Dominators.h revision bec7647f985d54d2be2100e3813b85267cf1fe49
1//===- llvm/Analysis/Dominators.h - Dominator Info Calculation --*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the following classes:
11//  1. DominatorTree: Represent dominators as an explicit tree structure.
12//  2. ETForest: Efficient data structure for dominance comparisons and
13//     nearest-common-ancestor queries.
14//  3. DominanceFrontier: Calculate and hold the dominance frontier for a
15//     function.
16//
17//  These data structures are listed in increasing order of complexity.  It
18//  takes longer to calculate the dominator frontier, for example, than the
19//  DominatorTree mapping.
20//
21//===----------------------------------------------------------------------===//
22
23#ifndef LLVM_ANALYSIS_DOMINATORS_H
24#define LLVM_ANALYSIS_DOMINATORS_H
25
26#include "llvm/Analysis/ET-Forest.h"
27#include "llvm/Pass.h"
28#include <set>
29
30namespace llvm {
31
32class Instruction;
33
34template <typename GraphType> struct GraphTraits;
35
36//===----------------------------------------------------------------------===//
37/// DominatorBase - Base class that other, more interesting dominator analyses
38/// inherit from.
39///
40class DominatorBase : public FunctionPass {
41protected:
42  std::vector<BasicBlock*> Roots;
43  const bool IsPostDominators;
44  inline DominatorBase(intptr_t ID, bool isPostDom) :
45    FunctionPass(ID), Roots(), IsPostDominators(isPostDom) {}
46public:
47
48  /// getRoots -  Return the root blocks of the current CFG.  This may include
49  /// multiple blocks if we are computing post dominators.  For forward
50  /// dominators, this will always be a single block (the entry node).
51  ///
52  inline const std::vector<BasicBlock*> &getRoots() const { return Roots; }
53
54  /// isPostDominator - Returns true if analysis based of postdoms
55  ///
56  bool isPostDominator() const { return IsPostDominators; }
57};
58
59//===----------------------------------------------------------------------===//
60/// DominatorTree - Calculate the immediate dominator tree for a function.
61///
62class DominatorTreeBase : public DominatorBase {
63public:
64  class DomTreeNode;
65protected:
66  std::map<BasicBlock*, DomTreeNode*> DomTreeNodes;
67  void reset();
68  typedef std::map<BasicBlock*, DomTreeNode*> DomTreeNodeMapType;
69
70  DomTreeNode *RootNode;
71
72  struct InfoRec {
73    unsigned Semi;
74    unsigned Size;
75    BasicBlock *Label, *Parent, *Child, *Ancestor;
76
77    std::vector<BasicBlock*> Bucket;
78
79    InfoRec() : Semi(0), Size(0), Label(0), Parent(0), Child(0), Ancestor(0){}
80  };
81
82  std::map<BasicBlock*, BasicBlock*> IDoms;
83
84  // Vertex - Map the DFS number to the BasicBlock*
85  std::vector<BasicBlock*> Vertex;
86
87  // Info - Collection of information used during the computation of idoms.
88  std::map<BasicBlock*, InfoRec> Info;
89
90public:
91  class DomTreeNode {
92    friend class DominatorTree;
93    friend struct PostDominatorTree;
94    friend class DominatorTreeBase;
95    BasicBlock *TheBB;
96    DomTreeNode *IDom;
97    std::vector<DomTreeNode*> Children;
98  public:
99    typedef std::vector<DomTreeNode*>::iterator iterator;
100    typedef std::vector<DomTreeNode*>::const_iterator const_iterator;
101
102    iterator begin()             { return Children.begin(); }
103    iterator end()               { return Children.end(); }
104    const_iterator begin() const { return Children.begin(); }
105    const_iterator end()   const { return Children.end(); }
106
107    inline BasicBlock *getBlock() const { return TheBB; }
108    inline DomTreeNode *getIDom() const { return IDom; }
109    inline const std::vector<DomTreeNode*> &getChildren() const { return Children; }
110
111    /// properlyDominates - Returns true iff this dominates N and this != N.
112    /// Note that this is not a constant time operation!
113    ///
114    bool properlyDominates(const DomTreeNode *N) const {
115      const DomTreeNode *IDom;
116      if (this == 0 || N == 0) return false;
117      while ((IDom = N->getIDom()) != 0 && IDom != this)
118        N = IDom;   // Walk up the tree
119      return IDom != 0;
120    }
121
122    /// dominates - Returns true iff this dominates N.  Note that this is not a
123    /// constant time operation!
124    ///
125    inline bool dominates(const DomTreeNode *N) const {
126      if (N == this) return true;  // A node trivially dominates itself.
127      return properlyDominates(N);
128    }
129
130  private:
131    inline DomTreeNode(BasicBlock *BB, DomTreeNode *iDom) : TheBB(BB), IDom(iDom) {}
132    inline DomTreeNode *addChild(DomTreeNode *C) { Children.push_back(C); return C; }
133
134    void setIDom(DomTreeNode *NewIDom);
135  };
136
137public:
138  DominatorTreeBase(intptr_t ID, bool isPostDom)
139    : DominatorBase(ID, isPostDom) {}
140  ~DominatorTreeBase() { reset(); }
141
142  virtual void releaseMemory() { reset(); }
143
144  /// getNode - return the (Post)DominatorTree node for the specified basic
145  /// block.  This is the same as using operator[] on this class.
146  ///
147  inline DomTreeNode *getNode(BasicBlock *BB) const {
148    DomTreeNodeMapType::const_iterator i = DomTreeNodes.find(BB);
149    return (i != DomTreeNodes.end()) ? i->second : 0;
150  }
151
152  inline DomTreeNode *operator[](BasicBlock *BB) const {
153    return getNode(BB);
154  }
155
156  /// getRootNode - This returns the entry node for the CFG of the function.  If
157  /// this tree represents the post-dominance relations for a function, however,
158  /// this root may be a node with the block == NULL.  This is the case when
159  /// there are multiple exit nodes from a particular function.  Consumers of
160  /// post-dominance information must be capable of dealing with this
161  /// possibility.
162  ///
163  DomTreeNode *getRootNode() { return RootNode; }
164  const DomTreeNode *getRootNode() const { return RootNode; }
165
166  //===--------------------------------------------------------------------===//
167  // API to update (Post)DominatorTree information based on modifications to
168  // the CFG...
169
170  /// createNewNode - Add a new node to the dominator tree information.  This
171  /// creates a new node as a child of IDomNode, linking it into the children
172  /// list of the immediate dominator.
173  ///
174  DomTreeNode *createNewNode(BasicBlock *BB, DomTreeNode *IDomNode) {
175    assert(getNode(BB) == 0 && "Block already in dominator tree!");
176    assert(IDomNode && "Not immediate dominator specified for block!");
177    return DomTreeNodes[BB] = IDomNode->addChild(new DomTreeNode(BB, IDomNode));
178  }
179
180  /// changeImmediateDominator - This method is used to update the dominator
181  /// tree information when a node's immediate dominator changes.
182  ///
183  void changeImmediateDominator(DomTreeNode *N, DomTreeNode *NewIDom) {
184    assert(N && NewIDom && "Cannot change null node pointers!");
185    N->setIDom(NewIDom);
186  }
187
188  /// removeNode - Removes a node from the dominator tree.  Block must not
189  /// dominate any other blocks.  Invalidates any node pointing to removed
190  /// block.
191  void removeNode(BasicBlock *BB) {
192    assert(getNode(BB) && "Removing node that isn't in dominator tree.");
193    DomTreeNodes.erase(BB);
194  }
195
196  /// print - Convert to human readable form
197  ///
198  virtual void print(std::ostream &OS, const Module* = 0) const;
199  void print(std::ostream *OS, const Module* M = 0) const {
200    if (OS) print(*OS, M);
201  }
202  virtual void dump();
203};
204
205//===-------------------------------------
206/// DominatorTree Class - Concrete subclass of DominatorTreeBase that is used to
207/// compute a normal dominator tree.
208///
209class DominatorTree : public DominatorTreeBase {
210public:
211  static char ID; // Pass ID, replacement for typeid
212  DominatorTree() : DominatorTreeBase((intptr_t)&ID, false) {}
213
214  BasicBlock *getRoot() const {
215    assert(Roots.size() == 1 && "Should always have entry node!");
216    return Roots[0];
217  }
218
219  virtual bool runOnFunction(Function &F);
220
221  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
222    AU.setPreservesAll();
223  }
224private:
225  void calculate(Function& F);
226  DomTreeNode *getNodeForBlock(BasicBlock *BB);
227  unsigned DFSPass(BasicBlock *V, InfoRec &VInfo, unsigned N);
228  void Compress(BasicBlock *V);
229  BasicBlock *Eval(BasicBlock *v);
230  void Link(BasicBlock *V, BasicBlock *W, InfoRec &WInfo);
231  inline BasicBlock *getIDom(BasicBlock *BB) const {
232      std::map<BasicBlock*, BasicBlock*>::const_iterator I = IDoms.find(BB);
233      return I != IDoms.end() ? I->second : 0;
234    }
235};
236
237//===-------------------------------------
238/// DominatorTree GraphTraits specialization so the DominatorTree can be
239/// iterable by generic graph iterators.
240///
241template <> struct GraphTraits<DominatorTree::DomTreeNode*> {
242  typedef DominatorTree::DomTreeNode NodeType;
243  typedef NodeType::iterator  ChildIteratorType;
244
245  static NodeType *getEntryNode(NodeType *N) {
246    return N;
247  }
248  static inline ChildIteratorType child_begin(NodeType* N) {
249    return N->begin();
250  }
251  static inline ChildIteratorType child_end(NodeType* N) {
252    return N->end();
253  }
254};
255
256template <> struct GraphTraits<DominatorTree*>
257  : public GraphTraits<DominatorTree::DomTreeNode*> {
258  static NodeType *getEntryNode(DominatorTree *DT) {
259    return DT->getRootNode();
260  }
261};
262
263
264//===-------------------------------------
265/// ET-Forest Class - Class used to construct forwards and backwards
266/// ET-Forests
267///
268class ETForestBase : public DominatorBase {
269public:
270  ETForestBase(intptr_t ID, bool isPostDom)
271    : DominatorBase(ID, isPostDom), Nodes(),
272      DFSInfoValid(false), SlowQueries(0) {}
273
274  virtual void releaseMemory() { reset(); }
275
276  typedef std::map<BasicBlock*, ETNode*> ETMapType;
277
278  void updateDFSNumbers();
279
280  /// dominates - Return true if A dominates B.
281  ///
282  inline bool dominates(BasicBlock *A, BasicBlock *B) {
283    if (A == B)
284      return true;
285
286    ETNode *NodeA = getNode(A);
287    ETNode *NodeB = getNode(B);
288
289    if (DFSInfoValid)
290      return NodeB->DominatedBy(NodeA);
291    else {
292      // If we end up with too many slow queries, just update the
293      // DFS numbers on the theory that we are going to keep querying.
294      SlowQueries++;
295      if (SlowQueries > 32) {
296        updateDFSNumbers();
297        return NodeB->DominatedBy(NodeA);
298      }
299      return NodeB->DominatedBySlow(NodeA);
300    }
301  }
302
303  // dominates - Return true if A dominates B. This performs the
304  // special checks necessary if A and B are in the same basic block.
305  bool dominates(Instruction *A, Instruction *B);
306
307  /// properlyDominates - Return true if A dominates B and A != B.
308  ///
309  bool properlyDominates(BasicBlock *A, BasicBlock *B) {
310    return dominates(A, B) && A != B;
311  }
312
313  /// isReachableFromEntry - Return true if A is dominated by the entry
314  /// block of the function containing it.
315  const bool isReachableFromEntry(BasicBlock* A);
316
317  /// Return the nearest common dominator of A and B.
318  BasicBlock *nearestCommonDominator(BasicBlock *A, BasicBlock *B) const  {
319    ETNode *NodeA = getNode(A);
320    ETNode *NodeB = getNode(B);
321
322    ETNode *Common = NodeA->NCA(NodeB);
323    if (!Common)
324      return NULL;
325    return Common->getData<BasicBlock>();
326  }
327
328  /// Return the immediate dominator of A.
329  BasicBlock *getIDom(BasicBlock *A) const {
330    ETNode *NodeA = getNode(A);
331    if (!NodeA) return 0;
332    const ETNode *idom = NodeA->getFather();
333    return idom ? idom->getData<BasicBlock>() : 0;
334  }
335
336  void getChildren(BasicBlock *A, std::vector<BasicBlock*>& children) const {
337    ETNode *NodeA = getNode(A);
338    if (!NodeA) return;
339    const ETNode* son = NodeA->getSon();
340
341    if (!son) return;
342    children.push_back(son->getData<BasicBlock>());
343
344    const ETNode* brother = son->getBrother();
345    while (brother != son) {
346      children.push_back(brother->getData<BasicBlock>());
347      brother = brother->getBrother();
348    }
349  }
350
351  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
352    AU.setPreservesAll();
353    AU.addRequired<DominatorTree>();
354  }
355  //===--------------------------------------------------------------------===//
356  // API to update Forest information based on modifications
357  // to the CFG...
358
359  /// addNewBlock - Add a new block to the CFG, with the specified immediate
360  /// dominator.
361  ///
362  void addNewBlock(BasicBlock *BB, BasicBlock *IDom);
363
364  /// setImmediateDominator - Update the immediate dominator information to
365  /// change the current immediate dominator for the specified block
366  /// to another block.  This method requires that BB for NewIDom
367  /// already have an ETNode, otherwise just use addNewBlock.
368  ///
369  void setImmediateDominator(BasicBlock *BB, BasicBlock *NewIDom);
370  /// print - Convert to human readable form
371  ///
372  virtual void print(std::ostream &OS, const Module* = 0) const;
373  void print(std::ostream *OS, const Module* M = 0) const {
374    if (OS) print(*OS, M);
375  }
376  virtual void dump();
377protected:
378  /// getNode - return the (Post)DominatorTree node for the specified basic
379  /// block.  This is the same as using operator[] on this class.
380  ///
381  inline ETNode *getNode(BasicBlock *BB) const {
382    ETMapType::const_iterator i = Nodes.find(BB);
383    return (i != Nodes.end()) ? i->second : 0;
384  }
385
386  inline ETNode *operator[](BasicBlock *BB) const {
387    return getNode(BB);
388  }
389
390  void reset();
391  ETMapType Nodes;
392  bool DFSInfoValid;
393  unsigned int SlowQueries;
394
395};
396
397//==-------------------------------------
398/// ETForest Class - Concrete subclass of ETForestBase that is used to
399/// compute a forwards ET-Forest.
400
401class ETForest : public ETForestBase {
402public:
403  static char ID; // Pass identification, replacement for typeid
404
405  ETForest() : ETForestBase((intptr_t)&ID, false) {}
406
407  BasicBlock *getRoot() const {
408    assert(Roots.size() == 1 && "Should always have entry node!");
409    return Roots[0];
410  }
411
412  virtual bool runOnFunction(Function &F) {
413    reset();     // Reset from the last time we were run...
414    DominatorTree &DT = getAnalysis<DominatorTree>();
415    Roots = DT.getRoots();
416    calculate(DT);
417    return false;
418  }
419
420  void calculate(const DominatorTree &DT);
421  ETNode *getNodeForBlock(BasicBlock *BB);
422};
423
424//===----------------------------------------------------------------------===//
425/// DominanceFrontierBase - Common base class for computing forward and inverse
426/// dominance frontiers for a function.
427///
428class DominanceFrontierBase : public DominatorBase {
429public:
430  typedef std::set<BasicBlock*>             DomSetType;    // Dom set for a bb
431  typedef std::map<BasicBlock*, DomSetType> DomSetMapType; // Dom set map
432protected:
433  DomSetMapType Frontiers;
434public:
435  DominanceFrontierBase(intptr_t ID, bool isPostDom)
436    : DominatorBase(ID, isPostDom) {}
437
438  virtual void releaseMemory() { Frontiers.clear(); }
439
440  // Accessor interface:
441  typedef DomSetMapType::iterator iterator;
442  typedef DomSetMapType::const_iterator const_iterator;
443  iterator       begin()       { return Frontiers.begin(); }
444  const_iterator begin() const { return Frontiers.begin(); }
445  iterator       end()         { return Frontiers.end(); }
446  const_iterator end()   const { return Frontiers.end(); }
447  iterator       find(BasicBlock *B)       { return Frontiers.find(B); }
448  const_iterator find(BasicBlock *B) const { return Frontiers.find(B); }
449
450  void addBasicBlock(BasicBlock *BB, const DomSetType &frontier) {
451    assert(find(BB) == end() && "Block already in DominanceFrontier!");
452    Frontiers.insert(std::make_pair(BB, frontier));
453  }
454
455  void addToFrontier(iterator I, BasicBlock *Node) {
456    assert(I != end() && "BB is not in DominanceFrontier!");
457    I->second.insert(Node);
458  }
459
460  void removeFromFrontier(iterator I, BasicBlock *Node) {
461    assert(I != end() && "BB is not in DominanceFrontier!");
462    assert(I->second.count(Node) && "Node is not in DominanceFrontier of BB");
463    I->second.erase(Node);
464  }
465
466  /// print - Convert to human readable form
467  ///
468  virtual void print(std::ostream &OS, const Module* = 0) const;
469  void print(std::ostream *OS, const Module* M = 0) const {
470    if (OS) print(*OS, M);
471  }
472  virtual void dump();
473};
474
475
476//===-------------------------------------
477/// DominanceFrontier Class - Concrete subclass of DominanceFrontierBase that is
478/// used to compute a forward dominator frontiers.
479///
480class DominanceFrontier : public DominanceFrontierBase {
481public:
482  static char ID; // Pass ID, replacement for typeid
483  DominanceFrontier() :
484    DominanceFrontierBase((intptr_t)& ID, false) {}
485
486  BasicBlock *getRoot() const {
487    assert(Roots.size() == 1 && "Should always have entry node!");
488    return Roots[0];
489  }
490
491  virtual bool runOnFunction(Function &) {
492    Frontiers.clear();
493    DominatorTree &DT = getAnalysis<DominatorTree>();
494    Roots = DT.getRoots();
495    assert(Roots.size() == 1 && "Only one entry block for forward domfronts!");
496    calculate(DT, DT[Roots[0]]);
497    return false;
498  }
499
500  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
501    AU.setPreservesAll();
502    AU.addRequired<DominatorTree>();
503  }
504private:
505  const DomSetType &calculate(const DominatorTree &DT,
506                              const DominatorTree::DomTreeNode *Node);
507};
508
509
510} // End llvm namespace
511
512#endif
513