Dominators.h revision d49b12041419709a0690667ce1e2b5e9b9a11610
1//===- llvm/Analysis/Dominators.h - Dominator Info Calculation --*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the following classes:
11//  1. ImmediateDominators: Calculates and holds a mapping between BasicBlocks
12//     and their immediate dominator.
13//  2. DominatorSet: Calculates the [reverse] dominator set for a function
14//  3. DominatorTree: Represent the ImmediateDominator as an explicit tree
15//     structure.
16//  4. DominanceFrontier: Calculate and hold the dominance frontier for a
17//     function.
18//
19//  These data structures are listed in increasing order of complexity.  It
20//  takes longer to calculate the dominator frontier, for example, than the
21//  ImmediateDominator mapping.
22//
23//===----------------------------------------------------------------------===//
24
25#ifndef LLVM_ANALYSIS_DOMINATORS_H
26#define LLVM_ANALYSIS_DOMINATORS_H
27
28#include "llvm/Pass.h"
29#include <set>
30
31namespace llvm {
32
33class Instruction;
34
35template <typename GraphType> struct GraphTraits;
36
37//===----------------------------------------------------------------------===//
38/// DominatorBase - Base class that other, more interesting dominator analyses
39/// inherit from.
40///
41class DominatorBase : public FunctionPass {
42protected:
43  std::vector<BasicBlock*> Roots;
44  const bool IsPostDominators;
45
46  inline DominatorBase(bool isPostDom) : Roots(), IsPostDominators(isPostDom) {}
47public:
48  /// getRoots -  Return the root blocks of the current CFG.  This may include
49  /// multiple blocks if we are computing post dominators.  For forward
50  /// dominators, this will always be a single block (the entry node).
51  ///
52  inline const std::vector<BasicBlock*> &getRoots() const { return Roots; }
53
54  /// isPostDominator - Returns true if analysis based of postdoms
55  ///
56  bool isPostDominator() const { return IsPostDominators; }
57};
58
59
60//===----------------------------------------------------------------------===//
61/// ImmediateDominators - Calculate the immediate dominator for each node in a
62/// function.
63///
64class ImmediateDominatorsBase : public DominatorBase {
65protected:
66  std::map<BasicBlock*, BasicBlock*> IDoms;
67public:
68  ImmediateDominatorsBase(bool isPostDom) : DominatorBase(isPostDom) {}
69
70  virtual void releaseMemory() { IDoms.clear(); }
71
72  // Accessor interface:
73  typedef std::map<BasicBlock*, BasicBlock*> IDomMapType;
74  typedef IDomMapType::const_iterator const_iterator;
75  inline const_iterator begin() const { return IDoms.begin(); }
76  inline const_iterator end()   const { return IDoms.end(); }
77  inline const_iterator find(BasicBlock* B) const { return IDoms.find(B);}
78
79  /// operator[] - Return the idom for the specified basic block.  The start
80  /// node returns null, because it does not have an immediate dominator.
81  ///
82  inline BasicBlock *operator[](BasicBlock *BB) const {
83    return get(BB);
84  }
85
86  /// get() - Synonym for operator[].
87  ///
88  inline BasicBlock *get(BasicBlock *BB) const {
89    std::map<BasicBlock*, BasicBlock*>::const_iterator I = IDoms.find(BB);
90    return I != IDoms.end() ? I->second : 0;
91  }
92
93  //===--------------------------------------------------------------------===//
94  // API to update Immediate(Post)Dominators information based on modifications
95  // to the CFG...
96
97  /// addNewBlock - Add a new block to the CFG, with the specified immediate
98  /// dominator.
99  ///
100  void addNewBlock(BasicBlock *BB, BasicBlock *IDom) {
101    assert(get(BB) == 0 && "BasicBlock already in idom info!");
102    IDoms[BB] = IDom;
103  }
104
105  /// setImmediateDominator - Update the immediate dominator information to
106  /// change the current immediate dominator for the specified block to another
107  /// block.  This method requires that BB already have an IDom, otherwise just
108  /// use addNewBlock.
109  ///
110  void setImmediateDominator(BasicBlock *BB, BasicBlock *NewIDom) {
111    assert(IDoms.find(BB) != IDoms.end() && "BB doesn't have idom yet!");
112    IDoms[BB] = NewIDom;
113  }
114
115  /// print - Convert to human readable form
116  ///
117  virtual void print(std::ostream &OS) const;
118};
119
120//===-------------------------------------
121/// ImmediateDominators Class - Concrete subclass of ImmediateDominatorsBase
122/// that is used to compute a normal immediate dominator set.
123///
124struct ImmediateDominators : public ImmediateDominatorsBase {
125  ImmediateDominators() : ImmediateDominatorsBase(false) {}
126
127  BasicBlock *getRoot() const {
128    assert(Roots.size() == 1 && "Should always have entry node!");
129    return Roots[0];
130  }
131
132  virtual bool runOnFunction(Function &F);
133
134  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
135    AU.setPreservesAll();
136  }
137
138private:
139  struct InfoRec {
140    unsigned Semi;
141    unsigned Size;
142    BasicBlock *Label, *Parent, *Child, *Ancestor;
143
144    std::vector<BasicBlock*> Bucket;
145
146    InfoRec() : Semi(0), Size(0), Label(0), Parent(0), Child(0), Ancestor(0){}
147  };
148
149  // Vertex - Map the DFS number to the BasicBlock*
150  std::vector<BasicBlock*> Vertex;
151
152  // Info - Collection of information used during the computation of idoms.
153  std::map<BasicBlock*, InfoRec> Info;
154
155  unsigned DFSPass(BasicBlock *V, InfoRec &VInfo, unsigned N);
156  void Compress(BasicBlock *V, InfoRec &VInfo);
157  BasicBlock *Eval(BasicBlock *v);
158  void Link(BasicBlock *V, BasicBlock *W, InfoRec &WInfo);
159};
160
161
162
163//===----------------------------------------------------------------------===//
164/// DominatorSet - Maintain a set<BasicBlock*> for every basic block in a
165/// function, that represents the blocks that dominate the block.  If the block
166/// is unreachable in this function, the set will be empty.  This cannot happen
167/// for reachable code, because every block dominates at least itself.
168///
169struct DominatorSetBase : public DominatorBase {
170  typedef std::set<BasicBlock*> DomSetType;    // Dom set for a bb
171  // Map of dom sets
172  typedef std::map<BasicBlock*, DomSetType> DomSetMapType;
173protected:
174  DomSetMapType Doms;
175public:
176  DominatorSetBase(bool isPostDom) : DominatorBase(isPostDom) {}
177
178  virtual void releaseMemory() { Doms.clear(); }
179
180  // Accessor interface:
181  typedef DomSetMapType::const_iterator const_iterator;
182  typedef DomSetMapType::iterator iterator;
183  inline const_iterator begin() const { return Doms.begin(); }
184  inline       iterator begin()       { return Doms.begin(); }
185  inline const_iterator end()   const { return Doms.end(); }
186  inline       iterator end()         { return Doms.end(); }
187  inline const_iterator find(BasicBlock* B) const { return Doms.find(B); }
188  inline       iterator find(BasicBlock* B)       { return Doms.find(B); }
189
190
191  /// getDominators - Return the set of basic blocks that dominate the specified
192  /// block.
193  ///
194  inline const DomSetType &getDominators(BasicBlock *BB) const {
195    const_iterator I = find(BB);
196    assert(I != end() && "BB not in function!");
197    return I->second;
198  }
199
200  /// isReachable - Return true if the specified basicblock is reachable.  If
201  /// the block is reachable, we have dominator set information for it.
202  ///
203  bool isReachable(BasicBlock *BB) const {
204    return !getDominators(BB).empty();
205  }
206
207  /// dominates - Return true if A dominates B.
208  ///
209  inline bool dominates(BasicBlock *A, BasicBlock *B) const {
210    return getDominators(B).count(A) != 0;
211  }
212
213  /// properlyDominates - Return true if A dominates B and A != B.
214  ///
215  bool properlyDominates(BasicBlock *A, BasicBlock *B) const {
216    return dominates(A, B) && A != B;
217  }
218
219  /// print - Convert to human readable form
220  ///
221  virtual void print(std::ostream &OS) const;
222
223  /// dominates - Return true if A dominates B.  This performs the special
224  /// checks necessary if A and B are in the same basic block.
225  ///
226  bool dominates(Instruction *A, Instruction *B) const;
227
228  //===--------------------------------------------------------------------===//
229  // API to update (Post)DominatorSet information based on modifications to
230  // the CFG...
231
232  /// addBasicBlock - Call to update the dominator set with information about a
233  /// new block that was inserted into the function.
234  ///
235  void addBasicBlock(BasicBlock *BB, const DomSetType &Dominators) {
236    assert(find(BB) == end() && "Block already in DominatorSet!");
237    Doms.insert(std::make_pair(BB, Dominators));
238  }
239
240  /// addDominator - If a new block is inserted into the CFG, then method may be
241  /// called to notify the blocks it dominates that it is in their set.
242  ///
243  void addDominator(BasicBlock *BB, BasicBlock *NewDominator) {
244    iterator I = find(BB);
245    assert(I != end() && "BB is not in DominatorSet!");
246    I->second.insert(NewDominator);
247  }
248};
249
250
251//===-------------------------------------
252/// DominatorSet Class - Concrete subclass of DominatorSetBase that is used to
253/// compute a normal dominator set.
254///
255struct DominatorSet : public DominatorSetBase {
256  DominatorSet() : DominatorSetBase(false) {}
257
258  virtual bool runOnFunction(Function &F);
259
260  BasicBlock *getRoot() const {
261    assert(Roots.size() == 1 && "Should always have entry node!");
262    return Roots[0];
263  }
264
265  /// getAnalysisUsage - This simply provides a dominator set
266  ///
267  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
268    AU.addRequired<ImmediateDominators>();
269    AU.setPreservesAll();
270  }
271};
272
273
274//===----------------------------------------------------------------------===//
275/// DominatorTree - Calculate the immediate dominator tree for a function.
276///
277struct DominatorTreeBase : public DominatorBase {
278  class Node;
279protected:
280  std::map<BasicBlock*, Node*> Nodes;
281  void reset();
282  typedef std::map<BasicBlock*, Node*> NodeMapType;
283
284  Node *RootNode;
285public:
286  class Node {
287    friend class DominatorTree;
288    friend class PostDominatorTree;
289    friend class DominatorTreeBase;
290    BasicBlock *TheBB;
291    Node *IDom;
292    std::vector<Node*> Children;
293  public:
294    typedef std::vector<Node*>::iterator iterator;
295    typedef std::vector<Node*>::const_iterator const_iterator;
296
297    iterator begin()             { return Children.begin(); }
298    iterator end()               { return Children.end(); }
299    const_iterator begin() const { return Children.begin(); }
300    const_iterator end()   const { return Children.end(); }
301
302    inline BasicBlock *getBlock() const { return TheBB; }
303    inline Node *getIDom() const { return IDom; }
304    inline const std::vector<Node*> &getChildren() const { return Children; }
305
306    /// dominates - Returns true iff this dominates N.  Note that this is not a
307    /// constant time operation!
308    ///
309    inline bool dominates(const Node *N) const {
310      const Node *IDom;
311      while ((IDom = N->getIDom()) != 0 && IDom != this)
312      N = IDom;   // Walk up the tree
313      return IDom != 0;
314    }
315
316  private:
317    inline Node(BasicBlock *BB, Node *iDom) : TheBB(BB), IDom(iDom) {}
318    inline Node *addChild(Node *C) { Children.push_back(C); return C; }
319
320    void setIDom(Node *NewIDom);
321  };
322
323public:
324  DominatorTreeBase(bool isPostDom) : DominatorBase(isPostDom) {}
325  ~DominatorTreeBase() { reset(); }
326
327  virtual void releaseMemory() { reset(); }
328
329  /// getNode - return the (Post)DominatorTree node for the specified basic
330  /// block.  This is the same as using operator[] on this class.
331  ///
332  inline Node *getNode(BasicBlock *BB) const {
333    NodeMapType::const_iterator i = Nodes.find(BB);
334    return (i != Nodes.end()) ? i->second : 0;
335  }
336
337  inline Node *operator[](BasicBlock *BB) const {
338    return getNode(BB);
339  }
340
341  /// getRootNode - This returns the entry node for the CFG of the function.  If
342  /// this tree represents the post-dominance relations for a function, however,
343  /// this root may be a node with the block == NULL.  This is the case when
344  /// there are multiple exit nodes from a particular function.  Consumers of
345  /// post-dominance information must be capable of dealing with this
346  /// possibility.
347  ///
348  Node *getRootNode() { return RootNode; }
349  const Node *getRootNode() const { return RootNode; }
350
351  //===--------------------------------------------------------------------===//
352  // API to update (Post)DominatorTree information based on modifications to
353  // the CFG...
354
355  /// createNewNode - Add a new node to the dominator tree information.  This
356  /// creates a new node as a child of IDomNode, linking it into the children
357  /// list of the immediate dominator.
358  ///
359  Node *createNewNode(BasicBlock *BB, Node *IDomNode) {
360    assert(getNode(BB) == 0 && "Block already in dominator tree!");
361    assert(IDomNode && "Not immediate dominator specified for block!");
362    return Nodes[BB] = IDomNode->addChild(new Node(BB, IDomNode));
363  }
364
365  /// changeImmediateDominator - This method is used to update the dominator
366  /// tree information when a node's immediate dominator changes.
367  ///
368  void changeImmediateDominator(Node *N, Node *NewIDom) {
369    assert(N && NewIDom && "Cannot change null node pointers!");
370    N->setIDom(NewIDom);
371  }
372
373  /// print - Convert to human readable form
374  ///
375  virtual void print(std::ostream &OS) const;
376};
377
378
379//===-------------------------------------
380/// DominatorTree Class - Concrete subclass of DominatorTreeBase that is used to
381/// compute a normal dominator tree.
382///
383struct DominatorTree : public DominatorTreeBase {
384  DominatorTree() : DominatorTreeBase(false) {}
385
386  BasicBlock *getRoot() const {
387    assert(Roots.size() == 1 && "Should always have entry node!");
388    return Roots[0];
389  }
390
391  virtual bool runOnFunction(Function &F) {
392    reset();     // Reset from the last time we were run...
393    ImmediateDominators &ID = getAnalysis<ImmediateDominators>();
394    Roots = ID.getRoots();
395    calculate(ID);
396    return false;
397  }
398
399  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
400    AU.setPreservesAll();
401    AU.addRequired<ImmediateDominators>();
402  }
403private:
404  void calculate(const ImmediateDominators &ID);
405  Node *getNodeForBlock(BasicBlock *BB);
406};
407
408//===-------------------------------------
409/// DominatorTree GraphTraits specialization so the DominatorTree can be
410/// iterable by generic graph iterators.
411///
412template <> struct GraphTraits<DominatorTree::Node*> {
413  typedef DominatorTree::Node NodeType;
414  typedef NodeType::iterator  ChildIteratorType;
415
416  static NodeType *getEntryNode(NodeType *N) {
417    return N;
418  }
419  static inline ChildIteratorType child_begin(NodeType* N) {
420    return N->begin();
421  }
422  static inline ChildIteratorType child_end(NodeType* N) {
423    return N->end();
424  }
425};
426
427template <> struct GraphTraits<DominatorTree*>
428  : public GraphTraits<DominatorTree::Node*> {
429  static NodeType *getEntryNode(DominatorTree *DT) {
430    return DT->getRootNode();
431  }
432};
433
434//===----------------------------------------------------------------------===//
435/// DominanceFrontier - Calculate the dominance frontiers for a function.
436///
437struct DominanceFrontierBase : public DominatorBase {
438  typedef std::set<BasicBlock*>             DomSetType;    // Dom set for a bb
439  typedef std::map<BasicBlock*, DomSetType> DomSetMapType; // Dom set map
440protected:
441  DomSetMapType Frontiers;
442public:
443  DominanceFrontierBase(bool isPostDom) : DominatorBase(isPostDom) {}
444
445  virtual void releaseMemory() { Frontiers.clear(); }
446
447  // Accessor interface:
448  typedef DomSetMapType::iterator iterator;
449  typedef DomSetMapType::const_iterator const_iterator;
450  iterator       begin()       { return Frontiers.begin(); }
451  const_iterator begin() const { return Frontiers.begin(); }
452  iterator       end()         { return Frontiers.end(); }
453  const_iterator end()   const { return Frontiers.end(); }
454  iterator       find(BasicBlock *B)       { return Frontiers.find(B); }
455  const_iterator find(BasicBlock *B) const { return Frontiers.find(B); }
456
457  void addBasicBlock(BasicBlock *BB, const DomSetType &frontier) {
458    assert(find(BB) == end() && "Block already in DominanceFrontier!");
459    Frontiers.insert(std::make_pair(BB, frontier));
460  }
461
462  void addToFrontier(iterator I, BasicBlock *Node) {
463    assert(I != end() && "BB is not in DominanceFrontier!");
464    I->second.insert(Node);
465  }
466
467  void removeFromFrontier(iterator I, BasicBlock *Node) {
468    assert(I != end() && "BB is not in DominanceFrontier!");
469    assert(I->second.count(Node) && "Node is not in DominanceFrontier of BB");
470    I->second.erase(Node);
471  }
472
473  /// print - Convert to human readable form
474  ///
475  virtual void print(std::ostream &OS) const;
476};
477
478
479//===-------------------------------------
480/// DominatorTree Class - Concrete subclass of DominatorTreeBase that is used to
481/// compute a normal dominator tree.
482///
483struct DominanceFrontier : public DominanceFrontierBase {
484  DominanceFrontier() : DominanceFrontierBase(false) {}
485
486  BasicBlock *getRoot() const {
487    assert(Roots.size() == 1 && "Should always have entry node!");
488    return Roots[0];
489  }
490
491  virtual bool runOnFunction(Function &) {
492    Frontiers.clear();
493    DominatorTree &DT = getAnalysis<DominatorTree>();
494    Roots = DT.getRoots();
495    assert(Roots.size() == 1 && "Only one entry block for forward domfronts!");
496    calculate(DT, DT[Roots[0]]);
497    return false;
498  }
499
500  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
501    AU.setPreservesAll();
502    AU.addRequired<DominatorTree>();
503  }
504private:
505  const DomSetType &calculate(const DominatorTree &DT,
506                              const DominatorTree::Node *Node);
507};
508
509} // End llvm namespace
510
511#endif
512