getData<BasicBlock>());
433      brother = brother->getBrother();
434    }
435  }
436
437  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
438    AU.setPreservesAll();
439    AU.addRequired<DominatorTree>();
440  }
441  //===--------------------------------------------------------------------===//
442  // API to update Forest information based on modifications
443  // to the CFG...
444
445  /// addNewBlock - Add a new block to the CFG, with the specified immediate
446  /// dominator.
447  ///
448  void addNewBlock(BasicBlock *BB, BasicBlock *IDom);
449
450  /// setImmediateDominator - Update the immediate dominator information to
451  /// change the current immediate dominator for the specified block
452  /// to another block.  This method requires that BB for NewIDom
453  /// already have an ETNode, otherwise just use addNewBlock.
454  ///
455  void setImmediateDominator(BasicBlock *BB, BasicBlock *NewIDom);
456  /// print - Convert to human readable form
457  ///
458  virtual void print(std::ostream &OS, const Module* = 0) const;
459  void print(std::ostream *OS, const Module* M = 0) const {
460    if (OS) print(*OS, M);
461  }
462  virtual void dump();
463protected:
464  /// getNode - return the (Post)DominatorTree node for the specified basic
465  /// block.  This is the same as using operator[] on this class.
466  ///
467  inline ETNode *getNode(BasicBlock *BB) const {
468    ETMapType::const_iterator i = Nodes.find(BB);
469    return (i != Nodes.end()) ? i->second : 0;
470  }
471
472  inline ETNode *operator[](BasicBlock *BB) const {
473    return getNode(BB);
474  }
475
476  void reset();
477  ETMapType Nodes;
478  bool DFSInfoValid;
479  unsigned int SlowQueries;
480
481};
482
483//==-------------------------------------
484/// ETForest Class - Concrete subclass of ETForestBase that is used to
485/// compute a forwards ET-Forest.
486
487class ETForest : public ETForestBase {
488public:
489  static char ID; // Pass identification, replacement for typeid
490
491  ETForest() : ETForestBase((intptr_t)&ID, false) {}
492
493  BasicBlock *getRoot() const {
494    assert(Roots.size() == 1 && "Should always have entry node!");
495    return Roots[0];
496  }
497
498  virtual bool runOnFunction(Function &F) {
499    reset();     // Reset from the last time we were run...
500    DominatorTree &DT = getAnalysis<DominatorTree>();
501    Roots = DT.getRoots();
502    calculate(DT);
503    return false;
504  }
505
506  void calculate(const DominatorTree &DT);
507  // FIXME : There is no need to make getNodeForBlock public. Fix
508  // predicate simplifier.
509  ETNode *getNodeForBlock(BasicBlock *BB);
510};
511
512//===----------------------------------------------------------------------===//
513/// DominanceFrontierBase - Common base class for computing forward and inverse
514/// dominance frontiers for a function.
515///
516class DominanceFrontierBase : public DominatorBase {
517public:
518  typedef std::set<BasicBlock*>             DomSetType;    // Dom set for a bb
519  typedef std::map<BasicBlock*, DomSetType> DomSetMapType; // Dom set map
520protected:
521  DomSetMapType Frontiers;
522public:
523  DominanceFrontierBase(intptr_t ID, bool isPostDom)
524    : DominatorBase(ID, isPostDom) {}
525
526  virtual void releaseMemory() { Frontiers.clear(); }
527
528  // Accessor interface:
529  typedef DomSetMapType::iterator iterator;
530  typedef DomSetMapType::const_iterator const_iterator;
531  iterator       begin()       { return Frontiers.begin(); }
532  const_iterator begin() const { return Frontiers.begin(); }
533  iterator       end()         { return Frontiers.end(); }
534  const_iterator end()   const { return Frontiers.end(); }
535  iterator       find(BasicBlock *B)       { return Frontiers.find(B); }
536  const_iterator find(BasicBlock *B) const { return Frontiers.find(B); }
537
538  void addBasicBlock(BasicBlock *BB, const DomSetType &frontier) {
539    assert(find(BB) == end() && "Block already in DominanceFrontier!");
540    Frontiers.insert(std::make_pair(BB, frontier));
541  }
542
543  void addToFrontier(iterator I, BasicBlock *Node) {
544    assert(I != end() && "BB is not in DominanceFrontier!");
545    I->second.insert(Node);
546  }
547
548  void removeFromFrontier(iterator I, BasicBlock *Node) {
549    assert(I != end() && "BB is not in DominanceFrontier!");
550    assert(I->second.count(Node) && "Node is not in DominanceFrontier of BB");
551    I->second.erase(Node);
552  }
553
554  /// print - Convert to human readable form
555  ///
556  virtual void print(std::ostream &OS, const Module* = 0) const;
557  void print(std::ostream *OS, const Module* M = 0) const {
558    if (OS) print(*OS, M);
559  }
560  virtual void dump();
561};
562
563
564//===-------------------------------------
565/// DominanceFrontier Class - Concrete subclass of DominanceFrontierBase that is
566/// used to compute a forward dominator frontiers.
567///
568class DominanceFrontier : public DominanceFrontierBase {
569public:
570  static char ID; // Pass ID, replacement for typeid
571  DominanceFrontier() :
572    DominanceFrontierBase((intptr_t)& ID, false) {}
573
574  BasicBlock *getRoot() const {
575    assert(Roots.size() == 1 && "Should always have entry node!");
576    return Roots[0];
577  }
578
579  virtual bool runOnFunction(Function &) {
580    Frontiers.clear();
581    DominatorTree &DT = getAnalysis<DominatorTree>();
582    Roots = DT.getRoots();
583    assert(Roots.size() == 1 && "Only one entry block for forward domfronts!");
584    calculate(DT, DT[Roots[0]]);
585    return false;
586  }
587
588  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
589    AU.setPreservesAll();
590    AU.addRequired<DominatorTree>();
591  }
592
593private:
594  const DomSetType &calculate(const DominatorTree &DT,
595                              const DomTreeNode *Node);
596};
597
598
599} // End llvm namespace
600
601#endif
602