Dominators.h revision c385ae6ff5d6a978f7a1317e0069853a0e5dca2b
1//===- llvm/Analysis/Dominators.h - Dominator Info Calculation --*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the following classes:
11//  1. DominatorTree: Represent dominators as an explicit tree structure.
12//  2. DominanceFrontier: Calculate and hold the dominance frontier for a
13//     function.
14//
15//  These data structures are listed in increasing order of complexity.  It
16//  takes longer to calculate the dominator frontier, for example, than the
17//  DominatorTree mapping.
18//
19//===----------------------------------------------------------------------===//
20
21#ifndef LLVM_ANALYSIS_DOMINATORS_H
22#define LLVM_ANALYSIS_DOMINATORS_H
23
24#include "llvm/Pass.h"
25#include <set>
26#include "llvm/ADT/DenseMap.h"
27
28namespace llvm {
29
30class Instruction;
31
32template <typename GraphType> struct GraphTraits;
33
34//===----------------------------------------------------------------------===//
35/// DominatorBase - Base class that other, more interesting dominator analyses
36/// inherit from.
37///
38class DominatorBase : public FunctionPass {
39protected:
40  std::vector<BasicBlock*> Roots;
41  const bool IsPostDominators;
42  inline DominatorBase(intptr_t ID, bool isPostDom) :
43    FunctionPass(ID), Roots(), IsPostDominators(isPostDom) {}
44public:
45
46  /// getRoots -  Return the root blocks of the current CFG.  This may include
47  /// multiple blocks if we are computing post dominators.  For forward
48  /// dominators, this will always be a single block (the entry node).
49  ///
50  inline const std::vector<BasicBlock*> &getRoots() const { return Roots; }
51
52  /// isPostDominator - Returns true if analysis based of postdoms
53  ///
54  bool isPostDominator() const { return IsPostDominators; }
55};
56
57
58//===----------------------------------------------------------------------===//
59// DomTreeNode - Dominator Tree Node
60class DominatorTreeBase;
61class PostDominatorTree;
62class DomTreeNode {
63  BasicBlock *TheBB;
64  DomTreeNode *IDom;
65  std::vector<DomTreeNode*> Children;
66  int DFSNumIn, DFSNumOut;
67
68  friend class DominatorTreeBase;
69  friend class PostDominatorTree;
70public:
71  typedef std::vector<DomTreeNode*>::iterator iterator;
72  typedef std::vector<DomTreeNode*>::const_iterator const_iterator;
73
74  iterator begin()             { return Children.begin(); }
75  iterator end()               { return Children.end(); }
76  const_iterator begin() const { return Children.begin(); }
77  const_iterator end()   const { return Children.end(); }
78
79  BasicBlock *getBlock() const { return TheBB; }
80  DomTreeNode *getIDom() const { return IDom; }
81  const std::vector<DomTreeNode*> &getChildren() const { return Children; }
82
83  DomTreeNode(BasicBlock *BB, DomTreeNode *iDom)
84    : TheBB(BB), IDom(iDom), DFSNumIn(-1), DFSNumOut(-1) { }
85  DomTreeNode *addChild(DomTreeNode *C) { Children.push_back(C); return C; }
86  void setIDom(DomTreeNode *NewIDom);
87
88
89  /// getDFSNumIn/getDFSNumOut - These are an internal implementation detail, do
90  /// not call them.
91  unsigned getDFSNumIn() const { return DFSNumIn; }
92  unsigned getDFSNumOut() const { return DFSNumOut; }
93private:
94  // Return true if this node is dominated by other. Use this only if DFS info
95  // is valid.
96  bool DominatedBy(const DomTreeNode *other) const {
97    return this->DFSNumIn >= other->DFSNumIn &&
98      this->DFSNumOut <= other->DFSNumOut;
99  }
100
101  /// assignDFSNumber - Assign In and Out numbers while walking dominator tree
102  /// in dfs order.
103  void assignDFSNumber(int num);
104};
105
106//===----------------------------------------------------------------------===//
107/// DominatorTree - Calculate the immediate dominator tree for a function.
108///
109class DominatorTreeBase : public DominatorBase {
110
111protected:
112  void reset();
113  typedef DenseMap<BasicBlock*, DomTreeNode*> DomTreeNodeMapType;
114  DomTreeNodeMapType DomTreeNodes;
115  DomTreeNode *RootNode;
116
117  bool DFSInfoValid;
118  unsigned int SlowQueries;
119  // Information record used during immediate dominators computation.
120  struct InfoRec {
121    unsigned Semi;
122    unsigned Size;
123    BasicBlock *Label, *Parent, *Child, *Ancestor;
124
125    std::vector<BasicBlock*> Bucket;
126
127    InfoRec() : Semi(0), Size(0), Label(0), Parent(0), Child(0), Ancestor(0) {}
128  };
129
130  DenseMap<BasicBlock*, BasicBlock*> IDoms;
131
132  // Vertex - Map the DFS number to the BasicBlock*
133  std::vector<BasicBlock*> Vertex;
134
135  // Info - Collection of information used during the computation of idoms.
136  DenseMap<BasicBlock*, InfoRec> Info;
137
138  void updateDFSNumbers();
139
140  public:
141  DominatorTreeBase(intptr_t ID, bool isPostDom)
142    : DominatorBase(ID, isPostDom), DFSInfoValid(false), SlowQueries(0) {}
143  ~DominatorTreeBase() { reset(); }
144
145  virtual void releaseMemory() { reset(); }
146
147  /// getNode - return the (Post)DominatorTree node for the specified basic
148  /// block.  This is the same as using operator[] on this class.
149  ///
150  inline DomTreeNode *getNode(BasicBlock *BB) const {
151    DomTreeNodeMapType::const_iterator I = DomTreeNodes.find(BB);
152    return I != DomTreeNodes.end() ? I->second : 0;
153  }
154
155  inline DomTreeNode *operator[](BasicBlock *BB) const {
156    return getNode(BB);
157  }
158
159  /// getRootNode - This returns the entry node for the CFG of the function.  If
160  /// this tree represents the post-dominance relations for a function, however,
161  /// this root may be a node with the block == NULL.  This is the case when
162  /// there are multiple exit nodes from a particular function.  Consumers of
163  /// post-dominance information must be capable of dealing with this
164  /// possibility.
165  ///
166  DomTreeNode *getRootNode() { return RootNode; }
167  const DomTreeNode *getRootNode() const { return RootNode; }
168
169  /// properlyDominates - Returns true iff this dominates N and this != N.
170  /// Note that this is not a constant time operation!
171  ///
172  bool properlyDominates(const DomTreeNode *A, DomTreeNode *B) const {
173    if (A == 0 || B == 0) return false;
174    return dominatedBySlowTreeWalk(A, B);
175  }
176
177  inline bool properlyDominates(BasicBlock *A, BasicBlock *B) {
178    return properlyDominates(getNode(A), getNode(B));
179  }
180
181  bool dominatedBySlowTreeWalk(const DomTreeNode *A,
182                               const DomTreeNode *B) const {
183    const DomTreeNode *IDom;
184    if (A == 0 || B == 0) return false;
185    while ((IDom = B->getIDom()) != 0 && IDom != A && IDom != B)
186      B = IDom;   // Walk up the tree
187    return IDom != 0;
188  }
189
190
191  /// isReachableFromEntry - Return true if A is dominated by the entry
192  /// block of the function containing it.
193  const bool isReachableFromEntry(BasicBlock* A);
194
195  /// dominates - Returns true iff A dominates B.  Note that this is not a
196  /// constant time operation!
197  ///
198  inline bool dominates(const DomTreeNode *A, DomTreeNode *B) {
199    if (B == A)
200      return true;  // A node trivially dominates itself.
201
202    if (A == 0 || B == 0)
203      return false;
204
205    if (DFSInfoValid)
206      return B->DominatedBy(A);
207
208    // If we end up with too many slow queries, just update the
209    // DFS numbers on the theory that we are going to keep querying.
210    SlowQueries++;
211    if (SlowQueries > 32) {
212      updateDFSNumbers();
213      return B->DominatedBy(A);
214    }
215
216    return dominatedBySlowTreeWalk(A, B);
217  }
218
219  inline bool dominates(BasicBlock *A, BasicBlock *B) {
220    if (A == B)
221      return true;
222
223    return dominates(getNode(A), getNode(B));
224  }
225
226  /// findNearestCommonDominator - Find nearest common dominator basic block
227  /// for basic block A and B. If there is no such block then return NULL.
228  BasicBlock *findNearestCommonDominator(BasicBlock *A, BasicBlock *B);
229
230  // dominates - Return true if A dominates B. This performs the
231  // special checks necessary if A and B are in the same basic block.
232  bool dominates(Instruction *A, Instruction *B);
233
234  //===--------------------------------------------------------------------===//
235  // API to update (Post)DominatorTree information based on modifications to
236  // the CFG...
237
238  /// addNewBlock - Add a new node to the dominator tree information.  This
239  /// creates a new node as a child of DomBB dominator node,linking it into
240  /// the children list of the immediate dominator.
241  DomTreeNode *addNewBlock(BasicBlock *BB, BasicBlock *DomBB) {
242    assert(getNode(BB) == 0 && "Block already in dominator tree!");
243    DomTreeNode *IDomNode = getNode(DomBB);
244    assert(IDomNode && "Not immediate dominator specified for block!");
245    DFSInfoValid = false;
246    return DomTreeNodes[BB] =
247      IDomNode->addChild(new DomTreeNode(BB, IDomNode));
248  }
249
250  /// changeImmediateDominator - This method is used to update the dominator
251  /// tree information when a node's immediate dominator changes.
252  ///
253  void changeImmediateDominator(DomTreeNode *N, DomTreeNode *NewIDom) {
254    assert(N && NewIDom && "Cannot change null node pointers!");
255    DFSInfoValid = false;
256    N->setIDom(NewIDom);
257  }
258
259  void changeImmediateDominator(BasicBlock *BB, BasicBlock *NewBB) {
260    changeImmediateDominator(getNode(BB), getNode(NewBB));
261  }
262
263  /// removeNode - Removes a node from the dominator tree.  Block must not
264  /// dominate any other blocks.  Invalidates any node pointing to removed
265  /// block.
266  void removeNode(BasicBlock *BB) {
267    assert(getNode(BB) && "Removing node that isn't in dominator tree.");
268    DomTreeNodes.erase(BB);
269  }
270
271  /// print - Convert to human readable form
272  ///
273  virtual void print(std::ostream &OS, const Module* = 0) const;
274  void print(std::ostream *OS, const Module* M = 0) const {
275    if (OS) print(*OS, M);
276  }
277  virtual void dump();
278};
279
280//===-------------------------------------
281/// DominatorTree Class - Concrete subclass of DominatorTreeBase that is used to
282/// compute a normal dominator tree.
283///
284class DominatorTree : public DominatorTreeBase {
285public:
286  static char ID; // Pass ID, replacement for typeid
287  DominatorTree() : DominatorTreeBase((intptr_t)&ID, false) {}
288
289  BasicBlock *getRoot() const {
290    assert(Roots.size() == 1 && "Should always have entry node!");
291    return Roots[0];
292  }
293
294  virtual bool runOnFunction(Function &F);
295
296  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
297    AU.setPreservesAll();
298  }
299
300  /// splitBlock
301  /// BB is split and now it has one successor. Update dominator tree to
302  /// reflect this change.
303  void splitBlock(BasicBlock *BB);
304private:
305  void calculate(Function& F);
306  DomTreeNode *getNodeForBlock(BasicBlock *BB);
307  unsigned DFSPass(BasicBlock *V, unsigned N);
308  void Compress(BasicBlock *V);
309  BasicBlock *Eval(BasicBlock *v);
310  void Link(BasicBlock *V, BasicBlock *W, InfoRec &WInfo);
311  inline BasicBlock *getIDom(BasicBlock *BB) const {
312    DenseMap<BasicBlock*, BasicBlock*>::const_iterator I = IDoms.find(BB);
313    return I != IDoms.end() ? I->second : 0;
314  }
315};
316
317//===-------------------------------------
318/// DominatorTree GraphTraits specialization so the DominatorTree can be
319/// iterable by generic graph iterators.
320///
321template <> struct GraphTraits<DomTreeNode*> {
322  typedef DomTreeNode NodeType;
323  typedef NodeType::iterator  ChildIteratorType;
324
325  static NodeType *getEntryNode(NodeType *N) {
326    return N;
327  }
328  static inline ChildIteratorType child_begin(NodeType* N) {
329    return N->begin();
330  }
331  static inline ChildIteratorType child_end(NodeType* N) {
332    return N->end();
333  }
334};
335
336template <> struct GraphTraits<DominatorTree*>
337  : public GraphTraits<DomTreeNode*> {
338  static NodeType *getEntryNode(DominatorTree *DT) {
339    return DT->getRootNode();
340  }
341};
342
343
344//===----------------------------------------------------------------------===//
345/// DominanceFrontierBase - Common base class for computing forward and inverse
346/// dominance frontiers for a function.
347///
348class DominanceFrontierBase : public DominatorBase {
349public:
350  typedef std::set<BasicBlock*>             DomSetType;    // Dom set for a bb
351  typedef std::map<BasicBlock*, DomSetType> DomSetMapType; // Dom set map
352protected:
353  DomSetMapType Frontiers;
354public:
355  DominanceFrontierBase(intptr_t ID, bool isPostDom)
356    : DominatorBase(ID, isPostDom) {}
357
358  virtual void releaseMemory() { Frontiers.clear(); }
359
360  // Accessor interface:
361  typedef DomSetMapType::iterator iterator;
362  typedef DomSetMapType::const_iterator const_iterator;
363  iterator       begin()       { return Frontiers.begin(); }
364  const_iterator begin() const { return Frontiers.begin(); }
365  iterator       end()         { return Frontiers.end(); }
366  const_iterator end()   const { return Frontiers.end(); }
367  iterator       find(BasicBlock *B)       { return Frontiers.find(B); }
368  const_iterator find(BasicBlock *B) const { return Frontiers.find(B); }
369
370  void addBasicBlock(BasicBlock *BB, const DomSetType &frontier) {
371    assert(find(BB) == end() && "Block already in DominanceFrontier!");
372    Frontiers.insert(std::make_pair(BB, frontier));
373  }
374
375  void addToFrontier(iterator I, BasicBlock *Node) {
376    assert(I != end() && "BB is not in DominanceFrontier!");
377    I->second.insert(Node);
378  }
379
380  void removeFromFrontier(iterator I, BasicBlock *Node) {
381    assert(I != end() && "BB is not in DominanceFrontier!");
382    assert(I->second.count(Node) && "Node is not in DominanceFrontier of BB");
383    I->second.erase(Node);
384  }
385
386  /// print - Convert to human readable form
387  ///
388  virtual void print(std::ostream &OS, const Module* = 0) const;
389  void print(std::ostream *OS, const Module* M = 0) const {
390    if (OS) print(*OS, M);
391  }
392  virtual void dump();
393};
394
395
396//===-------------------------------------
397/// DominanceFrontier Class - Concrete subclass of DominanceFrontierBase that is
398/// used to compute a forward dominator frontiers.
399///
400class DominanceFrontier : public DominanceFrontierBase {
401public:
402  static char ID; // Pass ID, replacement for typeid
403  DominanceFrontier() :
404    DominanceFrontierBase((intptr_t)& ID, false) {}
405
406  BasicBlock *getRoot() const {
407    assert(Roots.size() == 1 && "Should always have entry node!");
408    return Roots[0];
409  }
410
411  virtual bool runOnFunction(Function &) {
412    Frontiers.clear();
413    DominatorTree &DT = getAnalysis<DominatorTree>();
414    Roots = DT.getRoots();
415    assert(Roots.size() == 1 && "Only one entry block for forward domfronts!");
416    calculate(DT, DT[Roots[0]]);
417    return false;
418  }
419
420  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
421    AU.setPreservesAll();
422    AU.addRequired<DominatorTree>();
423  }
424
425  /// splitBlock - BB is split and now it has one successor. Update dominance
426  /// frontier to reflect this change.
427  void splitBlock(BasicBlock *BB);
428
429private:
430  const DomSetType &calculate(const DominatorTree &DT,
431                              const DomTreeNode *Node);
432};
433
434
435} // End llvm namespace
436
437#endif
438