ValueTracking.cpp revision a7235ea7245028a0723e8ab7fd011386b3900777
1173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner//===- ValueTracking.cpp - Walk computations to compute properties --------===//
2173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner//
3173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner//                     The LLVM Compiler Infrastructure
4173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner//
5173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner// This file is distributed under the University of Illinois Open Source
6173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner// License. See LICENSE.TXT for details.
7173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner//
8173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner//===----------------------------------------------------------------------===//
9173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner//
10173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner// This file contains routines that help analyze properties that chains of
11173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner// computations have.
12173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner//
13173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner//===----------------------------------------------------------------------===//
14173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
15173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner#include "llvm/Analysis/ValueTracking.h"
16173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner#include "llvm/Constants.h"
17173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner#include "llvm/Instructions.h"
180ff39b3feb10477c224138156941234f5fa46f58Evan Cheng#include "llvm/GlobalVariable.h"
19173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner#include "llvm/IntrinsicInst.h"
2076f600b205606a055ec35e7d3fd1a99602329d67Owen Anderson#include "llvm/LLVMContext.h"
21ca178908c8dc2303a1fb54a8a93bab0f0b964e11Dan Gohman#include "llvm/Operator.h"
220582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling#include "llvm/Target/TargetData.h"
23173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner#include "llvm/Support/GetElementPtrTypeIterator.h"
24173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner#include "llvm/Support/MathExtras.h"
2532a9e7a2654c4aab2e617fbe53140492b3d38066Chris Lattner#include <cstring>
26173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattnerusing namespace llvm;
27173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
28173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// ComputeMaskedBits - Determine which of the bits specified in Mask are
29173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// known to be either zero or one and return them in the KnownZero/KnownOne
30173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// bit sets.  This code only analyzes bits in Mask, in order to short-circuit
31173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// processing.
32173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// NOTE: we cannot consider 'undef' to be "IsZero" here.  The problem is that
33173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// we cannot optimize based on the assumption that it is zero without changing
34173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// it to be an explicit zero.  If we don't change it to zero, other code could
35173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// optimized based on the contradictory assumption that it is non-zero.
36173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// Because instcombine aggressively folds operations with undef args anyway,
37173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// this won't lose us code quality.
38173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattnervoid llvm::ComputeMaskedBits(Value *V, const APInt &Mask,
39173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                             APInt &KnownZero, APInt &KnownOne,
40173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                             TargetData *TD, unsigned Depth) {
419004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman  const unsigned MaxDepth = 6;
42173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  assert(V && "No Value?");
439004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman  assert(Depth <= MaxDepth && "Limit Search Depth");
4479abedb83a4dd7d3583c7ca6df8283079acc3ba5Chris Lattner  unsigned BitWidth = Mask.getBitWidth();
456de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman  assert((V->getType()->isIntOrIntVector() || isa<PointerType>(V->getType())) &&
46173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner         "Not integer or pointer type!");
476de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman  assert((!TD ||
486de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman          TD->getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) &&
496de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman         (!V->getType()->isIntOrIntVector() ||
506de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman          V->getType()->getScalarSizeInBits() == BitWidth) &&
51173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner         KnownZero.getBitWidth() == BitWidth &&
52173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner         KnownOne.getBitWidth() == BitWidth &&
53173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner         "V, Mask, KnownOne and KnownZero should have same BitWidth");
54173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
55173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
56173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // We know all of the bits for a constant!
57173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownOne = CI->getValue() & Mask;
58173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownZero = ~KnownOne & Mask;
59173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return;
60173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
616de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman  // Null and aggregate-zero are all-zeros.
626de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman  if (isa<ConstantPointerNull>(V) ||
636de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman      isa<ConstantAggregateZero>(V)) {
64173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownOne.clear();
65173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownZero = Mask;
66173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return;
67173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
686de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman  // Handle a constant vector by taking the intersection of the known bits of
696de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman  // each element.
706de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman  if (ConstantVector *CV = dyn_cast<ConstantVector>(V)) {
716de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman    KnownZero.set(); KnownOne.set();
726de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman    for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
736de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman      APInt KnownZero2(BitWidth, 0), KnownOne2(BitWidth, 0);
746de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman      ComputeMaskedBits(CV->getOperand(i), Mask, KnownZero2, KnownOne2,
756de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman                        TD, Depth);
766de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman      KnownZero &= KnownZero2;
776de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman      KnownOne &= KnownOne2;
786de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman    }
796de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman    return;
806de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman  }
81173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  // The address of an aligned GlobalValue has trailing zeros.
82173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
83173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    unsigned Align = GV->getAlignment();
84173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (Align == 0 && TD && GV->getType()->getElementType()->isSized())
85173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      Align = TD->getPrefTypeAlignment(GV->getType()->getElementType());
86173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (Align > 0)
87173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      KnownZero = Mask & APInt::getLowBitsSet(BitWidth,
88173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                                              CountTrailingZeros_32(Align));
89173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    else
90173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      KnownZero.clear();
91173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownOne.clear();
92173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return;
93173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
94173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
95173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  KnownZero.clear(); KnownOne.clear();   // Start out not knowing anything.
96173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
979004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman  if (Depth == MaxDepth || Mask == 0)
98173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return;  // Limit search depth.
99173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
100ca178908c8dc2303a1fb54a8a93bab0f0b964e11Dan Gohman  Operator *I = dyn_cast<Operator>(V);
101173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  if (!I) return;
102173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
103173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  APInt KnownZero2(KnownZero), KnownOne2(KnownOne);
104ca178908c8dc2303a1fb54a8a93bab0f0b964e11Dan Gohman  switch (I->getOpcode()) {
105173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  default: break;
106173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::And: {
107173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // If either the LHS or the RHS are Zero, the result is zero.
108173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, TD, Depth+1);
109173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    APInt Mask2(Mask & ~KnownZero);
110173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD,
111173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                      Depth+1);
112173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
113173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
114173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
115173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Output known-1 bits are only known if set in both the LHS & RHS.
116173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownOne &= KnownOne2;
117173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Output known-0 are known to be clear if zero in either the LHS | RHS.
118173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownZero |= KnownZero2;
119173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return;
120173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
121173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Or: {
122173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, TD, Depth+1);
123173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    APInt Mask2(Mask & ~KnownOne);
124173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD,
125173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                      Depth+1);
126173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
127173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
128173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
129173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Output known-0 bits are only known if clear in both the LHS & RHS.
130173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownZero &= KnownZero2;
131173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Output known-1 are known to be set if set in either the LHS | RHS.
132173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownOne |= KnownOne2;
133173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return;
134173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
135173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Xor: {
136173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, TD, Depth+1);
137173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    ComputeMaskedBits(I->getOperand(0), Mask, KnownZero2, KnownOne2, TD,
138173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                      Depth+1);
139173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
140173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
141173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
142173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Output known-0 bits are known if clear or set in both the LHS & RHS.
143173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
144173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Output known-1 are known to be set if set in only one of the LHS, RHS.
145173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
146173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownZero = KnownZeroOut;
147173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return;
148173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
149173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Mul: {
150173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    APInt Mask2 = APInt::getAllOnesValue(BitWidth);
151173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    ComputeMaskedBits(I->getOperand(1), Mask2, KnownZero, KnownOne, TD,Depth+1);
152173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD,
153173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                      Depth+1);
154173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
155173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
156173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
157173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // If low bits are zero in either operand, output low known-0 bits.
158173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Also compute a conserative estimate for high known-0 bits.
159173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // More trickiness is possible, but this is sufficient for the
160173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // interesting case of alignment computation.
161173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownOne.clear();
162173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    unsigned TrailZ = KnownZero.countTrailingOnes() +
163173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                      KnownZero2.countTrailingOnes();
164173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
165173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                               KnownZero2.countLeadingOnes(),
166173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                               BitWidth) - BitWidth;
167173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
168173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    TrailZ = std::min(TrailZ, BitWidth);
169173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    LeadZ = std::min(LeadZ, BitWidth);
170173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
171173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                APInt::getHighBitsSet(BitWidth, LeadZ);
172173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownZero &= Mask;
173173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return;
174173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
175173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::UDiv: {
176173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // For the purposes of computing leading zeros we can conservatively
177173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // treat a udiv as a logical right shift by the power of 2 known to
178173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // be less than the denominator.
179173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
180173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    ComputeMaskedBits(I->getOperand(0),
181173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                      AllOnes, KnownZero2, KnownOne2, TD, Depth+1);
182173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    unsigned LeadZ = KnownZero2.countLeadingOnes();
183173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
184173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownOne2.clear();
185173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownZero2.clear();
186173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    ComputeMaskedBits(I->getOperand(1),
187173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                      AllOnes, KnownZero2, KnownOne2, TD, Depth+1);
188173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
189173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (RHSUnknownLeadingOnes != BitWidth)
190173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      LeadZ = std::min(BitWidth,
191173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
192173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
193173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
194173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return;
195173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
196173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Select:
197173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    ComputeMaskedBits(I->getOperand(2), Mask, KnownZero, KnownOne, TD, Depth+1);
198173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    ComputeMaskedBits(I->getOperand(1), Mask, KnownZero2, KnownOne2, TD,
199173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                      Depth+1);
200173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
201173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
202173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
203173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Only known if known in both the LHS and RHS.
204173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownOne &= KnownOne2;
205173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownZero &= KnownZero2;
206173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return;
207173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::FPTrunc:
208173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::FPExt:
209173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::FPToUI:
210173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::FPToSI:
211173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::SIToFP:
212173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::UIToFP:
213173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return; // Can't work with floating point.
214173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::PtrToInt:
215173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::IntToPtr:
216173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // We can't handle these if we don't know the pointer size.
217173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (!TD) return;
218173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // FALL THROUGH and handle them the same as zext/trunc.
219173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::ZExt:
220173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Trunc: {
221173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Note that we handle pointer operands here because of inttoptr/ptrtoint
222173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // which fall through here.
223173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    const Type *SrcTy = I->getOperand(0)->getType();
22479abedb83a4dd7d3583c7ca6df8283079acc3ba5Chris Lattner    unsigned SrcBitWidth = TD ?
225173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      TD->getTypeSizeInBits(SrcTy) :
2266de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman      SrcTy->getScalarSizeInBits();
227173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    APInt MaskIn(Mask);
228173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    MaskIn.zextOrTrunc(SrcBitWidth);
229173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownZero.zextOrTrunc(SrcBitWidth);
230173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownOne.zextOrTrunc(SrcBitWidth);
231173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    ComputeMaskedBits(I->getOperand(0), MaskIn, KnownZero, KnownOne, TD,
232173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                      Depth+1);
233173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownZero.zextOrTrunc(BitWidth);
234173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownOne.zextOrTrunc(BitWidth);
235173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Any top bits are known to be zero.
236173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (BitWidth > SrcBitWidth)
237173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
238173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return;
239173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
240173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::BitCast: {
241173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    const Type *SrcTy = I->getOperand(0)->getType();
2420dabb0b177089202dae485d085ed15bd41ef29e6Chris Lattner    if ((SrcTy->isInteger() || isa<PointerType>(SrcTy)) &&
2430dabb0b177089202dae485d085ed15bd41ef29e6Chris Lattner        // TODO: For now, not handling conversions like:
2440dabb0b177089202dae485d085ed15bd41ef29e6Chris Lattner        // (bitcast i64 %x to <2 x i32>)
2450dabb0b177089202dae485d085ed15bd41ef29e6Chris Lattner        !isa<VectorType>(I->getType())) {
246173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      ComputeMaskedBits(I->getOperand(0), Mask, KnownZero, KnownOne, TD,
247173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                        Depth+1);
248173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      return;
249173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    }
250173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    break;
251173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
252173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::SExt: {
253173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Compute the bits in the result that are not present in the input.
254173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    const IntegerType *SrcTy = cast<IntegerType>(I->getOperand(0)->getType());
25579abedb83a4dd7d3583c7ca6df8283079acc3ba5Chris Lattner    unsigned SrcBitWidth = SrcTy->getBitWidth();
256173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
257173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    APInt MaskIn(Mask);
258173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    MaskIn.trunc(SrcBitWidth);
259173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownZero.trunc(SrcBitWidth);
260173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownOne.trunc(SrcBitWidth);
261173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    ComputeMaskedBits(I->getOperand(0), MaskIn, KnownZero, KnownOne, TD,
262173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                      Depth+1);
263173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
264173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownZero.zext(BitWidth);
265173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownOne.zext(BitWidth);
266173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
267173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // If the sign bit of the input is known set or clear, then we know the
268173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // top bits of the result.
269173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (KnownZero[SrcBitWidth-1])             // Input sign bit known zero
270173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
271173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    else if (KnownOne[SrcBitWidth-1])           // Input sign bit known set
272173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
273173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return;
274173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
275173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Shl:
276173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
277173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
278173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
279173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      APInt Mask2(Mask.lshr(ShiftAmt));
280173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, TD,
281173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                        Depth+1);
282173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
283173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      KnownZero <<= ShiftAmt;
284173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      KnownOne  <<= ShiftAmt;
285173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt); // low bits known 0
286173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      return;
287173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    }
288173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    break;
289173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::LShr:
290173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
291173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
292173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      // Compute the new bits that are at the top now.
293173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
294173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
295173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      // Unsigned shift right.
296173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      APInt Mask2(Mask.shl(ShiftAmt));
297173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero,KnownOne, TD,
298173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                        Depth+1);
299173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
300173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
301173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      KnownOne  = APIntOps::lshr(KnownOne, ShiftAmt);
302173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      // high bits known zero.
303173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      KnownZero |= APInt::getHighBitsSet(BitWidth, ShiftAmt);
304173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      return;
305173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    }
306173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    break;
307173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::AShr:
308173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // (ashr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
309173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
310173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      // Compute the new bits that are at the top now.
311173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
312173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
313173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      // Signed shift right.
314173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      APInt Mask2(Mask.shl(ShiftAmt));
315173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, TD,
316173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                        Depth+1);
317173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
318173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
319173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      KnownOne  = APIntOps::lshr(KnownOne, ShiftAmt);
320173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
321173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
322173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      if (KnownZero[BitWidth-ShiftAmt-1])    // New bits are known zero.
323173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        KnownZero |= HighBits;
324173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      else if (KnownOne[BitWidth-ShiftAmt-1])  // New bits are known one.
325173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        KnownOne |= HighBits;
326173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      return;
327173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    }
328173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    break;
329173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Sub: {
330173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (ConstantInt *CLHS = dyn_cast<ConstantInt>(I->getOperand(0))) {
331173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      // We know that the top bits of C-X are clear if X contains less bits
332173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      // than C (i.e. no wrap-around can happen).  For example, 20-X is
333173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      // positive if we can prove that X is >= 0 and < 16.
334173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      if (!CLHS->getValue().isNegative()) {
335173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros();
336173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // NLZ can't be BitWidth with no sign bit
337173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
338173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        ComputeMaskedBits(I->getOperand(1), MaskV, KnownZero2, KnownOne2,
339173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                          TD, Depth+1);
340173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
341173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // If all of the MaskV bits are known to be zero, then we know the
342173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // output top bits are zero, because we now know that the output is
343173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // from [0-C].
344173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        if ((KnownZero2 & MaskV) == MaskV) {
345173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          unsigned NLZ2 = CLHS->getValue().countLeadingZeros();
346173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          // Top bits known zero.
347173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
348173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        }
349173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      }
350173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    }
351173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
352173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  // fall through
353173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Add: {
3543925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman    // If one of the operands has trailing zeros, than the bits that the
3553925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman    // other operand has in those bit positions will be preserved in the
3563925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman    // result. For an add, this works with either operand. For a subtract,
3573925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman    // this only works if the known zeros are in the right operand.
3583925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman    APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
3593925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman    APInt Mask2 = APInt::getLowBitsSet(BitWidth,
3603925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman                                       BitWidth - Mask.countLeadingZeros());
3613925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman    ComputeMaskedBits(I->getOperand(0), Mask2, LHSKnownZero, LHSKnownOne, TD,
362173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                      Depth+1);
3633925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman    assert((LHSKnownZero & LHSKnownOne) == 0 &&
3643925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman           "Bits known to be one AND zero?");
3653925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman    unsigned LHSKnownZeroOut = LHSKnownZero.countTrailingOnes();
366173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
367173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    ComputeMaskedBits(I->getOperand(1), Mask2, KnownZero2, KnownOne2, TD,
368173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                      Depth+1);
369173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
3703925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman    unsigned RHSKnownZeroOut = KnownZero2.countTrailingOnes();
371173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
3723925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman    // Determine which operand has more trailing zeros, and use that
3733925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman    // many bits from the other operand.
3743925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman    if (LHSKnownZeroOut > RHSKnownZeroOut) {
375ca178908c8dc2303a1fb54a8a93bab0f0b964e11Dan Gohman      if (I->getOpcode() == Instruction::Add) {
3763925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman        APInt Mask = APInt::getLowBitsSet(BitWidth, LHSKnownZeroOut);
3773925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman        KnownZero |= KnownZero2 & Mask;
3783925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman        KnownOne  |= KnownOne2 & Mask;
3793925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman      } else {
3803925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman        // If the known zeros are in the left operand for a subtract,
3813925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman        // fall back to the minimum known zeros in both operands.
3823925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman        KnownZero |= APInt::getLowBitsSet(BitWidth,
3833925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman                                          std::min(LHSKnownZeroOut,
3843925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman                                                   RHSKnownZeroOut));
3853925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman      }
3863925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman    } else if (RHSKnownZeroOut >= LHSKnownZeroOut) {
3873925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman      APInt Mask = APInt::getLowBitsSet(BitWidth, RHSKnownZeroOut);
3883925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman      KnownZero |= LHSKnownZero & Mask;
3893925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman      KnownOne  |= LHSKnownOne & Mask;
3903925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman    }
391173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return;
392173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
393173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::SRem:
394173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
395173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      APInt RA = Rem->getValue();
396173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      if (RA.isPowerOf2() || (-RA).isPowerOf2()) {
397173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        APInt LowBits = RA.isStrictlyPositive() ? (RA - 1) : ~RA;
398173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
399173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD,
400173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                          Depth+1);
401173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
402a60832b0187642d01fd726dc766cd62587f6add0Dan Gohman        // If the sign bit of the first operand is zero, the sign bit of
403a60832b0187642d01fd726dc766cd62587f6add0Dan Gohman        // the result is zero. If the first operand has no one bits below
404a60832b0187642d01fd726dc766cd62587f6add0Dan Gohman        // the second operand's single 1 bit, its sign will be zero.
405173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
406173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          KnownZero2 |= ~LowBits;
407173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
408173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        KnownZero |= KnownZero2 & Mask;
409173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
410173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
411173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      }
412173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    }
413173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    break;
414173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::URem: {
415173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
416173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      APInt RA = Rem->getValue();
417173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      if (RA.isPowerOf2()) {
418173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        APInt LowBits = (RA - 1);
419173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        APInt Mask2 = LowBits & Mask;
420173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        KnownZero |= ~LowBits & Mask;
421173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, TD,
422173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                          Depth+1);
423173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
424173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        break;
425173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      }
426173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    }
427173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
428173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Since the result is less than or equal to either operand, any leading
429173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // zero bits in either operand must also exist in the result.
430173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
431173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    ComputeMaskedBits(I->getOperand(0), AllOnes, KnownZero, KnownOne,
432173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                      TD, Depth+1);
433173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    ComputeMaskedBits(I->getOperand(1), AllOnes, KnownZero2, KnownOne2,
434173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                      TD, Depth+1);
435173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
43679abedb83a4dd7d3583c7ca6df8283079acc3ba5Chris Lattner    unsigned Leaders = std::max(KnownZero.countLeadingOnes(),
437173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                                KnownZero2.countLeadingOnes());
438173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownOne.clear();
439173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
440173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    break;
441173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
442173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
443173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Alloca:
444173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Malloc: {
445173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    AllocationInst *AI = cast<AllocationInst>(V);
446173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    unsigned Align = AI->getAlignment();
447173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (Align == 0 && TD) {
448173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      if (isa<AllocaInst>(AI))
4490f2831c820151aa6f2cd6a8bd7b6b633b1035524Chris Lattner        Align = TD->getABITypeAlignment(AI->getType()->getElementType());
450173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      else if (isa<MallocInst>(AI)) {
451173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // Malloc returns maximally aligned memory.
452173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        Align = TD->getABITypeAlignment(AI->getType()->getElementType());
453173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        Align =
454173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          std::max(Align,
455173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                   (unsigned)TD->getABITypeAlignment(Type::DoubleTy));
456173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        Align =
457173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          std::max(Align,
458173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                   (unsigned)TD->getABITypeAlignment(Type::Int64Ty));
459173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      }
460173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    }
461173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
462173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (Align > 0)
463173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      KnownZero = Mask & APInt::getLowBitsSet(BitWidth,
464173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                                              CountTrailingZeros_32(Align));
465173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    break;
466173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
467173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::GetElementPtr: {
468173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Analyze all of the subscripts of this getelementptr instruction
469173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // to determine if we can prove known low zero bits.
470173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    APInt LocalMask = APInt::getAllOnesValue(BitWidth);
471173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0);
472173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    ComputeMaskedBits(I->getOperand(0), LocalMask,
473173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                      LocalKnownZero, LocalKnownOne, TD, Depth+1);
474173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    unsigned TrailZ = LocalKnownZero.countTrailingOnes();
475173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
476173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    gep_type_iterator GTI = gep_type_begin(I);
477173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
478173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      Value *Index = I->getOperand(i);
479173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
480173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // Handle struct member offset arithmetic.
481173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        if (!TD) return;
482173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        const StructLayout *SL = TD->getStructLayout(STy);
483173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
484173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        uint64_t Offset = SL->getElementOffset(Idx);
485173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        TrailZ = std::min(TrailZ,
486173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                          CountTrailingZeros_64(Offset));
487173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      } else {
488173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // Handle array index arithmetic.
489173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        const Type *IndexedTy = GTI.getIndexedType();
490173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        if (!IndexedTy->isSized()) return;
4916de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman        unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
492777d2306b36816a53bc1ae1244c0dc7d998ae691Duncan Sands        uint64_t TypeSize = TD ? TD->getTypeAllocSize(IndexedTy) : 1;
493173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        LocalMask = APInt::getAllOnesValue(GEPOpiBits);
494173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0);
495173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        ComputeMaskedBits(Index, LocalMask,
496173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                          LocalKnownZero, LocalKnownOne, TD, Depth+1);
497173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        TrailZ = std::min(TrailZ,
49879abedb83a4dd7d3583c7ca6df8283079acc3ba5Chris Lattner                          unsigned(CountTrailingZeros_64(TypeSize) +
49979abedb83a4dd7d3583c7ca6df8283079acc3ba5Chris Lattner                                   LocalKnownZero.countTrailingOnes()));
500173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      }
501173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    }
502173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
503173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) & Mask;
504173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    break;
505173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
506173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::PHI: {
507173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    PHINode *P = cast<PHINode>(I);
508173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Handle the case of a simple two-predecessor recurrence PHI.
509173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // There's a lot more that could theoretically be done here, but
510173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // this is sufficient to catch some interesting cases.
511173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (P->getNumIncomingValues() == 2) {
512173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      for (unsigned i = 0; i != 2; ++i) {
513173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        Value *L = P->getIncomingValue(i);
514173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        Value *R = P->getIncomingValue(!i);
515ca178908c8dc2303a1fb54a8a93bab0f0b964e11Dan Gohman        Operator *LU = dyn_cast<Operator>(L);
516173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        if (!LU)
517173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          continue;
518ca178908c8dc2303a1fb54a8a93bab0f0b964e11Dan Gohman        unsigned Opcode = LU->getOpcode();
519173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // Check for operations that have the property that if
520173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // both their operands have low zero bits, the result
521173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // will have low zero bits.
522173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        if (Opcode == Instruction::Add ||
523173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner            Opcode == Instruction::Sub ||
524173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner            Opcode == Instruction::And ||
525173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner            Opcode == Instruction::Or ||
526173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner            Opcode == Instruction::Mul) {
527173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          Value *LL = LU->getOperand(0);
528173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          Value *LR = LU->getOperand(1);
529173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          // Find a recurrence.
530173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          if (LL == I)
531173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner            L = LR;
532173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          else if (LR == I)
533173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner            L = LL;
534173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          else
535173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner            break;
536173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          // Ok, we have a PHI of the form L op= R. Check for low
537173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          // zero bits.
538173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          APInt Mask2 = APInt::getAllOnesValue(BitWidth);
539173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          ComputeMaskedBits(R, Mask2, KnownZero2, KnownOne2, TD, Depth+1);
540173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          Mask2 = APInt::getLowBitsSet(BitWidth,
541173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                                       KnownZero2.countTrailingOnes());
542c714f1309049b2fd9e4ab68c8a7b480c63a4be0cDavid Greene
543c714f1309049b2fd9e4ab68c8a7b480c63a4be0cDavid Greene          // We need to take the minimum number of known bits
544c714f1309049b2fd9e4ab68c8a7b480c63a4be0cDavid Greene          APInt KnownZero3(KnownZero), KnownOne3(KnownOne);
545c714f1309049b2fd9e4ab68c8a7b480c63a4be0cDavid Greene          ComputeMaskedBits(L, Mask2, KnownZero3, KnownOne3, TD, Depth+1);
546c714f1309049b2fd9e4ab68c8a7b480c63a4be0cDavid Greene
547173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          KnownZero = Mask &
548173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                      APInt::getLowBitsSet(BitWidth,
549c714f1309049b2fd9e4ab68c8a7b480c63a4be0cDavid Greene                                           std::min(KnownZero2.countTrailingOnes(),
550c714f1309049b2fd9e4ab68c8a7b480c63a4be0cDavid Greene                                                    KnownZero3.countTrailingOnes()));
551173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          break;
552173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        }
553173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      }
554173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    }
5559004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman
5569004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman    // Otherwise take the unions of the known bit sets of the operands,
5579004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman    // taking conservative care to avoid excessive recursion.
5589004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman    if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) {
5599004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman      KnownZero = APInt::getAllOnesValue(BitWidth);
5609004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman      KnownOne = APInt::getAllOnesValue(BitWidth);
5619004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman      for (unsigned i = 0, e = P->getNumIncomingValues(); i != e; ++i) {
5629004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman        // Skip direct self references.
5639004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman        if (P->getIncomingValue(i) == P) continue;
5649004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman
5659004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman        KnownZero2 = APInt(BitWidth, 0);
5669004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman        KnownOne2 = APInt(BitWidth, 0);
5679004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman        // Recurse, but cap the recursion to one level, because we don't
5689004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman        // want to waste time spinning around in loops.
5699004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman        ComputeMaskedBits(P->getIncomingValue(i), KnownZero | KnownOne,
5709004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman                          KnownZero2, KnownOne2, TD, MaxDepth-1);
5719004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman        KnownZero &= KnownZero2;
5729004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman        KnownOne &= KnownOne2;
5739004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman        // If all bits have been ruled out, there's no need to check
5749004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman        // more operands.
5759004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman        if (!KnownZero && !KnownOne)
5769004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman          break;
5779004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman      }
5789004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman    }
579173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    break;
580173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
581173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Call:
582173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
583173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      switch (II->getIntrinsicID()) {
584173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      default: break;
585173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      case Intrinsic::ctpop:
586173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      case Intrinsic::ctlz:
587173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      case Intrinsic::cttz: {
588173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        unsigned LowBits = Log2_32(BitWidth)+1;
589173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
590173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        break;
591173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      }
592173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      }
593173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    }
594173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    break;
595173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
596173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner}
597173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
598173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
599173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// this predicate to simplify operations downstream.  Mask is known to be zero
600173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// for bits that V cannot have.
601173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattnerbool llvm::MaskedValueIsZero(Value *V, const APInt &Mask,
602173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                             TargetData *TD, unsigned Depth) {
603173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0);
604173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD, Depth);
605173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
606173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  return (KnownZero & Mask) == Mask;
607173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner}
608173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
609173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
610173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
611173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// ComputeNumSignBits - Return the number of times the sign bit of the
612173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// register is replicated into the other bits.  We know that at least 1 bit
613173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// is always equal to the sign bit (itself), but other cases can give us
614173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// information.  For example, immediately after an "ashr X, 2", we know that
615173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// the top 3 bits are all equal to each other, so we return 3.
616173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner///
617173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// 'Op' must have a scalar integer type.
618173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner///
619173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattnerunsigned llvm::ComputeNumSignBits(Value *V, TargetData *TD, unsigned Depth) {
620bd5ce52740700bb482fb2b5a03bce781acbf2941Dan Gohman  assert((TD || V->getType()->isIntOrIntVector()) &&
621bd5ce52740700bb482fb2b5a03bce781acbf2941Dan Gohman         "ComputeNumSignBits requires a TargetData object to operate "
622bd5ce52740700bb482fb2b5a03bce781acbf2941Dan Gohman         "on non-integer values!");
6236de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman  const Type *Ty = V->getType();
624bd5ce52740700bb482fb2b5a03bce781acbf2941Dan Gohman  unsigned TyBits = TD ? TD->getTypeSizeInBits(V->getType()->getScalarType()) :
625bd5ce52740700bb482fb2b5a03bce781acbf2941Dan Gohman                         Ty->getScalarSizeInBits();
626173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  unsigned Tmp, Tmp2;
627173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  unsigned FirstAnswer = 1;
628173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
629d82e511aec0ea27ddd4c1e504b37f689796e965fChris Lattner  // Note that ConstantInt is handled by the general ComputeMaskedBits case
630d82e511aec0ea27ddd4c1e504b37f689796e965fChris Lattner  // below.
631d82e511aec0ea27ddd4c1e504b37f689796e965fChris Lattner
632173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  if (Depth == 6)
633173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return 1;  // Limit search depth.
634173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
635ca178908c8dc2303a1fb54a8a93bab0f0b964e11Dan Gohman  Operator *U = dyn_cast<Operator>(V);
636ca178908c8dc2303a1fb54a8a93bab0f0b964e11Dan Gohman  switch (Operator::getOpcode(V)) {
637173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  default: break;
638173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::SExt:
639173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    Tmp = TyBits-cast<IntegerType>(U->getOperand(0)->getType())->getBitWidth();
640173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return ComputeNumSignBits(U->getOperand(0), TD, Depth+1) + Tmp;
641173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
642173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::AShr:
643173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
644173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // ashr X, C   -> adds C sign bits.
645173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (ConstantInt *C = dyn_cast<ConstantInt>(U->getOperand(1))) {
646173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      Tmp += C->getZExtValue();
647173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      if (Tmp > TyBits) Tmp = TyBits;
648173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    }
649173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return Tmp;
650173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Shl:
651173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (ConstantInt *C = dyn_cast<ConstantInt>(U->getOperand(1))) {
652173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      // shl destroys sign bits.
653173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
654173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      if (C->getZExtValue() >= TyBits ||      // Bad shift.
655173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          C->getZExtValue() >= Tmp) break;    // Shifted all sign bits out.
656173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      return Tmp - C->getZExtValue();
657173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    }
658173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    break;
659173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::And:
660173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Or:
661173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Xor:    // NOT is handled here.
662173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Logical binary ops preserve the number of sign bits at the worst.
663173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
664173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (Tmp != 1) {
665173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
666173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      FirstAnswer = std::min(Tmp, Tmp2);
667173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      // We computed what we know about the sign bits as our first
668173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      // answer. Now proceed to the generic code that uses
669173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      // ComputeMaskedBits, and pick whichever answer is better.
670173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    }
671173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    break;
672173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
673173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Select:
674173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    Tmp = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
675173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (Tmp == 1) return 1;  // Early out.
676173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    Tmp2 = ComputeNumSignBits(U->getOperand(2), TD, Depth+1);
677173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return std::min(Tmp, Tmp2);
678173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
679173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Add:
680173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Add can have at most one carry bit.  Thus we know that the output
681173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // is, at worst, one more bit than the inputs.
682173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
683173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (Tmp == 1) return 1;  // Early out.
684173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
685173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Special case decrementing a value (ADD X, -1):
6860001e56f15215ae4bc5fffb82eec5c4828b888f0Dan Gohman    if (ConstantInt *CRHS = dyn_cast<ConstantInt>(U->getOperand(1)))
687173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      if (CRHS->isAllOnesValue()) {
688173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
689173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        APInt Mask = APInt::getAllOnesValue(TyBits);
690173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        ComputeMaskedBits(U->getOperand(0), Mask, KnownZero, KnownOne, TD,
691173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                          Depth+1);
692173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
693173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // If the input is known to be 0 or 1, the output is 0/-1, which is all
694173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // sign bits set.
695173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        if ((KnownZero | APInt(TyBits, 1)) == Mask)
696173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          return TyBits;
697173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
698173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // If we are subtracting one from a positive number, there is no carry
699173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // out of the result.
700173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        if (KnownZero.isNegative())
701173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          return Tmp;
702173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      }
703173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
704173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
705173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (Tmp2 == 1) return 1;
706173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      return std::min(Tmp, Tmp2)-1;
707173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    break;
708173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
709173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Sub:
710173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
711173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (Tmp2 == 1) return 1;
712173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
713173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Handle NEG.
714173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (ConstantInt *CLHS = dyn_cast<ConstantInt>(U->getOperand(0)))
715173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      if (CLHS->isNullValue()) {
716173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
717173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        APInt Mask = APInt::getAllOnesValue(TyBits);
718173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        ComputeMaskedBits(U->getOperand(1), Mask, KnownZero, KnownOne,
719173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                          TD, Depth+1);
720173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // If the input is known to be 0 or 1, the output is 0/-1, which is all
721173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // sign bits set.
722173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        if ((KnownZero | APInt(TyBits, 1)) == Mask)
723173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          return TyBits;
724173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
725173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // If the input is known to be positive (the sign bit is known clear),
726173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // the output of the NEG has the same number of sign bits as the input.
727173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        if (KnownZero.isNegative())
728173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          return Tmp2;
729173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
730173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // Otherwise, we treat this like a SUB.
731173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      }
732173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
733173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Sub can have at most one carry bit.  Thus we know that the output
734173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // is, at worst, one more bit than the inputs.
735173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
736173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (Tmp == 1) return 1;  // Early out.
737173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      return std::min(Tmp, Tmp2)-1;
738173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    break;
739173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Trunc:
740173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // FIXME: it's tricky to do anything useful for this, but it is an important
741173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // case for targets like X86.
742173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    break;
743173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
744173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
745173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  // Finally, if we can prove that the top bits of the result are 0's or 1's,
746173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  // use this information.
747173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
748173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  APInt Mask = APInt::getAllOnesValue(TyBits);
749173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD, Depth);
750173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
751173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  if (KnownZero.isNegative()) {        // sign bit is 0
752173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    Mask = KnownZero;
753173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  } else if (KnownOne.isNegative()) {  // sign bit is 1;
754173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    Mask = KnownOne;
755173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  } else {
756173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Nothing known.
757173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return FirstAnswer;
758173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
759173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
760173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
761173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  // the number of identical bits in the top of the input value.
762173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  Mask = ~Mask;
763173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  Mask <<= Mask.getBitWidth()-TyBits;
764173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  // Return # leading zeros.  We use 'min' here in case Val was zero before
765173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  // shifting.  We don't want to return '64' as for an i32 "0".
766173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  return std::max(FirstAnswer, std::min(TyBits, Mask.countLeadingZeros()));
767173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner}
768833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner
769833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner/// CannotBeNegativeZero - Return true if we can prove that the specified FP
770833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner/// value is never equal to -0.0.
771833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner///
772833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner/// NOTE: this function will need to be revisited when we support non-default
773833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner/// rounding modes!
774833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner///
775833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattnerbool llvm::CannotBeNegativeZero(const Value *V, unsigned Depth) {
776833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
777833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner    return !CFP->getValueAPF().isNegZero();
778833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner
779833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner  if (Depth == 6)
780833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner    return 1;  // Limit search depth.
781833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner
782ca178908c8dc2303a1fb54a8a93bab0f0b964e11Dan Gohman  const Operator *I = dyn_cast<Operator>(V);
783833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner  if (I == 0) return false;
784833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner
785833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner  // (add x, 0.0) is guaranteed to return +0.0, not -0.0.
786ae3a0be92e33bc716722aa600983fc1535acb122Dan Gohman  if (I->getOpcode() == Instruction::FAdd &&
787833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner      isa<ConstantFP>(I->getOperand(1)) &&
788833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner      cast<ConstantFP>(I->getOperand(1))->isNullValue())
789833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner    return true;
790833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner
791833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner  // sitofp and uitofp turn into +0.0 for zero.
792833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner  if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I))
793833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner    return true;
794833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner
795833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner  if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
796833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner    // sqrt(-0.0) = -0.0, no other negative results are possible.
797833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner    if (II->getIntrinsicID() == Intrinsic::sqrt)
798833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner      return CannotBeNegativeZero(II->getOperand(1), Depth+1);
799833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner
800833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner  if (const CallInst *CI = dyn_cast<CallInst>(I))
801833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner    if (const Function *F = CI->getCalledFunction()) {
802833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner      if (F->isDeclaration()) {
803f0443c1eb44d737d9bd78962932fc80f74c6113cDaniel Dunbar        // abs(x) != -0.0
804f0443c1eb44d737d9bd78962932fc80f74c6113cDaniel Dunbar        if (F->getName() == "abs") return true;
805f0443c1eb44d737d9bd78962932fc80f74c6113cDaniel Dunbar        // abs[lf](x) != -0.0
806f0443c1eb44d737d9bd78962932fc80f74c6113cDaniel Dunbar        if (F->getName() == "absf") return true;
807f0443c1eb44d737d9bd78962932fc80f74c6113cDaniel Dunbar        if (F->getName() == "absl") return true;
808833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner      }
809833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner    }
810833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner
811833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner  return false;
812833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner}
813833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner
814b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman// This is the recursive version of BuildSubAggregate. It takes a few different
815b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman// arguments. Idxs is the index within the nested struct From that we are
816b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman// looking at now (which is of type IndexedType). IdxSkip is the number of
817b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman// indices from Idxs that should be left out when inserting into the resulting
818b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman// struct. To is the result struct built so far, new insertvalue instructions
819b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman// build on that.
820b23d5adbc8230167e711070b9298985de4580f30Matthijs KooijmanValue *BuildSubAggregate(Value *From, Value* To, const Type *IndexedType,
821b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman                                 SmallVector<unsigned, 10> &Idxs,
822b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman                                 unsigned IdxSkip,
823e922c0201916e0b980ab3cfe91e1413e68d55647Owen Anderson                                 LLVMContext &Context,
8240a7413dad84887bee51f20d7a5f1c4c1c7bb4c1eMatthijs Kooijman                                 Instruction *InsertBefore) {
825b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  const llvm::StructType *STy = llvm::dyn_cast<llvm::StructType>(IndexedType);
826b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  if (STy) {
8270a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman    // Save the original To argument so we can modify it
8280a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman    Value *OrigTo = To;
829b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    // General case, the type indexed by Idxs is a struct
830b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
831b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman      // Process each struct element recursively
832b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman      Idxs.push_back(i);
8330a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman      Value *PrevTo = To;
834710eb236e67dc021c51ef5cb5d2eb8768840895aMatthijs Kooijman      To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
83576f600b205606a055ec35e7d3fd1a99602329d67Owen Anderson                             Context, InsertBefore);
836b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman      Idxs.pop_back();
8370a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman      if (!To) {
8380a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman        // Couldn't find any inserted value for this index? Cleanup
8390a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman        while (PrevTo != OrigTo) {
8400a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman          InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
8410a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman          PrevTo = Del->getAggregateOperand();
8420a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman          Del->eraseFromParent();
8430a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman        }
8440a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman        // Stop processing elements
8450a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman        break;
8460a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman      }
847b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    }
8480a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman    // If we succesfully found a value for each of our subaggregates
8490a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman    if (To)
8500a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman      return To;
851b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  }
8520a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman  // Base case, the type indexed by SourceIdxs is not a struct, or not all of
8530a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman  // the struct's elements had a value that was inserted directly. In the latter
8540a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman  // case, perhaps we can't determine each of the subelements individually, but
8550a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman  // we might be able to find the complete struct somewhere.
8560a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman
8570a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman  // Find the value that is at that particular spot
85876f600b205606a055ec35e7d3fd1a99602329d67Owen Anderson  Value *V = FindInsertedValue(From, Idxs.begin(), Idxs.end(), Context);
8590a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman
8600a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman  if (!V)
8610a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman    return NULL;
8620a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman
8630a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman  // Insert the value in the new (sub) aggregrate
8640a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman  return llvm::InsertValueInst::Create(To, V, Idxs.begin() + IdxSkip,
8650a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman                                       Idxs.end(), "tmp", InsertBefore);
866b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman}
867b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman
868b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman// This helper takes a nested struct and extracts a part of it (which is again a
869b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman// struct) into a new value. For example, given the struct:
870b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman// { a, { b, { c, d }, e } }
871b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman// and the indices "1, 1" this returns
872b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman// { c, d }.
873b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman//
8740a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman// It does this by inserting an insertvalue for each element in the resulting
8750a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman// struct, as opposed to just inserting a single struct. This will only work if
8760a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman// each of the elements of the substruct are known (ie, inserted into From by an
8770a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman// insertvalue instruction somewhere).
878b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman//
8790a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman// All inserted insertvalue instructions are inserted before InsertBefore
880710eb236e67dc021c51ef5cb5d2eb8768840895aMatthijs KooijmanValue *BuildSubAggregate(Value *From, const unsigned *idx_begin,
881e922c0201916e0b980ab3cfe91e1413e68d55647Owen Anderson                         const unsigned *idx_end, LLVMContext &Context,
88276f600b205606a055ec35e7d3fd1a99602329d67Owen Anderson                         Instruction *InsertBefore) {
883977289121996f0afb781592f92a4aee1be3010feMatthijs Kooijman  assert(InsertBefore && "Must have someplace to insert!");
884710eb236e67dc021c51ef5cb5d2eb8768840895aMatthijs Kooijman  const Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
885710eb236e67dc021c51ef5cb5d2eb8768840895aMatthijs Kooijman                                                             idx_begin,
886710eb236e67dc021c51ef5cb5d2eb8768840895aMatthijs Kooijman                                                             idx_end);
8879e9a0d5fc26878e51a58a8b57900fcbf952c2691Owen Anderson  Value *To = UndefValue::get(IndexedType);
888b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  SmallVector<unsigned, 10> Idxs(idx_begin, idx_end);
889b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  unsigned IdxSkip = Idxs.size();
890b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman
89176f600b205606a055ec35e7d3fd1a99602329d67Owen Anderson  return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip,
89276f600b205606a055ec35e7d3fd1a99602329d67Owen Anderson                           Context, InsertBefore);
893b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman}
894b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman
895710eb236e67dc021c51ef5cb5d2eb8768840895aMatthijs Kooijman/// FindInsertedValue - Given an aggregrate and an sequence of indices, see if
896710eb236e67dc021c51ef5cb5d2eb8768840895aMatthijs Kooijman/// the scalar value indexed is already around as a register, for example if it
897710eb236e67dc021c51ef5cb5d2eb8768840895aMatthijs Kooijman/// were inserted directly into the aggregrate.
8980a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman///
8990a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman/// If InsertBefore is not null, this function will duplicate (modified)
9000a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman/// insertvalues when a part of a nested struct is extracted.
901b23d5adbc8230167e711070b9298985de4580f30Matthijs KooijmanValue *llvm::FindInsertedValue(Value *V, const unsigned *idx_begin,
902e922c0201916e0b980ab3cfe91e1413e68d55647Owen Anderson                         const unsigned *idx_end, LLVMContext &Context,
90376f600b205606a055ec35e7d3fd1a99602329d67Owen Anderson                         Instruction *InsertBefore) {
904b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  // Nothing to index? Just return V then (this is useful at the end of our
905b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  // recursion)
906b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  if (idx_begin == idx_end)
907b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    return V;
908b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  // We have indices, so V should have an indexable type
909b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  assert((isa<StructType>(V->getType()) || isa<ArrayType>(V->getType()))
910b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman         && "Not looking at a struct or array?");
911b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  assert(ExtractValueInst::getIndexedType(V->getType(), idx_begin, idx_end)
912b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman         && "Invalid indices for type?");
913b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  const CompositeType *PTy = cast<CompositeType>(V->getType());
91476f600b205606a055ec35e7d3fd1a99602329d67Owen Anderson
915b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  if (isa<UndefValue>(V))
9169e9a0d5fc26878e51a58a8b57900fcbf952c2691Owen Anderson    return UndefValue::get(ExtractValueInst::getIndexedType(PTy,
917b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman                                                              idx_begin,
918b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman                                                              idx_end));
919b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  else if (isa<ConstantAggregateZero>(V))
920a7235ea7245028a0723e8ab7fd011386b3900777Owen Anderson    return Constant::getNullValue(ExtractValueInst::getIndexedType(PTy,
92176f600b205606a055ec35e7d3fd1a99602329d67Owen Anderson                                                                  idx_begin,
92276f600b205606a055ec35e7d3fd1a99602329d67Owen Anderson                                                                  idx_end));
923b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  else if (Constant *C = dyn_cast<Constant>(V)) {
924b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    if (isa<ConstantArray>(C) || isa<ConstantStruct>(C))
925b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman      // Recursively process this constant
92676f600b205606a055ec35e7d3fd1a99602329d67Owen Anderson      return FindInsertedValue(C->getOperand(*idx_begin), idx_begin + 1,
92776f600b205606a055ec35e7d3fd1a99602329d67Owen Anderson                               idx_end, Context, InsertBefore);
928b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  } else if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
929b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    // Loop the indices for the insertvalue instruction in parallel with the
930b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    // requested indices
931b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    const unsigned *req_idx = idx_begin;
932710eb236e67dc021c51ef5cb5d2eb8768840895aMatthijs Kooijman    for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
933710eb236e67dc021c51ef5cb5d2eb8768840895aMatthijs Kooijman         i != e; ++i, ++req_idx) {
9349954c76f2c89ab3c70bfe8222534621a86f9085aDuncan Sands      if (req_idx == idx_end) {
935977289121996f0afb781592f92a4aee1be3010feMatthijs Kooijman        if (InsertBefore)
9360a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman          // The requested index identifies a part of a nested aggregate. Handle
9370a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman          // this specially. For example,
9380a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman          // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
9390a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman          // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
9400a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman          // %C = extractvalue {i32, { i32, i32 } } %B, 1
9410a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman          // This can be changed into
9420a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman          // %A = insertvalue {i32, i32 } undef, i32 10, 0
9430a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman          // %C = insertvalue {i32, i32 } %A, i32 11, 1
9440a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman          // which allows the unused 0,0 element from the nested struct to be
9450a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman          // removed.
94676f600b205606a055ec35e7d3fd1a99602329d67Owen Anderson          return BuildSubAggregate(V, idx_begin, req_idx,
94776f600b205606a055ec35e7d3fd1a99602329d67Owen Anderson                                   Context, InsertBefore);
948977289121996f0afb781592f92a4aee1be3010feMatthijs Kooijman        else
949977289121996f0afb781592f92a4aee1be3010feMatthijs Kooijman          // We can't handle this without inserting insertvalues
950977289121996f0afb781592f92a4aee1be3010feMatthijs Kooijman          return 0;
9519954c76f2c89ab3c70bfe8222534621a86f9085aDuncan Sands      }
952b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman
953b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman      // This insert value inserts something else than what we are looking for.
954b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman      // See if the (aggregrate) value inserted into has the value we are
955b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman      // looking for, then.
956b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman      if (*req_idx != *i)
957710eb236e67dc021c51ef5cb5d2eb8768840895aMatthijs Kooijman        return FindInsertedValue(I->getAggregateOperand(), idx_begin, idx_end,
95876f600b205606a055ec35e7d3fd1a99602329d67Owen Anderson                                 Context, InsertBefore);
959b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    }
960b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    // If we end up here, the indices of the insertvalue match with those
961b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    // requested (though possibly only partially). Now we recursively look at
962b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    // the inserted value, passing any remaining indices.
963710eb236e67dc021c51ef5cb5d2eb8768840895aMatthijs Kooijman    return FindInsertedValue(I->getInsertedValueOperand(), req_idx, idx_end,
96476f600b205606a055ec35e7d3fd1a99602329d67Owen Anderson                             Context, InsertBefore);
965b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  } else if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
966b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    // If we're extracting a value from an aggregrate that was extracted from
967b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    // something else, we can extract from that something else directly instead.
968b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    // However, we will need to chain I's indices with the requested indices.
969b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman
970b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    // Calculate the number of indices required
971b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    unsigned size = I->getNumIndices() + (idx_end - idx_begin);
972b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    // Allocate some space to put the new indices in
9733faf9df08ff389028050bfbccbef571061bf7cc1Matthijs Kooijman    SmallVector<unsigned, 5> Idxs;
9743faf9df08ff389028050bfbccbef571061bf7cc1Matthijs Kooijman    Idxs.reserve(size);
975b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    // Add indices from the extract value instruction
976710eb236e67dc021c51ef5cb5d2eb8768840895aMatthijs Kooijman    for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
9773faf9df08ff389028050bfbccbef571061bf7cc1Matthijs Kooijman         i != e; ++i)
9783faf9df08ff389028050bfbccbef571061bf7cc1Matthijs Kooijman      Idxs.push_back(*i);
979b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman
980b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    // Add requested indices
9813faf9df08ff389028050bfbccbef571061bf7cc1Matthijs Kooijman    for (const unsigned *i = idx_begin, *e = idx_end; i != e; ++i)
9823faf9df08ff389028050bfbccbef571061bf7cc1Matthijs Kooijman      Idxs.push_back(*i);
983b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman
9843faf9df08ff389028050bfbccbef571061bf7cc1Matthijs Kooijman    assert(Idxs.size() == size
985710eb236e67dc021c51ef5cb5d2eb8768840895aMatthijs Kooijman           && "Number of indices added not correct?");
986b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman
9873faf9df08ff389028050bfbccbef571061bf7cc1Matthijs Kooijman    return FindInsertedValue(I->getAggregateOperand(), Idxs.begin(), Idxs.end(),
98876f600b205606a055ec35e7d3fd1a99602329d67Owen Anderson                             Context, InsertBefore);
989b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  }
990b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  // Otherwise, we don't know (such as, extracting from a function return value
991b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  // or load instruction)
992b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  return 0;
993b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman}
9940ff39b3feb10477c224138156941234f5fa46f58Evan Cheng
9950ff39b3feb10477c224138156941234f5fa46f58Evan Cheng/// GetConstantStringInfo - This function computes the length of a
9960ff39b3feb10477c224138156941234f5fa46f58Evan Cheng/// null-terminated C string pointed to by V.  If successful, it returns true
9970ff39b3feb10477c224138156941234f5fa46f58Evan Cheng/// and returns the string in Str.  If unsuccessful, it returns false.
9980582ae99ba75a556d6ff63b254da327d32ba036fBill Wendlingbool llvm::GetConstantStringInfo(Value *V, std::string &Str, uint64_t Offset,
9990582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling                                 bool StopAtNul) {
10000582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling  // If V is NULL then return false;
10010582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling  if (V == NULL) return false;
10020ff39b3feb10477c224138156941234f5fa46f58Evan Cheng
10030ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  // Look through bitcast instructions.
10040ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  if (BitCastInst *BCI = dyn_cast<BitCastInst>(V))
10050582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling    return GetConstantStringInfo(BCI->getOperand(0), Str, Offset, StopAtNul);
10060582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling
10070ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  // If the value is not a GEP instruction nor a constant expression with a
10080ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  // GEP instruction, then return false because ConstantArray can't occur
10090ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  // any other way
10100ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  User *GEP = 0;
10110ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(V)) {
10120ff39b3feb10477c224138156941234f5fa46f58Evan Cheng    GEP = GEPI;
10130ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
10140ff39b3feb10477c224138156941234f5fa46f58Evan Cheng    if (CE->getOpcode() == Instruction::BitCast)
10150582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling      return GetConstantStringInfo(CE->getOperand(0), Str, Offset, StopAtNul);
10160582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling    if (CE->getOpcode() != Instruction::GetElementPtr)
10170582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling      return false;
10180ff39b3feb10477c224138156941234f5fa46f58Evan Cheng    GEP = CE;
10190ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  }
10200ff39b3feb10477c224138156941234f5fa46f58Evan Cheng
10210ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  if (GEP) {
10220ff39b3feb10477c224138156941234f5fa46f58Evan Cheng    // Make sure the GEP has exactly three arguments.
10230582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling    if (GEP->getNumOperands() != 3)
10240582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling      return false;
10250582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling
10260ff39b3feb10477c224138156941234f5fa46f58Evan Cheng    // Make sure the index-ee is a pointer to array of i8.
10270ff39b3feb10477c224138156941234f5fa46f58Evan Cheng    const PointerType *PT = cast<PointerType>(GEP->getOperand(0)->getType());
10280ff39b3feb10477c224138156941234f5fa46f58Evan Cheng    const ArrayType *AT = dyn_cast<ArrayType>(PT->getElementType());
10290582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling    if (AT == 0 || AT->getElementType() != Type::Int8Ty)
10300582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling      return false;
10310ff39b3feb10477c224138156941234f5fa46f58Evan Cheng
10320ff39b3feb10477c224138156941234f5fa46f58Evan Cheng    // Check to make sure that the first operand of the GEP is an integer and
10330ff39b3feb10477c224138156941234f5fa46f58Evan Cheng    // has value 0 so that we are sure we're indexing into the initializer.
10340ff39b3feb10477c224138156941234f5fa46f58Evan Cheng    ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
10350582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling    if (FirstIdx == 0 || !FirstIdx->isZero())
10360582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling      return false;
10370ff39b3feb10477c224138156941234f5fa46f58Evan Cheng
10380ff39b3feb10477c224138156941234f5fa46f58Evan Cheng    // If the second index isn't a ConstantInt, then this is a variable index
10390ff39b3feb10477c224138156941234f5fa46f58Evan Cheng    // into the array.  If this occurs, we can't say anything meaningful about
10400ff39b3feb10477c224138156941234f5fa46f58Evan Cheng    // the string.
10410ff39b3feb10477c224138156941234f5fa46f58Evan Cheng    uint64_t StartIdx = 0;
10420582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling    if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
10430ff39b3feb10477c224138156941234f5fa46f58Evan Cheng      StartIdx = CI->getZExtValue();
10440582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling    else
10450582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling      return false;
10460582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling    return GetConstantStringInfo(GEP->getOperand(0), Str, StartIdx+Offset,
10470ff39b3feb10477c224138156941234f5fa46f58Evan Cheng                                 StopAtNul);
10480ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  }
10490ff39b3feb10477c224138156941234f5fa46f58Evan Cheng
10500ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  // The GEP instruction, constant or instruction, must reference a global
10510ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  // variable that is a constant and is initialized. The referenced constant
10520ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  // initializer is the array that we'll use for optimization.
10530ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  GlobalVariable* GV = dyn_cast<GlobalVariable>(V);
10540582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling  if (!GV || !GV->isConstant() || !GV->hasInitializer())
10550582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling    return false;
10560ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  Constant *GlobalInit = GV->getInitializer();
10570ff39b3feb10477c224138156941234f5fa46f58Evan Cheng
10580ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  // Handle the ConstantAggregateZero case
10590582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling  if (isa<ConstantAggregateZero>(GlobalInit)) {
10600ff39b3feb10477c224138156941234f5fa46f58Evan Cheng    // This is a degenerate case. The initializer is constant zero so the
10610ff39b3feb10477c224138156941234f5fa46f58Evan Cheng    // length of the string must be zero.
10620582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling    Str.clear();
10630582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling    return true;
10640582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling  }
10650ff39b3feb10477c224138156941234f5fa46f58Evan Cheng
10660ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  // Must be a Constant Array
10670ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  ConstantArray *Array = dyn_cast<ConstantArray>(GlobalInit);
10680582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling  if (Array == 0 || Array->getType()->getElementType() != Type::Int8Ty)
10690582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling    return false;
10700ff39b3feb10477c224138156941234f5fa46f58Evan Cheng
10710ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  // Get the number of elements in the array
10720ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  uint64_t NumElts = Array->getType()->getNumElements();
10730ff39b3feb10477c224138156941234f5fa46f58Evan Cheng
10740582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling  if (Offset > NumElts)
10750582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling    return false;
10760ff39b3feb10477c224138156941234f5fa46f58Evan Cheng
10770ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  // Traverse the constant array from 'Offset' which is the place the GEP refers
10780ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  // to in the array.
10790582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling  Str.reserve(NumElts-Offset);
10800ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  for (unsigned i = Offset; i != NumElts; ++i) {
10810ff39b3feb10477c224138156941234f5fa46f58Evan Cheng    Constant *Elt = Array->getOperand(i);
10820ff39b3feb10477c224138156941234f5fa46f58Evan Cheng    ConstantInt *CI = dyn_cast<ConstantInt>(Elt);
10830582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling    if (!CI) // This array isn't suitable, non-int initializer.
10840582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling      return false;
10850ff39b3feb10477c224138156941234f5fa46f58Evan Cheng    if (StopAtNul && CI->isZero())
10860582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling      return true; // we found end of string, success!
10870582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling    Str += (char)CI->getZExtValue();
10880ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  }
10890582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling
10900ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  // The array isn't null terminated, but maybe this is a memcpy, not a strcpy.
10910582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling  return true;
10920ff39b3feb10477c224138156941234f5fa46f58Evan Cheng}
1093