LiveIntervalAnalysis.h revision 34e85d0307e3c17e5061622dccf8a20e5457b099
1//===-- LiveIntervalAnalysis.h - Live Interval Analysis ---------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the LiveInterval analysis pass.  Given some numbering of
11// each the machine instructions (in this implemention depth-first order) an
12// interval [i, j) is said to be a live interval for register v if there is no
13// instruction with number j' > j such that v is live at j' and there is no
14// instruction with number i' < i such that v is live at i'. In this
15// implementation intervals can have holes, i.e. an interval might look like
16// [1,20), [50,65), [1000,1001).
17//
18//===----------------------------------------------------------------------===//
19
20#ifndef LLVM_CODEGEN_LIVEINTERVAL_ANALYSIS_H
21#define LLVM_CODEGEN_LIVEINTERVAL_ANALYSIS_H
22
23#include "llvm/CodeGen/MachineBasicBlock.h"
24#include "llvm/CodeGen/MachineFunctionPass.h"
25#include "llvm/CodeGen/LiveInterval.h"
26#include "llvm/CodeGen/SlotIndexes.h"
27#include "llvm/ADT/BitVector.h"
28#include "llvm/ADT/DenseMap.h"
29#include "llvm/ADT/SmallPtrSet.h"
30#include "llvm/ADT/SmallVector.h"
31#include "llvm/Support/Allocator.h"
32#include <cmath>
33#include <iterator>
34
35namespace llvm {
36
37  class AliasAnalysis;
38  class LiveVariables;
39  class MachineLoopInfo;
40  class TargetRegisterInfo;
41  class MachineRegisterInfo;
42  class TargetInstrInfo;
43  class TargetRegisterClass;
44  class VirtRegMap;
45
46  class LiveIntervals : public MachineFunctionPass {
47    MachineFunction* mf_;
48    MachineRegisterInfo* mri_;
49    const TargetMachine* tm_;
50    const TargetRegisterInfo* tri_;
51    const TargetInstrInfo* tii_;
52    AliasAnalysis *aa_;
53    LiveVariables* lv_;
54    SlotIndexes* indexes_;
55
56    /// Special pool allocator for VNInfo's (LiveInterval val#).
57    ///
58    VNInfo::Allocator VNInfoAllocator;
59
60    typedef DenseMap<unsigned, LiveInterval*> Reg2IntervalMap;
61    Reg2IntervalMap r2iMap_;
62
63    /// allocatableRegs_ - A bit vector of allocatable registers.
64    BitVector allocatableRegs_;
65
66    /// RegMaskSlots - Sorted list of instructions with register mask operands.
67    /// Always use the 'r' slot, RegMasks are normal clobbers, not early
68    /// clobbers.
69    SmallVector<SlotIndex, 8> RegMaskSlots;
70
71    /// RegMaskBits - This vector is parallel to RegMaskSlots, it holds a
72    /// pointer to the corresponding register mask.  This pointer can be
73    /// recomputed as:
74    ///
75    ///   MI = Indexes->getInstructionFromIndex(RegMaskSlot[N]);
76    ///   unsigned OpNum = findRegMaskOperand(MI);
77    ///   RegMaskBits[N] = MI->getOperand(OpNum).getRegMask();
78    ///
79    /// This is kept in a separate vector partly because some standard
80    /// libraries don't support lower_bound() with mixed objects, partly to
81    /// improve locality when searching in RegMaskSlots.
82    /// Also see the comment in LiveInterval::find().
83    SmallVector<const uint32_t*, 8> RegMaskBits;
84
85    /// For each basic block number, keep (begin, size) pairs indexing into the
86    /// RegMaskSlots and RegMaskBits arrays.
87    /// Note that basic block numbers may not be layout contiguous, that's why
88    /// we can't just keep track of the first register mask in each basic
89    /// block.
90    SmallVector<std::pair<unsigned, unsigned>, 8> RegMaskBlocks;
91
92  public:
93    static char ID; // Pass identification, replacement for typeid
94    LiveIntervals() : MachineFunctionPass(ID) {
95      initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
96    }
97
98    // Calculate the spill weight to assign to a single instruction.
99    static float getSpillWeight(bool isDef, bool isUse, unsigned loopDepth);
100
101    typedef Reg2IntervalMap::iterator iterator;
102    typedef Reg2IntervalMap::const_iterator const_iterator;
103    const_iterator begin() const { return r2iMap_.begin(); }
104    const_iterator end() const { return r2iMap_.end(); }
105    iterator begin() { return r2iMap_.begin(); }
106    iterator end() { return r2iMap_.end(); }
107    unsigned getNumIntervals() const { return (unsigned)r2iMap_.size(); }
108
109    LiveInterval &getInterval(unsigned reg) {
110      Reg2IntervalMap::iterator I = r2iMap_.find(reg);
111      assert(I != r2iMap_.end() && "Interval does not exist for register");
112      return *I->second;
113    }
114
115    const LiveInterval &getInterval(unsigned reg) const {
116      Reg2IntervalMap::const_iterator I = r2iMap_.find(reg);
117      assert(I != r2iMap_.end() && "Interval does not exist for register");
118      return *I->second;
119    }
120
121    bool hasInterval(unsigned reg) const {
122      return r2iMap_.count(reg);
123    }
124
125    /// isAllocatable - is the physical register reg allocatable in the current
126    /// function?
127    bool isAllocatable(unsigned reg) const {
128      return allocatableRegs_.test(reg);
129    }
130
131    /// getScaledIntervalSize - get the size of an interval in "units,"
132    /// where every function is composed of one thousand units.  This
133    /// measure scales properly with empty index slots in the function.
134    double getScaledIntervalSize(LiveInterval& I) {
135      return (1000.0 * I.getSize()) / indexes_->getIndexesLength();
136    }
137
138    /// getFuncInstructionCount - Return the number of instructions in the
139    /// current function.
140    unsigned getFuncInstructionCount() {
141      return indexes_->getFunctionSize();
142    }
143
144    /// getApproximateInstructionCount - computes an estimate of the number
145    /// of instructions in a given LiveInterval.
146    unsigned getApproximateInstructionCount(LiveInterval& I) {
147      double IntervalPercentage = getScaledIntervalSize(I) / 1000.0;
148      return (unsigned)(IntervalPercentage * indexes_->getFunctionSize());
149    }
150
151    // Interval creation
152    LiveInterval &getOrCreateInterval(unsigned reg) {
153      Reg2IntervalMap::iterator I = r2iMap_.find(reg);
154      if (I == r2iMap_.end())
155        I = r2iMap_.insert(std::make_pair(reg, createInterval(reg))).first;
156      return *I->second;
157    }
158
159    /// dupInterval - Duplicate a live interval. The caller is responsible for
160    /// managing the allocated memory.
161    LiveInterval *dupInterval(LiveInterval *li);
162
163    /// addLiveRangeToEndOfBlock - Given a register and an instruction,
164    /// adds a live range from that instruction to the end of its MBB.
165    LiveRange addLiveRangeToEndOfBlock(unsigned reg,
166                                       MachineInstr* startInst);
167
168    /// shrinkToUses - After removing some uses of a register, shrink its live
169    /// range to just the remaining uses. This method does not compute reaching
170    /// defs for new uses, and it doesn't remove dead defs.
171    /// Dead PHIDef values are marked as unused.
172    /// New dead machine instructions are added to the dead vector.
173    /// Return true if the interval may have been separated into multiple
174    /// connected components.
175    bool shrinkToUses(LiveInterval *li,
176                      SmallVectorImpl<MachineInstr*> *dead = 0);
177
178    // Interval removal
179
180    void removeInterval(unsigned Reg) {
181      DenseMap<unsigned, LiveInterval*>::iterator I = r2iMap_.find(Reg);
182      delete I->second;
183      r2iMap_.erase(I);
184    }
185
186    SlotIndexes *getSlotIndexes() const {
187      return indexes_;
188    }
189
190    /// isNotInMIMap - returns true if the specified machine instr has been
191    /// removed or was never entered in the map.
192    bool isNotInMIMap(const MachineInstr* Instr) const {
193      return !indexes_->hasIndex(Instr);
194    }
195
196    /// Returns the base index of the given instruction.
197    SlotIndex getInstructionIndex(const MachineInstr *instr) const {
198      return indexes_->getInstructionIndex(instr);
199    }
200
201    /// Returns the instruction associated with the given index.
202    MachineInstr* getInstructionFromIndex(SlotIndex index) const {
203      return indexes_->getInstructionFromIndex(index);
204    }
205
206    /// Return the first index in the given basic block.
207    SlotIndex getMBBStartIdx(const MachineBasicBlock *mbb) const {
208      return indexes_->getMBBStartIdx(mbb);
209    }
210
211    /// Return the last index in the given basic block.
212    SlotIndex getMBBEndIdx(const MachineBasicBlock *mbb) const {
213      return indexes_->getMBBEndIdx(mbb);
214    }
215
216    bool isLiveInToMBB(const LiveInterval &li,
217                       const MachineBasicBlock *mbb) const {
218      return li.liveAt(getMBBStartIdx(mbb));
219    }
220
221    bool isLiveOutOfMBB(const LiveInterval &li,
222                        const MachineBasicBlock *mbb) const {
223      return li.liveAt(getMBBEndIdx(mbb).getPrevSlot());
224    }
225
226    MachineBasicBlock* getMBBFromIndex(SlotIndex index) const {
227      return indexes_->getMBBFromIndex(index);
228    }
229
230    SlotIndex InsertMachineInstrInMaps(MachineInstr *MI) {
231      return indexes_->insertMachineInstrInMaps(MI);
232    }
233
234    void RemoveMachineInstrFromMaps(MachineInstr *MI) {
235      indexes_->removeMachineInstrFromMaps(MI);
236    }
237
238    void ReplaceMachineInstrInMaps(MachineInstr *MI, MachineInstr *NewMI) {
239      indexes_->replaceMachineInstrInMaps(MI, NewMI);
240    }
241
242    bool findLiveInMBBs(SlotIndex Start, SlotIndex End,
243                        SmallVectorImpl<MachineBasicBlock*> &MBBs) const {
244      return indexes_->findLiveInMBBs(Start, End, MBBs);
245    }
246
247    VNInfo::Allocator& getVNInfoAllocator() { return VNInfoAllocator; }
248
249    virtual void getAnalysisUsage(AnalysisUsage &AU) const;
250    virtual void releaseMemory();
251
252    /// runOnMachineFunction - pass entry point
253    virtual bool runOnMachineFunction(MachineFunction&);
254
255    /// print - Implement the dump method.
256    virtual void print(raw_ostream &O, const Module* = 0) const;
257
258    /// isReMaterializable - Returns true if every definition of MI of every
259    /// val# of the specified interval is re-materializable. Also returns true
260    /// by reference if all of the defs are load instructions.
261    bool isReMaterializable(const LiveInterval &li,
262                            const SmallVectorImpl<LiveInterval*> *SpillIs,
263                            bool &isLoad);
264
265    /// intervalIsInOneMBB - If LI is confined to a single basic block, return
266    /// a pointer to that block.  If LI is live in to or out of any block,
267    /// return NULL.
268    MachineBasicBlock *intervalIsInOneMBB(const LiveInterval &LI) const;
269
270    /// addKillFlags - Add kill flags to any instruction that kills a virtual
271    /// register.
272    void addKillFlags();
273
274    /// moveInstr - Move MachineInstr mi to insertPt, updating the live
275    /// intervals of mi's operands to reflect the new position. The insertion
276    /// point can be above or below mi, but must be in the same basic block.
277    void moveInstr(MachineBasicBlock::iterator insertPt, MachineInstr* mi);
278
279    // Register mask functions.
280    //
281    // Machine instructions may use a register mask operand to indicate that a
282    // large number of registers are clobbered by the instruction.  This is
283    // typically used for calls.
284    //
285    // For compile time performance reasons, these clobbers are not recorded in
286    // the live intervals for individual physical registers.  Instead,
287    // LiveIntervalAnalysis maintains a sorted list of instructions with
288    // register mask operands.
289
290    /// getRegMaskSlots - Returns a sorted array of slot indices of all
291    /// instructions with register mask operands.
292    ArrayRef<SlotIndex> getRegMaskSlots() const { return RegMaskSlots; }
293
294    /// getRegMaskSlotsInBlock - Returns a sorted array of slot indices of all
295    /// instructions with register mask operands in the basic block numbered
296    /// MBBNum.
297    ArrayRef<SlotIndex> getRegMaskSlotsInBlock(unsigned MBBNum) const {
298      std::pair<unsigned, unsigned> P = RegMaskBlocks[MBBNum];
299      return getRegMaskSlots().slice(P.first, P.second);
300    }
301
302    /// getRegMaskBits() - Returns an array of register mask pointers
303    /// corresponding to getRegMaskSlots().
304    ArrayRef<const uint32_t*> getRegMaskBits() const { return RegMaskBits; }
305
306    /// getRegMaskBitsInBlock - Returns an array of mask pointers corresponding
307    /// to getRegMaskSlotsInBlock(MBBNum).
308    ArrayRef<const uint32_t*> getRegMaskBitsInBlock(unsigned MBBNum) const {
309      std::pair<unsigned, unsigned> P = RegMaskBlocks[MBBNum];
310      return getRegMaskBits().slice(P.first, P.second);
311    }
312
313    /// checkRegMaskInterference - Test if LI is live across any register mask
314    /// instructions, and compute a bit mask of physical registers that are not
315    /// clobbered by any of them.
316    ///
317    /// Returns false if LI doesn't cross any register mask instructions. In
318    /// that case, the bit vector is not filled in.
319    bool checkRegMaskInterference(LiveInterval &LI,
320                                  BitVector &UsableRegs);
321
322  private:
323    /// computeIntervals - Compute live intervals.
324    void computeIntervals();
325
326    /// handleRegisterDef - update intervals for a register def
327    /// (calls handlePhysicalRegisterDef and
328    /// handleVirtualRegisterDef)
329    void handleRegisterDef(MachineBasicBlock *MBB,
330                           MachineBasicBlock::iterator MI,
331                           SlotIndex MIIdx,
332                           MachineOperand& MO, unsigned MOIdx);
333
334    /// isPartialRedef - Return true if the specified def at the specific index
335    /// is partially re-defining the specified live interval. A common case of
336    /// this is a definition of the sub-register.
337    bool isPartialRedef(SlotIndex MIIdx, MachineOperand &MO,
338                        LiveInterval &interval);
339
340    /// handleVirtualRegisterDef - update intervals for a virtual
341    /// register def
342    void handleVirtualRegisterDef(MachineBasicBlock *MBB,
343                                  MachineBasicBlock::iterator MI,
344                                  SlotIndex MIIdx, MachineOperand& MO,
345                                  unsigned MOIdx,
346                                  LiveInterval& interval);
347
348    /// handlePhysicalRegisterDef - update intervals for a physical register
349    /// def.
350    void handlePhysicalRegisterDef(MachineBasicBlock* mbb,
351                                   MachineBasicBlock::iterator mi,
352                                   SlotIndex MIIdx, MachineOperand& MO,
353                                   LiveInterval &interval);
354
355    /// handleLiveInRegister - Create interval for a livein register.
356    void handleLiveInRegister(MachineBasicBlock* mbb,
357                              SlotIndex MIIdx,
358                              LiveInterval &interval, bool isAlias = false);
359
360    /// getReMatImplicitUse - If the remat definition MI has one (for now, we
361    /// only allow one) virtual register operand, then its uses are implicitly
362    /// using the register. Returns the virtual register.
363    unsigned getReMatImplicitUse(const LiveInterval &li,
364                                 MachineInstr *MI) const;
365
366    /// isValNoAvailableAt - Return true if the val# of the specified interval
367    /// which reaches the given instruction also reaches the specified use
368    /// index.
369    bool isValNoAvailableAt(const LiveInterval &li, MachineInstr *MI,
370                            SlotIndex UseIdx) const;
371
372    /// isReMaterializable - Returns true if the definition MI of the specified
373    /// val# of the specified interval is re-materializable. Also returns true
374    /// by reference if the def is a load.
375    bool isReMaterializable(const LiveInterval &li, const VNInfo *ValNo,
376                            MachineInstr *MI,
377                            const SmallVectorImpl<LiveInterval*> *SpillIs,
378                            bool &isLoad);
379
380    static LiveInterval* createInterval(unsigned Reg);
381
382    void printInstrs(raw_ostream &O) const;
383    void dumpInstrs() const;
384  };
385} // End llvm namespace
386
387#endif
388